
An Iterative Approach for Counting Reduced
Ordered Binary Decision Diagrams
Julien Clément #

Normandie Université, UNICAEN, ENSICAEN, CNRS, GREYC – UMR 6072, France

Antoine Genitrini #

Sorbonne Université, CNRS, LIP6 – UMR 7606, F-75005 Paris, France

Abstract
For three decades binary decision diagrams, a data structure efficiently representing Boolean
functions, have been widely used in many distinct contexts like model verification, machine learning,
cryptography and also resolution of combinatorial problems. The most famous variant, called reduced
ordered binary decision diagram (robdd for short), can be viewed as the result of a compaction
procedure on the full decision tree. A useful property is that once an order over the Boolean
variables is fixed, each Boolean function is represented by exactly one robdd. In this paper we aim
at computing the exact distribution of the Boolean functions in k variables according to the robdd
size, where the robdd size is equal to the number of decision nodes of the underlying directed
acyclic graph (dag) structure. Recall the number of Boolean functions with k variables is equal
to 22k

, which is of double exponential growth with respect to the number of variables. The maximal
size of a robdd with k variables is Mk ≈ 2k/k. Apart from the natural combinatorial explosion
observed, another difficulty for computing the distribution according to size is to take into account
dependencies within the dag structure of robdds. In this paper, we develop the first polynomial
algorithm to derive the distribution of Boolean functions over k variables with respect to robdd size
denoted by n. The algorithm computes the (enumerative) generating function of robdds with k

variables up to size n. It performs O(k n4) arithmetical operations on integers and necessitates
storing O((k +n)n2) integers with bit length O(n log n). Our new approach relies on a decomposition
of robdds layer by layer and on an inclusion-exclusion argument.

2012 ACM Subject Classification Mathematics of computing→ Combinatorial algorithms; Mathem-
atics of computing → Generating functions; Mathematics of computing → Combinatoric problems;
Theory of computation → Generating random combinatorial structures; Information systems →
Data compression; Theory of computation → Data compression

Keywords and phrases Boolean Function, Reduced Ordered Binary Decision Diagram ({robdd}),
Enumerative Combinatorics, Directed Acyclic Graph

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.36

Supplementary Material Software: https://github.com/agenitrini/BDDgen
archived at swh:1:dir:dc717703d5409305685bff27e67735eba792508d

Funding Julien Clément: Ping/Ack [ANR-18-CE40-0011], C_SydiSi [ANR-19-CE48-0007]

Acknowledgements The authors thank the anonymous referees for their comments and suggested
improvements. All these remarks have increased the quality of the paper.

1 Introduction

Three decades ago a central data structure in computer science, designed to represent
Boolean functions, emerged under the name of Binary Decision Diagrams (or bdds) [1].
Their algorithmic paradigm gives great advantages: it is based on a divide-and-conquer
approach combined with a compaction process. Their benefits compared to other Boolean
representations are so obvious that several dozens of bdd variants have been developed

© Julien Clément and Antoine Genitrini;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 36; pp. 36:1–36:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Julien.Clement@unicaen.fr
mailto:Antoine.Genitrini@lip6.fr
https://doi.org/10.4230/LIPIcs.MFCS.2023.36
https://github.com/agenitrini/BDDgen
https://archive.softwareheritage.org/swh:1:dir:dc717703d5409305685bff27e67735eba792508d;origin=https://github.com/agenitrini/BDDgen;visit=swh:1:snp:f8c2c2aeba101078ac70998236ed1c439e8ae2d2;anchor=swh:1:rev:598772b52c2e5e9d98ebc2828fdf9c8383d778d6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 An Iterative Approach for Counting ROBDDs

in recent years. In his monograph [16], Wegener presents several ones like robdds [2],
okfbdds [5], qobdds [15], zbdds [10], and others. While most of these data structures
are used in the context of verification [16], they also appear, for example, in the context of
cryptography [9] or knowledge compilation [4]. Also, the size of the structure, depending on
the compaction of a decision tree, allows improving classification in the context of machine
learning [11]. Finally, some specific bdds are relevant to strategies for the resolution of
combinatorial problems, cf. [8, vol. 4], like the classical satisfiability count problem.

The classical way to represent the different diagrams consists in their embedding as
directed acyclic graphs (or dags). In the following we are interested in the original form of
decision diagrams that are robdds, for Reduced Ordered Binary Decision Diagrams. One of
their fundamental properties relies on the single, thus canonical, representative property for
each Boolean function (with a given order over the Boolean variables). In his book [8] Knuth
recalls and proves several combinatorial results for robdds. He is, for example, interested in
the profile of a typical robdd, or in the way to combine two structures to represent a more
complex Boolean function. However, thirty years after the takeoff of robdds, the study
of the distribution of Boolean functions with respect to the size, defined as the number of
decision nodes (see Figure 2), of the dag structure is not totally understood. The main
problem is that no recursive characterization describing the structure of robdds is known,
as opposed, for instance, to the recursive decomposition of binary trees which is the core
approach in their combinatorial studies (profile, width, depth).

Related work. An important step in the comprehension of the distribution of the Boolean
functions according to their robdd size has been achieved by Wegener [15] and improved by
Gröpl et al. [7]. These authors proved that almost all functions have the same robdd size
up to a factor of 1 + o(1) when the number of variables k tends to infinity, exhibiting the
Shannon effect (strong or weak depending on the value of k). The strong (respectively weak)
Shannon effect states that almost all functions have the same robdd size as the largest
robdds up to a factor of 1 + f(k) with f(k) = o(1) (resp. f(k) = Ω(1)) as k tends to infinity
(see also [14]). The reader may find an illustration of this phenomenon in Figure 1 with the
plot of the exact distribution for k = 13 variables. A consequence of these first analyses is
that picking uniformly at random a Boolean function whose robdd is small is not an easy
task, although in practice robdds are often not of exponential size (with respect to k).

