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Abstract
Semiring semantics of first-order logic generalises classical Boolean semantics by permitting truth
values from a commutative semiring, which can model information such as costs or access restrictions.
This raises the question to what extent classical model-theoretic properties still apply, and how this
depends on the algebraic properties of the semiring.

In this paper, we study this question for the classical locality theorems due to Hanf and Gaifman.
We prove that Hanf’s locality theorem generalises to all semirings with idempotent operations,
but fails for many non-idempotent semirings. We then consider Gaifman normal forms and show
that for formulae with free variables, Gaifman’s theorem does not generalise beyond the Boolean
semiring. Also for sentences, it fails in the natural semiring and the tropical semiring. Our main
result, however, is a constructive proof of the existence of Gaifman normal forms for min-max and
lattice semirings. The proof implies a stronger version of Gaifman’s classical theorem in Boolean
semantics: every sentence has a Gaifman normal form which does not add negations.
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1 Introduction

Originally motivated by provenance analysis in databases (see e.g. [18, 12] for surveys),
semiring semantics is based on the idea to evaluate logical statements not just by true or false,
but by values in some commutative semiring (K,+, ·, 0, 1). In this context, the standard
semantics appears as the special case when the Boolean semiring B = ({⊥,⊤},∨,∧,⊥,⊤)
is used. Valuations in other semirings provide additional information, beyond truth or
falsity: the tropical semiring T = (R∞

+ ,min,+,∞, 0) is used for cost analysis, the natural
semiring N = (N,+, ·, 0, 1) for counting evaluation strategies and proofs, and the Viterbi-
semiring V = ([0, 1]R,max, ·, 0, 1) models confidence scores. Finite or infinite min-max
semirings (K,max,min, a, b) can model, for instance, different access levels to atomic data
(see e.g. [10]); valuations of a first-order sentence ψ in such security semirings determine
the required clearance level that is necessary to access enough information to determine
the truth of ψ. Further, semirings of polynomials or formal power series permit us to track
which atomic facts are used (and how often) to establish the truth of a sentence in a given
structure, and this has applications for database repairs [26] and also for the strategy analysis
of games [17, 14]. Semiring semantics replaces structures by K-interpretations, which are
functions π : LitA(τ) → K, mapping fully instantiated τ -literals φ(a) over a universe A to
values in a commutative semiring K. The value 0 ∈ K is interpreted as false, while all other
values in K are viewed as nuances of true or, perhaps more accurately, as true, with some
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20:2 Locality Theorems in Semiring Semantics

additional information. In provenance analysis, this is sometimes referred to as annotated
facts. The value 1 ∈ K is used to represent untracked information and is used in particular
to evaluate true equalities and inequalities.

The development of semiring semantics raises the question to what extent classical
techniques and results of logic extend to semiring semantics, and how this depends on the
algebraic properties of the underlying semirings. Previous investigations in this direction
have studied, for instance, the relationship between elementary equivalence and isomorphism
for finite semiring interpretations and their definability up to isomorphism [15], Ehrenfeucht-
Fraïssé games [7], and 0-1 laws [13].

The purpose of this paper is to study locality in semiring semantics. Locality is a
fundamental property of first-order logic in classical semantics and an important limitation
of its expressive power. It means that the truth of a first-order formula ψ(x) in a given
structure only depends on a neighbourhood of bounded radius around x, and on the existence
of a bounded number of local substructures. Consequently, first-order logic cannot express
global properties such as connectivity or acyclicity of graphs. On graphs there are natural
and canonical notions of the distance between two points and of a neighbourhood of a given
radius around a point. To define these notions for an arbitrary relational structure A one
associates with it its Gaifman graph G(A) = (A,E) where two points a ̸= b are adjacent if,
and only if, they coexist in some atomic fact. There exist several notions of locality; the
most common ones are Hanf locality and Gaifman locality, and the fundamental locality
theorems for first-order logic are Hanf’s locality theorem and Gaifman’s normal form theorem.
In a nutshell, Hanf’s theorem gives a criterion for the m-equivalence (i.e. indistinguishability
by sentences of quantifier rank up to m) of two structures based on the number of local
substructures of any given isomorphism type, while Gaifman’s theorem states that every
first-order formula is equivalent to a Boolean combination of local formulae and basic local
sentences, which has many model-theoretic and algorithmic consequences. We shall present
precise statements of these results in Sect. 3 and Sect. 4.

Locality thus provides powerful techniques, also for logics that go beyond first-order logic
by counting properties, generalised quantifiers, or aggregate functions, [1, 21, 22, 23]. It has
applications in different areas including low-complexity model-checking algorithms [19, 20],
approximation schemes for logically defined optimisation problems [8], automata theory [25],
computational issues on database transactions [2], and most recently also in learning theory,
for the efficient learning of logical concepts [3, 5, 4]. This motivates the question, whether
locality is also applicable in semiring semantics. The relevant semiring interpretations in this
context are model-defining, which means that for any pair of complementary literals Ra,¬Ra
precisely one of the values π(Ra), π(¬Ra) is 0, and track only positive information which
means that π(¬Ra) can only take the values 0 or 1. Model defining interpretations π define a
unique structure Aπ and we thus obtain a well-defined Gaifman graph G(π) := G(Aπ), with
the associated notions of distance and neighbourhoods. The assumption that only positive
information is tracked is necessary to get meaningful locality properties (see Sect. 2).

