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Abstract
The Maximum Satisfiability (MaxSAT), an important optimization problem, has a range of applica-
tions, including network routing, planning and scheduling, and combinatorial auctions. Among these
applications, one usually benefits from having not just one single solution, but k diverse solutions.
Motivated by this, we study an extension of MaxSAT, named Diversified Top-k MaxSAT (DTKMS)
problem, which is to find k feasible assignments of a given formula such that each assignment
satisfies all hard clauses and all of them together satisfy the maximum number of soft clauses. This
paper presents a local search algorithm, LS-DTKMS, for DTKMS problem, which exploits novel
scoring functions to select variables and assignments. Experiments demonstrate that LS-DTKMS
outperforms the top-k MaxSAT based DTKMS solvers and state-of-the-art solvers for diversified
top-k clique problem.
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1 Introduction

The Maximum Satisfiability (MaxSAT), an optimization version of the famous Satisfiability
(SAT) problem, concerns about finding an assignment to satisfy all hard clauses as well
as the maximum number of soft clauses by given a general form of propositional formula,
which is represented as the Conjunctive Normal Form (CNF) containing both hard and soft
clauses. Recently, the success of the MaxSAT algorithms [9, 11, 12, 17, 35] has contributed
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to a significant number of applications, such as network routing [20], planning and schedul-
ing [27], combinatorial auctions [4], software engineering [13], data analysis [8] and machine
learning [19]. Among these real-life applications, one actually benefits from not just one
solution but diverse solutions. For example, in a social network, mining diverse communities
often helps to find different topics and reduce the amount of overlapping information [7]. In
robotic motion planning, practitioners are often interested in finding diverse paths because
some pre-computed paths sometimes become invalid due to the relocation of obstacles or the
reconfiguration of the robot [31]. In natural language understanding, machine translation
systems benefit from working with multiple plausible parses of a sentence because sentences
are often ambiguous [15]. In computational biology, computing multiple configurations of a
protein structure is believed to be helpful to assess the sensitivity of the model [38]. Thus, in
order to better meet the users’ needs in numerous applications, it is essential to determine
diverse solutions for MaxSAT problem.

This problem is introduced as the Diversified Top-k MaxSAT (DTKMS) problem, which
is equivalent to MaxSAT when k = 1. Given a CNF formula, the objective of DTKMS is to
determine at most k feasible assignments such that each assignment satisfies all hard clauses
and the k assignments together satisfy the maximum number of soft clauses. As an extension
of the MaxSAT problem, DTKMS is a bi-standard optimization problem that balances
correlation and diversity of results. Now, a straightforward method for solving DTKMS
involves first exhaustively searching for all feasible assignments and then employing the max
k-coverage algorithm. Unfortunately, this method is not practical because the enumeration
consumes enormous amounts of time and memory. Thus, to effectively solve DTKMS, two
major challenges should be tackled. (1) As the number of feasible assignments for MaxSAT
is potentially exponential, how can the diversification requirement be met without generating
highly overlapping assignments? (2) Without an exhaustive search, how can the quality of
the solutions be guaranteed?

In this work, for replying the above challenges, we propose a local search algorithm for the
DTKMS problem, named LS-DTKMS, which features new scoring functions, including score
of variable and score of assignment. To avoid generating highly overlapping assignments, we
design a new score of variable scheme, unlike the previous one that only works on the current
assignment. We evaluate the effect of flipping variables on both the current assignment and
the DTKMS solution containing k assignments. By applying the new scheme in our variable
selection heuristic, LS-DTKMS is able to generate diversified assignments. In addition,
we design a score of assignment scheme to estimate the quality of a feasible assignment.
After combining it with a key solution updating rule, LS-DTKMS can achieve a guaranteed
approximation ratio of 0.25 if the final solution is obtained according to the updating rule.
We conduct experiments to compare LS-DTKMS against top-k MaxSAT based DTKMS
solvers on top-k MaxSAT instances from the MaxSAT Evaluation (MSE) 2020 top-k track.
The results demonstrate that LS-DTKMS significantly outperforms the other solvers. To
further verify the effectiveness of our algorithm, we apply LS-DTKMS to Diversified Top-k
Clique Search (DTKCS) problem, which is to find k maximal cliques such that they cover
the maximum number of vertices in a given graph [37]. The experimental results show that
LS-DTKMS has better improvement than the state-of-the-art DTKCS solvers.

The outline of the paper is as follows. We first present some related definitions and a
framework of top-k MaxSAT based DTKMS algorithm. In Section 3, we propose a local
search algorithm and discuss the details of the techniques involved. In Section 5, we show
the experimental results. Finally, we conclude the paper.
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2 Diversified Top-k MaxSAT Problem

2.1 Preliminaries

A literal is either a Boolean variable x (positive literal) or its negation ¬x (negative literal).
The polarity of a positive literal is 1, while the polarity of a negative literal is 0. A clause is
a disjunction of literals. A formula F in Conjunctive Normal Form (CNF) is a conjunction
of clauses, which can be represented as a set of clauses. Any variable in F may take values
true or false. An assignment αi for F with n variables, x1, x2, ..., xn, is a mapping that
assigns each variable a value and it is expressed by αi = v1v2...vn, where vi (1 ≤ i ≤ n) is
the corresponding value of xi. Given an assignment, a clause is satisfied iff at least one of
its literals is true, and a formula F is satisfied iff each clause in F is satisfied.

The Maximum Satisfiability (MaxSAT) problem is to find an assignment that satisfies all
hard clauses and maximizes the number of satisfied soft clauses of a given CNF formula, F =
Hard ∪ Soft, whose clauses can be distinguished into hard clauses and soft clauses, and Hard
(resp. Soft) represents the set of hard (resp. soft) clauses. For a MaxSAT formula F , we
say an assignment α is a feasible assignment of F iff it satisfies all hard clauses of F . Given
a set of feasible assignments, S = {α1, α2, · · · , αk}, of a MaxSAT formula F , the private
satisfied soft clauses of αi (αi ∈ S), denoted by priv(αi, S), is the subset of soft clauses only
satisfied by αi, i.e., priv(αi, S) = sat(αi) \ sat(S \ {αi}), where sat(αi) is the set of satisfied
soft clauses by αi.

▶ Definition 1 (Diversified Top-k MaxSAT (DTKMS) Problem). Given a formula F = Hard
∪ Soft and a positive integer k, the Diversified Top-k MaxSAT problem is to compute a set
S with at most k feasible assignments such that these feasible assignments in S satisfy the
maximum number of soft clauses of F ; that is to say, |sat(α1) ∪ sat(α2) ∪ · · · ∪ sat(αk)| is
maximized, where sat(αi) (αi ∈ S and 1 ≤ i ≤ k) is the set of soft clauses satisfied by αi.

