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Abstract
Dynamical solvers for combinatorial optimization are usually based on 2nd degree polynomial
interactions, such as the Ising model. These exhibit high success for problems that map naturally to
their formulation. However, SAT requires higher degree of interactions. As such, these quadratic
dynamical solvers (QDS) have shown poor solution quality due to excessive auxiliary variables and
the resulting increase in search-space complexity. Thus recently, a series of cubic dynamical solver
(CDS) models have been proposed for SAT and other problems. We show that such problem-agnostic
CDS models still perform poorly on moderate to large problems, thus motivating the need to utilize
SAT-specific heuristics. With this insight, our contributions can be summarized into three points.
First, we demonstrate that existing make-only heuristics perform poorly on scale-free, industrial-like
problems when integrated into CDS. This motivates us to utilize break counts as well. Second,
we derive a relationship between make/break and the CDS formulation to efficiently recover break
counts. Finally, we utilize this relationship to propose a new make/break heuristic and combine it
with a state-of-the-art CDS which is projected to solve SAT problems several orders of magnitude
faster than existing software solvers.
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1 Introduction

The slowdown of general purpose computing has given rise to novel architectures to solve NP-
Hard problems. One such approach is to go beyond the von Neumann paradigm and leverage
systems whose evolution under physical laws carries out certain type of computation efficiently.
This approach has shown potential for success at least in combinatorial optimization problems.
In this regard, most of the literature has focused on quantum computing: specifically on
Quantum Annealing (QA) [12, 21] and Adiabatic Quantum Computing (AQC) [2]. Recently,
another non-von Neumann approach: Ising machines, has been gaining traction. The state-
of-the-art Ising machines work completely in the classical regime relying on extremely fast
dynamics of the system. Hence, these are less sensitive to noise when compared to quantum
computers. Some notable examples are using coupled oscillators [52], capacitors in a resistive
network [1, 46,57], and modulated pulses of light [31].
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These approaches have shown extraordinary performance on the weighted MaxCut
problem when compared to software based approaches [1, 27,46]. However, applications to
SAT have been less successful. This is due to ① the lack of support for super-quadratic
interactions; and ② the failure to leverage problem-specific information.

In this work, we examine and alleviate these shortcomings so as to revive the fast solution-
finding capabilities of Ising machines. We focus on the Ising model of computation, both due
to its successful implementation as fast dynamical hardware accelerators [1, 31,32,52] and
as algorithms [27]. We limit ourselves to 3-SAT due to problem reducibility and simplicity
of discussion. We will specifically base our analysis using simulations of an Ising machine
proposed recently [57], as it represents a near-term achievable piece of hardware.

The novel contributions of this work can be summarized into three points:
1. Demonstrating the shortcomings of previous super-quadratic solvers and heuristic pro-

posals on uniform random and scale-free problems.
2. Deriving a relation between cubic dynamical formulations and the make/break counts of

variables in a 3-SAT formula.
3. Proposing novel make/break heuristics by leveraging the cubic formulation and demonstrat-

ing their viability by comparing a simulated dynamics-based solver against state-of-the-art
software SAT solvers.

The rest of the paper is organized as follows. Section 2 provides a background on the
Ising model and related work. Section 3 introduces a cubic formulation for 3-SAT and
demonstrates the shortcomings of problem-agnostic dynamical solvers. Building on this
insight, Section 4 demonstrates and analyzes the inadequacy of existing make-only heuristics
in solving scale-free problems. This motivates us to also utilize break counts. We then derive
a relationship that enable us to easily recover break counts from the cubic formulation itself.
We utilize this relationship to propose a new heuristic using both makes and breaks. In
Section 5, we combine this heuristic with a state-of-the-art cubic dynamical system and
compare it against existing CDCL and SLS solvers. Finally, we conclude our findings in
Section 6 as well as propose future directions for research.

2 Background

2.1 Preliminaries
When discussing SAT formulas, we use the notation introduced in “The Handbook of
Satisfiability” [13]. Unless otherwise specified, all problems discussed are in 3-SAT form.
N and M refer to the number of variables and clauses respectively. xn ∈ {0, 1} is used to
denote an arbitrary variable, and a ∈ {0, 1}N is the full assignment vector. Uniform and
scale-free problems used for testing are generated using the methodology described in a work
by Ansótegui et al. [4, 5].

2.2 Quadratic Models: Ising and QUBO
The Ising model was originally formulated by Wilhelm Lenz and solved in a simplified form
by his student Ernst Ising [38]. It describes a system of magnetic spins (si), expressed in one
dimension. Each spin takes the values, si = ±1. Each pair of spins (si, sj) is “coupled” with
some coefficient Jij . An external field hi can also exist, which imposes some linear coefficient
to the spins. The overall energy of an N -spin system is expressed via the Hamiltonian H:

H(s, J, h) = −
N∑

i<j

Jijsisj −
N∑
i

hisi = −sT Js − hT s (1)
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An Ising system will seek a state s such that H(s) is minimized. Hence, Jij > 0 implies spin
affinity, known as ferromagnetism: si will tend to equal sj . Jij < 0 implies spin repulsion,
known as antiferromagnetism: si will tend to equal −sj .

When referring to Ising formulation parameters, s describes the complete spin state
vector, J the complete coupling matrix. Subscripts will be added to indicate a single element,
for instance si or Jij . A state vector s∗ for which H(s∗) = 0 is referred to as a ground state of
H. We can express any given state vector for a SAT encoded Hamiltonian as an assignment
to the original CNF problem, where si = 1 → xi, and si = −1 → x̄i.