In [12], the authors study, experimentally, numerically, and theoretically, the size of
robdds when the number k of variables is increasing. However, their main approach relies
on an exhaustive enumeration of the decision trees of all Boolean functions, that are in a
second step compressed into robdds. The doubly exponential growth of Boolean functions
over k variables, equal to 22k , allows only to compute the first values for k = 1, . . . , 4. Then
the authors extrapolate the distributions by sampling decision trees (uniformly at random).

Later in the paper [3] we obtain similar combinatorial results. Using a new approach
based on a partial recursive decomposition, we partition the robdds according to their
profile (which describes the number of nodes per level in the dag). Another key feature
of [3] is that we can restrict ourselves to a maximal size n for robdds, as opposed to the
exhaustive-oriented approach of [12]. Although more efficient, still algorithms with this
approach are bound to be at least of complexity Ω(n k3/2·k2/ log k), while using a huge amount
of extra memory. However, after a lengthy computation we obtain the exact distributions
of the size of robdds up to k = 9, thus partitioning the set of 2512 Boolean functions into
robdds of sizes ranging from 0 to 141.

J. Clément and A. Genitrini 36:3

Main results. In this paper, we describe an algorithm that calculates the exact distribution
for robdds up to size n in time complexity O(k n4) using O((n+k)n2) extra storage memory
for integers. To the best of our knowledge, this is the first polynomial complexity algorithm
computing the distribution of the robdd size for Boolean functions. Our combinatorial
approach is based on an iteration process instead of a recursive approach.

We improve drastically on previous work and all the extrapolated results presented
in [12] for Boolean functions up to 13 variables are now fully and exactly described. Using a
personal computer, in a couple of minutes we obtain an exhaustive counting of the robdds
representing functions over 11 variables. With a computer with several hundreds gigabytes
of ram we compute the distribution over 13 variables in about a day. Indeed, we partition
the 28192 Boolean functions according to their robdds size (which ranges from 0 to 1277).

In Figure 1 the exact distribution is depicted in two ways of presentation: a red point (x, y)
states that 2y functions have a robdd size x, in logarithmic scale; the blue curve is the
probability distribution.

Figure 1 The robdd size distribution of Boolean functions in 13 variables. The exact distribution
is depicted in two ways of presentation: the red curve is the logarithmic scale of the distribution;
the blue curve is the probability distribution.

Organization of the paper. In Section 2 we present the formal notions and objects necessary
for the description of our counting approach. Section 3 presents the iterative process for
computing the number of robdds having a given profile (the profile describes the number
of decision nodes labelled with each variable). Section 3 also states the main result of this
paper which is a formula for computing the number of robdds involving linear maps over
a polynomial ring. Finally, Section 4 presents the algorithmic context for computing the
complete distribution (under the form of the enumerative generating function [6] of robdds).

2 Preliminaries

A Boolean function in k variables is a function from the set {0, 1}k into the set {0, 1}. The
set of functions is denoted by Bk and its cardinality is 22k . Furthermore, for the rest of this
paper, we choose an ordering of the sequence of variables that corresponds to x1, x2, . . . , xk.
Any other ordering could be chosen, but one must be fixed.

MFCS 2023

36:4 An Iterative Approach for Counting ROBDDs

2.1 Boolean functions representation
Figure 2 shows a decision tree representing a 4-variable Boolean function and its associated
robdd. In both structures, traversing a path from the root to a leaf allows to evaluate the
function for a given assignment. Being in a node labelled by xi and going to its low child
(using the dotted edge) corresponds with evaluating xi to 0; going to its high child (using
the solid edge) corresponds with evaluating xi to 1.

x4

⊤⊤

x4

⊥⊥

x3

x4

x3

x4

x3

x2 x2

x3

⊥⊤⊤ ⊥

x4 x4x4

x1

⊥ ⊥⊥⊤ ⊥⊤

x4

⊤ ⊥ ⊤ ⊥

x3

x4

x2

x3 x3

x4

x1

x2

Figure 2 (left) A decision tree and (right) its associated robdd.

▶ Definition 1 (dag representation). Let f ∈ Bk be a Boolean function in variables x1, . . . , xk.
The function f can be represented as a rooted directed acyclic graph (dag for short) composed
of internal decision nodes, labelled by variables and two terminal nodes labelled by {⊥, ⊤}
representing respectively the constants 0 and 1. Each decision node labelled by xi has two
children, the low child (resp. high child) such that traversing the edge to the low child (resp.
high child) corresponds to assign xi to 0 (resp. to 1). The size of a dag is its number of
decision nodes.

▶ Definition 2 (obdd). Let f ∈ Bk and pick one of its dag representation. The dag is
called an Ordered Binary Decision Diagram for f (obdd for short) when all paths from the
root to a terminal node traverse decision nodes with index in increasing order.

By taking an obdd for a function with a pointed decision node ν labelled by xi, and
extracting the sub-dag rooted in ν by taking all its descendants, we obtain an obdd
representing a Boolean function in the variables xi, xi+1, . . . , xk.

▶ Definition 3 (robdd). Let f ∈ Bk and let B be one of its obdd. If all sub-dags of B are
representing distinct Boolean functions, then B is called Reduced Ordered Binary Decision
Diagram (robdd).

Figure 3 shows the forbidden configurations in robdd and the operations used to compress
the structure.