It is easy to see that the DTKMS problem is a generalization of MaxSAT, where MaxSAT
aims to find one solution, while DTKMS attempts to find k diversified solutions. Since
both MaxSAT and DTKMS study the same type of formulae, which involve hard and soft
clauses, to avoid confusion, we will distinguish the formulae according to different problems,
expressed as DTKMS or MaxSAT formulae. Given a DTKMS formula F and an integer k,
we use S to denote the solution of a DTKMS instance F and sat(S) to denote the set of soft
clauses satisfied by S.

▶ Definition 2 (Hamming Distance). Given two feasible assignments αi and αj of a DTKMS
formula, the hamming distance between αi and αj , denoted by HDist(αi, αj), is the number
of variables whose corresponding values in the two feasible assignments are different.

For example, let α1 = 110 and α2 = 100 be two feasible assignments of a formula with
three variables x1, x2 and x3. There is only one variable x2 with different values in α1 and
α2, so the hamming distance between the two feasible assignments is 1. Clearly, for two
assignments αi and αj , they are not identical if HDist(αi, αj) > 0. The higher hamming
distance, the higher degree of diversification of two feasible assignments. Note that the
hamming distance HDist(αi, αj) can be calculated in polynomial time [30]. Given a set of
feasible assignments S and a feasible assignment α /∈ S, we use HDist(α, S) > 0 to denote
α is different from any feasible assignment in S, i.e., for ∀αi ∈ S, we have HDist(α, αi) > 0.

SAT 2023
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Algorithm 1 LS-DTKMS.

Input: a DTKMS instance F = Hard ∪ Soft, an integer k, and a cutoff time
Output: a solution of DTKMS S∗

1 m = m0, S∗ = ∅;
2 while elapsed time < cutoff do

// mmax and m0 are parameters
3 if m < mmax then m← 2×m;
4 else m0 ← m0 + 1, m← m0;
5 for each soft clause c do
6 ClauseConf [c] = 1
7 S ← ConstructS(F, m);
8 if |sat(S)| = |Soft| then return S;
9 S ← UpdateS(F, S, m);

10 if |sat(S)| > |sat(S∗)| then S∗ ← S;
11 return S∗;

2.2 Top-k MaxSAT based DTKMS Algorithm
This subsection presents a top-k MaxSAT based DTKMS algorithm. This algorithm follows
a greedy algorithm for the max k-coverage problem, which is the problem of selecting k

subsets from a collection of subsets such that their union contains as many elements as
possible. Given a DTKMS instance F and an integer k, this algorithm iteratively selects
the best feasible assignment that can satisfy the maximum number of soft clauses and then
adds it into the solution S until the top-k feasible assignments are added into S. In essence,
the whole process can be accomplished by a top-k MaxSAT solver, which outputs the top-k
feasible assignments. This algorithm can achieve an approximation ration of 0.632, which is
the best-possible polynomial time approximation algorithm for the k-coverage problem [29].

3 A New Local Search Algorithm for DTKMS

This section describes our local search algorithm, called LS-DTKMS, for solving DTKMS on
top level. Details of important components will be presented in the following.

3.1 Framework of LS-DTKMS
LS-DTKMS (Algorithm 1) alternatively performs solution construction (ConstructS) and
solution update (UpdateS) until a given cutoff time is reached. At first, LS-DTKMS initializes
S∗ and m (line 1), where m is a parameter used in the Best From Multiple Selections (BMS)
strategy [10]. The BMS strategy is a probabilistic method for choosing a variable of good
quality from a large set, which is effective for improving the performance of local search.
Specifically, the strategy chooses m random variables, and returns the best one. Then the
algorithm enters a loop (lines 2–10). In each iteration, the parameter m is changed to obtain
diversified results (lines 3–4), and ClauseConf (described in the next subsection) is initialized
for each soft clause (lines 5–6). Thereafter a solution S with at most k feasible assignments
is constructed (line 7). If all soft clauses are satisfied by S, S is directly returned (line 8);
otherwise, UpdateS is performed to improve the quality of S (line 9). If the new solution
obtained by UpdateS is better than the best-found solution S∗, S∗ is updated. Finally, when
the loop terminates, LS-DTKMS returns S∗ (line 11).
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3.2 Finding a Single Feasible Assignment with Diversity

Local search for DTKMS requires that the k generated feasible assignments are lowly
overlapping with each other so as to enhance the usefulness of each individual feasible
assignment. Specifically, when a feasible assignment has been built, DTKMS problem prefers
the next feasible assignment that is dissimilar with the old one. Thus, it is vital to generate
diversified feasible assignments to be better applied in both ConstructS and UpdateS. To
get such feasible assignments, we define a novel score of variable and a variable selection
heuristic.

3.2.1 Score of Variable

The variable scoring function is defined by incorporating the benefit of the number of satisfied
soft clauses under the candidate solution S and the increment of total weight of satisfied
clauses under the current assignment by flipping a variable. The specific definition is as
follows.

▶ Definition 3 (score of variable). Given a DTKMS formula F , a candidate solution S

containing at most k assignments, and an assignment α ∈ S, the score of a variable v,
denoted by score(v), is defined as score(v) = λ1 · score1(v) + λ2 · score2(v), where λ1, λ2
(0 ≤ λ1, λ2 ≤ 1) are weighting factors, and score1(v) and score2(v) are defined as follows.

score1(v) is defined under the candidate solution S. The score1 of v is score1(v) =
|sat((S \{α})∪{α′})|− |sat(S)|, where α′ is an assignment obtained by flipping the value
of the variable v in α.
score2(v) is defined under the current assignment. The score2 of v is defined as
score2(v) = make(v)− break(v), where make(v) and break(v) represent the total weights
of the clauses which would become satisfied and falsified under α respectively if the value
of v is flipped.

The weights of clauses are set using the clause weighting mechanism [21], which works
as follows. At first, the weight of each hard and soft clause is set to 1. Then, the update
rules involve: (1) With probability sp, for each satisfied hard clause c with w(c) > 1,
w(c) = w(c)− h_inc, and for each satisfied soft clause c with w(c) > 1, w(c) = w(c)− 1; (2)
With probability 1− sp, for each falsified hard clause c, w(c) = w(c) + h_inc, and for each
falsified soft clause c with w(c) < weightLimit, w(c) = w(c) + 1. In the above rules, h_inc

(h_inc > 1) is a constant, and weightLimit is a limit of the maximum weight value of soft
clauses.

Apparently, score1(v) and score2(v) both encourage the transformation of the clauses
from falsified to satisfied. The score1(v) inclines the contribution of soft clauses from a
global perspective. When flipping variables with score1(v), the variables with the greater
increment of the number of satisfied soft clauses under the candidate solution may be chosen.
Flipping such variables is beneficial to finding a better solution. The score2(v) focuses
on emphasizing the importance of hard clauses from a local point of view. When flipping
variables using score2(v), it is likely that the picked variables have greater increment of
the weight of satisfied hard clauses under the current assignment. Flipping such variables
contributes to finding a better assignment. By integrating score1(v) and score2(v), our
scoring function is more flexible in the sense that it can select variables according to both
local and global perspectives.