Another equivalent formulation is the Quadratic Unconstrained Binary Optimization
(QUBO) form, where variables xi take values in {0, 1}. An Ising formula can be trivially
transformed into a QUBO formula using the following replacement rule for spins:

s = 2x − 1 (2)

Formulating SAT as a QUBO problem is cleaner than its equivalent Ising formulation. Hence,
in our discussions, we will use QUBO formulas, where xi = 1 indicates “true” and xi = 0
indicates “false”, and a ∈ {0, 1}N denotes the variable assignment vector. For convenience,
we will refer to a dynamics-based QUBO/Ising solver as a quadratic dynamical solver (QDS).
A QDS can be implemented in a wide variety of mediums [31,32,52], but we will focus on
a CMOS-compatible hardware proposed by Afoakwa et al. [1] called Bistable Resistively-
coupled Ising Machine (BRIM). There are some compelling reasons to use BRIM as the
baseline for comparison:
1. CMOS compatibility: Unlike quantum systems and many other Ising machines, BRIM

is electronic-based and can be fabricated using today’s CMOS technology. This allows
for easier extension of its design and integration with other heuristics to improve its
performance. The proposed design is also more feasible and energy efficient in the near
term as discussed in previous work [1].

2. All-to-all connectivity: Many Ising machine implementations have limited connectivity
between spins which greatly limits its true capacity. To solve problems on such machines,
one needs to transform the input graph into another (much bigger) graph that the
hardware can map; a process called embedding. Embedding is NP-Hard in itself [20, 51].
BRIM supports all-to-all connectivity and thus, doesn’t suffer from this problem.

3. Extremely fast dynamics: Unlike variants of Coherent Ising Machines (CIM) [31] which
rely on FPGA computation to emulate coupling, the time evolution of BRIM is completely
done naturally based on physics. Thus, BRIM can achieve good solutions very quickly as
is established in previous works [1, 46].

Specifics on the BRIM model used for simulation is explained later in Section 4.3.1 and
the pseudocode can be found in Appendix A. Throughout this work, we assume a variant of
BRIM model with quantized nodal interactions [57].

2.3 Related Work
Physics-Based Optimization for SAT

Optimization literature has previously utilized physical computational methods. Myriad
dynamical systems have been proposed which implement the quadratic Ising model to
solve NP-Hard optimization problems, including time-evolving quantum systems [2,24,32],
modulated optical pulses [31], coupled electronic oscillators [52], and resistively coupled
capacitors [1]. These approaches have shown success in natively quadratic problems such as
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graph MaxCut, however their application to SAT has been largely unsuccessful as we will see.
As an example, in one work [26], the authors proposed to optimize the Maximal Independent
Set (MIS) reduction of 3-SAT with quantum annealing. In another work [15], the authors
demonstrated the theoretical feasibility of gate-based quantum computing using noise-free
QAOA simulations. In the near-term, quantum computers suffer from noise-induced errors
which severely limits its performance and scalability [7, 11,47,53].

Optimization software algorithms loosely inspired by physical dynamics have also been
proposed. The best known is simulated annealing (SA) [35]. SA minimizes a given cost func-
tion by taking inspiration from metallurgical processes with gradually decreasing temperature.
Other notable physics-inspired examples are evolutionary algorithms [6].

Algorithms which directly simulate physical phenomena for optimization have also been
proposed. Among these, simulated bifurcation (SB) [27] and continuous-time dynamical
system (CTDS) [23] are primary examples. The former simulates chaotically bifurcating
Ising models, the latter a chaotic system with exponentially growing factors. A GPU
implementation of CTDS was shown to outperform MiniSAT in certain large problems [40].

Hardware SAT Solvers

Hardware acceleration of SAT algorithms broadly falls into two categories: total solvers
(implementing an algorithm in its entirety) and subset accelerators (implementing specific
operations of a SAT algorithm). The former generally implement SLS algorithms [30, 41,48]
due to their simpler heuristics. In one work, the authors proposed a novel combination of
naturally stochastic “p-bit” hardware to accelerate a simplified variant of ProbSAT [48]
(see Section 4.1). There are examples of total CDCL hardware [28], however complex
heuristics preclude efficient implementation. Subset solvers are commonly Boolean constraint
propagation (BCP) accelerators [22]. BCP is particularly computationally demanding in
CDCL (upwards of 90% of computation time [22, 50]). The fixed proportion means BCP
accelerators can only provide an 8-10× speedup by Amdahl’s law. Other novel solvers include
an analog circuit proposed [56] and demonstrated [17] by implementing the aforementioned
CTDS algorithm [23]. Interested readers are referred to an in-depth survey for a more
thorough treatment of SAT hardware acceleration [50].

High-degree Dynamical Solvers

The inability of classical quadratic models to generalize to higher-degree polynomial interac-
tions has motivated a recent surge in Ising-like high-degree models1. Formulations of k-SAT
and NAE-SAT have been proposed and simulated in various dynamical systems [9, 16]. The
SB algorithm has been extended to support high-degree polynomial interactions [33] with
potential applications to highly parallel SAT solvers. These models have been shown to signi-
ficantly outperform the traditional quadratic reductions described in literature [36,38,44,51].
However, as we will discuss in Section 3.2, models implementing problem-agnostic local
minima escaping heuristics demonstrate poor solution quality for moderate to large problems.

1 Note that, all the citations refer to high-degree polynomial interactions as “high-order”, not to be
confused with high-order logic.
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3 High-degree Polynomial Formulation

3.1 Reformulating SAT
Finding the globally minimum energy of a QDS model is proven to be NP-Hard, allowing
for a large number of problems to be reformulated as QDS Hamiltonians [38]. An initial
proposal to reduce 3-SAT to a QUBO model was to formulate it as a “Maximal Independent
Subset” (MIS) problem [38]. While MIS can be more naturally encoded into the QUBO
model, encoding an M clause CNF requires 3M QUBO spins, an unacceptable level of
search-space bloat. Instead, we propose a cubic Hamiltonian HC as a “natural” expression
of 3-SAT. Thus, for a given M -clause CNF 3-SAT formula:

f =
M∧

i=1
(ℓi,1 ∨ ℓi,2 ∨ ℓi,2) (3)

the proposed Hamiltonian HC is given by:

HC =
M∑

i=1
g(ℓi,1)g(ℓi,2)g(ℓi,3) (4)

where for each clause literal ℓi,j

g(ℓi,j) =
{

(1 − xn) ℓi,j = xn

xn ℓi,j = x̄n

(5)

Here xn is the variable corresponding to the jth literal of the ith clause, n ∈ {1, ..., N}. Each
variable in a problem only has one associated spin, hence this formulation requires N spins
to represent the complete CNF. k-SAT problems for k > 3 have a natural analogue with
higher-degree terms, as discussed in a recent work [16]. However, we limit our focus to 3-SAT.

