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Abstract
For a fixed finite algebra A, we consider the decision problem SysTerm(A): does a given system
of term equations have a solution in A? This is equivalent to a constraint satisfaction problem
(CSP) for a relational structure whose relations are the graphs of the basic operations of A. From
the complexity dichotomy for CSP over fixed finite templates due to Bulatov [4] and Zhuk [18], it
follows that SysTerm(A) for a finite algebra A is in P if A has a not necessarily idempotent Taylor
polymorphism and is NP-complete otherwise. More explicitly, we show that for a finite algebra A in
a congruence modular variety (e.g. for a quasigroup), SysTerm(A) is in P if the core of A is abelian
and is NP-complete otherwise. Given A by the graphs of its basic operations, we show that this
condition for tractability can be decided in quasi-polynomial time.
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1 Introduction

How hard is it to check whether a system of term equations is solvable in an algebra? The
System of Term Equations Satisfiability Problem over a fixed algebra A is the following
decision problem:

SysTerm(A)
Input: terms s1, t1, . . . , sm, tm in the signature of A
Problem: Does s1 ≈ t1, . . . , sm ≈ tm have a solution in A?

For example, SysTerm for the ring of integers (Z, +, ·, 1) is Hilbert’s tenth problem and
undecidable by Matiyasevich’s theorem. In this note we only consider SysTerm for finite
algebras (meaning algebraic structures of finite size and finite signature), which clearly can
be solved in non-deterministic polynomial time (NP).

Obviously SysTerm(A) has always a positive answer if A has a trivial subalgebra {o}
by setting all variables to o. Hence it is trivial for most classical algebras like groups, rings
(without 1 as basic operation), lattices, and semigroups with idempotents1. This is one
reason why the related problem SysPol, the satisfiability problem for a system of polynomial
equations (allowing also constants), has received more attention in the past. Note that
SysPol can be considered as the restriction of SysTerm to algebras for which each constant

1 Rings with 1, quasigroups, more generally magmas, and G-sets are some of the few named algebras
without trivial subalgebras. However, among finite algebras with randomly chosen operations, almost
none have trivial subalgebras by a result of Murskĭı [2, Theorem 6.16].
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66:2 Satisfiability of Systems of Term Equations

is a basic operation. We will show that for any finite A there exists some algebra A′ (the
core of A) such that SysTerm(A) and SysPol(A′) are equivalent under logspace reductions
(see Lemmas 6 and 7).

Goldmann and Russell [11] showed that SysPol (which they denote as EQN∗) is in P
for abelian and NP-complete for non-abelian finite groups. Klíma, Tesson and Thérien [14]
investigated SysPol over finite semigroups and showed that it is in P for commutative
monoids that are unions of their subgroups and NP-complete for other monoids. Larose
and Zádori [15] studied SysPol over finite algebras in general and observed that they are
logspace-equivalent to constraint satisfaction problems (CSP) of a specific form. They showed
in particular that SysPol for any finite A in a congruence modular variety (including most
classical algebras like groups, modules, rings, quasigroups, lattices but not semigroups) is in
P if A is abelian (meaning the operations of A are affine functions over an abelian group)
and NP-complete otherwise. By using the universal algebraic definition of commutators
and abelianness, this generalizes the previously mentioned result of Goldmann and Russell.
Broniek [3] investigated SysPol and SysTerm for unary algebras (where all basic operations
are unary). He showed in particular that SysTerm for unary algebras of size at most 3 is in
P or NP-complete.

Our goal in this note is first to explicitly state the connections between SysTerm, SysPol
and CSP by a straightforward adaptation of the approach of Larose and Zádori in Section 3.
From the celebrated complexity dichotomy for CSP by Bulatov [4] and Zhuk [18], we then
obtain immediately that SysTerm for any finite algebra is either in P or NP-complete in
Theorem 1. For finite A in a congruence modular variety, we give an algebraic criterion for
when SysTerm(A) is tractable in Theorem 2. Finally we show that this criterion can be
decided in quasi-polynomial time for A given by the graphs of its operations in Theorem 3.

For the precise statement of our results we recall some notions that play an important
role in the classification of CSPs and algebras. For a structure C (possibly with function and
relation symbols) define polymorphisms of C as the homomorphisms from finite powers of C
to C and denote the set of polymorphisms as

Pol(C) :=
⋃

n∈N
Hom(Cn, C).