SAT 2023
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3.2.2 Variable Selection Heuristic
In this part, two variable selection heuristics are designed to increase the diversity of the search.
One is used in initial assignment construction to generate a diversified initial assignment.
The other is applied in local search to modify the initial assignment with the aim of finding
a feasible assignment.

The first variable heuristic strategy is implemented by using a Boolean array ClauseConf
to express the state of each soft clause, where ClauseConf [c] = 1 identifies the soft clause c is
falsified and unselected during each loop iteration in LS-DTKMS; otherwise, ClauseConf [c] =
0. We prefer to choose a variable in the clause c with ClauseConf [c] = 1. The reason for
doing so is that we prefer to choose the falsified soft clauses to satisfy as many soft clauses in
Soft\ sat(S) as possible. The details of the update rules for ClauseConf are given as follows.
At first, the ClauseConf of each soft clause is initialized to 1. Then ClauseConf is updated
based on two circumstances.
1. During finding a feasible assignment process: when a soft clause c is selected during one

iteration (ConstructS and UpdateS execution) in LS-DTKMS, then ClauseConf [c] = 0.
2. During updating the solution S process: when removing α from S, the ClauseConf of

each clause c in priv(α, S) is set to 1; when adding α into S, the ClauseConf of each
clause c in priv(α, S) is set to 0.

After a clause c is picked, a variable is selected randomly from c to flip so as to build a initial
assignment dissimilar with the one extracted from the candidate solution S.

The second variable selection heuristic is a two-priority-level heuristic with the purpose
of constructing a diversified feasible assignment, which works as follows.
1. The first priority level: If there exist variables whose score(v) > 0, choose a variable with

BMS strategy, breaking ties by selecting the one that is least recently flipped. In details, if
the number of the variables with score(v) > 0 is less than a constant m, choose a variable
with the greatest score; otherwise, a set is built by randomly selecting m variables whose
score(v) > 0 and then a variable with the highest score in the newly-built set is selected.

2. The second priority level: There are no variables with score(v) > 0, which indicates that
the local search is stuck in the local optimum. In this case, the weights of the clauses
are first updated. Then a random falsified hard clause is selected if such clauses exist;
otherwise, a random falsified soft clause is selected. Finally, a variable with the highest
score is chosen from the clause, breaking ties by selecting the one that is least recently
flipped.

3.2.3 The Framework of Finding a Single Feasible Assignment
The pseudo code of finding a single feasible assignment FindAssignment is outlined in
Algorithm 2. FindAssignment consists of two phases: initial assignment construction phase
(lines 2–13) and local search phase (lines 14–25). In the first phase, with a certain probability
p (the noise parameter), an assignment is randomly generated (lines 2–4). With a certain
probability 1 − p, the last feasible assignment is extracted from S. Then a variable v is
selected using the first variable heuristic strategy and the initial assignment is generated
by flipping the selected variable v (lines 6–13). After building an initial assignment α,
FindAssignment enters the local search phase, which iteratively modifies α until a given time
limit is reached. During each iteration, if a new feasible assignment is constructed, which
uses the hamming distance to measure, the assignment is returned (lines 15–16). Otherwise,
a variable is selected through the two-priority-level heuristic to find a new assignment (lines
17–25). Finally, the assignment α∗ is returned (line 26).
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Algorithm 2 FindAssignment(F, S, m).

1 α∗ = ∅;
// initial assignment construction phase

2 if with probability p then
3 α← generate a random assignment;
4 update the weights of clauses;
5 else
6 α← extract the last feasible assignment from S;
7 S ← S \ α;
8 if C = {c|ClauseConf [c] = 1} ≠ ∅ then
9 c← randomly select a falsified soft clause under α in C;

10 else
11 c← randomly select a falsified soft clause in Soft \sat(S);
12 v ← select a variable from c with the highest score;
13 α← flip v in α;

// local search phase
14 while elapsed time < cutoff do
15 if α is a feasible assignment and HDist(α, S) > 0 then
16 α∗ ← α; break;
17 if D = {v|score(v) > 0} ≠ ∅ then
18 v ← select a variable from D with BMS strategy;
19 else
20 update the weights of clauses;
21 if exists falsified hard clauses then
22 c← select a hard clause randomly;
23 else c← select a soft clause randomly;
24 v ← select a variable from c with the highest score;
25 α← flip v in α;

26 return α∗;

3.3 Constructing a Candidate Solution for DTKMS Problem
In the subsection, we present the solution construction algorithm ConstructS in Algorithm 3
to build a candidate solution S with at most k feasible assignments. In ConstructS, if the
size of S is less than k or a given time limit is not reached, a loop is executed iteratively
(lines 2–6). In each iteration, FindAssignment is called to individually generate a diversified
feasible assignment (line 4). If the new assignment is not empty, it is inserted into S (line
5). Next, ClauseConf is updated according to the update rules (line 6). Note that when
a candidate solution has been generated by ConstructS, the feasible assignments in S are
different, which can be guaranteed by FindAssignment.

3.4 Solution Updating for DTKMS Problem
When a candidate solution has been generated by ConstructS, our algorithm needs to further
improve the quality of the solution, and this leaves a question: how to evaluate the quality
of a feasible assignment in a solution. In the following, we define a scoring function on
assignments to evaluate the importance of each feasible assignment.

SAT 2023
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Algorithm 3 ConstructS (F, S, m).

1 S = ∅, α = ∅;
2 while |S| < k or elapsed time < cutoff do
3 if |sat(S)| = |Soft| then break;
4 α← FindAssignment(F, S, m);
5 if α ̸= ∅ then S ← S ∪ {α};
6 update ClauseConf ;
7 return S

3.4.1 Score of Assignment
The scoring function on assignments is crucial in the local search algorithm for DTKMS
because it provides the measure of each assignment in a solution, which helps to decide how
to replace an old assignment from a solution and thus further improve the solution.

▶ Definition 4 (score of assignment). Given a solution S of a DTKMS instance, and an
assignment α ∈ S, the score of α is score(α) = |priv(α, S)|.

By using the score of assignment scheme, a solution updating rule works as follows by
given a a solution S of a DTKMS instance, and any an assignment α ∈ S.

When an assignment needs to be removed from S, we pick the one with the lowest
score(α). Note that such an assignment may not be the one with the least number of
satisfied soft clauses. Our algorithm LS-DTKMS prefers removing an assignment αmin

with the lowest score(α) because it does very little contribution to the DTKMS solution,
even if it may satisfy a large number of soft clauses.
After removing an assignment αmin with the lowest score(α) from S based on the above
method, we construct a new solution S′ by adding an assignment α. To guarantee the
quality of the solution, the assignment α to be added should hold the Inequality (1).

|priv(α, S′)| > |priv(αmin, S)|+ |sat(S)|
|S|

(1)

where S′ = S \ αmin ∪ {α} and |S| records the number of assignments in the solution S.
With the help of the above solution updating rule, we can guarantee that if a solution is
obtained according to Inequality (1), then our algorithm LS-DTKMS can achieve a guaranteed
approximation ratio of 0.25, which is demonstrated in Lemma 5.