ν

ν0

ν1

ν ′

ν0

ν1

ν ν

ν0 ν0

Figure 3 The two forbidden configurations in robdds and the resulting operations when com-
pressing: (left) ν and ν′ are merged; (right) ν is deleted (from [7]).

J. Clément and A. Genitrini 36:5

▶ Fact. Let f ∈ Bk, there exists a single robdd representing f .

The data structure of robdds is especially famous due to this property of canonicity1. The
reader may read Knuth [8] for the proof of uniqueness and several other properties satisfied
by robdds.

For the rest of the paper we are only dealing with robdds. Furthermore, we take the point
of view of layered robdd by studying and representing robdds layer by layer: each layer
contains all decision nodes labelled by the same variable. This layer-by-layer decomposition
is natural since the variables are ordered. Thus, a robdd for a function in k variables is
composed of k layers (plus a layer for the two terminal nodes). Note that a layer could
be empty (which means the Boolean function does not depend on the particular variable
associated to this layer).

▶ Definition 4 (robdd’s profile). Let f ∈ Bk and let B be its robdd. Using the layer-by-layer
point of view, we define the profile B to be the non-negative integer sequence [p1, p2, . . . , pk]
such that pi is the number of nodes labelled by xi in B, i.e. the size of the layer corresponding
to xi, for all i ∈ {1, . . . , k}.

2.2 Combinatorial description
In our previous paper [3] we proposed a kind of recursive decomposition of a robdd based
on the low and high children of the root. Here we propose a new and simpler point of view,
based on a layer-by-layer description, which is much more efficient for the counting problem
(also for the generating problem). We need to introduce a generalization of a robdd, called
multientry robdds, which corresponds exactly to the structure obtained by removing some
upper layers in a standard robdd (see Figure 4 for an example).

Informally a multientry robdd is a structure obtained by cutting off a certain number of
the top layers of a robdd. The resulting structure is still a dag, but with several sources.
We also keep track of where the half-edges from the top layers were pointing. In Figure 4 a
robdd and multientry robdd obtained by removing the 3 top layers are depicted.

▶ Definition 5 (Multientry robdd). A multientry robdd M with at most k ≥ 0 variables
and size n ≥ 0 is a couple (M,E). The structure M is a layered dag structure with n decision
nodes Q distributed on k layers and two constant nodes {⊤, ⊥} such that any two subgraphs
are non-identical (as in robdds). The multiset E has its elements in Q ∪ {⊤, ⊥} and is
such that any source node in M (i.e., having in-degree 0), must appear at least once. The
nodes in E are called distinguished (and correspond with destination nodes of red half-edges
in Figure 4).

As a special case, a robdd is a multientry robdd having one source (the root) and a
multiset E reduced to the root (with multiplicity 1).

In the multientry robdd in Figure 4, by numbering the nodes from top to bottom and
from left to right, i.e. the leftmost x4 is number 1, the second x4 is 2, the rightmost x4 is
3, the rightmost x5 is 4, . . . , x6 is 7 and ⊥ and ⊤ are respectively 8 and 9, we obtain the
multiset E = {1, 2, 2, 3, 4, 4, 5}. We note that our definition of multientry robdd is similar
(but not exactly identical) to the one of shared-BDDs presented by Knuth [8] to represent
several Boolean functions in the same decision diagram.

Furthermore, remark that the same multientry robdd can be exhibited by cutting off
top layers (not even the same number) of different robdds.

1 Uniqueness of the robdd for f is ensured when a variable ordering is fixed.

MFCS 2023

36:6 An Iterative Approach for Counting ROBDDs

x1

x2 x2

x3 x3

x5 x5

⊥

x6

⊤

x4

x5

x3

x4 x4

x1

x2

x3

x2

x3x3

x5 x5

⊥

x6

⊤

x4

x5

x4 x4

Figure 4 A robdd of size 13 (not counting the constant nodes {⊥ and ⊤}), with 6 variables
and profile p = [1, 2, 3, 3, 3, 1]. (left) A dag representation of the robdd; (right) Cutting off top
three layers, we obtain the multientry robdd keeping track with red half edges of nodes which were
disconnected.

3 Full iterative counting formula

In the following we describe an approach to counting the number of robdds with a given
profile p. We use a powerful algebraic representation to encapsulate a kind of inclusion-
exclusion principle. This motivates the definition of a linear application on polynomials using
substitutions. The linearity property of the applications is crucial for achieving our algorithm
polynomial complexity. We consider the polynomial ring Z[X] and linear endomorphisms
over Z[X] (i.e., linear maps between Z[X] and Z[X]). Thus, for a linear map g : Z[X] → Z[X]
and two polynomials P and Q in Z[X], g[P + Q] = g[P] + g[Q], and for any scalar λ ∈ Z
and polynomial P ∈ Z[X] we have g[λP] = λg[P].

In the following theorem, we state the main result of the paper which gives access to the
number of multientry robdds for a given profile.

▶ Theorem 6 (Multientry robdds counting formula). For the family of linear maps (ϕr)r≥0,
each mapping ϕr : Z[X] → Z[X] is defined with respect to the canonical basis (Xm)m≥0 by

ϕr[Xm] =
(

r−1∏
i=0

(
X2 − X − i

))
·

m−r∑
j=0

(
m

j

){
m − j

r

}
Xj

 . (1)

Let M(p, m) be the number of multientry robdds with profile p = [p1, . . . , pk] and m incoming
half edges. We have, for k ≥ 0,

M(p, m) = (ϕp[Xm])X=2 , (2)

where
ϕp is the composition product ϕpk

◦ ϕpk−1 ◦ · · · ◦ ϕp1 ;
for a polynomial P ∈ Z[X], (P)X=2 is the evaluation of P at X = 2.