For example, the polymorphisms of a vector space A are just the linear maps from An to A
for n ∈ N.

Let f : An → A for n > 1. Then f is Taylor if it satisfies n identities in distinct variables
x, y of the form

f(. . . , x
i
, . . . ) ≈ f(. . . , y

i
, . . . ) for all i ∈ {1, . . . , n}

where the omitted variables on either side may be x or y. These identities were chosen so
that no projection map on a non-trivial domain can satisfy them.

Next f : A4 → A is Siggers if it satisfies

f(a, r, e, a) ≈ f(r, a, r, e).

For example, a binary commutative operation f is Taylor by virtue of f(x, y) ≈ f(y, x).
By adding two fictitous variables we also obtain a Siggers operation from f . Clearly every
Siggers operation is Taylor. In fact, every finite structure C has a Taylor polymorphism of
some arity iff C has a Siggers polymorphism [13, 17].

As in [1] we do not require that Taylor and Siggers operations are idempotent like in
older literature (see Lemma 8 for the relation with their idempotent version). This allows
for a convenient formulation of the dichotomy for CSP and consequently the dichotomy for
SysTerm.
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▶ Theorem 1. Let A be a finite algebra. Then SysTerm(A) is in P if A has a (not necessarily
idempotent) Taylor (equivalently Siggers) polymorphism; else SysTerm(A) is NP-complete.

We will show Theorem 1 in Section 3 by encoding SysTerm over an algebra as CSP over
a relational structure and invoking the dichotomy for CSPs.

We already observed that SysTerm for A with a trivial subalgebra {o} is trivial. Still
to put this into the context of Theorem 1, note that such an algebra has f(x, y) := o as a
Taylor polymorphism. For a less obvious example, A = (Z2, +, 0, 1) has x + y + z as Taylor
polymorphism and consequently tractable SysTerm.

Theorem 1 generalizes all the dichotomy results for SysPol in [11, 14, 15] mentioned above
and fully settles the P/NP-complete dichotomy for SysTerm. Still it would be desirable
to describe its boundary in more explicit structural terms of the algebra A than by the
existence of certain polymorphisms. We manage to do this under the assumption of additional
structural properties on A.

Here we just review the bare minimum of notions from universal algebra that we need to
state our results. For more details we refer to [2, 5, 16] and Section 2 below. A variety is a
class of algebras of fixed signature that is defined by identities. For example, groups form
a variety with a binary operation ·, a unary −1 and constant 1 satisfying the usual group
axioms. Varieties are usually classified by so-called Mal’cev conditions, essentially the term
identities they satisfy. We list the conditions which occur in this note in increasing strength.

A variety V is Taylor if it has a term t which induces an idempotent Taylor operation on
all its algebras. Here idempotent means that V satisfies t(x, . . . , x) ≈ x.
For example, semilattices form a Taylor variety with Taylor term t(x, y) := xy but
(commutative) semigroups and G-sets do not.
A variety V is congruence modular if every algebra A in V has a modular congruence
lattice.
Most classical algebras, in particular those that have (quasi)group operations, like groups,
modules, rings, loops, . . . or lattice operations, like lattices, Boolean algebras, Heyting
algebras,. . . are members of congruence modular varieties. On the other hand, semilattices
and more generally semigroups do not form congruence modular varieties.
A variety is congruence distributive if all its algebras have distributive congruence lattices.
Every algebra with lattice operations is contained in a congruence distributive variety
but non-trivial groups are not.

Since distributivity implies modularity for lattices, congruence distributive varieties are
congruence modular. Further congruence modular varieties are Taylor.

There exist various generalizations of commutators from groups to arbitrary algebras.
These may differ in general but most of them lead to the same concept of abelianess in Taylor
varieties (see [9, 12]). In particular, a finite algebra A in a Taylor variety is abelian (with
respect to the standard term condition commutator) iff all its basic operations are affine
functions of some commutative group (A, +, −, 0). Although such an abelian algebra A may
not have + or − as term operations, the ternary function x − y + z is a term operation and
is called the Mal’cev term operation of A. A group is abelian in this sense iff it is abelian in
the classical group theoretic sense. A loop is abelian iff it is an abelian group. Since for a
ring the commutator of congruences corresponds to the product of ideals, a ring is abelian iff
its multiplication is 0. For a lattice or any algebra in a congruence distributive variety, the
commutator of two congruences is just their intersection. Hence these algebras are abelian
iff they are trivial.