▶ Lemma 5. Let F be a DTKMS instance, k be an integer, S∗ be an optimal solution of F ,
and S′ be a solution updated by Inequality (1). Then |sat(S′)| ≥ 0.25× |sat(S∗)|.

Proof. When an algorithm for DTKMS constructs a solution S′
i from S′

i−1, the condition
|priv(α, S′

i)| > |priv(αmin, S′
i−1)|+ |sat(S′

i−1)|
|S′

i−1| is equivalent to |E|+|G| > |C|+|E|+ |sat(S′
i−1)|

|S′
i−1|

represented in Figure 1. Since |sat(S′
i−1)| = |A|+ |B|+ |C|+ |D|+ |E|+ |F |, |sat(S′

i)| =
|A|+ |B|+ |D|+ |E|+ |F |+ |G|, and |S′

i−1| = k, we have |sat(S′
i)| > (1 + 1

k )|sat(S′
i−1)|.

Next, we prove the fact that solving the DTKMS problem is equivalent to the max
k-coverage. We reduce the max k-coverage problem to the DTKMS problem as follows.



J. Zhou, J. Liang, M. Yin, and B. He 29:9

Figure 1 The illustration of Lemma 5.

1. For each element ui in U , create a variable xi.
2. For each element up in the subset Ci and each element uq in the subset U \ Ci, create a

hard clause ¬xp ∨ ¬xq.
3. For each element ui in U , create a soft clause xi.

We can draw a conclusion that solving the DTKMS problem is equivalent to the max
k-coverage problem, which is to select k subsets from C = {C1, C2, . . . , Cm} such that
their union has the maximum cardinality by giving a set U of n elements and an integer
k. In addition, we can obtain the Inequality (2) |cov(C ′

i)| > (1 + 1
k )|cov(C ′

i−1)|, where
cov(C ′

i) is the set of elements covered by a solution C ′
i of a max k-coverage instance. When

Inequality (2) is satisfied, a theoretical result that a max k-coverage algorithm can achieve
a guarantee approximation ration of 0.25 is proved in [5]. Therefore, we can conclude that
|sat(S′)| ≥ 0.25× |sat(S∗)|. ◀

3.4.2 The Framework of Solution Updating
The framework of solution updating algorithm UpdateS is presented in Algorithm 4. At first,
UpdateS initializes the solution S′ and step (line 1). Then it enters a loop (lines 2–10), in
which UpdateS iteratively generates a feasible assignment and updates S with the solution
updating rule described in the above. Significantly, if a solution is obtained by Inequality
(1), our algorithm can achieve a guaranteed approximation ratio of 0.25. Finally, a better
solution is returned (line 11).

Algorithm 4 UpdateS (F, S, m).

1 step = 0, S′ = ∅;
2 while within the time limit do
3 if step > maxstep then break;
4 α← FindAssignment(F, S, m);
5 αmin ← select an assignment α with the lowest score(α) from S;
6 S′ = S \ αmin ∪ {α};
7 if |priv(α, S′)| > |priv(αmin, S)|+ |sat(S)|

|S| then
8 S ← S′, step← 0;
9 else step← step + 1;

10 update ClauseConf ;
11 return S;

SAT 2023
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Table 1 Description of the top-k track benchmarks in MSE 2020.

Families |Var | |Hard| |Soft| Families |Var | |Hard| |Soft|
aes (1) 147 240 147 maxone (2) 485 2817 485
aes-key-recovery (1) 21368 372240 407 MaxSATQueriesinInterpretableClassifiers (5) 1991 14448 1058
atcoss (2) 192216 890542 301 mbd (2) 29703 73188 4637
bcp (2) 152 462 125 packup (5) 13138 73769 7572
CircuitDebuggingProblems (2) 144580 0 432737 protein_ins (5) 2253 2190700 59
CircuitTraceCompaction (2) 158890 494821 20 pseudoBoolean (3) 839 1610 815
close_solutions (4) 68053 2600438 67868 railway-transport (2) 64743 1668566 4945
ConsistentQueryAnswering (3) 44526 46593 10856 ramsey (1) 36 0 210
des (3) 86878 388071 4707 reversi (6) 2981 16521 45
drmx-atmostk (3) 927 1408 47 scheduling (1) 201204 767081 1707
fault-diagnosis (1) 137900 758138 49770 SeanSafarpour (1) 238290 0 936006
frb (1) 760 41367 760 treewidth-computation (3) 88809 814018 60
gen-hyper-tw (1) 62531 197071 48 uaq (3) 2205 3805 189
maxclique (3) 182 16885 182 xai-mindset2 (1) 1330 4763 378
MaximumCommonSub-GraphExtraction (3) 2044 99615 41

4 Experimental Evaluation

In this section, we carry out two experiments to evaluate the performance of LS-DTKMS.
The first experiment compares LS-DTKMS against top-k MaxSAT based DTKMS algorithms
on top-k maxsat instances from the MaxSAT Evaluation (MSE) 2020 top-k track2. The
second experiment applies LS-DTKMS to Diversified Top-k Clique Search (DTKCS) problem,
whose instances are from DIMACS graph benchmarks3.

4.1 Experimental Preliminaries
Our algorithm LS-DTKMS is implemented in C++ and compiled by g++ with “-o3”. There
are 9 parameters in it. (1) m0, mmax: the initial and the maximum value of the number
of samplings used in BMS, respectively. (2) p: the probability, used to generate an initial
assignment. (3) sp: the smooth probability, used in the clause weighting scheme. (4) hinc:
the increment of falsified hard clauses, used in the clause weighting scheme. (5) WeightLimit:
the limit on soft clause weight, used in the clause weighting scheme. (6) maxstep: the limit
on the step of updating the solution. (7) λ1, λ2: two coefficients of score(v), used for variable
selection. The parameters are tuned according to our experience, and are listed as follows:
m0 = 15, mmax = 125, p = 0.2, sp = 0.01, hinc = 2, weightLimit = 1, maxstep = 23×106,
λ1 = 0.6, and λ2 = 0.4.