In the theorem,
(

m
j

)
stands for the binomial coefficient and

{
n
k

}
is the Stirling number of

the second kind counting the number ways to partition a set of n objects into k non-empty
subsets.

J. Clément and A. Genitrini 36:7

▶ Remark 7. This is actually a stronger result that what we need for counting robdds, since
the number of robdds corresponds to the special case where p = [p1 = 1, p2, . . . , pk] and
m = 1 (meaning there is one source node in the top layer). However, the fact that we are
able to compute ϕp on the basis (Xm)m≥0 is key to our approach.
The detailed the proof of Theorem 6 is deferred to after an example of such a computation.
▶ Example. Let us consider a profile p = [1, 2, 4, 2] for 4 variables x1, x2, x3, x4 and choos-
ing m = 1 in (2). Then, for 1 ≤ i ≤ 4, we compute iteratively ϕpi

◦ · · · ◦ ϕp1(X):

X
ϕ17−−→ X2 −X

ϕ27−−→ X4 − 2X3 + X

ϕ47−−→ X8 − 4X7 + 14X5 − 6X4 − 16X3 + 5X2 + 6X

ϕ27−−→ 28X10 + 28X9 − 98X8 − 112X7 + 76X6 + 92X5 − 12X4 − 8X3 + 6X2.

Evaluating the last polynomial at X = 2, we get that there are 11 160 robdds with pro-
file [1, 2, 4, 2]. The power of our approach is that we could have stopped at any iteration,
and still get the number of robdds for the considered truncated profile. On the particular
example this yields

p ϕp (ϕp)X=2

[] X 2
[1] X2 −X 2
[1, 2] X4 − 2X3 + X 2
[1, 2, 4] X8 − 4X7 + 14X5 − 6X4 − 16X3 + 5X2 + 6X 0
[1, 2, 4, 2] 28X10 + 28X9 − 98X8 − 112X7 + 76X6 + 92X5 − 12X4 − 8X3 + 6X2 11 160

The number 0 when considering [1, 2, 4] may seem counterintuitive at first, but indeed a robdd
can only have up to 2 nodes on its last layer, otherwise one node has to be a duplicate of
another.

Proof of Theorem 6. (Multientry robdds counting formula). The proof is obtained by
induction on the number k ≥ 0 of layers with decision nodes.

Base case. When k = 0 and n ≥ 0. The number of multientry robdds is M([], m) = 2m,
i.e., Xm evaluated at X = 2, as we must map the m half edges to either one of the two
constants. Note that if m = 0 then M([], m) = 1 corresponding to the void function (which
is a special case).

Induction step. Now suppose Theorem 6 is true for k ≥ 0.
Let us consider a profile of length k + 1 as [r] · p with r ≥ 0 and p a profile of length k.
If r = 0, a simple computation shows that ϕ0 is the identity. Hence, the empty layer can
in fact be omitted since

ϕp ◦ ϕ0 [Xm] = ϕp [Xm] , so that M([0] · p, m) = M(p, m). (3)

From now on let us suppose 0 < r ≤ m. The set of m half edges pointing at the first
layer can be decomposed in two subsets for j ∈ {0, . . . , m − r}: j entries will go to layers
below the first one, and m − j entries will be mapped to the r nodes of the first layer. A
Stirling number of the second kind

{
n
k

}
counts the number of ways to partition a set of n

objects into k non-empty subsets. So there are
(

m
j

)
·
{

m−j
r

}
such partitions. We write

M([r] · p, m) =
m−r∑
j=0

(
m

j

){
m − j

r

}
f (r)

p (j), (4)

MFCS 2023

36:8 An Iterative Approach for Counting ROBDDs

where f
(r)
p (j) denotes the number of multientry robdds with j free half edges and r pairs

of half edges (the ones resulting from the r nodes of the first layer). These 2r half edges
must thus obey the following constraints:

in each pair, the two half edges must be distinct, i.e., point to different nodes;
all r pairs of half edges must be distinct with one another (as pairs).

Our goal now is to get rid of the constraints coming from these r nodes and express all
quantities in terms of free half edges.
The following equation translates the previous constraints on the pair of adjacent half
edges coming from the first of the r nodes

f (r)
p (j) = f (r−1)

p (j + 2) − f (r−1)
p (j + 1) − (r − 1)f (r−1)

p (j). (5)

Indeed, the first term f
(r−1)
p (j + 2) corresponds in adding 2 free half edges, and results

in overcounting. Then following an inclusion-exclusion principle, firstly we subtract
f

(r−1)
p (j + 1) which would count the number of configurations if the two half edges in this

pair were merged. Finally, we subtract (r − 1)f (r−1)
p (j) in (5). This last quantity counts

the number of configurations if the pair of half edges was merged with one of the r − 1
remaining ones (hence r − 1 choices). Note that no additional free half edge is added
because of this merge. This yields (5).
Solving the simple recurrence (5) with respect to r yields

f (r)
p (j) =

2r∑
i=0

aif
(0)
p (i + j), (6)

where coefficients (ai) are obtained by identifying P (X) =
∏r−1

i=0 (X2−X−i) =
∑2r

i=0 aiX
i.

At this point, we remark the equality true for m ≥ 0

M(p, m) = f (0)
p (m), (7)

which reflects the fact that in M(p, m), all m half edges are unconstrained. Then (4)
rewrites

M([r] · p, m) =
m−r∑
j=0

(
m

j

){
m − j

r

} 2r∑
i=0

aiM(p, i + j) =
m+r∑
i=0

ciM(p, i),

with coefficients ci obtained by identifying
∑m+r

i=0 ciX
i = ϕr(Xm) from (1).