We clearly cannot generalise all known locality properties of first-order logic to semiring
semantics in arbitrary commutative semirings. On semirings whose operations are not
idempotent, we cannot expect a Gaifman normal form, since for computing the value of a
quantified statement, we have to add or multiply values of subformulae for all elements of
the structure, which gives an inherent source of non-locality. As a consequence, some of the
locality results that we prove hold only under certain algebraic assumptions on the semiring,
and further there turns out to be a difference of the locality properties of sentences and those
of formulae with free variables. We shall establish the following results.
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(1) First-order formulae are Hanf-local for all semirings.
(2) Hanf’s locality theorem generalises to all fully idempotent semirings (in which both

addition and multiplication are idempotent).
(3) For formulae with free variables, Gaifman’s normal form theorem does not generalise

beyond the Boolean semiring.
(4) For sentences, Gaifman’s normal form theorem also fails in certain important semirings

such as the natural semiring and the tropical semiring.
(5) Over min-max semirings (and even lattice semirings), every first-order sentence has a

Gaifman normal form.
(6) In classical Boolean semantics, every sentence has a Gaifman normal form which does

not introduce new negations.

The results (1), (2) on Hanf locality (Sect. 3) are proved by adaptations of the arguments
for the Boolean case. The results (3) and (4) are established in Sect. 5 via specific examples
of formulae that defeat locality, using simple algebraic arguments. The most ambitious result
and the core of our paper is (5), a version of Gaifman’s theorem for min-max semirings
(Sect. 6), which we later generalise to lattice semirings (Sect. 7). It requires a careful choice
of the right syntactical definitions for local sentences and, since the classical proofs in [11, 9]
do not seem to generalise to semiring semantics, a new approach for the proof, based on
quantifier elimination. This new approach also leads to a stronger version of Gaifman’s
theorem in Boolean semantics (6), which might be of independent interest.

2 Semiring Semantics

This section gives a brief overview on semiring semantics of first-order logic (see [16] for more
details) and the relevant algebraic properties of semirings. A commutative1 semiring is an
algebraic structure (K,+, ·, 0, 1) with 0 ̸= 1, such that (K,+, 0) and (K, ·, 1) are commutative
monoids, · distributes over +, and 0 · a = a · 0 = 0. We focus on semirings that are naturally
ordered, in the sense that a ≤ b :⇔ ∃c(a+ c = b) is a partial order. For the study of locality
properties, an important subclass are the fully idempotent semirings, in which both operations
are idempotent (i.e., a+ a = a and a · a = a). Among these, we consider in particular all
min-max semirings (K,max,min, 0, 1) induced by a total order (K,≤) with minimal element
0 and maximal element 1, and the more general lattice semirings (K,⊔,⊓, 0, 1) induced by a
bounded distributive lattice (K,≤).

For a finite relational vocabulary τ and a finite universe A, we write LitA(τ) for the set
of instantiated τ -literals Ra and ¬Ra with a ∈ Aarity(R). Given a commutative semiring K,
a K-interpretation (of vocabulary τ and universe A) is a function π : LitA(τ) → K. It is
model-defining if for any pair of complementary literals L, ¬L precisely one of the values
π(L), π(¬L) is 0. In this case, π induces a unique (Boolean) τ -structure Aπ with universe A
such that, for every literal L ∈ LitA(τ), we have that Aπ |= L if, and only if, π(L) ̸= 0.

A K-interpretation π : LitA(τ) → K extends in a straightforward way to a valuation
π[[φ(a)]] of any instantiation of a formula φ(x) ∈ FO(τ), assumed to be written in negation
normal form, by a tuple a ⊆ A. The semiring semantics π[[φ(a)]] is defined by induction.
We first extend π by mapping equalities and inequalities to their truth values, by setting
π[[a = a]] := 1 and π[[a = b]] := 0 for a ̸= b (and analogously for inequalities). Further,
disjunctions and existential quantifiers are interpreted as sums, and conjunctions and universal
quantifiers as products:

1 In the following, semiring always refers to a commutative semiring.
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20:4 Locality Theorems in Semiring Semantics

π[[ψ(a) ∨ ϑ(a)]] := π[[ψ(a)]] + π[[ϑ(a)]] π[[ψ(a) ∧ ϑ(a)]] := π[[ψ(a)]] · π[[ϑ(a)]]

π[[∃xϑ(a, x)]] :=
∑
a∈A

π[[ϑ(a, a)]] π[[∀xϑ(a, x)]] :=
∏
a∈A

π[[ϑ(a, a)]].

Since negation does not correspond to a semiring operation, we insist on writing all formulae
in negation normal form. This is a standard approach in semiring semantics (cf. [16]).
Equivalence of formulae now takes into account the semiring values and is thus more fine-
grained than Boolean equivalence.

▶ Definition 1 (≡K). Two formulae ψ(x), φ(x) are K-equivalent (denoted ψ ≡K φ) if
π[[ψ(a)]] = π[[φ(a)]] for every model-defining K-interpretation π (over finite universe) and
every tuple a. For a class S of semirings, we write ψ ≡S φ if ψ ≡K φ holds for all K ∈ S.

Towards locality properties, we define distances between two elements a, b in a K-
interpretation π based on the induced structure Aπ.

▶ Definition 2 (Gaifman graph). The Gaifman graph G(π) of a model-defining K-interpre-
tation π : LitA(τ) → K is defined as the Gaifman graph G(Aπ) of the induced τ -structure.
That is, two elements a ̸= b of A are adjacent in G(Aπ) if, and only if, there exists a positive
literal L = Rc1 . . . cr ∈ LitA(τ) such that π(L) ̸= 0 and a, b ∈ {c1, . . . cr}.

We write d(a, b) ∈ N for the distance of a and b in G(π). We further define the r-
neighbourhood of an element a in π as Bπ

r (a) := {b ∈ A : d(a, b) ≤ r}. For a tuple a ∈ Ak

we put Bπ
r (a) :=

⋃
i≤k B

π
r (ai).

Locality properties are really meaningful only for semiring interpretations π : LitA(τ) → K

that track only positive information, which means that π(¬L) ∈ {0, 1} for each negative
literal ¬L. Indeed, if also negative literals carry non-trivial information, then either these
must be taken into account in the definition of what “local” means, which will trivialise the
Gaifman graph (making it a clique) so locality would become meaningless, or otherwise local
information no longer suffices to determine values of even very simple sentences involving
negative literals, such as ∃x∃y¬Rxy. We therefore consider here only K-interpretations over
finite universes which are model-defining and track only positive information.