We observe that g(ℓi,j) ∈ {0, 1}, with g(ℓi,j) = 0 corresponding to true ℓi,j and g(ℓi,j) = 1
corresponding to false ℓi,j . A clause Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) is satisfied if and only if at least
one of its literals is true. Therefore, we observe:

▶ Proposition 1 (Clause Satisfaction). A clause Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) is satisfied by the state
vector a if and only if g(ℓi,1)g(ℓi,2)g(ℓi,3) = 0.

Since the Hamiltonian HC is a sum over such clause-derived products, we conclude:

▶ Lemma 2 (Ground States are SAT). a is a ground state of HC (HC(a) = 0) if and only if
a satisfies the underlying CNF formula f .

The logical equivalence between HC and a given CNF formula makes HC a desirable
Hamiltonian for QDS implementation. However, the QDS model is limited to quadratic and
linear terms only, and it lacks support for 3rd-degree polynomial (cubic) interactions which
is required in HC . Therefore, to implement HC in a QDS format, one must “quadratize” all
cubic terms by introducing extra auxiliary spins and extra terms to penalize undesirable
states [25,36,44]2.

2 We do note that, the MAX-2-SAT reduction of 3-SAT [54] does map naturally to the QDS format.
However, mathematically, it is equivalent to the one proposed by Kolmogorov et al. [36] and thus, suffer
from the same problems.
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In a recent work [16], the authors have demonstrated a drop in solution quality after such
“quadratization”. This motivated them to propose an Ising-formulated {+1, −1} high-degree
polynomial model. With experimental analysis for uniform random problems, the authors
showed its superior performance compared to QDS.

Throughout our discussion, we limit our scope to solvers with support for cubic interactions
and refer to these as cubic dynamical solvers (CDS).

3.2 Problem Agnostic Heuristics
As with naive gradient descent, dynamics-based solvers (QDS and CDS) can be trapped in
local minima in the energy landscape. Classical optimization algorithms such as simulated
annealing (SA) [35] overcome such local traps by introducing stochastic behavior (occasionally
accept a “bad” state). It has been proven that given enough time, SA can converge to the
global optimum [39]. Thus, a common approach for hardware solvers is to mimic the behavior
of the SA algorithm by introducing random noise to perturb the system. Example noise
sources include varying external oscillations [52], random polarity flips [1], and transverse
quantum field fluctuations [32]. The strength of these perturbations decrease over the course
of the run according to an annealing schedule. The primary motivation of such a schedule
is to broadly explore the search-space initially and then (hopefully) settle into some global
optimum towards the end. In general, these perturbations are applied randomly across
problem variables, taking into account no knowledge of problem type or structure.

A recently proposed CDS used such problem agnostic perturbations [16], as have previous
works proposing dynamics-based solvers [1,26]. Here, we refer to this as the Anneal heuristic.
Just like prior works on BRIM [1,46], we use a linear annealing schedule to induce artificial
spin flips. Let p0 and p1 be the start and end probabilities respectively. Then, at any given
time t and a total run time of T , the instantaneous probability p to flip a spin is given by:
p = p0 − t(p0−p1)

T . Thus, each spin is treated as an i.i.d. Bernoulli random variable with flip
probability p.

Fig. 1 shows the performance of CDS with Anneal heuristic on 5 sets of 100 generated
uniform random problems with M/N = 4.25 and N ∈ {100, 200, 300, 400, 500}. The left
figure shows the number of instances solved as N increases with a constant run time of 0.1
ms. The system easily finds solutions to 99% of the 100-variable problems, however the
solved proportion drops quickly to 26% for N = 500. We also consider the possibility that
the larger instances require longer system evolution times. Fig. 1 [right] shows the number
of solved instances for the 500-variable set as run time is increased up to 2 ms (20× longer).
We observe only a minor increase in solved proportion to 48%. Parameter sweeps of p0/p1
are also unable to improve solution quality for larger instances.

Theory suggests that all problems would be solved given a sufficiently long run time
with a conservative, ergodicity-preserving schedule [39]. However, these results suggest that
such schedules/anneal times would not represent a substantial speedup (if any) over other
existing solutions. To give some context, WalkSAT is capable of solving the same 500 variable
instances in as little as 5 ms. Therefore, we believe that such a problem-agnostic or “blind”
annealing is insufficient.

4 Integrating SLS Heuristics

The reason for the comparatively poor performance of the problem-agnostic Anneal heur-
istic lies largely in the existence of this conference. SAT is a well-studied problem whose
peculiarities are exploited by solver heuristics. CDCL-style clause learning uses Boolean
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Figure 1 Evaluation of CDS with a problem-agnostic Anneal heuristic. Left: Number of uniform
random instances solved out of 100 with a constant run time of 0.1 ms as problem size increases.
Right: Number of 500 variable instances solved as we increase the system run time.

resolution to actively store information on the problem at hand, and VSIDs have been shown
to exploit large scale problem structures [37]. SLS algorithms such as WalkSAT [34, 45]
include a veritable buffet of different heuristics for variable selection based on various scoring
and ranking mechanisms.