The first experiment compares LS-DTKMS with four top-k MaxSAT based DTKMS
algorithms, all of which exploit top-k MaxSAT solvers from top-k track in MSE 2020. The
solvers in the top-k track can return k best feasible assignments, which follows the idea of the
DTKMS algorithm based on top-k MaxSAT. In the experiment, we use four types of top-k
MaxSAT solvers: MaxHS [6], Open-WBO [26], Maxino[3], and RC2 [18]. In each type, we
exploit the best one, namely, MaxHS, Open-WBO, maxino, and RC2-A, where RC2-A is the
best top-k MaxSAT solver by far. In the second experiment, we evaluate LS-DTKMS with
two state-of-the-art incomplete DTKCS solvers, TOPKLS [32] and HEA-D [34]. TOPKLS
and HEA-D are state-of-the-art incomplete solvers for DTKCS problem, where HEA-D is
the best one by far. In addition, to ensure LS-DTKMS can solve DTKCS benchmarks, we
model these instances into DTKMS instances using usual encoding [22]. All experiments
are conducted on a server with an Intel(R) Xeon(R) 2.10GHz CPU and 256GB of memory
under CentOS Linux release 7.9.2009. For each instance, four top-k MaxSAT based DTKMS

2 https://maxsat-evaluations.github.io/2020/benchmarks.html
3 https://iridia.ulb.ac.be/~fmascia/maximum_clique/

https://maxsat-evaluations.github.io/2020/benchmarks.html
https://iridia.ulb.ac.be/~fmascia/maximum_clique/
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Table 2 Comparison on top-k maxsat with k=2 and k=3.

k=2 k=3
Families Open-WBO MaxHS Maxino RC2-A LS-DTKMS Open-WBO MaxHS Maxino RC2-A LS-DTKMS
aes (1) NA(600.00) 129(25.34) 130(0.23) 130(0.20) 147(7.38) NA(600.00) 132(25.34) 132(0.23) 132(0.19) 147(8.37)
aes-key-recovery (1) NA(600.00) 406(600.00) NA(600.00) 406(600.00) 407(40.92) NA(600.00) 406(600.00) NA(600.00) 406(600.00) 407(62.34)
atcoss (2) 265.5(364.80) 265.5(23.54) 265.5(25.87) 265.5(43.51) 290.5(53.49) 265.5(102.71) 265.5(23.96) 265.5(26.24) 265.5(43.83) 290.5(56.31)
bcp (2) 73.5(0.02) 73.5(0.01) 73.5(0.01) 73.5(0.00) 74(7.43) 73.5(0.02) 73.5(0.01) 73(0.01) 73.5(0.01) 74(7.93)
CircuitDebugging-
Problems (2)

432736
(322.08)

432736
(299.53)

432736
(4.09)

432736
(4.31)

432737
(23.71)

432736
(322.25)

432736.5
(299.76)

432736
(4.22)

432736
(6.41)

432736.5
(24.69)

CircuitTraceCo-
mpaction (2) 12.5(22.60) 12(37.54) 12.5(9.52) 12.5(20.99) 14(13.61) 13(22.02) 13(38.90) 13(9.58) 13(20.28) 16.5(11.55)

close_solutions (4) 67857
(44.56)

67857
(178.48)

67857.3
(12.45)

67857
(2.45)

67861.3
(28.55)

67858.3
(43.71)

67858.3
(158.82)

67858.3
(12.46)

67858.3
(2.92)

67862
(31.66)

ConsistentQuery-
Answering (3) 0(1.63) 0(0.05) 0(0.25) 0(0.05) 0(21.42) 0(1.62) 0(0.06) 0(0.25) 0(0.06) 0(23.06)

des (3) 3978(251.09) 3977(333.09) 4699.3(112.24) 4700(30.56) 4701.7(103.27) 3978(251.61) 3978(251.17) 4699.3(112.79) 4700(30.25) 4701.7(61.81)
drmx-atmostk (3) 29(0.67) 29(98.53) 19(201.58) 28.7(21.05) 32(132.99) 29.3(0.68) 30(94.93) 19(201.60) 29.7(21.33) 44(125.54)

fault-diagnosis (1) 49593
(34.63)

49593
(122.39)

49593
(24.46)

49593
(7.01)

49593
(8.22)

49593
(38.30)

49593
(150.28)

49593
(25.17)

49593
(7.39)

49593
(8.43)

frb (1) 40(46.34) NA(600.00) NA(600.00) 42(6.97) 54(84.00) 40(46.56) NA(600.00) NA(600.00) 43(7.14) 77(89.27)
gen-hyper-tw (1) 44(128.45) 44(117.65) 44(233.96) 44(117.94) 44(121.98) 44(131.84) 44(61.67) 44(242.70) 44(116.78) 44(127.47)
maxclique (3) 18.7(1.37) 20(56.54) 19.7(4.91) 19.3(0.56) 30(11.58) 116.3(1.39) 116(61.49) 116.3(4.96) 116.3(0.00) 135.7(10.55)
MaximumCom-
monSub-Graph-
Extraction (3)

19(226.61) 20.3(130.08) 20.3(122.02) 20(107.98) 22.3(149.94) 20(224.80) 21.3(218.50) 21.3(120.73) 21(105.84) 25(152.61)

maxone (2) 238.5(0.18) 238(0.18) 238.5(0.05) 238(0.21) 254(79.91) 245(0.18) 240(0.18) 240(0.05) 238(0.23) 257.5(73.90)
MaxSATQuerie-
sinInterpretable-
Classifiers (5)

527.2(23.11) 553.3(89.70) 525.6(1.98) 526.6(6.21) 556(68.68) 528.2(23.48) 554.5(120.08) 526.6(1.98) 528.2(6.62) 557.2(69.06)

mbd (2) 4616(198.04) 4616(61.28) 4615.5(1.70) 4616(0.59) 4636(0.17) 4617(194.40) 4617(58.63) 4616.5(1.70) 4617(0.61) 4636(0.19)
packup (5) 6959.8(11.81) 6957.4(6.58) 6958.2(1.03) 6959.2(0.78) 7209.8(25.10) 6965.4(11.98) 6966.6(6.88) 6966(1.03) 6964.8(0.91) 7209.8(29.17)
protein_ins (5) 29.6(85.07) 30.4(98.79) 30(206.86) 29.6(33.40) 38.2(140.30) 30.6(88.13) 31(192.14) 30.6(188.86) 29.8(33.89) 39.8(104.50)
pseudoBoolean (3) 408(0.81) 408(0.05) 407.7(0.07) 408(0.04) 409(1.70) 408(0.78) 408.3(0.05) 407.7(0.07) 408(0.05) 410(2.23)
railway-transport (2) 4920.5(27.41) 4921(44.00) 4920.5(6.67) 4920.5(4.36) 4932.5(14.94) 4775.5(27.95) 4775.5(34.61) 4775.5(6.71) 4775.5(4.43) 4932.5(19.35)
ramsey (1) 210(0.10) 210(0.65) 210(0.72) 210(0.31) 210(16.27) 210(0.10) 210(0.66) 210(0.69) 210(0.32) 210(16.32)
reversi (6) 32.3(2.01) 31.8(10.50) 31.8(6.52) 32.17(4.97) 37.3(46.55) 33(2.08) 32.7(9.97) 32.5(6.55) 32.8(5.26) 39.3(47.57)
scheduling (1) 1478(600.00) 1476(209.98) 1478(29.94) 1478(107.71) 1481(297.34) 1478(600.00) 1477(600.00) 1478(29.94) 1478(104.15) 1481(162.31)