3 Hanf Locality

The first formalisation of locality that we consider is Hanf locality. We present generalisations
of both the Hanf locality rank and of Hanf’s locality theorem, where the latter is conditional
on algebraic properties of the semirings. One point that requires care in the adaptation of
the classical proofs (cf. [9, 24]) is the combination of partial isomorphisms on disjoint and
non-adjacent neighbourhoods. In the setting of semiring semantics, this depends on the
assumption that K-interpretations only track positive information.

▶ Lemma 3. Let πA and πB be model-defining K-interpretations that track only positive
information. Let σ : BπA

r (a) → BπB
r (b) and σ′ : BπA

r (a′) → BπB
r (b′) be two partial isomorph-

isms between disjoint r-neighbourhoods in πA and πB. If d(a, a′) > 2r+1 and d(b, b′) > 2r+1,
then (σ ∪ σ′) : BπA

r (a, a′) → BπB
r (b, b′) is also a partial isomorphism.

In classical Boolean semantics, a formula ψ(x) is Hanf-local with Hanf locality rank r, if
for any two tuples a in A and b in B we have the equivalence that A |= ψ(a) ⇔ B |= ψ(b)
whenever there is a bijection f : A → B such that the r-neighbourhoods BA

r (a, c) and
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BA
r (b, f(c)) are isomorphic for all c ∈ A. It is known that every first-order formula is Hanf-

local, with locality rank depending only on the quantifier rank. The proof of this fact [24]
relies on an inductive argument which, from given bijections between (3r+1)-neighbourhoods
of k-tuples, builds bijections between r-neighbourhoods of (k+ 1)-tuples. Based on Lemma 3,
the inductive argument can be adapted to semiring semantics to get the following result,
which does not assume any specific properties of the underlying semiring (for details, see [6]).

▶ Proposition 4 (Hanf locality in semiring semantics). Let K be an arbitrary semiring. For
every first-order formula φ(x), there exists r ∈ N, depending only on the quantifier rank of φ,
such that for all model-defining K-interpretations πA, πB that track only positive information,
and all tuples a, b we have that πA[[φ(a)]] = πB [[φ(b)]] whenever there is a bijection f : A → B

such that BπA
r (a, c) ∼= BπB

r (b, f(c)) for all c ∈ A.

A much more fundamental result is Hanf’s locality theorem which provides a sufficient
combinatorial criterion for the m-equivalence of two structures, i.e. for their indistinguishab-
ility by sentences of quantifier rank up to m. We follow the classical proof in [9], which
proceeds by showing that Hanf’s criterion admits the construction of a back-and-forth system
(Ij)j≤m which, by the Ehrenfeucht-Fraïssé theorem, implies the m-equivalence of the two
structures. It turns out that this method carries over to K-interpretations precisely in the
case that the semiring K is fully idempotent. We further show that for semirings that are
not fully idempotent, there actually are counterexamples to Hanf’s locality theorem.

To define back-and-forth systems between K-interpretations, first notice that the notion
of partial isomorphisms generalises in an obvious way to K-interpretations (cf. [6]).

▶ Definition 5 (Back-and-forth system). Let πA and πB be two K-interpretations and let
k ≥ 0. A m-back-and-forth system for πA and πB is a sequence (Ij)j≤m of finite sets of
partial isomorphisms between πA and πB such that

∅ ∈ Im, and
for all j < m, the set Ij+1 has back-and-forth extensions in Ij , i.e., whenever a 7→ b ∈ Ij+1
then for every c ∈ A there exists d ∈ B, and vice versa, such that (ac) 7→ (bd) is in Ij.

We write (Ij)j≤m : πA
∼=m πB if (Ij)j≤m is a m-back-and-forth system for πA and πB.

Back-and-forth systems can be seen as algebraic descriptions of winning strategies in
Ehrenfeucht-Fraïssé games, and in classical semantics, an m-back-and-forth system between
two structures exists if, and only if, the structures are m-equivalent. However, in semiring
semantics this equivalence may, in general, fail in both directions [7]. A detailed investigation
of the relationship between elementary equivalence, Ehrenfeucht-Fraïssé games, and back-and-
forth-systems in semiring semantics is outside the scope of this paper, and will be presented
in forthcoming work. For the purpose of studying Hanf locality, we shall need just the fact
that in the specific case of fully idempotent semirings, m-back-and-forth systems do indeed
provide a sufficient criterion for m-equivalence.

▶ Proposition 6. Let πA and πB be K-interpretations into a fully idempotent semiring K.
If there is an m-back-and-forth system (Ij)j≤m for πA and πB, then πA ≡m πB.

Proof. We show by induction that for every first-order formula ψ(x) of quantifier rank j ≤ m

and every partial isomorphism a 7→ b ∈ Ij we have that πA[[ψ(a)]] = πB[[ψ(b)]]. For j = 0
this is trivial. For the inductive case it suffices to consider formulae ψ(x) = ∃y φ(x, y) and
ψ(x) = ∀y φ(x, y), and a map a 7→ b ∈ Ij+1. We have that

MFCS 2023



20:6 Locality Theorems in Semiring Semantics

πA[[∃y φ(a, y)]] =
∑
c∈A

πA[[φ(a, c)]] and πB [[∃y ψ(b, y)]] =
∑
d∈B

πB [[φ(b, d)]],

πA[[∀y φ(a, y)]] =
∏
c∈A

πA[[φ(a, c)]] and πB [[∀y ψ(b, y)]] =
∏
d∈B

πB [[φ(b, d)]].

Since the semiring is fully idempotent, the valuations πA[[∃y φ(a, y)]] and πA[[∀y φ(a, y)]]
only depend on the set of all values πA[[φ(a, c)]] for c ∈ A, and not on their multiplicities. It
thus suffices to prove that the sets of values are identical for (πA, a) and (πB , b), i.e.