Problem-agnostic dynamical systems have yet to adopt such advanced heuristics to
exploit the existing body of SAT-specific knowledge. Prior implementations of BRIM used
the Anneal heuristic. While sufficient for more unstructured problems (e.g. MaxCut [1, 32]),
such annealing schedule falls short for a structured problem like 3-SAT requires. The results
shown in Fig. 1 demonstrate the shortcomings of this uniform random heuristic. This
motivates us to propose ProbSAT-like stochastic heuristics to increase search-space efficiency
of CDS. We first discuss why it is a good idea to start with the ProbSAT heuristic, then
move onto discussion of a hardware friendly variant and further improvements.

4.1 The ProbSAT heuristic and its variant
ProbSAT [8] defines a probability distribution for all problem variables based upon an
internally determined score. The score in turn depends on the variable’s make and break
counts. We use standard definitions for these terms, restated here for clarity.

▶ Definition 3 (Make Clause). For a given assignment a, the make count of variable xn is
the number of newly satisfied clauses after flipping xn. We denote it as Mn(a).

▶ Definition 4 (Break Clause). For a given assignment a, the break count of variable xn is
the number of newly unsatisfied clauses after flipping xn. We denote it as Bn(a).

We observe that the net change in SAT clauses by flipping variable xn with current
assignment a is Mn(a) − Bn(a). For simplicity, we omit the argument a from subsequent
uses.

Note that for a particular variable xn, any currently UNSAT clause in which it appears
is necessarily a make clause, while break clauses are a subset of currently SAT clauses. The
original ProbSAT paper examined two candidate distribution functions: polynomial and
exponential. For both classes of function, the authors found that using Bn alone provided a
more effective heuristic.

ProbSAT explores the search-space solely based upon the probability distribution, hence
the logic is relatively simple compared to other SLS algorithms. Accordingly, a ProbSAT-style
algorithm is suitable for hardware implementations [48,49]. The original algorithm works
sequentially, choosing random UNSAT clauses and sampling from its variables based on the
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defined distribution. However, sequential flips are both impractical and undesirable for CDS
integration, as they require complicated synchronization and information propagation across
the system. Instead, it is easier to allow variables to flip in parallel (distributed manner).

Building on this motivation, researchers proposed a Biased Random Walk (BRW) heuristic
as a modification to ProbSAT [48]. The approach allows parallel flips and relies solely on Mn.
The authors proposed two different update rules for the flipping probability, depending on
Mn: linear and nonlinear. The linear rule probability, pl is parameterized by pstep, and for
a particular variable xn, pl(xn) = Mn × pstep. The nonlinear rule has two parameters: pinit

and pstep. The first make clause of a variable xn sets pnl(xn) = pinit and every subsequent
make contributes pstep. Our simulations of both rules using uniform random problems verified
that the nonlinear rule produced much better results. Hence, we use this rule whenever we
refer to BRW3.

4.2 Combining BRW with CDS
In the original paper [48], the authors implemented the BRW algorithm in hardware using
stochastic Magnetic Tunnel Junction (MTJ) devices to represent the variables. It turns out,
Mn are easy to calculate in such a parallel system. The authors proposed a digital circuit
which couples the states of individual variables to determine clause state. Instead of designing
a stand-alone BRW hardware, we propose a CDS system, cBRIM (BRIM with support for
cubic terms), so as to leverage its fast dynamics (spins could flip every 20 ps [1]), along with
a BRW-like heuristic as its annealing algorithm. We refer to this solver as cBRIM-BRW. The
details of cBRIM are explained later in Section 4.3.1.

Experimental analyses demonstrated the superior performance of an MTJ-based BRW
solver over WalkSAT and ProbSAT [48]. However, the experiments were only done with
uniform random problems. To consider problems of a heterogeneous structure, we consider
the variable interaction graph (VIG) of the formula. The problem variables form the VIG
vertex set, with edges connecting variables co-appearing in a clause4. The VIG was originally
introduced as a means of reasoning about CDCL resolution and algorithm behavior [43],
but has since become a standard means of reasoning about problem structure [3]. It has
been established that industrial problem VIGs exhibit scale-free structure [4, 5]. Specifically,
the number of clauses each variable appears in (and consequently the vertex degree in the
VIG) follows a power-law distribution. In such a model, the probability of any given node
to have degree d has the form: P (d) ∝ d−β . Industrial instances generally have β ∈ [2, 3]
compared to β > 18 for uniform random problems. This implies that there is a rapid fall in
the probability of high-degree variables for uniform random problems and hence relatively
low degree variance (< 0.3× the average degree) compared to that of industrial (> 1.5×) [4].

Consequently, real-world problems do not follow the Erdös-Renyi model used to generate
the uniform random instances. Therefore, we simulate cBRIM-BRW and run custom generated
power-law problems of 500 and 1000 variables with different values of β parameter [5]. For all
the runs, we set pinit = 0.03, pstep = 0.2 for scale-free problems, and pinit = 0.07, pstep = 0.9
for uniform-like problems: both tuned for the best performance on 500 variable instances.

Fig. 2 shows how many problems cBRIM-BRW solved given different β values. We can
observe that, as β increases (problems become more uniform-like), the performance of
cBRIM-BRW improves generally. This is expected as BRW is demonstrated to work well

3 pl or pnl can be greater than 1. The authors didn’t elaborate, but presumably the probability is capped
at 1.

4 This differs slightly from the bipartite graph form described in another work [5], however the significance
of vertex degree is equivalent.
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Figure 2 Number of problems solved by cBRIM-BRW out of 100 power-law distributed problems
with 500 and 1000 variables for increasing β. We set cutoff run time of 0.11 ms and 1.1 ms for 500
and 1000 variables respectively.

for uniform random problems [48]. However, when β ∈ [2.5, 3], the performance degrades.
Moreover, the parameters tuned for 500 variable scale-free problems did not work well on
larger problems: particularly in the case of β = 2.5. Thus, the optimal choice of parameters
in cBRIM-BRW appears to be sensitive to the size of scale-free problems, far from ideal for
practical use. These results lead us to conjecture that Mn alone may not contain sufficient
information to determine advantageous flips. Therefore, we propose to leverage both Mn

and Bn in a stochastic heuristic.