By induction hypothesis on the length k of p we have for 0 ≤ i ≤ m + r

M(p, i) =
(
ϕp

[
Xi
])

X=2 . (8)

By linearity

m+r∑
i=0

ciϕp

[
Xi
]

= ϕp

[
m+r∑
i=0

ciX
i

]
= ϕp [ϕr[Xm]] = ϕp ◦ ϕr[Xm],

and finally

M([r] · p, m) =
m+r∑
i=0

ciM(p, i) =
m+r∑
i=0

ci

(
ϕp

[
Xi
])

X=2 = (ϕp ◦ ϕr[Xm])X=2

This ends the proof. ◀

J. Clément and A. Genitrini 36:9

4 Counting algorithms

In this section, we present an algorithm for counting robdds of size n.
The time and space complexities are measured respectively in terms of arithmetical opera-

tions on Z and memory space used to store integers in Z. When considering robdds of size
upper bounded by n, all integers in Z involved can be checked to be of bit length O(n log n) =
O(log n!).

The reader can find an implementation of the following algorithms at https://github.
com/agenitrini/BDDgen.

4.1 Linear maps: precomputation step
A first step is to pre-compute a representation of linear maps (ϕr)r≥0. For a robdd of size n

we know that the maximal number of half edges is n + 1, and the maximal number of nodes
on a layer is also loosely upper bound by n. Hence, it is sufficient to compute ϕr[Xm] in Z[X]
for 0 ≤ r ≤ n and 0 ≤ m ≤ n + 1. In the form of (1), ϕr[Xm] is equal to Pr(X)Qr,m(X)
with

Pr(X) =
r−1∏
i=0

(X2 − X − i), and Qr,m(X) =
m−r∑
j=0

(
m

j

){
m − j

r

}
Xj .

So the first step is to compute coefficients of Pr(X) and Qr,m(X). Concerning binomial
coefficient and Stirling numbers of the second kind, both tables can be computed by a
naive algorithm (for binomials, it is the famous Pascal’s triangle) in space O(n2) with O(n2)
arithmetic operations on integers.

Once these coefficients are available, we compute the products ϕr[Xm] = Pr(X)Qr,m(X).
Computing Pr from Pr−1 necessitates O(n) arithmetical operations on integers, yielding a
total O(n2) number of arithmetical operations for the whole family (Pr)r≤n. Each polyno-
mial (Qr,m) necessitates O(n) arithmetical operations per polynomial (supposing binomial
coefficients and Stirling number of the second kind are precomputed). Finally, ϕr[Xm] is
computed with O(n2) arithmetical operations (by a naive product of two polynomials). There
are O(n2) such polynomials to compute. Hence, we get a total O(n4) of arithmetic operations
using O(n3) storage memory space for coefficients. We thus get the next lemma.

▶ Lemma 8 (Precomputing step: linear maps). The precomputation step for the representation
of linear maps by computing ϕr[Xm] for 0 ≤ r ≤ n and 0 ≤ m ≤ n + 1 necessitates O(n4)
arithmetical operations on integers and uses memory space for O(n3) coefficients in Z.

4.2 Basic counting
The basic block in our approach is to be able to compute ϕr[P] for r ≥ 0. This is done
by Algorithm 1 which is a direct translation of Theorem 6 using the linearity of the linear
maps (ϕr)r.

▶ Proposition 9 (Complexity of basic step). Let P be a polynomial of degree d. Algorithm 1
computes ϕr[P] and performs O(rd + d2) arithmetical operations over Z to compute ϕr[P],
using O(d2) memory space2.

2 Recall in Proposition 9 we do not take into account the precomputation step of the family (ϕr[Xm])r.

MFCS 2023

https://github.com/agenitrini/BDDgen
https://github.com/agenitrini/BDDgen

36:10 An Iterative Approach for Counting ROBDDs

Algorithm 1 Computing ϕr[P].

Input: an integer r ≥ 0, a
polynomial P (X) =∑d

m=0 pmXm ∈ Z[X]
Output: ϕr[P] ∈ Z[X]
Q← 0
for m from r to d do

Q← Q + pmϕr[Xm]
return Q

Algorithm 2 Computing (ϕp[X])X=2.
Input: a profile p = [p1, . . . , pk]
Output: the number of robdds with profile p
P ← X
for i from 1 to k do

P ← ϕpi [P]
return P (2)

Proof. Each polynomial ϕr[Xm] is of degree r + m = O(r + d). Thus, the number of
operations needed on coefficients is O(rd + d2) if r > 0 (or O(1) if r = 0 since ϕ0 is the
identity). ◀

By Remark 7 and applying Theorem 6, it is straightforward to compute the number of
robdds with profile p = [p1, . . . , pk] (using m = 1). The pseudocode is given in Algorithm 2.
We have the following proposition.

▶ Proposition 10. Algorithm 2 computes the number of robdds of size n with k variables
and given profile p. It performs O(k n2) arithmetical operations over Z and uses O(n) extra
memory space to store integers.