{πA[[φ(a, c)]] : c ∈ A} = {πB [[φ(b, d)]] : d ∈ B}.

But this follows immediately from the fact that a 7→ b has back and forth extensions in Ij ,
and from the induction hypothesis: for each c ∈ A there exists some d ∈ B, and vice versa,
such that the map (a, c) 7→ (b, d) is in Ij , and therefore πA[[φ(a, c)]] = πB [[φ(b, d)]]. ◀

To formulate Hanf’s criterion for K-interpretations πA, πB, we write πA ⇌r,t πB, for
r, t ∈ N, if for every isomorphism type ι of r-neighbourhoods, either πA and πB have the
same number of realisations of ι, or both have at least t realisations.

▶ Theorem 7 (Hanf’s theorem for fully idempotent semirings). Let K be a fully idempotent
semiring. For all m, ℓ ∈ N there exist r = r(m) ∈ N and t = t(m, ℓ) ∈ N such that for all
model-defining K-interpretations πA and πB that track only positive information and whose
Gaifman graphs have maximal degree ≤ ℓ, we have that πA ≡m πB whenever πA ⇌r,t πB.

Proof. Given m, ℓ ∈ N, let r0 = 0, inductively define ri+1 = 3ri + 1, and set r = rm−1.
Further, let t = m · e+ 1, where e := 1 + ℓ+ ℓ2 + · · · + ℓr is the maximal number of elements
in an r-neighbourhood of a point, in K-interpretations with Gaifman graphs with maximal
degree ℓ. Assume that πA and πB are K-interpretations with that property, such that
πA ⇌r,t πB .

We construct an m-back-and-forth system (Ij)j≤m for (πA, πB) by setting

Ij := {a 7→ b : |a| = |b| = m− j and BπA
rj

(a) ∼= BπB
rj

(b)}.

We have Im = {∅}, and since πA ⇌r,t πB, we have for every a ∈ A some b ∈ B, and vice
versa, such that BπA

r (a) ∼= BπB
r (b), so Im has back-and-forth extensions in Im−1. Consider

now a partial isomorphism a 7→ b in Ij+1. There is an isomorphism ρ : BπA
3rj+1(a) ∼= BπB

3rj+1(b).
By symmetry, it suffices to prove the forth-property: for every a ∈ A we must find some
b ∈ B such that aa 7→ bb ∈ Ij which means that BπA

rj
(aa) ∼= BπB

rj
(bb).

Case 1 (a close to a). If a ∈ Bπa
2rj+1(a), then we choose b = ρ(a) ∈ BπB

2rj+1(b). This is a
valid choice since BπA

rj
(aa) ⊆ BπA

3rj+1(a) so ρ also provides an isomorphism between BπA
rj

(aa)
and BπB

rj
(bb).

Case 2 (a far from a). If a ̸∈ Bπa
2rj+1(a), then BπA

rj
(a) ∩ BπA

rj
(a) = ∅. Hence, it suffices

to find b ∈ B such that BπB
rj

(b) has the same isomorphism type as BπA
rj

(a) (call this ι) with
the property that b has distance at least 2rj + 2 to b. Since πA and πB only track positive
information the isomorphisms can be combined by Lemma 3 to show that BπA

rj
(aa) ∼= BπB

rj
(bb).

Assume that no such b exists. Let s be the number of elements realising ι in πB. Since
all of them are have distance at most 2rj + 1 from b and there are at most t elements
in r-neighbourhoods around b, we have that s ≤ t. On the other side there are at least
s+ 1 elements realising ι in πA, namely s elements in BπA

2rj+1(a) (due to ρ) and a. But this
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contradicts the fact that ι either has the same number of realisations in πA and πB , or more
than t realisations in both interpretations. Hence such an element b exists, and we have
proved that (Ij)j≤m is indeed a m-back-and-forth system for (πA, πB).

By Proposition 6 this implies that πA ≡m πB . ◀

On the other side, we observe that Hanf’s locality theorem in general fails for semirings
with non-idempotent operations.

▶ Example 8 (Counterexample Hanf). Consider the natural semiring (N,+, ·, 0, 1) and
ψ = ∃xUx over signature τ = {U}. For each n, we define a model-defining K-interpretation
πn with universe {a1, . . . , an} by setting π(Uai) = 1 for all i. Then πn[[ψ]] =

∑
i π(Uai) = n.

As we only have unary predicates, all neighbourhoods are trivial. That is, they consist of
just one element and all of them have the same isomorphism type. Thus, πn realises this
single isomorphism type precisely n times, which means that πn ⇌r,t πt for all r, t with n ≥ t.
But πn[[ψ]] ̸= πt[[ψ]] for n ̸= t, so Hanf’s theorem fails for the natural semiring.

This example readily generalises to all semirings containing an element s ∈ K for which
there are arbitrarily large numbers n,m ∈ N with m · s ̸= n · s or sm ̸= sn (m · s and sm refer
to the m-fold addition and multiplication of s, respectively). Indeed, we can map all atoms
Uai to s and observe that Hanf’s theorem fails for either ψ = ∃xUx or ψ = ∀xUx. ⌟

4 Gaifman Normal Forms in Semirings Semantics

We briefly recall the classical notion of Gaifman normal forms (cf. [11, 9]), which capture
locality in a syntactic way. Gaifman normal forms are Boolean combinations of local formulae
φ(r)(x) and basic local sentences. A local formula φ(r)(x) is a formula in which all quantifiers
are relativised to the r-neighbourhood of x, for instance ∃y ϑ(x, y) is relativised to ∃y(d(x, y) ≤
r ∧ ϑ(x, y)). Here, d(x, y) ≤ r asserts that x and y have distance ≤ r in the Gaifman graph,
which can easily be expressed in first-order logic (in Boolean semantics). A basic local sentence
asserts that there exist scattered elements, i.e., elements with distinct r-neighbourhoods,
which all satisfy the same r-local formula: ∃x1 . . . ∃xm(

∧
i ̸=j d(xi, xj) > 2r∧

∧
i φ

(r)(xi)). By
Gaifman’s theorem, every formula has an equivalent Gaifman normal form, which intuitively
means that it only makes statements about distinct local neighbourhoods.