SeanSafarpour (1) NA(600.00) NA(600.00) 936004
(312.62)

936004
(44.42) NA(600.00) NA(600.00) NA(600.00) 936004

(320.09)
936004
(48.05) NA(600.00)

treewidth-compu-
tation (3) 52.8(28.90) 52.8(26.56) 52.8(16.11) 52.8(15.32) 52.8(17.99) 52.8(37.75) 52.8(33.12) 52.8(16.09) 52.8(15.25) 52.8(20.22)

uaq (3) 140.3(10.06) 136.7(16.81) 137.3(25.72) 141.3(7.88) 170(79.88) 140.3(10.08) 138.3(17.95) 138.3(26.89) 149.3(7.97) 173(84.54)
xai-mindset2 (1) 374(0.07) 372(0.06) 374(0.02) 359(0.02) 376(22.43) 374(0.07) 372(0.07) 374(0.03) 360(0.01) 376(27.31)

solvers are executed once, and all other incomplete solvers, including LS-DTKMS, TOPKLS,
and HEA-D are executed 10 times with different settings of random seeds. The cutoff time
for them is set to 600 seconds. Note that we use the default values of all the parameters for
TOPKLS, HEA-D, Open-WBO, Maxino, RC2-A, and MaxHS.

4.2 Experiment Results on Top-k MaxSAT

Table 2 and 3 show the results of the comparison of LS-DTKMS with four top-k MaxSAT
based DTKMS solvers on 73 top-k MaxSAT instances (belong to 29 families). Since for some
instances when k is set to 5 or more, all soft clauses are satisfied, we set the parameter k
to 2, 3, 4, and 5, respectively. In the two tables, the first column records the name of each
family as well as the number of instances in each family (in brackets). For each family of
instances, we report the average number of variables (|V ar|), hard clauses (|Hard|), and
soft clauses (|Soft|) (Table 1), the average number of satisfied soft clauses and the average
runtime in seconds (in brackets) that each solver can solve within the cutoff time (Table 2
and 3). If a solver fails to find a feasible solution, the corresponding result is marked with
“NA”. As shown in the two tables, LS-DTKMS achieves the best results in terms of solution
quality on most families. In addition, as k gets larger, the solution quality of LS-DTKMS
are almost stable. Hence, the performance of LS-DTKMS is considerably better than the
ones of four top-k MaxSAT based DTKMS solvers. Moreover, the runtime of LS-DTKMS is
comparable to the other solvers for the majority of instances.

SAT 2023
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Table 3 Comparison on top-k maxsat with k=4 and k=5.

k=4 k=5
Families (29) Open-WBO MaxHS Maxino RC2-A LS-DTKMS Open-WBO MaxHS Maxino RC2-A LS-DTKMS
aes (1) NA(600.00) 132(25.53) 132(0.23) 132(0.20) 147(6.12) NA(600.00) 132(25.95) 132(0.23) 132(0.21) 147(5.12)
aes-key-recovery (1) NA(600.00) 406(600.00) NA(600.00) 406(600.00) 407(73.34) NA(600.00) 406(600.00) NA(600.00) 406(600.00) 407(75.12)
atcoss (2) 265.5(108.59) 265.5(25.35) 265.5(22.44) 265.5(53.06) 290.5(57.96) 265.5(110.47) 265.5(26.79) 265.5(22.90) 265.5(57.42) 290.5(62.12)
bcp (2) 73.5(0.01) 73.5(0.01) 73(0.01) 73.5(0.00) 74(7.78) 73.5(0.01) 73.5(0.01) 73(0.01) 73.5(0.01) 74(6.99)
CircuitDebugging-
Problems (2)

432736
(321.45)

432736.5
(299.95)

432736
(5.33)

432736
(9.11)

432736.5
(23.08)

432736.5
(322.19)

432736.5
(300.17)

432736.5
(6.04)

432736.5
(10.00)

432736.5
(24.57)

CircuitTraceCo-
mpaction (2) 13(20.56) 13(26.65) 13(6.31) 13(26.10) 18.5(14.03) 13(21.41) 13(30.88) 13(6.25) 13(26.68) 20(14.28)

close_solutions (4) 67858.3
(45.49)

67858.3
(87.84)

67858.3
(17.21)

67858.3
(4.35)

67866
(37.92)

67858.3
(44.75)

67858.3
(130.86)

67858.3
(17.03)

67858.3
(4.81)

67866
(40.90)

ConsistentQuery-
Answering (3) 0(1.63) 0(0.05) 0(0.24) 0(0.04) 0(21.38) 0(1.65) 0(0.05) 0(0.25) 0(0.05) 0(22.46)

des (3) 3978.5(246.31) 3978.5(329.68) 4700(122.37) 4700.7(31.35) 4701.7(58.56) 4706.5(244.65) 4706.5(213.85) 4625.3(110.95) 4626(55.35) 4626.3(113.76)
drmx-atmostk (3) 31(0.67) 31.7(99.74) 22(201.60) 31.3(21.58) 46.7(116.70) 31(0.66) 31.7(96.77) 22(201.63) 31.7(21.65) 46.7(116.83)

fault-diagnosis (1) 49593
(30.24)

49593
(150.27)

49593
(20.74)

49593
(7.59)

49593
(11.28)

49593
(30.27)

49593
(180.01)

49593
(20.25)

49593
(7.69)

49593
(8.12)

frb (1) 45(43.69) NA(600.00) NA(600.00) 45(7.00) 110(99.09) 45(44.15) NA(600.00) NA(600.00) 45(7.04) 122(123.14)
gen-hyper-tw (1) 44(178.53) 44(105.23) 44(221.92) 44(116.71) 38(88.79) 44(181.03) 44(188.43) 44(223.14) 44(112.24) 42(94.13)
maxclique (3) 117(2.03) 116.7(60.98) 117(5.03) 117(0.01) 143(11.09) 117(1.50) 116.7(138.22) 117(5.00) 117(0.00) 150.3(10.49)
MaximumCom-
monSub-Graph-
Extraction (3)

23(219.66) 22.3(187.72) 23(107.63) 23(104.37) 26(151.78) 23(224.80) 22.3(197.61) 23(107.63) 23.7(105.67) 27(149.65)

maxone (2) 245(0.23) 243(0.18) 245(0.05) 238(0.22) 258(69.85) 248(0.17) 245(0.19) 245.5(0.03) 238(0.23) 258(64.77)
MaxSATQuerie-
sinInterpretable-
Classifiers (5)