Next we extend some established notions and facts on relational structures to the setting
of algebras. A finite structure C (possibly with function and relational symbols) is a core if
every endomorphism of C is an embedding (equivalently, an automorphism). It is well-known
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66:4 Satisfiability of Systems of Term Equations

and not hard to see that if h is an endomorphism of a finite structure C such that h(C) is
minimal with respect to inclusion among all endomorphic images of C, then h(C) is a core.
Moreover this core is unique up to isomorphism and hence called the core of C. An algebra
has trivial core iff it has a trivial subalgebra. An algebra expanded with all constants is its
own core. For a non-degenerate example, the core of the symmetric group (S3, ·, (), (1, 2))
expanded with the additional constant (1, 2) is isomorphic to (Z2, +, 0, 1).

We will prove the following generalization of a result by Larose and Zádori on the
complexity of systems of polynomial equations [15, Corollary 3.14] in Section 4.

▶ Theorem 2. Let A be a finite algebra in a congruence modular variety. Then SysTerm(A)
is in P if the core of A is abelian; else SysTerm(A) is NP-complete.

Since any non-trivial ring with 1 is non-abelian by the discussion of commutators above,
it follows that its SysTerm is NP-complete.

Also, since non-trivial algebras in congruence distributive varieties are non-abelian,
Theorem 2 yields that SysTerm(A) for such a finite A is NP-complete unless A has a trivial
subalgebra and hence trivial core, in which case SysTerm(A) is trivial.

A natural follow-up to the dichotomy results above is the metaquestion of deciding for a
given algebra A whether it has tractable SysTerm. Or, for practical purposes, how much
preprocessing is necessary on a given algebra A with abelian core such that one can solve
SysTerm for A in polynomial time in the size of the system of equations? Here and in the
following we assume that algebras are given by the graphs of their basic operations.

Recall that a finite structure has a (not necessarily idempotent) Taylor polymorphism iff
it has a (not necessarily idempotent) 4-ary Siggers polymorphism. The latter condition can
clearly be decided in NP. So the metaquestion for SysTerm, i.e., deciding whether a given
finite algebra A has a (not necessarily idempotent) Taylor polymorphism, is in NP.

Chen and Larose showed that the metaquestion for CSP, i.e., deciding whether a given
finite relational structure A has a (not necessarily idempotent) Taylor polymorphism, is
actually NP-complete [6]. Klíma, Tesson and Thérien constructed for every finite rela-
tional structure A a finite semigroup A such that CSP(A) is polynomial time equivalent
to SysPol(A) [14, Theorem 8]. Similarly, Broniek constructed for every finite relational
structure A a finite unary algebra A such that CSP(A) is polynomial time equivalent to
SysTerm(A) [3, Theorem 3.4]. However, for both these constructions, the size of the algebra
A is exponential in the size of relational structure A. Hence they do not allow to transfer
the NP-hardness of the metaquestion for CSP to the metaquestion for SysTerm. To the
best of our knowledge, it may be easier to decide for algebras whether they have a Taylor
polymorphism than for relational structures.

In particular, for an algebra in a congruence modular variety, the existence of a (not
necessarily idempotent) Taylor polymorphism can be decided in quasi-polynomial time by the
following slightly stronger result, which we will prove in Section 5. Recall that congruence
modular varieties are Taylor.

▶ Theorem 3. There exists a quasi-polynomial time algorithm that, given a finite algebra A
in a Taylor variety, decides if the core of A is abelian, in which case the core of A and the
graph of its Mal’cev term operation can also be computed in quasi-polynomial time.

Thus given a finite algebra A in a Taylor variety, we can compute its core C in quasi-
polynomial time if C is abelian. Moreover, if the core C is abelian, we can use its Mal’cev
term operation x − y + z to reduce SysTerm(A) to a linear system of equations over the
abelian group (C, +). If a system of term equations over abelian C (equivalently over A)
has a solution, then we can also find it in polynomial time in the size of the system.
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We do not know whether the quasi-polynomial time algorithms in Theorem 3 can be
improved to polynomial time.