Proof. The number of robdds is (ϕp[X])X=2. The polynomial ϕp[X] is computed by
iterating k times a linear map of type ϕr starting from an initial polynomial X. By
Proposition 9, the algorithm performs O(n2) operations for each iteration since polynomials
have O(n) coefficients. The total computation thus performs O(k n2) arithmetical operations
over Z and use O(n) memory space to store coefficients. Evaluating (ϕp[Xm])X=2 at X = 2
can be done in time complexity O(n) (by Horner’s method for instance). ◀

4.3 Generating function for ROBDD size
The main goal of this section is compute the distribution of Boolean functions in k variables
according to the robdd size. For f ∈ Bk a Boolean function, we let λ(f) be the size of its
robdd, i.e., its number of decision nodes. A convenient way to represent the distribution of
the size λ on Bk consists in computing the generating function [6]

Fk(u) =
∑

f∈Bk

uλ(f) =
∑
i≥0

fiu
i,

where u is a formal variable marking the size. Then for i ≥ 0, the coefficient fi = [ui]Fk(u)
is the number of robdds of size i with k variables, i.e. the notation [ui]Fk(u) corresponds
to the coefficient-extraction of the monomial ui. We also introduce the truncation F ≤n

k (u) =∑
0≤i≤n fiu

i as the generating functions of robdds of size less than or equal to n.
We first extend the formalism introduced in Section 3 and define a linear map φ :

Z[u, X] → Z[u, X].

▶ Definition 11. The linear map φ : Z[u, X] → Z[u, X] is defined via its action on the
basis (urXm)r,m≥0 as

φ : urXm 7→ φ[urXm] =
m+1∑
i=0

ur+iϕi[Xm]. (9)

J. Clément and A. Genitrini 36:11

With this notation we have the following proposition.

▶ Proposition 12 (Generating function for robdd size). The generating function enumerating
Boolean functions by considering the robdd size is given by

Fk(u) =
(
φk[X]

)
X=2 , where φk denotes the composition product φ ◦ · · · ◦ φ︸ ︷︷ ︸

k times

.

Proof. Each application of φ corresponds with adding a layer. The formal variable u marks
the number of decision nodes added on the current layer. ◀

We remark that in practice we can truncate polynomials, keeping only the terms useful along
the computation. The key point here is that if we consider robdds with size bounded by n,
we should make all computation modulo un+1. Indeed, the formal variable u marks the
number of nodes (which is bounded by n). Sections A.1 and A.2 int the appendix illustrate
this point.

Algorithm 3 computes the bivariate polynomial φ[Xm] for m ≥ 0. Algorithm 4, computes
recursively the iterated (univariate) version

(
φℓ[Xm]

)
X=2 (that is the evaluation at X = 2).

Algorithm 3 Computing φ[Xm].

Input: An integer m ≥ 0
Output: Returns φ[Xm] ∈ Z[u, X]
Q← 0 ▷ Q ∈ Z[u]
for r from 0 to m do

Q← Q + urϕr[Xm]
return Q

Algorithm 4 Computing
(
φℓ[Xm]

)
X=2

.

Input: Two integers ℓ, m

Output: Returns
(
φℓ[Xm]

)
X=2

∈ Z[u]
▷ N.B.: Computations done modulo un+1

where n is the maximal size for robdds
if ℓ = 0 then return 2m ▷ base case
Q← 0 ▷ Q ∈ Z[u]
R← φ(Xm) ▷ Call Alg. 3
for j from 0 to degX(R) do

M ←
(
φℓ−1[Xj]

)
X=2

▷ Call Alg. 4

N ← [Xj] R(u, X) ▷ N ∈ Z[u]
Q← Q + M ·N

return Q

▶ Lemma 13. Algorithm 3 computes φ[Xm] ∈ Z[X, u], which has O(n2) integer coefficients.
It performs O(n2) arithmetical operations over Z.

Algorithm 4 computes
(
φℓ[Xm]

)
X=2 ∈ Z[u], which has O(n) coefficients. If we omit re-

cursive calls, it performs O(n3) arithmetical operations over Z, using memoization techniques
with O((n + k)n2) extra memory storage.

Proof. For Algorithm 3, we perform m = O(n) additions of polynomials in Z[X, u] with O(n)
terms, yielding O(n2) arithmetical operations over Z. The result is a bivariate polynomial of
bounded degree (n for the variable u, 2n for the variable X) yielding O(n2) coefficients. We
suppose Algorithm 3 has access to polynomials ϕr[Xm] ∈ Z[X] from a precomputation step.

For Algorithm 4, two ingredients are essential. Firstly we have to truncate polynomials
modulo un+1 so that operations on univariate polynomials have complexity O(n) for addition
and O(n2) for multiplication (using the naive multiplication on polynomials). Secondly we
also use memoization techniques (meaning we compute in lazy manner intermediate results
only once and keep it for further reference, at the expense of memory storage). That means
that we consider that at the time we compute

(
φℓ[Xm]

)
X=2, the polynomials

(
φℓ−1[Xj]

)
X=2

are available (i.e., their complexity is taken into account independently). By an amortizing
argument, the complexity of computing the complete family of polynomials

(
φℓ[Xm]

)
X=2

MFCS 2023

36:12 An Iterative Approach for Counting ROBDDs

(0 ≤ ℓ ≤ k and 0 ≤ m ≤ n + 1) is still O(n3) arithmetical coefficients per polynomial. We
need to store O(kn2) integer coefficients for memoization of all intermediate polynomials.
We also suppose Algorithm 4 has access to bivariate polynomials (φ[Xm] ∈ Z[u, X])0≤m≤n+1
from a precomputation step which requires O(n3) memory space for integer coefficients. A
subtle point is to understand that we can truncate polynomials at each step in Algorithm 4
and still get the correct result: this can be proved by recurrence on ℓ (see also Section A.2 of
the appendix for an example). ◀

Algorithm 4 also computes the generating function of robdds for size up to n since
posing ℓ = k and m = 1 we have

F ≤n
k (u) =

(
φℓ[X]

)
X=2 mod un+1.

▶ Theorem 14 (Algorithm for computing the exact distribution). We compute the generating
function F ≤n

k (u) of Boolean functions in Bk for robdds of size less than or equal to n

using O(k n4) arithmetical operations in Z and O((k + n) n2) for memory space storing
integers.

