
Solving Huge Instances with Intel® SAT Solver
Alexander Nadel #Ñ

Intel Corporation, Haifa, Israel
Faculty of Data and Decision Sciences, Technion, Haifa, Israel

Abstract
We introduce a new release of our SAT solver Intel® SAT Solver. The new release, called IS23, is
targeted to solve huge instances beyond the capacity of other solvers. IS23 can use 64-bit clause-
indices and store clauses compressedly using bit-arrays, where each literal is normally allocated
fewer than 32 bits. As a preliminary result, we show that only IS23 can handle a gigantic trivially
satisfiable instance with over 8.5 billion clauses. Then, we demonstrate that IS23 enables a significant
improvement in the capacity of our industrial tool for cell placement in physical design, since only
IS23 can solve placement instances with up to 4.3 billion clauses. Finally, we show that IS23 is
substantially more efficient than other solvers for finding many (106) placements on instances with
up to 170 million clauses. We use the latter application to demonstrate that variable succession,
that is, the order in which the variables are provided to the solver, might have a significant impact
on IS23’s performance, thereby providing a new dimension to SAT encoding considerations.

2012 ACM Subject Classification Mathematics of computing Ñ Solvers

Keywords and phrases SAT, CDCL

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.17

Supplementary Material Software (Source Code): https://github.com/alexander-nadel/intel_
sat_solver, archived at swh:1:dir:f665615bfa3f6d0af72cf9e1b4ec027c57a9f4c7

1 Introduction

A SAT solver decides the classical NP-complete problem of whether the given propositional
formula F in Conjunctive Normal Form (CNF)1 is satisfiable. Modern Conflict-Driven-
Clause-Learning (CDCL) SAT solvers are widely used [5]. They implement backtrack search,
enhanced by conflict clause learning and many other techniques.

SAT research is mostly focused on developing algorithms for solving, within the given
timeout, empirically difficult, but not necessarily large benchmarks. In this study, we targeted
improving the SAT capacity to enable solving huge instances with billions of clauses (cf.
the size of the instances in the main track of the latest SAT competition 2022 [2] ranged
from 264 to 214,309,011 clauses with 7,117,471 being the average). SAT solvers might fail on
huge instances due to limitations related to memory management, uncharacteristic for other
use-cases. To better understand these limitations, recall how SAT solvers manage clauses.

Long clauses (that is, clauses having at least 3 literals) are stored in the so-called clause
buffer. An initial clause C is typically represented by p1` |C|q 32-bit words, containing C’s
size, followed by C’s literals (where conflict clauses have some extra-fields). Let variable
succession be the order in which the variables are provided to the solver. The internal
indices, which represent variables and literals, depend on the variable succession. In most
solvers since MiniSat [9], a positive literal vi (where i reflects its order in the succession) is
represented by the 32-bit literal-index lipviq “ 2ˆ i, while a negative literal ␣vi is represented
by lip␣viq “ 2ˆ i` 1. For example, consider the following formula E:

E “ pC1 “ v1 _ v2 _␣v3q ^ pC2 “ ␣v1 _ v2 _ v3q

1 A CNF formula is a conjunction of clauses (aka, initial clauses), each clause being a disjunction of
Boolean literals, where a literal is a Boolean variable or its negation.

© Alexander Nadel;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.nadel@intel.com
http://www.cs.tau.ac.il/research/alexander.nadel
https://orcid.org/0000-0003-4679-892X
https://doi.org/10.4230/LIPIcs.SAT.2023.17
https://github.com/alexander-nadel/intel_sat_solver
https://github.com/alexander-nadel/intel_sat_solver
https://archive.softwareheritage.org/swh:1:dir:f665615bfa3f6d0af72cf9e1b4ec027c57a9f4c7;origin=https://github.com/alexander-nadel/intel_sat_solver;visit=swh:1:snp:89976ddc52596c0785f7d480445e965e5bd39751;anchor=swh:1:rev:8a99f85649d80d06a6dddd61e1be5d38eac81997
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Solving Huge Instances with Intel® SAT Solver

E would be represented in the clause buffer by the following eight 32-bit words:

C

|C1|
hkkikkj

3 ,

C1
hkkikkj

2, 4, 7 ,

|C2|
hkkikkj

3 ,

C2
hkkikkj

3, 4, 6
G

In order to uniquely identify and access a clause C, solvers use its clause-index ci(C) in
the clause buffer. In our example, ci(C1)=0 and ci(C2)=4.

The fundamental capacity limitation of the older solvers (such as MiniSat and
Glucose [1]), but also some of the most modern solvers (such as MergeSat [15] and the
baseline solver for recent SAT competition winners Kissat [4]) is caused by their clause-index
width being limited to 32 bits or even fewer due to additional bookkeeping (e.g., 31 bits in
Kissat).

The first open-source solver to offer a 64-bit-clause-index version was CryptoMiniSat [25],
which can be compiled with a 64-bit clause-index since May 2017 [24]. A 64-bit clause-index
is also used by CaDiCaL [4]. Although using 64-bit clause-indices eliminates the major
SAT capacity limitation while not affecting the size of the clause buffer, it comes with the
price of inflating data structures which point to clauses (notably, including the Watch Lists
(WLs) [17], which contain two clause-indices per clause), thus increasing the solver’s memory
consumption.