Of course one can also ask how hard it is to check the assumptions of Theorem 3 in case
that the idempotent Taylor term operation of A is not given as part of the input. For that
Freese and Valeriote showed that deciding whether a given finite algebra A is in a Taylor
variety or whether it is in a congruence modular variety is EXPTIME-complete [10, Corollary
9.3] but that these problems are in P for idempotent A, i.e., if all basic operations f of A
satisfy f(x, . . . , x) ≈ x [10, Theorem 6.2, 6.3].

2 Preliminaries

We review the algebraic results that we will need. For standard universal algebraic background
we refer the reader to [2, 5, 9, 12, 16].

2.1 Algebras and varieties

An algebra A = (A, {fA : f ∈ F}) is a pair where A is a non-empty set (the universe of
A), F is a set of function symbols equipped with a map arity : F → N that assigns to each
function symbol its arity (the signature of A), and fA are the interpretations of the symbols
f ∈ F as operations of the corresponding arity on A (the basic operations of A). We say A is
finite if its universe and its signature are finite. An algebra is trivial if its universe has size 1.

F -terms or terms in the signature of A are constructed from function symbols F and
variables x1, x2, . . . in the usual way: every variable is an F -term, and if f ∈ F is k-ary
and t1, . . . , tk are F -terms, then f(t1, . . . , tk) is an F -term. Every F -term t in variables
x1, . . . , xk induces a k-ary term function tA : Ak → A by interpreting a variable xi as the
i-th projection from Ak onto A and interpreting function symbols f as fA.

Polynomials over A are defined like terms except that additionally for every element
a ∈ A there is a constant polynomial a. Again every polynomial p in variables x1, . . . , xk

induces a k-ary polynomial function pA : Ak → A via the interpretation of function symbols
in F on A and the interpretation of a constant a as the corresponding element a ∈ A. Two
algebras A1 = (A, F1) and A2 = (A, F2) on the same universe are polynomially equivalent if
A1 and A2 have the same set of polynomial functions of all arities.

An identity is a pair of terms (s, t), which we usually write as s ≈ t. For k-ary terms s, t,
the k-tuple (a1, . . . , ak) ∈ Ak is a solution of s(x1, . . . , xk) ≈ t(x1, . . . , xk) if sA(a1, . . . , ak) =
tA(a1, . . . , ak). An algebra A satisfies an identity s ≈ t if sA = tA.

A variety V is a class of algebras over the same fixed signature F that is defined by a set
of identities Σ, that is, V = {A : A satisfies Σ}. Birkhoff showed that the variety generated
by a class K of algebras over F consists of all homomorphic images of subalgebras of direct
powers of elements in K.

A variety V is locally finite if all its finitely generated algebras are finite. For example,
the variety generated by a finite algebra A is locally finite.

2.2 Commutators

Commutators have been generalized from normal subgroups of groups to congruences of
general algebras by Smith, Hagemann, Herrmann, Gumm, Freese, McKenzie and others.
See [9] for the history and overview of their development.
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66:6 Satisfiability of Systems of Term Equations

For congruences α, β of an algebra A, let MA(α, β) be the subalgebra of A2×2 that is
generated by all elements of the form[

a a

b b

]
,

[
c d

c d

]
for aαb, cβd.

Writing quadruples as 2 × 2 tables is just a notational convenience here. The operations of
A simply apply componentwise. The commutator [α, β] is the smallest congruence γ of A
such that

∀
[
x y

z w

]
∈ MA(α, β) : xγy ⇒ zγw.

For an algebra A let 1A denote the total congruence and 0A denote the trivial congruence
(equality). Then A is abelian if [1A, 1A] = 0A.

Abelianess has strong structural consequences of an algebra. Assume A is a finite abelian
algebra in a Taylor variety. Then A is polynomially equivalent to a module by [12, 9]. More
explicitly, there exist operation +, −, 0 such that (A, +, −, 0) is an abelian group with a set
of endomorphisms R. Every k-ary basic operation fA of A can be represented in the form

fA(x1, . . . , xk) =
k∑

i=1
ri(xi) + c

for some endomorphisms r1, . . . , rk ∈ R and some constant c ∈ A. Given a term t of A
it can be rewritten iteratively as a sum of endomorphisms of (A, +, −, 0) and constants in
polynomial time as well. Hence SysTerm(A) reduces to solving a system of linear equations
over (A, +, −, 0), which is clearly in P.