4.3 Towards a better heuristic
A primary consideration for algorithms like BRW to use only Mn is that Bn is much harder
to obtain in hardware. It relies both on problem structure and current variable assignments,
imposing more hardware complexity. However, it turns out, the CDS formulation does provide
some information that we can leverage to get Bn without requiring complex hardware.

4.3.1 Recovering Break Counts
Here, we discuss how to leverage inherent information from the CDS formulation to recover
Bn. Let us denote HCn as the Hamiltonian of all the clauses involving the variable xn:

HCn =
∑

xn∈Ci

g(ℓi,1)g(ℓi,2)g(ℓi,3) (6)

where we denote ℓi,2 and ℓi,3 as the non-xn literals appearing in each clause and ℓi,1 = {xn, x̄n}
without loss of generality. From HCn, we now consider only the terms containing xn. Recall
from the definition of g(ℓi,j) in Eq. 5 that these terms will have the form ±xng(ℓi,2)g(ℓi,3).

▶ Definition 5 (xn-Relevant Form). A clause Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) where ℓi,1 ∈ {xn, x̄n}
has xn-relevant form Ri|xn

= ±g(ℓi,2)g(ℓi,3)

We now define the state of a clause containing xn, independent of xn’s assignment.

▶ Definition 6 (xn-UNSAT Clause). Let clause Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) where ℓi,1 ∈ {xn, x̄n}.
Ci is xn-UNSAT iff the subclause (ℓi,2 ∨ ℓi,3) is UNSAT.

Suppose Ci contains the literal xn. Then Ri|xn
= −g(ℓi,2)g(ℓi,3). Furthermore, if Ci is

xn-UNSAT, then Ri|xn
= −1 and 0 otherwise. On the contrary, if Ci contains the negated

literal x̄n, then Ri|xn
= g(ℓi,2)g(ℓi,3), with Ri|xn

= 1 in the case that Ci is xn-UNSAT.

SAT 2023
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We now connect these definitions with previous notions of make and break clauses. Note
that a clause can only be a make or break with respect to xn if it is xn-UNSAT.

▶ Observation 7. If xn = 1, then all clauses with Ri|xn
= 1 are makes, and all clauses

with Ri|xn
= −1 are breaks. If xn = 0, then all clauses with Ri|xn

= −1 are makes, and all
clauses with Ri|xn

= 1 are breaks.

This leads us to the following Lemma:

▶ Lemma 8. For some variable xn,

∑
xn∈Ci

Ri|xn
= (1 − 2xn) × (Bn − Mn) =

{
Mn − Bn xn = 1
Bn − Mn xn = 0

Before stating the final theorem, we need to introduce just the basic principle of how our
proposed CDS system, cBRIM, works.

Cubic BRIM (cBRIM) design
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Figure 3 High level system overview of proposed cBRIM. The blue part is the baseline BRIM,
while the orange part is new hardware to support cubic terms.

We extend BRIM [1, 46, 57] to support cubic terms for 3-SAT and refer to it as cubic
BRIM or cBRIM in short. The full hardware details are beyond the scope of this paper and
a number of variations in circuit design can achieve similar behavior at the system level.
Here, we only discuss a high-level behavior model as shown in Fig. 3 and the pseudocode
for simulation is shown in Appendix A. The general idea is to construct the hardware that
naturally minimizes the cubic Hamiltonian HC . The baseline system consists of an array
of N bi-stable capacitive nodes whose voltages ∈ [0, 1] represent the variables.5 Nodes are
interconnected by programmable resistive coupling units q. The resistance of a coupling unit
connecting node n and node j, is given by:

5 Note that the original BRIM uses a virtual ground ( Vdd+Vss

2 ). The voltage of the nodal capacitor
ranges from Vss to Vdd. Relative to the virtual ground, the polarity of the voltage serves as the spin
representation (±1). In our current design, we do not use a virtual ground and the voltage quantizes to
bit representation {0, 1}. This is because the bit representation is more convenient for SAT problems.
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Rnj = R

|qnj |
(7)

Where R is a constant resistance and qnj is normalized to [−1, +1]. Thus, strong coupling
means lower resistance. The sign of qnj is implemented as follows: ① when qnj > 0, the
nodes are coupled in a parallel fashion (output of one node is connected to the positive input
terminal of the other, via resistance Rnj : Outn → In+

j , Outj → In+
n ); ② when qnj < 0, they

are coupled in an antiparallel fashion (Outn → In−
j , Outj → In−

n ); ③ nodes are disconnected
if qnj = 0. Each node n can also have a linear bias ln.

To support cubic terms, we add extra coupling units c. The idea is to pass voltages xj

and xk through an AND gate to get xjk = xj × xk. Then we apply xjk across a resistance of
Rnjk = ( R

|cnjk| ) and feed the resulting current to node n. The inputs to the AND gate are
also programmable via multiplexers (MUX) depending on the 3-SAT formula. Now, applying
Kirchhoff’s current law, the rate of change of variable xn is determined by the total incoming
current via coupling resistors as described below:

dxn

dt
= 1

RC
× (ln +

∑
j

qnjxj +
∑
j<k

cnjkxjxk) (8)

where C is the nodal capacitance. Moreover, as shown in Fig. 3, the variables can also be
perturbed according to a selected heuristic of choice. If this perturbation is just a Gaussian
white noise ∼ N (0, σ2), then the system is governed by Langevin dynamics (see Appendix B
for more details). Now, consider the Hamiltonian HC defined in Eq. 4. We can expand the
summation and combine same degree polynomial terms together as shown below:

HC = constant +
∑

n

Lnxn +
∑
n<j

Qnjxnxj +
∑

n<j<k

Cnjkxnxjxk (9)

where Ln, Qnj and Cnjk are respectively the coefficients of linear, quadratic, and cubic terms.
If we take the gradient of HC with respect to xn, we get,

∂HC

∂xn
= Ln +

∑
j

Qnjxj +
∑
j<k

Cnjkxjxk (10)

Comparing Eq. 8 and Eq. 10, if we set ln = −Ln, qnj = −Qnj and cnjk = −Cnjk, then we
can write,

dxn

dt
= −α

∂HC

∂xn
(11)

where α = 1
RC is a known constant. Such a system is Lyapunov locally asymptotically

stable [1] because it satisfies the criterion, ∇HC · dx
dt < 0, unless x is a local minimum.