528.2(22.02) 554.5(120.58) 526.6(1.84) 528.2(6.87) 557.2(67.97) 528.2(23.08) 554.5(110.08) 526.6(1.87) 528.2(6.93) 557.2(64.76)

mbd (2) 4617(259.82) 4617(42.93) 4616.5(1.85) 4617.5(0.69) 4636(0.29) 4617.5(255.90) 4617(47.07) 4617(1.83) 4618(0.67) 4636(0.16)
packup (5) 6972.4(11.34) 6972.4(7.04) 6973.2(0.99) 6971.2(0.89) 7209.8(28.74) 6972.6(11.38) 6972.6(7.32) 6973.4(0.98) 6973.2(0.92) 7209.8(26.52)
protein_ins (5) 31.6(91.45) 31.8(180.38) 31.6(209.63) 30.4(34.42) 48(104.57) 33.6(102.35) 33.6(174.08) 33.8(167.46) 31.4(35.70) 55.4(101.52)
pseudoBoolean (3) 408(0.82) 408.3(0.05) 408.3(0.07) 408(0.05) 410(1.96) 408(0.83) 408.3(0.05) 408.3(0.06) 408(0.05) 410(0.91)
railway-transport (2) 4777(21.63) 4777(38.16) 4777(7.38) 4777(4.30) 4932.5(23.28) 4777(27.77) 4777(38.07) 4777(7.28) 4777(4.79) 4932.5(24.23)
ramsey (1) 210(0.10) 210(0.70) 210(0.72) 210(0.30) 210(14.12) 210(0.10) 210(0.81) 210(0.73) 210(0.32) 210(10.31)
reversi (6) 33.8(2.08) 33.3(9.71) 33.3(6.92) 33.8(4.65) 40.7(48.64) 33.8(2.21) 33.3(19.36) 33.3(6.98) 33.8(5.12) 41.3(42.49)
scheduling (1) 1481(600.00) 1479(600.00) 1481(37.57) 1479(98.38) 1481(183.23) 1705(18.41) 1705(416.33) 1705(37.95) 1705(29.76) 1707(18.01)

SeanSafarpour (1) NA(600.00) NA(600.00) 936004
(315.25)

936004
(45.29) NA(600.00) NA(600.00) NA(600.00) 936004

(335.92)
936004
(56.57) NA(600.00)

treewidth-compu-
tation (4) 52.8(41.45) 52.8(32.04) 52.8(14.79) 52.8(14.38) 52.8(18.57) 52.8(45.45) 52.8(31.81) 52.8(14.75) 52.8(15.61) 52.8(26.67)

uaq (3) 140.3(15.97) 138.3(20.87) 138.3(29.22) 155(10.00) 183(82.52) 140.3(16.46) 138.3(27.23) 138.3(31.06) 155(11.57) 183(73.48)
xai-mindset2 (1) 374(0.07) 372(0.08) 374(0.03) 361(0.00) 376(29.21) 374(0.07) 372(0.11) 374(0.03) 362(0.03) 376(45.13)

4.3 Experiment Results on DTKCS
In this subsection, we compare LS-DTKMS against two solvers on 37 DIMACS instances and
set the parameter k to 5, 10, 15, and 20, respectively. To save space, we omit the experiment
results that cannot be encoded into DTKMS and only display the ones of the 21 instances in
Table 3 and 4. In the two tables, we report the number of hard clauses (|hard|), the number
of soft clauses (|soft|), the largest number of satisfied soft clauses (best), the average one
(avg), and the average time in seconds obtained by executing each solver ten times (time).
Note that the scale of each instance is listed according to the transformed DIMACS instance
using usual encoding, which causes the number of variables is equal to the number of soft
clauses. The results show that the performance of LS-DTKMS is surprisingly good on most
of instances. LS-DTKMS outperforms the other two solvers on all instances when k=15,
and on most instances when k=5, 10 and 20. Specifically, LS-DTKMS cannot find the best
solution for just 1 instance (C125.9 when k=10), which demonstrates that LS-DTKMS is a
competitive DTKMS solver.

5 Related work

In this section, we review the related work, including the diversity in SAT and other diversified
top-k problems.

Diversity in SAT. The diversity has been studied in the SAT problem and its related
problems. For example, Agbaria et al. studied the diversity in SAT, whose diversity is
measured by the value of the average distance between each pair of solutions normalized
by the number of variables. They proposed two SAT-based methods to generate diverse
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Table 4 Comparison on DTKCS with k=5 and k=10.

k=5 k=10
TOPKLS HEA-D LS-DTKMS TOPKLS HEA-D LS-DTKMS

Instances (21) |Hard| |Soft| best(avg) time best(avg) time best(avg) time best(avg) time best(avg) time best(avg) time

brock200_2 10024 200 52(52) 110.63 52(52) 151.98 52(52) 53.96 93(93) 126.26 91(90) 210.78 99(99) 211.32
brock200_4 6811 200 73(73) 378.36 75(74) 169.93 77(75) 128.59 121(121) 36.53 133(130) 471.57 135(133) 35.17
brock400_2 20014 400 110(110) 187.87 115(112) 293.57 120(120) 207.95 192(192) 25.51 191(190) 263.77 229(228) 339.11
brock400_4 20035 400 119(119) 159.26 122(118) 352.24 129(129) 265 192(192) 530.14 191(190) 196.11 231(231) 225.13
C1000.9 49421 1000 271(270) 292.07 264(259) 534.38 321(319) 281.39 464(464) 497.64 474(471) 219.83 507(507) 116.46
C125.9 787 125 101(101) 73.04 113(112) 6.90 123(122) 5.89 104(104) 0.03 125(125) 0.00 122(120) 9.62
C250.9 3141 250 155(155) 553.33 173(167) 154.54 193(193) 28.48 206(206) 406.89 250(249) 0.02 250(246) 2.32
C500.9 12418 500 212(212) 222.91 224(219) 372.79 257(256) 147.64 323(321) 285.76 372(369) 329.21 443(441) 284.39
gen200_p0.9_44 1990 200 130(130) 561.09 149(145) 55.35 174(174) 223.79 166(166) 249.74 200(200) 0.00 200(197) 15.34
gen200_p0.9_55 1990 200 145(145) 392.94 160(157) 5.93 185(185) 106.08 174(174) 84.37 200(200) 0.00 200(200) 70.21
gen400_p0.9_55 7980 400 184(184) 193.76 200(197) 296.86 219(207) 209.95 264(264) 127.53 334(329) 179.58 380(380) 351.47
gen400_p0.9_65 7980 400 189(189) 283.49 217(210) 283.67 250(250) 218.55 274(274) 453.39 340(338) 262.97 377(377) 191.76
gen400_p0.9_75 7980 400 196(196) 402.29 240(232) 192.26 265(265) 220.12 276(276) 74.51 344(342) 113.96 367(367) 57.04
hamming8-4 11776 256 80(80) 10.05 80(80) 4.54 80(80) 8.33 160(160) 0.98 160(160) 75.85 160(160) 8.2
keller4 5100 171 55(55) 7.29 55(55) 11.01 55(55) 2.24 99(99) 274.42 98(97) 248.39 110(110) 114.16
MANN_a27 702 378 366(366) 524.8 378(378) 0.00 378(375) 260.1 378(378) 100.54 378(378) 0.00 378(378) 52.15
MANN_a45 1980 1035 973(973) 462.08 1035(1035) 0.01 1035(1032) 35.85 1034(1034) 62.14 1035(1035) 0.01 1035(1035) 66.36
MANN_a81 6480 3321 3036(3032) 335.67 3321(3321) 0.12 3321(3320) 31.47 3301(3301) 88.8 3321(3321) 0.12 3321(3321) 1.52
p_hat300-1 33917 300 39(39) 7.67 39(39) 55.04 39(39) 7.05 73(73) 85.72 68(68) 226.72 74(73) 268.54
p_hat300-2 22922 300 79(79) 222.49 80(77) 111.64 94(93) 55.15 110(110) 73.2 130(127) 373.91 150(150) 343.28
p_hat300-3 11460 300 108(108) 9.00 116(113) 232.32 138(138) 6.69 148(147) 251.25 193(187) 408.68 195(195) 109.7