2.3 Tame congruence theory
For congruence α, β of an algebra A we say α is covered by β (written α ≺ β) if α is strictly
contained in β and there is no congruence strictly between α and β.

A finite non-trivial algebra is minimal if all its unary polynomial operations are either
constant or permutations. Pálfy showed that every minimal algebra is polynomially equivalent
to an algebra of one the following five types:
1. a G-set (i.e., an algebra all of whose basic operations are permutations);
2. a vector space;
3. the Boolean algebra of size 2;
4. the lattice of size 2;
5. the semilattice of size 2.
Tame congruence theory (TCT) as developed by Hobby and McKenzie in [12] associates with
any pair of congruences α ≺ β of a finite algebra A a set of minimal algebras all of which
have the same type 1-5. The precise construction is quite technical and will not be needed
in this paper. Hence we will not discuss it beyond stating that every pair α ≺ β is labelled
with a unique type. The set of all types of pairs α ≺ β of A is denoted by typ{A}. For a
variety V the set of all types of α ≺ β of all finite algebras A in V is denoted by typ{V }.

There are deep connections between the typeset of a variety V , that is, the local behaviour
of polynomial functions on its finite members, and the identities that hold in V . For example:

[12, Theorem 9.6] A locally finite variety V is Taylor iff 1 ̸∈ typ{V }.
[12, Theorem 8.5] If a locally finite variety V is congruence modular, then typ{V } ⊆
{2, 3, 4}.
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3 SysTerm, SysPol and CSP

In this section we collect easy facts on the correspondence between systems of equations and
constraint satisfaction problems that may be known at least implicitely in one form or the
other. Still we hope it is useful to provide an explicit and consistent overview for the reader.

3.1 Reduction to CSP
First we reduce a system of equations to a particular constraint satisfaction problem. The
Constraint Satisfaction Problem over a fixed relational structure A is the decision problem:

CSP(A)
Input: a structure X in the signature of A
Problem: Is there a homomorphism from X to A?

Many classical decision problems like 3-SAT, graph coloring, solvability of linear systems. . . can
be formulated as CSP for an appropriately chosen structure A. For background on CSP on
fixed templates we refer to the survey [1] by Barto, Krokhin and Willard.

Denote the graph of a k-ary operation f : Ak → A by the k + 1-ary relation

f◦ := {(x1, . . . , xk, f(x1, . . . , xk)) : x1, . . . , xk ∈ A}.

For an algebra A = (A, F ) with universe A and basic operations F , let A◦ := (A, {f◦ : f ∈
F}) denote the relational structure with the graphs of the basic operations as relations.

Larose and Zádori observed the following correspondence between SysPol and CSP. The
proof for systems of term equations is essentially the same and added here for the convenience
of the reader.

▶ Lemma 4 ([15, cf. Theorem 2.2]). Let A be a finite algebra. Then SysTerm(A) is logspace-
equivalent to CSP(A◦).

Proof. For a CSP(A◦)-instance X, each constraint (xi1 , . . . , xik+1) ∈ f◦ can be reformulated
as f(xi1 , . . . , xik

) ≈ xik+1 in constant time. Clearly the conjunction of constraints is satisfiable
iff the system of corresponding equations is solvable in A.

Conversely, for a SysTerm(A)-instance s1 ≈ t1, . . . , sm ≈ tm, rewrite each occurring term
t = f(u1, . . . , uk) for a basic operation f of A as a sequence of constraints (yu1 , . . . , yuk

, yt) ∈
f◦ in variables y indexed by subterms and correspondingly for the subterms u1, . . . , uk. If
t = x is a variable, just write yt = x. All these constraints together with ys = yt for every
given equation s ≈ t form a CSP(A◦)-instance which is satisfiable iff the original system
of equations over A is solvable. This rewriting creates as many new variables as there are
function symbols and variables in s1, t1, . . . , sm, tm and can be done in logarithmic space. ◀

It is straightforward to check that the polymorphisms of A are the same as those of A◦.

▶ Lemma 5. Pol(A) = Pol(A◦) for every algebra A.

Proof. Let h : An → A, f : Ak → A and x1 = (x11, . . . , x1n), . . . , xk = (xk1, . . . , xkn) in An.
Then hf(x1, . . . , xk) = f(h(x1), . . . , h(xk)) with f acting on An componentwise iff

h




x11
...

xk1
f(x11, . . . , xk1)

 , . . . ,


x1n

...
xkn

f(x1n, . . . , xkn)


 ∈ f◦.