Therefore, cBRIM naturally seeks a local minimum of HC and stays there when found (unless
perturbed by some heuristic). Moreover, using Definition 5 and the fact that xn-Relevant
forms are derived only from terms containing xn, we can further write:

dxn

dt
= −α

∂HC

∂xn
= −α

∑
xn∈Ci

Ri|xn
(12)

Thus, the time dependent trajectory of each variable xn is determined by the sum of all
xn-Relevant forms. Now, we can state the theorem that connects the system evolution of
cBRIM with Mn/Bn of each variable.

SAT 2023
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▶ Theorem 9. Using Lemma 8 in Eq. 12, dxn

dt = α(1 − 2xn) × (Mn − Bn)

From Eq. 8, cBRIM provides us the quantity (Mn − Bn) in Theorem 9 as the total
incoming current to each variable xn. Thus, coupled with the hardware to generate Mn as
in cBRIM-BRW, we can recover Bn information without explicitly considering other variable
states. This simplifies the hardware and takes advantage of the dynamical interactions
between nodes. We now propose a new heuristic to leverage this.

4.3.2 The tanh-make-break (TMB) heuristic
Motivated by the shortcomings of BRW as discussed in Section 4.2, we propose a heuristic
that utilizes both Mn and Bn. The probability to flip a variable xn is given by Eq. 13 using
two nonlinear functions f and h:

p(xn) = f(xn) · h(xn) (13)

In our testing, we selected f(xn) = tanh (cm · Mn) and h(xn) = 1 − tanh (cb · Bn). Here,
cm > 0 and cb > 0 are the make and break coefficients respectively. A number of nonlinear
functions could work, and we leave exhaustive exploration as future work. The motivation
behind the choice of tanh is threefold:

Convenience: Given the range (tanh(y) ∈ [0, 1] for y ≥ 0), the product f(xn) · h(xn) is
mathematically a convenient probability without any need for normalization. Physically,
it is easy to design a simple circuit with tanh-like behavior.
SAT preservation: If all clauses are SAT, then tanh (cm · Mn) = 0 for all xn. Therefore,
the system will not be perturbed once a satisfying state is reached.
Nonlinearity: Previous heuristics using Mn and Bn utilized nonlinear functions with a
steep slope [8, 48]. It was shown to significantly outperform linear functions. Therefore,
we seek to preserve this characteristic.

We combine this tanh-make-break (TMB) heuristic with cBRIM and refer to this solver
as cBRIM-TMB. Empirical observations suggest TMB heuristic is not overly sensitive to
parameters. For instance, cm = 0.9, cb = 0.4 works best for the tested scale-free problems
while for uniform random problems, cm = 0.9, cb = 0.6 works the best. Moreover, we found
that the same cm and cb parameters worked for both 500- and 1000-variable problems.

2.3 2.5 3 5 10 100000
β

50

60

70

80

90

100

So
lve
d

Scale-Free Uniform-Like

500
1000

Figure 4 The performance of cBRIM-TMB tested on the same problems as in Fig. 2 and the same
cutoff times. The plot shows the number of problems solved (out of 100) for varying values of β.

Fig. 4 demonstrates the performance of cBRIM-TMB which can be directly compared
against that of cBRIM-BRW shown in Fig. 2. Unlike cBRIM-BRW, cBRIM-TMB is able to solve
most of the industrial-like scale-free problems as well as uniform random problems with only
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a minor dip in performance when β ≈ 3. Moreover, it is able to maintain high success rates
using the same parameters for both 500 and 1000 variable problems, indicating a weaker
dependence on problem size for parameter tuning unlike cBRIM-BRW.

We leave it as future work to analyze the time dependent solver behavior, and to relate
the performance of heuristics with problem structure. In the next section, we compare
cBRIM-TMB with state-of-the-art CDCL and SLS solvers on generated scale-free and uniform
random problems to estimate its real-world efficacy.

5 Evaluation

We now compare the performance of cBRIM-BRW and our proposed cBRIM-TMB against three
state-of-the-art solvers: one CDCL based: KISSAT [14] and two SLS based: WalkSAT [34]
and ProbSAT [8]. CDCL solvers have consistently outperformed other paradigms in SAT
competitions, particularly in large industrial benchmarks. KISSAT and its variants are
paradigmatic of high performance CDCL, placing top in recent SAT competitions [10,14].
WalkSAT is representative of flip-efficient SLS heuristics, both in standalone solvers and
those integrated into hybrid CDCL-SLS approaches [34]. Comparing against both algorithms
will provide further context in which to evaluate cBRIM-TMB’s performance. We also choose
to compare with the original ProbSAT solver since our heuristic is derived from it.

5.1 Methodology
Results of all software solvers: KISSAT [14], WalkSAT [34], and ProbSAT [8] are collected
on an Intel Xeon Platinum 8268 CPU running at 2.90GHz. Each process is granted 8 GB
of memory. KISSAT is allowed to run with a timeout of 10,000 seconds. WalkSAT is run
with a 5 million flips cutoff with 20 retries using the -best heuristic (otherwise known
as “SKC”) [45]. ProbSAT is used with its default configuration, with no cutoff specified.
cBRIM-TMB and cBRIM-BRW are simulated by solving differential equations that describe the
system dynamics. Each problem is simulated 20 times with different initial conditions. We
start with 1 ms simulation time, up to 200 ms for unsolved instances.