Proof. From Lemmas 13 and 8, the overall complexity is dominated by the computation of the
family (ϕr[Xm])r,m and the calls to Algorithm 4. By Lemma 13, each polynomial

(
φℓ[Xj]

)
X=2

is computed with O(n3) arithmetic operations on integer coefficients and there are O(k n)
such polynomials. Hence, the total number operations over Z is O(k n4). Furthermore, we
store O(k n2) coefficients in Z for memoization. We also store O(n3) coefficients for the
family (ϕr[Xm])m,r ∈ Z[X]. This yields the claimed complexity. ◀

To evaluate the complete size distribution we need to consider the size of largest robdds
with k variables.

▶ Theorem 15 (Maximal size of robdds). Let k ≥ 1 be an integer, the maximal number of
nodes in a robdd with at most k variables is

Mk = 2k−θ − 3 + 22θ

, with θ = ⌊log2 (k − ⌊log2 (k)⌋)⌋.

The generating function Fk(u) of Boolean functions in Bk according to the robdd size can
be computed with O(24k/k3) arithmetical operations in Z and uses O(22k/k) space.

Proof. Note that this formula is equivalent to the one given without proof by Pontus von
Brömssen [13]. The existence of θ is proved in [12] and from there we can derive the explicit
expression of θ (details omitted here). Then substituting n = Mk in Theorem 14, and noting
that Mk ≈ 2k/k yields the compitational complexity result. ◀

Note this is the polynomial with respect to the maximal size of a robdd for k variables,
hence a huge improvement compared to exponential brute force algorithms enumerating
all 22k Boolean functions and computing their robdd size obtained after a compaction
process. With a careful implementation, we can achieve the computation of Fk(u) for k up
to 11 variables on a personal computer, and, on a high-performance computer with 512 GB
RAM memory, for k = 12 in less than 1 hour 30 minutes, and even for k = 13 in less than 30
hours using the PyPy implementation of Python.

J. Clément and A. Genitrini 36:13

5 Conclusion

As an application of the counting approach of this paper we are able sample at random
robdds. More precisely, we can efficiently and uniformly pick robdds either according to
a given size, or even a given profile or a given spine. This is a great improvement when
comparing to the classical uniform random generation over the set of Boolean functions,
like in [12], that is drastically biased to the largest robdds due to the Shannon effect. For
instance with 12 variables, the probability of drawing uniformly a Boolean function giving a
robdd of (quadratic in k) size 144 = 122 is approximately 1.212 · 10−957.

In practice, several classical functions have robdds of small size. For example the
symmetrical functions in k variables are associated with robdds of quadratic size in k

(see [8]). Hence, the approach described in this paper leads the way to provide (polynomial)
uniform random generator for robdds of small size (i.e., of size less than exponential).

An interesting future work consists in enumerating the bdd structures where our counting
and sampling methods can be applied such as (non-reduced) obdd, or zdd which generally
used to represent sets.

Finally, another research direction consists in noting that the generating function of
robdds with both size and number of variables can be specified thanks to an iterative process
as in Theorem 12. It would be interesting to see if the machinery of analytic combinatorics [6]
is amenable to this kind of specification.

References
1 R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans.

Computers, 35(8):677–691, 1986.
2 R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. ACM

Comput. Surv., 24(3):293–318, 1992.
3 J. Clément and A. Genitrini. Binary decision diagrams: From tree compaction to sampling.

In LATIN: Theoretical Informatics – 14th Latin American Symposium, Proceedings, volume
12118 of LNCS, pages 571–583. Springer, 2020.

4 A. Darwiche and P. Marquis. A knowledge compilation map. J. Artif. Int. Res., 17(1):229–264,
September 2002.

5 R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski. Efficient Representation
and Manipulation of Switching Functions Based on Ordered Kronecker Functional Decision
Diagrams. In DAC’94, pages 415–419, 1994.

6 P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, New
York, NY, USA, 1 edition, 2009.

7 C. Gröpl, H. J. Prömel, and A. Srivastav. Ordered binary decision diagrams and the shannon
effect. Discret. Appl. Math., 142(1-3):67–85, 2004. doi:10.1016/j.dam.2003.02.003.

8 D. E. Knuth. The Art of Computer Programming, Volume 4A, Combinatorial Algorithms.
Addison-Wesley Professional, 2011.

9 L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure Function Evaluation with Ordered Binary
Decision Diagrams. In CCS’06, pages 410–420. ACM, 2006.

10 S.-I. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. 30th
ACM/IEEE Design Automation Conference, pages 272–277, 1993.

11 C. Mues, B. Baesens, C. M. Files, and J. Vanthienen. Decision diagrams in machine learning:
an empirical study on real-life credit-risk data. Expert Systems with Applications, 27(2):257–264,
2004.

12 J. Newton and D. Verna. A theoretical and numerical analysis of the worst-case size of reduced
ordered binary decision diagrams. ACM TCL, 20(1):6:1–6:36, 2019.

MFCS 2023

https://doi.org/10.1016/j.dam.2003.02.003

36:14 An Iterative Approach for Counting ROBDDs

13 N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, September 2019. Sequence
A327461.

14 J. Vuillemin and F. Béal. On the BDD of a Random Boolean Function. In ASIAN’04, pages
483–493, 2004.

15 I. Wegener. The size of reduced OBDDs and optimal read-once branching programs for almost
all Boolean functions. In GTCCS’94, pages 252–263, 1994.