solutions (satisfying assignments) of SAT for use in the hardware semiformal verification [1].
As a detailed extension of [1], Nadel further discussed the diversekSet problem in SAT, that is,
the problem of efficiently generating a number of diverse solutions given a formula [28]. Alòs
et al. proposed a minimum decision tree computation algorithm based on MaxSAT encoding,
where one of the tasks is to generate diverse solutions with different variable assignments
to extract multiple minimum decision trees. The diversity is enforced by target variables
during the incremental calls to the SAT solver, allowing the algorithm to favour the polarity
of target variables that were less frequent in previous solutions [2].

Diversified top-k problem. The diversified top-k problem has been extensively studied,
which aims to find diversified top-k results. [16, 32, 34, 37] studied the diversified top-k
clique problem and [33] worked on the diversified top-k s-plex problem, both of which are
to find k cliques or s-plex to maximize the number of covered vertices. Fan et al. studied
the diversified top-k graph pattern matching problem, which to find a set of k matches
such that the bi-criteria diversification function is maximized [14]. Liu et al. defined the
k shortest paths with diversity problem of finding top-k shortest paths to minimizes the
total length [24]. Xu et al. proposed two exact algorithms for the spatial diversified top-k
routes (SDkR) query to obtain k trip routes with high popularity [36]. Lin et al. introduced
the diversified top-k lasting cohesive subgraphs problem, which finds k maximal lasting (k,
σ)-cores with maximum coverage regarding the number of vertices and timestamps [23]. Lyu
et al. presented an algorithm for the diversified top-k biclique search problem which aims
to find k maximal bicliques that cover the maximum number of edges [25]. Overall, the
diversity top-k problem is becoming increasingly important research field.

6 Conclusion and Future Work

In this study, we propose a local search algorithm for DTKMS, called LS-DTKMS, which
features scoring functions to select variables and assignments. The results show that LS-
DTKMS achieves good performance across a broad range of instances, including the top-k
MaxSAT instances and DTKCS instances. In the future, we will attempt to further improve
LS-DTKMS via a few novel heuristic rules.

SAT 2023
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Table 5 Comparison on DTKCS with k=15 and k=20.

k=15 k=20
TOPKLS HEA-D LS-DTKMS TOPKLS HEA-D LS-DTKMS

Instances (21) |Hard| |Soft| best(avg) time best(avg) time best(avg) time best(avg) time best(avg) time best(avg) time

brock200_2 10024 200 125(125) 296.52 128(126) 230.60 143(143) 70.22 146(146) 296.52 155(154) 372.79 164(160) 339.04
brock200_4 6811 200 151(151) 20.98 167(163) 410.85 191(190) 25.73 170(170) 20.98 192(188) 94.76 198(196) 44.24
brock400_2 20014 400 248(248) 491.45 264(263) 231.79 320(320) 220.73 292(292) 491.45 319(318) 240.85 369(369) 259.81
brock400_4 20035 400 252(252) 142.27 263(262) 305.84 327(327) 256.96 287(287) 142.27 325(318) 184.80 360(360) 180.30
C1000.9 49421 1000 587(587) 177.08 664(657) 136.11 770(770) 316.18 689(689) 177.08 841(833) 56.72 823(823) 372.70
C125.9 787 125 125(125) 0.00 125(125) 0.00 125(125) 19.74 125(125) 0.00 125(125) 0.00 125(125) 11.92
C250.9 3141 250 226(226) 86.74 250(250) 0.00 250(250) 119.19 223(223) 86.74 250(250) 0.00 250(250) 4.16
C500.9 12418 500 383(383) 57.54 490(488) 27.51 500(500) 142.67 418(418) 57.54 500(500) 0.00 500(500) 64.40
gen200_p0.9_44 1990 200 168(168) 2.83 200(200) 0.00 200(200) 9.16 200(200) 2.83 200(200) 0.00 200(200) 18.28
gen200_p0.9_55 1990 200 172(172) 1.61 200(200) 0.00 200(200) 11.77 200(200) 1.61 200(200) 0.00 200(200) 32.98
gen400_p0.9_55 7980 400 310(310) 43.22 400(400) 0.03 400(400) 9.42 326(325) 43.22 400(400) 0.01 400(400) 44.03
gen400_p0.9_65 7980 400 319(319) 88.31 400(400) 0.02 400(400) 12.81 341(341) 88.31 400(400) 0.01 400(400) 39.76
gen400_p0.9_75 7980 400 311(311) 442.95 400(400) 0.01 400(400) 11.35 335(335) 442.95 400(400) 0.00 400(400) 69.26
hamming8-4 11776 256 224(224) 69.23 240(229) 416.12 240(240) 41.98 246(246) 69.23 222(220) 353.77 251(251) 318.61
keller4 5100 171 126(126) 535.79 131(130) 218.73 149(149) 206.85 142(142) 535.79 152(151) 171.54 153(151) 52.11
MANN_a27 702 378 378(378) 0.14 378(378) 0.00 378(378) 6.13 378(378) 0.00 378(378) 0.00 378(378) 4.64
MANN_a45 1980 1035 1035(1033) 1.55 1035(1035) 0.01 1035(1035) 13.31 1035(1035) 1.55 1035(1035) 0.01 1035(1035) 57.91
MANN_a81 6480 3321 3321(3321) 338.63 3321(3321) 0.13 3321(3321) 116.70 3321(3321) 338.63 3321(3321) 0.13 3321(3321) 44.86
p_hat300-1 33917 300 108(105) 360.05 98(97) 198.69 108(107) 251.24 125(125) 360.05 121(118) 229.45 140(140) 224.28
p_hat300-2 22922 300 134(134) 57.61 162(159) 344.25 191(191) 257.23 144(144) 57.61 187(185) 194.29 220(219) 44.66
p_hat300-3 11460 300 168(168) 54.77 240(234) 156.88 276(276) 233.52 177(177) 54.77 275(274) 207.40 276(272) 46.18
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