A 200-problem suite of 1000-variable instances were generated using a tool developed
by Ansótegui et al. [4]. 100 are uniform random with M/N = 4.25 (4250 clauses) and 100
are scale-free with M/N = 3.4 (3400 clauses) and β = 2.935, which is observed to produce
satisfiable problems about 50% of the time, with many being “hard” instances. All problems
are verified as satisfiable using either WalkSAT or KISSAT. Instances are limited to 1000
variables and cBRIM run times are kept short due to the large simulation overhead of CDS
(about 105× slower than real hardware time).

For the reported solver time and flips, we use a “metric-to-solution” (MTS) formula,
which is a generalization of “time-to-solution” [29] and is given by:

MTS =

m × log10(0.01)
log10(1 − S) S < 0.99

m otherwise
(14)

where, m is the average value of the metric of interest (time or flips) and S is the success
probability of finding a satisfying solution for a single problem. Thus, MTS tells us the
estimated metric value needed to find a solution with 99% probability, consequently penalizing
solvers finding solutions with low success rate. The reported flips and times for WalkSAT,
cBRIM-TMB, and cBRIM-BRW are then “flips-to-solution”(FTS) and “time-to-solution” (TTS)
respectively. The flip counts used to calculate FTS for cBRIM-TMB and cBRIM-BRW are the
sum of “heuristic flips” and “natural flips”. The latter are purely due to system dynamics,
excluding that of the added heuristic.

SAT 2023
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5.2 Results
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Figure 5 Solver performance comparisons on 200 randomly generated 1000-variable problems: 100
scale-free with M = 3400 and 100 uniform random with M = 4250. (a) The proportion of problem
instances solved by each solver as time increases. Reported times for cBRIM-TMB and WalkSAT are
calculated using the MTS formula in Eq. 14. (b) Comparing the performance of cBRIM-TMB and
cBRIM-BRW on the 100 scale-free problems as time increases. (c) The same plot but with increasing
flip count for the SLS solvers and cBRIM-TMB. Flip counts are similarly scaled according to Eq. 14.

First, we tested cBRIM with a problem-agnostic annealing schedule which could only
solve 7% of the 200 problems with a TTS of 0.59 s in the worst case. Due to this poor
performance and the requirement of ever longer run times, we have decided to remove it
from the main analysis. Fig. 5a shows the proportion of problems solved by cBRIM-TMB and
the software solvers versus execution time. cBRIM-TMB and the SLS solvers were able to solve
all 200 problems. In contrast, KISSAT is able to solve all scale-free problems quickly, but is
unable to solve 4 uniform random problems before the cutoff. Both SLS solvers outperformed
KISSAT in the majority of the instances. However, 23 of the 100 scale-free problems are
solved faster by KISSAT, with a geometric mean speedup of 2×. This indicates that some
aspects of industrial problem structure is captured in the benchmark suite which KISSAT is
able to exploit.

We also observe that for all the solvers, the curves flatten as we increase the run time.
For cBRIM-TMB, 199 of the 200 problems could be solved in just 1.56 s in the worst-case,
while the remaining scale-free problem took 28.8× longer. WalkSAT and ProbSAT have
a similar trend in terms of run time increase, but it is not as dramatic. For instance, 199
problems took 14.53 seconds and 86.84 seconds respectively, while the last problem took
2.6× and 5.6× longer respectively. Like cBRIM-TMB, ProbSAT struggled with a scale-free
problem while a uniform random problem proved difficult for WalkSAT. KISSAT could
solve 50% of the instances within 1 s with majority of them being scale-free. The uniform
random problems that it could solve, took orders of magnitude longer in the worst-case
scenario. It is worth noting that larger scale-free problems likely favor CDCL solvers over
SLS counterparts [10]. Therefore, the performance picture of CDS such as cBRIM-TMB for
large real industrial instances is incomplete. Nevertheless, the results in Fig. 5a portray CDS
as a promising avenue for execution time reduction.

Next, we compare the two versions of cBRIM. We find that both cBRIM-TMB and cBRIM-BRW
perform similarly well for uniform random problems (except that cBRIM-BRW could not solve
1 problem instance). Therefore, Fig. 5b only shows the performance on the 100 scale-free
problems with increasing run time. We can observe that cBRIM-TMB is consistently better
than cBRIM-BRW by about 4× and moreover, the latter could not solve 6 out of the 100
scale-free problems. This emphasizes the importance of considering Bn for industrial-like
problems.



A. Sharma, M. Burns, and M. C. Huang 25:15

Another interesting analysis is to look at how efficiently these solvers arrive at a solution.
Fig. 5c shows the proportion of problems solved as flip counts increase for cBRIM-TMB and the
SLS solvers. Both WalkSAT and ProbSAT do outperform cBRIM-TMB. WalkSAT in particular
stands out as the most “flip-efficient”. This is to be expected: a system doing parallel flips
can effect many more state changes than sequential algorithms. Several variables can flip in
a single move, compared to just one for WalkSAT or ProbSAT. The redundancy of parallel
flip schemes with respect to Mn/Bn is another area for future study and optimization. In
any case, the extremely fast dynamics of cBRIM-TMB more than compensates for higher flip
counts which results in its observed speedup. This will become even clearer in the following
analysis.

Table 1 Summary of the results shown in Figure 5 for each problem type. The time and flip
values are the geometric mean of all successful solutions for each solver scaled by the MTS formula
in Eq. 14.