Moving to semiring semantics, we keep the notion of Gaifman normal forms close to the
original one, with two exceptions. First, we only consider formulae in negation normal form.
This means that we restrict to positive Boolean combinations and, in turn, permit the duals
of basic local sentences (i.e., the negations of basic local sentences, in negation normal form).
Second and most importantly, we lose the ability to express relativised quantifiers2 in our
logic. Instead, we extend first-order logic by adding relativised quantifiers (ball quantifiers)
of the form Qy∈Bτ

r (x) for Q ∈ {∃,∀} with the following semantics: given a formula φ(x, y),
a K-interpretation π : LitA(τ) → K, and an element a, we define

π[[∃y∈Bτ
r (a) φ(a, y)]] :=

∑
b∈Bπ

r (a)

π[[φ(a, b)]], π[[∀y∈Bτ
r (a) φ(a, y)]] :=

∏
b∈Bπ

r (a)

π[[φ(a, b)]].

We drop τ and write ∃y∈Br(a) or ∀y∈Br(a) if the signature is clear from the context.

2 We could use the same formula for d(x, y) ≤ r as in the Boolean case. However, this formula would not
just evaluate to 0 or 1, but would include the values of all edges around x, so each relativised quantifier
would have the unintended side-effect of multiplying with the edge values in the neighbourhood. One
can show that this side-effect would make Gaifman normal forms impossible (see [6] for details).
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φ(r)(x, y) =

∀z1∈Br1 (x)
(
∃z2∈Br2 (z1) ∀z3∈Br3 (z1) ¬Ez2z3

)
∨ ∀z4∈Br4 (y) Exz4

x y

z1

z2 z3

z4

r1

r2 r3

r4

r

Figure 1 Example of a local formula and the corresponding quantification dag D(φ), with circles
indicating Br(xy). In this example, φ(r)(x, y) is r-local for all r ≥ max(r1 + r2, r1 + r3, r4).

This alone is not as expressive as the Boolean notion. For instance, consider φ(r)(x) =
∃y(d(x, y) ≤ r

2 ∧ ∃z(d(x, z) ≤ r ∧ d(y, z) ≤ r
2 ∧ . . . )) which quantifies z local around y. Using

ball quantifiers, we want to write this as φ(r)(x) = ∃y∈B r
2
(x)(∃z∈B r

2
(y) . . . ), so we also

permit ball quantifiers around previously quantified variables (here y), as long as they stay
within the r-neighbourhood of x (here: r

2 + r
2 ≤ r).

To formalise this condition, we consider the quantification dag D(φ) of a formula φ(x)
which contains nodes for all variables in φ and where for every quantifier Qz∈Br′(y) in φ,
we add an edge z → y with distance label r′ (see Figure 1). If the summed distance of any
path ending in a free variable x ∈ x is at most r, then φ is r-local.

▶ Definition 9 (Local formula). An r-local τ -formula around x, denoted φ(r)(x), is built
from τ -literals by means of ∧, ∨ and ball quantifiers Qz∈Bτ

r′(y) such that in the associated
quantification dag D(φ), all paths ending in a free variable x ∈ x have total length at most r.

We emphasise that in the Boolean case, Definition 9 is equivalent to the standard notion,
so we do not add expressive power. For convenience, we allow quantification Qz∈Br′(y)φ(y, z)
around a tuple y, which can easily be simulated by regular ball quantifiers.

For basic local sentences, we further need to quantify over scattered tuples. To this end,
we also add scattered quantifiers ∃r-sc(y) and ∀r-sc(y) with the following semantics:

π[[∃r-sc(y)φ(y)]] =
∑
a⊆A

d(ai,aj)>2r for i ̸=j

π[[φ(a)]], π[[∀r-sc(y)φ(y)]] =
∏
a⊆A

d(ai,aj)>2r for i̸=j

π[[φ(a)]].

We remark that in idempotent semirings, which will be the main focus of our positive
results, the addition of ball quantifiers makes it possible to express d(x, y) ≤ r by a formula
that only assumes values 0 or 1, such as ∃x′∈B r

2
(x) ∃y′∈B r

2
(y) (x′ = y′), which is r

2 -local
around xy, or alternatively ∃x′∈Br(x) (x′ = y), which is r-local only around x. Analogously
for d(x, y) > r, so we permit the use of distance formulae to simplify notation whenever
we work in idempotent semirings. Scattered quantifiers can then easily be expressed as
∃r-sc(y1, . . . ym)ϑ(y) := ∃y1 . . . ∃ym

( ∧
i<j d(yi, yj) > 2r ∧ ϑ(y)

)
and ∀r-sc(y1, . . . ym)ϑ(y) :=

∀y1 . . . ∀ym

( ∨
i<j d(yi, yj) ≤ 2r ∨ ϑ(y)

)
.

▶ Definition 10 (Local sentence). A basic local sentence is a sentence of the form

∃r-sc(y1, . . . ym)
∧

i≤m

φ(r)(yi) or ∀r-sc(y1, . . . ym)
∨

i≤m

φ(r)(yi).

A local sentence is a positive Boolean combination of basic local sentences.

Based on these notions we can now formulate precisely the questions about Gaifman
normal forms in semiring semantics:
(1) For which semirings K does every first-order sentence have a K-equivalent local sentence?
(2) For which semirings K is it the case that every first-order formula is K-equivalent to a

positive Boolean combination of local formulae and basic local sentences?