Hence h is a polymorphism of the algebra (A, f) iff h is a polymorphism of the relational
structure (A, f◦). The assertion follows. ◀
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66:8 Satisfiability of Systems of Term Equations

The previous two lemmas are already enough to obtain the complexity dichotomy for
SysTerm from that for CSP.

Proof of Theorem 1. By Lemma 4 and 5 it suffices to consider CSP(A◦). Then the hardness
part only uses that 3-SAT reduces to CSP(A◦) if A◦ has no Taylor polymorphism [1,
Theorem 40].

The tractability part follows from the celebrated result by Bulatov [4] and Zhuk [18] that
CSP(A) for a finite relational structura A is in P if A has a (not necessarily idempotent)
Taylor polymorphism. ◀

3.2 Cores
As for CSP, it suffices to investigate SysTerm for cores A by the next observation.

▶ Lemma 6. SysTerm(A) = SysTerm(h(A)) for each endomorphism h of A.

Proof. Let h be an endomorphism of A. Obviously, if a system of term identities Σ has a
solution in the subalgebra h(A) of A, then also in A. Conversely, if Σ has a solution in A,
then clearly also in its homomorphic image h(A). ◀

It is well-known that a CSP over a core relational structure is equivalent to the CSP
over its expansion with singletons. Correspondingly, systems of term equations over a core
algebra A are equivalent to systems of polynomial equations over A. We give a direct proof
of this fact since it is short and makes the reduction from SysPol to SysTerm more apparent.

▶ Lemma 7. Let A be a finite algebra that is a core. Then SysPol(A) is logspace-equivalent
to SysTerm(A).

Proof. SysTerm(A) reduces trivially to SysPol(A). For the converse, the crucial observation
is that the graphs of endomorphisms of A are the solutions of a system of term equations.
By definition a map h : A → A is an endomorphism of A iff for all f ∈ F , say k-ary, and for
all a1, . . . , ak ∈ A

f(h(a1), . . . , h(ak)) = h(f(a1, . . . , ak)).

Hence {(a, h(a)) : a ∈ A} is the graph of an endomorphism of A iff ya = h(a) for a ∈ A is
a solution of the system of term equations

f(ya1 , . . . , yak
) ≈ yf(a1,...,ak) for f ∈ F (k-ary), a1, . . . , ak ∈ A. (1)

Given an instance of SysPol(A) with variables x1, . . . , xn, we introduce |A| new variables ya

for a ∈ A and replace every occurrence of a constant a in a polynomial equation by ya. To
the resulting set of term equations we also add the equations (1) to obtain an instance of
SysTerm(A). Note that the added system (1) does not depend on the original input, only
on A. Hence the new term system can be obtained from the original polynomial system in
logspace by rewriting any occuring constant a as variable ya.

If the original polynomial system has a solution, then clearly the new term system has a
solution with ya = a. Conversely, if the new system has a solution x1 = b1, . . . , xn = bn and
ya = h(a) for a ∈ A, then h is an endomorphism of A. Since A is a core by assumption, h is
in fact an automorphism. Hence x1 = h−1(b1), . . . , xn = h−1(bn) and ya = a for a ∈ A is
also a solution of the new system. Thus x1 = h−1(b1), . . . , xn = h−1(bn) is a solution of the
original polynomial system. ◀
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3.3 Polymorphisms satisfying height-1 identities
An identity has height 1 if it is of the form f(u1, . . . , uk) ≈ g(v1, . . . , vℓ) for operation symbols
f, g and not necessarily distinct variables u1, . . . , uk, v1, . . . , vℓ.

For example, commutativity of a binary operation f is expressed by a height-1 identity
but associativity is not since that requires nested applications of f .

Since the identities for a Taylor operation all have height 1, the next lemma yields that
a structure has a (not necessarily idempotent) Taylor polymorphism iff its core has the
corresponding idempotent polymorphism. For relational structures this is well-known and
the same easy proof applies to general structures.

▶ Lemma 8 ([6, cf. Lemma 6.4]). Let Σ be a set of height-1 identities. Then a finite structure
C (possibly with function and relation symbols) has polymorphisms satisfying Σ iff the core
of C has idempotent polymorphisms satisfying Σ.