16 I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

A Appendix

A.1 Iterating φ (an example)

In this section, we illustrate how φ can be iterated to count the distribution of robdds
up to 4 variables. Let us consider the set of Boolean function Bk for k ∈ {1, 2, 3} and
pose Hk(u, X) = φk[X].

H1(u, X) = φ[X] = (ϕ0(X) + uϕ1(X)) =
(
X2 − X

)
u + X2. We can verify that sub-

stituting X = 2 we get F1(u) = H1(u, 2) = 2 u + 2. Indeed, B1 = {⊥, x1, x1, ⊤}, with
respective truth tables {00, 01, 10, 11} leading to 2 robdds of size 1 and 2 robdds of
size 0, i.e., with no decision node.
Adding a second layer, we get H2(u, X) = φ(H1(u, X)) = φ2[X], yielding

H2(u, X) =
(
X4 − 2 X3 + X

)
u3 + 2

(
X3 − X2)u2 + 2

(
X2 − X

)
u + X.

We get F2(u) = 2 u3 + 8 u2 + 4 u + 2, hence there are 2, 8, 4, 2 robdds of respective
sizes 3, 2, 1 and 0 for 16 Boolean functions on 2 variables.
Iterating with a third layer, we get H3(u, X) = φ(H1(u, X)) = φ3[X] which has 34 terms
and gives

F3(u) = 74 u5 + 88 u4 + 62 u3 + 24 u2 + 6 u + 2.

Hence, there are respectively 74, 88, 62, 24, 6 and 2 robdds of size 5, 4, 3, 2, 1 and 0.
Adding a fourth layer yields for H4(u, X) = φk[X] a polynomial with 134 terms and

F4(u) = 11160 u9+23280 u8+17666 u7+8928 u6+3248 u5+960 u4+236 u3+48 u2+8 u+2.

There are 11160 robdds with 4 variables of size 9, 23280 robdds of size 8, etc.
Of course, we can check that Fk(1) = 22k , which is the number of Boolean functions on k

variables.

A.2 Truncating polynomials (an example)

In this subsection, we illustrate on an example the computational effect of truncating
polynomials.

Let us consider that the generating function F ≤3
3 (u) of robdd with k = 3 variables and

with less or equal to n = 3 decision nodes. The maximal size of a robdd for k = 3 variables
is M3 = 7 (7 decision nodes). Then φ3[X] is a polynomial with 34 terms. We can write
(terms who would disappear modulo un+1 = u4 are grayed)

J. Clément and A. Genitrini 36:15

φ3[X] =
(
X8 − 4 X7 + 14 X5 − 6 X4 − 16 X3 + 5 X2 + 6 X

)
u7

+4
(
X7 − 2 X6 − 3 X5 + 5 X4 + 4 X3 − 3 X2 − 2 X

)
u6

+
(
8 X6 − 12 X5 − 11 X4 + 14 X3 + 4 X2 − 3 X

)
u5

+2
(
5 X5 − 6 X4 − 5 X3 + 4 X2 + 2 X

)
u4

+
(
9 X4 − 10 X3 − 2 X2 + 3 X

)
u3

+ 6
(
X3 −X2)u2

+ 3
(
X2 −X

)
u

+ X

Truncating modulo u4 and substituting X = 2 yields the polynomial

F ≤4
3 (u) = 62 u3 + 24 u2 + 6 u + 2.

The problem of computing all the terms before truncating the result is that there are O(22k

k2)
terms (since Mk ≈ 2k/k), hence a combinatorial explosion.

In contrast, Algorithm 4 works in a recursive manner and truncate polynomials along the
way so that we have a polynomial number of terms. In the following, we describe with some
details how to compute (φ3(X))X=2.

First, Algorithm 4 decomposes (φ3(X))X=2 as (φ2 ◦ φ[X]))X=2. In general, φ[Xm] is
a polynomial of respective degree m and 2m in variables u and X and has O(m2) integer
coefficients. We compute (collecting terms with respect to variable X)

φ[X] = (X2 − X)u + X = X2u + X(1 − u). (10)

Denoting B
(2)
m (u) = (φ2[Xm])X=2, our algorithm computes recursively for the basis (1, X, X2)

(removed monomials modulo u4 ar grayed)

B
(2)
0 (u) = 1

B
(2)
1 (u) = 2 u3 + 8 u2 + 4 u + 2

B
(2)
2 (u) = 74 u4 + 90 u3 + 68 u2 + 20 u + 4

Then since φ is linear, we compute (still modulo u4) using Equation (10)

(φ3(X))X=2 = B2(u)u + B1(u)(1 − u)
= u(90 u3 + 68 u2 + 20 u + 4) + (1 − u)(2 u3 + 8 u2 + 4 u + 2)
= 88 u4 + 62 u3 + 24 u2 + 6 u + 2.

In summary, computing modulo un+1 along the process allows us to control the degree O(n)
of polynomials involved, which in turn ensures that the computation stays of polynomial
complexity (with respect ti arithmetical operations on integers).

Observing such curves for k from 1 to 13, we notice the exponential growth of the
largest robdds when the number k of variables increases. Indeed, in Theorem 15 we
define Mk to be the size of the largest robdds with k variables. The sequence starts as
(Mk)k=1,...,13 = (1, 3, 5, 9, 17, 29, 45, 77, 141, 269, 509, 765, 1277).

MFCS 2023

	1 Introduction
	2 Preliminaries
	2.1 Boolean functions representation
	2.2 Combinatorial description

	3 Full iterative counting formula
	4 Counting algorithms
	4.1 Linear maps: precomputation step
	4.2 Basic counting
	4.3 Generating function for ROBDD size

	5 Conclusion
	A Appendix
	A.1 Iterating phi (an example)
	A.2 Truncating polynomials (an example)