C. Bizière, E. Grädel, and M. Naaf 20:9

5 Counterexamples Against Gaifman Normal Forms

This section presents two examples for which a Gaifman normal form does not exist. Both
use the vocabulary τ = {U} with only unary predicates, so that the Gaifman graph G(π)
of any K-interpretation π : LitA(τ) → K is trivial and the r-neighbourhood of a point, for
any r, consists only of the point itself. Thus, local formulae φ(r)(x) around x can always be
written as positive Boolean combinations of literals Ux, ¬Ux and equalities x = x, x ̸= x.
Scattered tuples are simply distinct tuples, so we write ∃distinct(x) instead of ∃r-sc(x).

5.1 A Formula Without a Gaifman Normal Form
Consider the formula ψ(x) := ∃y(Uy ∧ y ̸= x) which, in classical Boolean semantics, has the
Gaifman normal form φ(x) := ∃distinct(y, z)(Uy ∧Uz) ∨ (¬Ux∧ ∃yUy). However, in semiring
semantics it is in general not the case that ψ(x) ≡K φ(x). Here we consider the specific case
of a universe with two elements A = {a, b} and K-interpretations πst with πst(Ua) = s and
πst(Ub) = t, where s, t ∈ K \ {0} and s ̸= t. Then πst[[ψ(a)]] = t but πst[[φ(a)]] = st+ ts. So,
unless K is the Boolean semiring, we find elements s, t where πst[[ψ(a)]] ̸= πst[[φ(a)]].

Of course, it might still be the case that there is a different Gaifman normal form of ψ(x)
for semiring interpretations in a specific semiring K. We prove that this is not the case.

▶ Proposition 11. In any naturally ordered semiring with at least three elements, the formula
ψ(x) = ∃y(Uy ∧ y ̸= x) does not have a Gaifman normal form.

For the proof, we describe the values that the building blocks of Gaifman normal forms
may assume in πst. Recall that a local formula α(x) is equivalent to a positive Boolean
combination of literals Ux, ¬Ux, and equalities. Since πst(¬Ux) = 0 for all x ∈ A, we
can view the evaluation πst[[α(a)]] as an expression built from the semiring operations, the
value πst(Ua) = s and constants 0, 1. Analogously for πst[[α(b)]], but using πst(Ub) = t

instead of s. Hence there is a polynomial pα(X) ∈ K[X] such that πst[[α(a)]] = pα(s) and
πst[[α(b)]] = pα(t), for all interpretations πst. For the evaluation of a basic local sentence
β = ∃distinct(y, z)(α(y) ∧ α(z)), we then obtain πst[[β]] = pα(s)pα(t) + pα(t)pα(s). That is, β
can be described by a polynomial pβ(X,Y ) ∈ K[X,Y ] such that πst[[β]] = pβ(s, t) and pβ is
symmetric (that is, pβ(X,Y ) = pβ(Y,X)). The same holds for universal basic local sentences
β = ∀distinct(y, z)(α(y) ∨ α(z)).

Every Gaifman normal form φ(x) can thus be represented by a polynomial fφ(X,Y ) =∑
i hi(X)gi(X,Y ), with symmetric gi, such that πst[[φ(a)]] = fφ(s, t) for all s, t. Proposi-

tion 11 then follows from the following algebraic observation (see [6] for a proof).

▶ Lemma 12. Let K be a naturally ordered semiring with at least three elements. For any
polynomial f(X,Y ) =

∑
i hi(X)gi(X,Y ) where the gi are symmetric polynomials, there exist

values s, t ∈ K \ {0} such that f(s, t) ̸= t.

5.2 A Sentence Without a Gaifman Normal Form
While Gaifman normal forms need not exist for formulae, in all relevant semirings beyond
the Boolean one, they might still exist for sentences. Indeed, we shall prove a positive result
for min-max semirings. However, such a result seems only possible for semirings where both
operations are idempotent, similar to Hanf’s theorem. For other semirings one can find rather
simple counterexamples, as we illustrate for the tropical semiring T = (R∞

+ ,min,+,∞, 0).

▶ Proposition 13. The sentence ψ := ∃z∀x∃y(Uy ∨ x = z) has no Gaifman normal form in
the tropical semiring.
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The proof again works by describing the values of basic local sentences, this time in
T-interpretations of increasingly large size. One can then show that these values are either
constant or grow too fast, compared to the value of ψ (see [6] for details). A similar
construction works for the natural semiring (N,+, ·, 0, 1) and we conjecture that it can be
adapted to any infinite semiring with operations that are not idempotent.

6 Gaifman’s Theorem for Min-Max Semirings

In this section, we prove our main result: a version of Gaifman’s theorem for sentences
evaluated in min-max semirings (which can be lifted to lattice semirings, see Sect. 7). We
write M for the class of min-max semirings and refer to ≡M as minmax-equivalence.

▶ Theorem 14 (Gaifman normal form). Let τ be a finite relational signature. Every FO(τ)-
sentence ψ is minmax-equivalent (≡M) to a local sentence.

Contrary to Hanf’s locality theorem, we cannot follow the classical proofs of Gaifman’s
theorem. For instance, the proof in [9] is based on the Ehrenfeucht-Fraïssé method and
makes use of characteristic sentences, which in general do not exist in semiring semantics
over min-max semirings (cf. [15]). Gaifman’s original proof [11] is a constructive quantifier
elimination argument (which is similar to our approach), but makes use of negation to
encode case distinctions in the formula, which is not possible in semiring semantics. Another
argument why Gaifman’s proof does not go through is that it applies to formulae, whereas
formulae need not have Gaifman normal forms in our setting (cf. Sect. 5.1).

Instead, we present a novel proof of Gaifman’s theorem that applies to the Boolean case
as well as to min-max semirings. While our strategy is similar to Gaifman’s – a constructive
elimination of quantifier alternations – we have to phrase all results in terms of sentences and
need to be more careful to derive equivalences that hold in all min-max semirings. These
restrictions lead to a slight strengthening of Gaifman’s classical result (see Sect. 7).