Proof. Let h be an endomorphism of C such that h(C) is the core of C.
If F is a set of polymorphisms of h(C) satisfying Σ, then f ′(x1, . . . , xk) :=

f(h(x1), . . . , h(xk)) for f ∈ F (k-ary) are polymorphisms of C and still satisfy the same
height-1 identities.

Conversely, let F be polymorphisms of C satisfying Σ. For f ∈ F (k-ary), let f∗(x1, . . . , xk)
be the restriction of hf(x1, . . . , xk) to the substructure h(C). Then {f∗ : f ∈ F} is a set of
polymorphism of h(C) which still satisfies the height-1 identities of Σ. Moreover, for every f ∈
F , we have that f1(x) := f∗(x, . . . , x) is an endomorphism of h(C), hence an automorphism.
Thus f−1

1 f∗ is an idempotent polymorphism of h(C). If f∗(u1, . . . , uk) ≈ g∗(v1, . . . , vℓ) is
in Σ, then f1 = g1 and consequently f−1

1 f∗(u1, . . . , uk) ≈ g−1
1 g∗(v1, . . . , vℓ) holds on h(C).

Hence f−1
1 f∗ for f ∈ F are idempotent polymorphisms of h(C) that still satisfy Σ. ◀

4 Systems over algebras in congruence modular varieties

Larose and Zádori explicitely characterized finite algebras without congruences α ≺ β of
TCT type 5 in Taylor varieties that have idempotent Taylor polymorphisms.

▶ Theorem 9 ([15, Theorem 3.12]). Let A be a finite algebra in a Taylor variety such that
5 ̸∈ typ{A}. Then A has an idempotent Taylor polymorphism iff A is abelian.

Note that there exist non-abelian algebras with idempotent Taylor term operations that
commute with themselves, e.g., semilattices. Hence the assumption 5 ̸∈ typ{A} cannot be
omitted in Theorem 9.

Theorem 9 yields an explicit characterization of the complexity of SysTerm over cores
that parallels those of SysPol by Larose and Zádori.

▶ Corollary 10 ([15, cf. Corollary 3.13]). Let A be a finite algebra in a Taylor variety such
that 5 ̸∈ typ{A}. Then SysTerm(A) is in P if the core of A is abelian; else SysTerm(A) is
NP-complete.

Proof. If the core h(A) of A is abelian, then h(A) is polynomially equivalent to a module
with group operations +, − by [12]. Further SysTerm(h(A)) reduces to a system of linear
equations over that module. Then d(x, y, z) = x − y + z is a polymorphism of h(A) and
also of the corresponding relational structure h(A◦) by Lemma 5. Hence CSP(h(A◦)) is a
so-called general subgroup problem and can be solved in polynomial time by a result of Feder
and Vardi [8, Theorem 33]. Then SysTerm(A) is in P by Lemmas 4 and 6.
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Else if the core of A is not abelian, then it has no idempotent Taylor polymorphism
by Theorem 9. Hence SysTerm(A) is NP-complete by the hardness of CSP over structures
without Taylor polymorphisms and Lemma 6. ◀

The proof of Corollary 10 does not require the full strength of the CSP-dichotomy by
Bulatov and Zhuk but only that linear systems over modules are in P. Moreover, for an
abelian algebra A in a Taylor variety we can give a parametrization of all solutions of a
system of term equations and determine their number by linear algebra in polynomial time.
All of this applies in particular to algebras in congruence modular varieties.

Proof of Theorem 2. Let A be a finite algebra in a congruence modular variety. Then the
variety V generated by A is locally finite and congruence modular. By [12, Theorem 8.5] V

omits types 1 (i.e., V is Taylor) and 5. In particular A itself has no congruences α ≺ β of
type 5. Hence the result is a special case of Corollary 10. ◀

5 Metaquestions about the complexity dichotomy

In the following we assume that algebras (A, f1, . . . , fm) are given by the graphs of their
basic operations f1, . . . , fm. So, for n the maximum arity of f1, . . . , fm, this representation
has size at least |A|n.

We give a quasi-polynomial time algorithm to decide whether a given algebra in a Taylor
variety has abelian core.

Proof of Theorem 3. Let A be a finite algebra in a Taylor variety. First we claim that the
core of A is abelian iff there exists a homomorphism from the maximal abelian quotient
Ā := A/[1, 1] of A to A.