Solver Dist Solved Time (s) Flips Flip-rate (Flips/µs)
cBRIM-TMB Scale-Free 100/100 4.06e-03 2.78e+07 6853.00

Uniform 100/100 5.41e-03 9.34e+06 1726.00
cBRIM-BRW Scale-Free 94/100 1.58e-02 4.00e+06 252.58

Uniform 99/100 6.86e-03 8.62e+06 1255.88
KISSAT Scale-Free 100/100 2.50e-01 N/A N/A

Uniform 96/100 1.62e+02 N/A N/A
WalkSAT Scale-Free 100/100 1.03e-01 5.23e+05 5.23

Uniform 100/100 2.59e-01 1.96e+06 7.54
ProbSAT Scale-Free 100/100 6.01e-01 3.2e+06 5.32

Uniform 100/100 4.30e-01 2.05e+06 4.77

Table 1 summarizes the results of each solver’s performance separately on scale-free and
uniform random problems. The reported times and flips are the geometric mean of the
respective metric for all successful runs scaled by the MTS formula in Eq. 14. As an example,
let us take the case of scale-free problems. cBRIM-TMB requires about 53× and 8.7× more
flips than WalkSAT and ProbSAT respectively. However, it flips over 550× faster than both
the SLS solvers in the geometric average case (see “Flip-rate” in table) which results in
cBRIM-TMB having a net speedup of 25× and 147× over WalkSAT and ProbSAT respectively.
Fast hardware dynamics enable a high “Flip-rate” for cBRIM-TMB which takes about 0.5 ns
to flip a variable, compared to numerous instructions per flip for software solvers [46].

KISSAT outperforms ProbSAT by 2.4× in run time for scale-free problems, but falls
behind both cBRIM-TMB and WalkSAT. As expected, uniform random problems proved
particularly difficult for KISSAT. Such problems lack structure that a CDCL solver like
KISSAT can exploit [18,37].

6 Conclusions and future work

Non-von Neumann computing using dynamical systems show potential for extreme speedup
and energy efficiencies for difficult optimization problems. Most of these solvers operate on
quadratic models like Ising/QUBO. Recently, cubic dynamical solvers (CDS) have also been
proposed for problems like SAT. In this paper, we show that such CDS systems that rely
on problem-agnostic heuristics do not seem to offer any tangible benefit over software SAT
solvers. This motivates us to utilize SAT-specific heuristics. The combination of a make-only
heuristic with CDS does perform well for uniform random problems but underperforms for
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industrial-like, scale-free instances. Our analysis lead us to the opinion that Mn alone might
be insufficient for such skewed variable distribution in problems and we need to take into
account Bn as well. In the process, we derive a novel relationship between the time derivative
of each variable in CDS to its (Mn − Bn) quantity. Given that Mn can be computed easily,
one can recover Bn using this relationship. This allows us to propose a new heuristic using a
nonlinear tanh-based function of Mn and Bn which we combine with CDS. With simulation
results, our proposed solver, called cBRIM-TMB, is projected to perform orders of magnitude
faster than software SAT solvers both in scale-free and uniform random problems. The
speedup can be attributed to the extremely fast dynamics of CDS-based systems that give
rise to a high flip-rate.

We believe that cBRIM-TMB is just a first attempt at combining a make/break heuristic
with a CDS system. Further design space exploration is likely to come up with more
efficient solution systems. Testing on real SAT instances is also needed to judge the true
effectiveness of our solver especially because a reduction from generic k-SAT to 3-SAT is
required. Moreover, since real SAT instances are huge (containing hundreds of thousands of
variables), efficient software-hardware co-design approach is necessary owing to the limited
capacity of hardware. We hope that our proposed solver can make CDS a promising paradigm
to solve SAT and encourage more people to contribute to it.
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A Cubic BRIM (cBRIM) Simulation

For simulation purposes, we consider the product voltage xjk as an auxiliary variable and
incorporate all the coefficients ln, qnj and cnjk into one matrix J . We simulate cBRIM using
the following pseudocode:

// f: the 3SAT formula
// simtime : the total anneal time ,
// tstep: the simulation step size
procedure cBRIM (f, simtime , tstep) {

// Initialize the coupling matrix and variable
// based on the problem
J_matrix , x_vector = initialize_problem (f);

// Update the auxiliary variable , x_jk = x_j * x_k
update_auxiliary ( x_vector );
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// Initialize time to 0
time = 0;

// Main simulation loop
while(time < simtime ) {

// Get the quantized variables in {0 ,1}
qx_vector = Quant( x_vector );

// Compute the derivatives of variables
// by matrix vector multiplication
dxdt = ( J_matrix * qx_vector )/(R * C);

// Select heuristic spin flips
hflips = heuristic (f, time , qx_vector );

// Assign opposing currents to perform heuristic flips
// hfR is heuristic flip resistance (1 KOhm)
for ( var_id in hflips ) {

dxdt( var_id ) =
(! hflips ( var_id ) - x_vector ( var_id )) / (hfR * C);

}

// Update the voltages of variables
x_vector += dxdt * tstep;

// Limit voltages in [0, 1]
limit( x_vector );

// Update the auxiliary variables
update_auxiliary ( x_vector );

// Increment time
time += tstep;

}

// return quantized state , 1 for true and 0 for false
return Quant( x_vector );

}

B Langevin cBRIM

Here, we give a theoretical analysis of using a simple Gaussian white noise perturbation
η ∼ N (0, σ2) in cBRIM. We can rewrite Eq. 8 as follows:

dxn

dt
= 1

RC
× (ln +

∑
j

qnjxj +
∑
j<k

cnjkxjxk) + η (15)

Following a similar procedure as in Eq. 9 to Eq. 11, we arrive at the following expression:

dxn

dt
= −α

∂HC

∂xn
+ η (16)
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where α = 1
RC . Such a system is governed by Langevin dynamics and the joint probability

density P (x, t) for some state x evolves according to the Fokker-Planck equation [42]:

∂P (x, t)
∂t

= ∇·
[
αP (x, t)∇HC + σ2

2 ∇P (x, t)
]

(17)

We can derive the stationary distribution when t → ∞ by setting ∂P (x,t)
∂t = 0 in Eq. 17. This

results in the boltzmann distribution as intended [19,55]:

P∞(x) = 1
Z

exp
[

−2αHC(x)
σ2

]
(18)

where Z is the normalization constant. Eq. 18 implies that when the system settles into
equilibrium, the ground state(s) have higher probability than other states.
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