6.1 Toolbox
The proof is rather technical, but is based on a few simple observations. First notice
that min-max semirings share many algebraic properties with the Boolean semiring. As
a consequence, many classical logical equivalences are also minmax-equivalences, such as
distributivity or idempotence. In particular, we can make use of disjunctive normal forms,
conjunctive normal forms and prenex normal forms. Moreover, we can exploit the inherent
symmetry of min-max semirings to simplify our proofs: arguments for existential sentences
can be dualised for universal sentences (see [6] for details). However, we still have to consider
quantifier alternations, which pose the main challenge.

Concerning locality, we make two simple but crucial observations. For the first one,
consider a local formula φ(r)(x, y) around two variables x and y. Such a formula may assert
that x and y are close to each other, for instance φ(r)(x, y) = Exy. But if x and y do not
occur together within one literal, then φ(r) intuitively makes independent statements about
the neighbourhood of x, and the neighbourhood of y, so we can split φ(r) into two separate
local formulae. For the general case φ(r)(x) in several variables, we group x into tuples
x1, . . . , xn with the idea that φ(r) makes independent statements about each group xi.

▶ Lemma 15 (Separation). Let φ(r)(x1, . . . , xn) be a local formula around x1 . . . xn and define
Xi as the set of variables connected to some x ∈ xi in D(φ). If each literal of φ(r)(x1, . . . , xn)
uses only variables in xi ∪Xi for a single i, then φ(r)(x1, . . . , xn) is minmax-equivalent to a
positive Boolean combination of r-local formulae around a single group xi.
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The second observation is that we can perform a clustering of any tuple (a1, . . . , an) ∈ An

into classes I1, . . . , Ik so that elements within one class have “small” distance to each other,
whereas different classes are “far apart”. This simple combinatorial observation is a fruitful
tool to construct Gaifman normal forms: it becomes easy to quantify elements with a known
clustering, and by the following lemma we can then do a disjunction over all clusterings.

▶ Definition 16 (Configuration). Let π be a K-interpretation with universe A. Let P =
{I1, . . . , Ik} be a partition of {1, . . . , n} and define representatives il = min Il of each class.
We say that a tuple (a1, . . . , an) ∈ An is in configuration (P, r), if
(a) d(ail

, ai) ≤ 5n−kr − r, for all i ∈ Il, l ∈ {1, . . . , k}, and
(b) d(ail

, ail′ ) > 4 · 5n−kr, for all l ̸= l′ (representatives are (2 · 5n−kr)-scattered).

Such a partition always exists: condition (a) remains true if we merge two classes violating
(b), so starting from P = {{1}, . . . , {n}} we can merge classes until (b) holds.

▶ Lemma 17 (Clustering). Let π be a K-interpretation on A. For all tuples (a1, . . . , an) ∈ An

and all r ≥ 1, there is a partition P such that (a1, . . . , an) is in configuration (P, r).

6.2 Proof Outline for Gaifman’s Theorem
The heart of our proof is the elimination of quantifier alternations. Due to space reasons,
we refer to the full version [6] for detailed proofs. Here we present an overview of the main
steps. Each steps proves, building on the previous ones, that sentences of a certain fragment
can be translated to minmax-equivalent local sentences. These fragments consist of
(1) sentences of the form ∃r-sc(x1, . . . xm)

∧
i≤m φ

(r)
i (xi);

(2) existential sentences ∃xφ(r)(x);
(3) existential-universal sentences ∃y∀xφ(r)(y, x);
(4) all first-order sentences (Theorem 14).

We first note that Theorem 14 (step (4)) is a rather simple consequence of (2) and (3).
By applying (3) and putting the resulting local sentence in prenex normal form, we can bring
∃∗∀∗-sentences into ∀∗∃∗-form. We can thus inductively3 eliminate quantifier alternations by
swapping quantifiers, until at most one alternation remains and (2) or (3) apply directly.

For step (1), note that the difference to a basic local sentence is that we permit different
local formulae φ(r)

i for each xi (such sentences have been called asymmetric in [20, 8]). Our
proof is an inductive construction of the equivalent local sentence. This step is quite technical,
but greatly simplifies the following constructions.

To prove (2), we have to rewrite the ∃∗-prefix as a scattered quantifier ∃r-sc(x). This
essentially follows from the Clustering and Separation Lemmas: for a given partition P =
{I1, . . . , Ik} we can do a scattered quantification of the representatives xi1 , . . . , xik

, and then
quantify the elements of each class Il locally around its representative xil

.
Step (3) is the core of the elimination argument and the most difficult step of the proof.

We roughly follow the structure of Gaifman’s proof [11] and, for a sentence ∃y∀xφ(r)(y, x),
first split ∀x into those elements close to y (which we can quantify locally within φ) and
those elements far from x, using the Separation Lemma. Eventually, we arrive at a positive
Boolean combination of sentences ∃y(φ(r)

close(y) ∧ ∀x/∈Bs(y) φ(s)
far(x)). Here, the far elements

3 An attentive reader may notice that we have to deal with formulae with free variables in the induction,
but (2), (3) only apply to sentences. We resolve this issue by temporarily substituting atoms with free
variables by fresh relation symbols, without affecting the Gaifman graph (see [6, Abstraction Lemma]).
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are covered by the outside quantifier ∀x/∈Bs(y) with the obvious semantics. As in Gaifman’s
proof, the main challenge is the elimination of this outside quantifier. Gaifman approaches this
by using negation to encode case distinctions in the Gaifman normal form. Our proof instead
consists of a series of surprisingly difficult syntactical transformations that avoid negation,
eventually leading to a minmax-equivalent local sentence without outside quantifiers.