For the “only if”-direction, assume that the core h(A) for some endomorphism h of A is
abelian. By the Homomorphism Theorem h(A) is isomorphic to the quotient of A by the
kernel ker h := {(x, y) ∈ A2 : h(x) = h(y)} of h. In particular A/ ker h is abelian as well.
By the definition of the commutator, [1, 1] is the unique smallest congruence of A such that
A/[1, 1] is abelian. Hence [1, 1] ≤ ker h. Let x/[1, 1] denote the class of x modulo [1, 1] in Ā.
Then h̄ : Ā → A, x/[1, 1] → h(x), is a well-defined homomorphism.

Conversely, for the “if”-direction, assume we have a homomorphism h̄ : Ā → A. Then
h̄ lifts to an endomorphism h : A → A, x 7→ h̄(x/[1, 1]). Clearly the images of h and h̄ are
the same and the kernel ker h contains [1, 1]. So by the Homomorphism Theorem h(A) is
isomorphic to a quotient of Ā. Note that Ā is abelian in a Taylor variety and hence has a
Mal’cev term operation d by [12, Theorem 9.6]. Hence Ā is polynomially equivalent to a
module and all its quotients are abelian as well by [9] (We note in passing that outside of
Taylor varieties, unfortunately quotients of abelian algebras may not be abelian again). In
particular h(A) is abelian. While h(A) may not be the core of A, all images g(A) for an
endomorphism g of A that are contained in h(A) are subalgebras of an abelian algebra, thus
abelian themselves (This holds for arbitrary algebras by the definition of the commutator).
Since the core of A is isomorphic to a minimal such image g(A), it is abelian.

Hence it suffices to check whether there exists a homomorphism from Ā to A. Recall
that the commutator [1, 1] can be enumerated in polynomial time by an algorithm due to
Willard [7, Proposition 4.1]. Thus computation in Ā effectively reduces to computation in A
in the following steps.
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Using the description of the structure of abelian algebras in congruence modular varieties
from [9], we see that the subalgebra MĀ(1, 1) of Ā2×2 that is generated by all elements of
the form[

a a

b b

]
,

[
c d

c d

]
for a, b, c, d ∈ Ā

has the universe

MĀ(1, 1) =
{[

y x

z d(x, y, z)

]
: x, y, z ∈ Ā

}
.

Hence the Mal’cev term operation d on Ā is unique and its graph can be computed by
enumerating the elements in MĀ(1, 1) by a straightforward closure algorithm in polynomial
time. More specifically for any fixed element u0 ∈ Ā, the operations x + y := d(x, u0, y) and
−x := d(u0, x, u0) on Ā yield an abelian group (Ā, +, −, u0) with zero element u0. Further
d(x, y, z) = x − y + z for all x, y, z ∈ Ā. Now we can grow a generating set u1, . . . , un

of (Ā, +) with n ≤ log2 |Ā| as follows. If u0, . . . , ui are fixed and the generated subgroup
Bi := ⟨u0, . . . , ui⟩ of (Ā, +) is not all of Ā, then pick some ui+1 ∈ Ā \ Bi. Note that the
index of Bi in Bi+1 is at least 2 by Lagrange’s Theorem. So the process stops with Bn = Ā

after n ≤ log2 |Ā| steps each of which requires only polynomial time in |A|. Finally we
have obtained a generating set u0, u1, . . . , un for (Ā, x − y + z) and in particular for Ā in
polynomial time in |A|.

Clearly every homomorphism h : Ā → A is uniquely determined by its images on the
generators u0, . . . , un. For v0, . . . , vn ∈ A we can enumerate

⟨(u0, v0), . . . , (un, vn)⟩ ≤ Ā × A

in polynomial time to see whether the partial map with h(ui) := vi for i ∈ {0, . . . , n} extends
to a homomorphism from Ā to A. Checking the |A|n+1 ≤ 2(log |A|)2+log |A| potential images
of u0, . . . , un yields an algorithm that decides the existence of a homomorphism from Ā to
A in quasi-polynomial time in A.

If such a homorphism exists, then the homomorphism with smallest image maps Ā to
the abelian core of A with Mal’cev term operation induced by d on Ā. Thus the universe of
the core of A can be obtained in quasi-polynomial time as well. ◀
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