7 Strengthening Gaifman’s Theorem

In this section, we rephrase our main result in terms of Boolean semantics, which leads
to a novel strengthening of Gaifman’s classical theorem. Interestingly, Theorem 14 can be
regained from the Boolean result by algebraic techniques, and even lifted to lattice semirings.
These insights suggest that the merit of our proof, and the reason why it is more complicated
than Gaifman’s original proof, is the construction of a Gaifman normal form without the
use of negation. Since our proof applies in particular to the Boolean semiring and hence to
standard Boolean semantics (the only difference is that we use ball quantifiers instead of
distance formulae, but these are interchangeable), we obtain the following corollary.

▶ Corollary 18 (Gaifman normal form without negation). Let τ be a finite relational signature.
In Boolean semantics, every FO(τ)-sentence ψ has an equivalent local sentence ψ′ such
that every relation symbol occurring only positively (only negatively) in ψ also occurs only
positively (only negatively) in ψ′, not counting occurrences within distance formulae.

We believe that this result may be of independent interest. A similar adaptation of
Gaifman’s theorem has been considered in [20], namely that existential sentences are equi-
valent to positive Boolean combinations of existential basic local sentences. Our proof of
step (2) implies a similar result (cf. [6]), as we also construct a positive Boolean combination
of existential basic local sentences. However, we permit distance formulae d(x, y) > 2r
within local formulae (which are abbreviations for universal quantifiers), while [20] does not.
Moreover, the approximation schemes of [8] are based on a version of Gaifman’s theorem
for sentences positive in a single unary relation (i.e., no negations are added in front of this
relation). Their proof uses a version of Ehrenfeucht-Fraïssé games, which is quite different
from our syntactical approach. Since unary relations do not occur in distance formulae,
Corollary 18 subsumes their result. Interestingly, [20, 8] both share our observation that the
proof of the respective version of Gaifman’s theorem is surprisingly difficult.

To prove Theorem 14 from Corollary 18, one can show (cf. [6]) that with some preparation,
Boolean equivalences ≡B can be lifted to lattice-equivalences ≡L (which subsume ≡M). This
is done by applying separating homomorphisms of [15] to turn a falsifying K-interpretation π,
witnessing ̸≡L, into a falsifying Boolean structure h◦π, witnessing ̸≡B. Such homomorphisms
h exist for all min-max semirings [15] and also for the more general lattice semirings [7, 6].
We obtain the following generalisation of Theorem 14 by lifting the Boolean result.

▶ Corollary 19. Let τ be a finite relational signature. Every FO(τ)-sentence ψ is lattice-
equivalent (≡L) to a local sentence.

We remark that the lifting argument implies that for many sentences (to be precise, those
where no relation occurs both positively and negatively, cf. [6]), the Gaifman normal form in
min-max and lattice semirings coincides with the one for Boolean semantics in Corollary 18
(but not necessarily with Gaifman’s original construction). A further consequence is that the
counterexample for formulae in Sect. 5.1 also applies to Corollary 18.
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8 Conclusion

Semiring semantics is a refinement of classical Boolean semantics, which provides more
detailed information about a logical statement than just its truth or falsity. This leads to a
finer distinction between formulae: statements that are equivalent in the Boolean sense may
have different valuations in semiring interpretations, depending on the underlying semiring.
It is an interesting and non-trivial question, which logical equivalences and, more generally,
which model-theoretic methods, can be carried over from classical semantics to semiring
semantics, and how this depends on the algebraic properties of the underlying semiring.

Here we have studied this question for locality properties of first-order logic, in particular
for Hanf’s locality theorem and for Gaifman normal forms. Our setting assumes semiring
interpretations which are model-defining and track only positive information, since these are
the conditions that provide well-defined and meaningful locality notions. However, from the
outset, it has been clear that one cannot expect to transfer all locality properties of first-order
logic to semiring semantics in arbitrary commutative semirings. Indeed, semiring semantics
evaluates existential and universal quantifiers by sums and products over all elements of the
universe, which gives an inherent source of non-locality if these operations are not idempotent.

Most positive locality results thus require that the underlying semirings are fully idem-
potent. Under this assumption, one can adapt the classical proof of Hanf’s locality theorem
to the semiring setting, relying on a back-and-forth argument that itself requires fully idem-
potent semirings. The question whether there exist Gaifman normal forms in semiring
semantics turned out to be more subtle. Indeed, for formulae with free variables Gaifman
normal forms need not exist once one goes beyond the Boolean semiring. Also for sentences,
one can find examples that do not admit Gaifman normal forms in semirings that are not
fully idempotent. We have presented such an example for the tropical semiring.

Our main result, however, is a positive one and establishes the existence of Gaifman
normal forms over the class of all min-max and lattice semirings. Intuitively, it relies on the
property that in min-max semirings, the value of a quantified statement ∃xφ(x) or ∀xφ(x)
coincides with a value of φ(a), for some witness a. This needs, for instance, not be the case in
lattice semirings, and hence the generalisation to lattice semirings uses a different approach
based on separating homomorphisms. It is still an open question whether, in analogy to
Hanf’s theorem, Gaifman normal forms exist over all fully idempotent semirings. The proof
of our main result, which is based on quantifier elimination arguments, turned out to be
surprisingly difficult; we identified the lack of a classical negation operator as the main reason
for its complexity. An interesting consequence of this restriction is a stronger version of
Gaifman’s classical theorem in Boolean semantics: every sentence has a Gaifman normal
form which, informally speaking, does not add negations.

For applications such as provenance analysis, min-max semirings are relevant, for instance,
for studying access levels and security issues. A much larger interesting class of semirings
with wider applications are the absorptive ones, including the tropical semiring, in which
addition is idempotent, but multiplication in general is not. We have seen that Gaifman
normal forms for such semirings need not exist for all sentences. The question arises whether
one can establish weaker locality properties for absorptive semirings, applicable perhaps to
just a relevant fragment of first-order logic.
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