Intel® SAT Solver (IntelSAT) is our CDCL SAT solver, which we released as open-
source last year [18]. We optimized it for incremental SAT solving in the presence of many
satisfiable queries. The original IntelSAT uses a 32-bit clause-index. This paper introduces
a new release of IntelSAT – IS23, aimed at extending the solver’s capacity. IS23 can be
compiled into various versions, including the default IS23 (similar to the original IntelSAT),
IS23-64 and IS23-64C. IS23-64 extends the clause-index width from 32 bits to 64 bits.
IS23-64C uses bit-arrays to store clauses compressedly, where the goal is to reduce the
memory footprint (thus, potentially, also reducing the number of cache misses) at the expense
of applying additional bit-wise operations to access clauses.

We demonstrate our core idea on our example formula E “ pC1 “ v1_ v2_␣v3q^ pC2 “

␣v1 _ v2 _ v3q. Given a clause C, let its literal-width lwpCq be the minimal number of bits
required to store its highest literal index. To store C, we allocate its every literal lwpCq
bits. Observe that, in E, we have lwpC1q “ lwpC2q “ 3, thus the formula (without the clause

sizes) can be represented using 18 bits as
C C1

hkkkkkkkkkkkkikkkkkkkkkkkkj

010
loomoon

2

, 100
loomoon

4

, 111
loomoon

7

;
C2

hkkkkkkkkkkkkikkkkkkkkkkkkj

011
loomoon

3

, 100
loomoon

4

, 110
loomoon

6

G

(in

binary encoding), which requires only one 32-bit word instead of eight. Apparently, to access
clause’s literals, the literal-width must be known upfront. To support clauses with arbitrary
literal-widths, IS23-64C stores clauses in multiple bit-arrays, where all the clauses in a single
bit-array share the same literal-width (along with two other fields as detailed in Sect. 3). In
IS23-64C, the 64-bit clause-index of every clause C contains the unique ID of C’s bit-array
(11 bits) and the bit number where C starts in its bit-array (the remaining 53 bits).

Notably, the sharpSAT model counter [26] first applied the idea of storing subsets of
clauses (aka components) compressedly by limiting the number of bits in every clause to
the maximal literal-width in that component. However, while sharpSAT only stashed the
components compressedly for future usage, we have implemented a full-fledged CDCL SAT
solver with the compressed clause buffer as the underlying data structure.

We carried out several experiments to evaluate the different versions of IS23 against
other solvers, including Kissat, CaDiCaL, CryptoMiniSat and MergeSat.

A. Nadel 17:3

In our first preliminary experiment, we show that only IS23-64C can solve a huge trivially
satisfiable instance having 233 “ 8,589,934,592 clauses and 292,057,776,128 literals overall
(in all the input clauses).

Our own interest in extending the capacity of SAT stems from our industrial placement
application. Cell placement is one of the most important problems in VLSI automation [23].
Its most basic version concerns placing without overlap a set of rectangles on a grid. In [8],
we have presented our SAT-based placement tool, which starts with finding one placement
and then optimizes it with incremental SAT queries. We initiated the development of IS23,
since we had been observing an increasing number of cases where our tool failed to find even
the initial placement due to capacity limitations of IntelSAT. Furthermore, recently, we
encountered the need to solve another flavor of the placement problem, we call N -placements:
find a user-given number of different placements (from which promising placements are
subsequently selected and might be further optimized). In the rest of paper, we consider the
problems of finding 1 or N ą 1 placements, leaving optimization outside of our scope.

In our second experiment, we show that only with IS23 can we find one placement for
huge problems, whose corresponding CNF instances have up to 4.3 billion clauses.

In our third experiment, we show that only IS23-64C can find 1,000,000 placements for
instances having up to 170 million clauses, where, to achieve the best results, the variable
succession scheme must be carefully chosen.

The rest of this paper is organized as follows. Sect. 2 presents preliminaries. Sect. 3
introduces IS23. Sect. 4 is about experimental results. Sect. 5 concludes our work.

2 Preliminaries

A literal l is a Boolean variable v, in which case l is positive, or a variable’s negation ␣v, in
which case l is negative. A clause is a disjunction of literals. Let an n-clause and >n-clause
be a clause of size n and >n, respectively. A long clause is a >2-clause; a binary clause is a
2-clause.

A formula F is in Conjunctive Normal Form (CNF) if it is a conjunction (set) of clauses.
A SAT solver receives a CNF formula F and returns a satisfying assignment (aka, model
or solution) µ, which assigns a Boolean value µpvq P t0, 1u to every variable v, where
µp␣vq “ ␣µpvq. For a literal l, let the projection of l in µ µl P tl,␣lu be l iff µplq “ 1 or,
otherwise, ␣l.

In incremental SAT solving (under assumptions) [9, 21], the user may invoke the solver
multiple times, each time with a new set of zero or more assumption literals (called, simply,
the assumptions), while adding zero or more clauses in-between the queries. The solver then
checks the satisfiability of all the clauses provided so far, while enforcing the values of the
current assumptions.

Cell placement (placement) is one of the most important problems in VLSI automation [23].
We consider the following basic (but already NP-complete [13]) version which concerns placing
without overlap a set of rectangles on a grid. The input of the placement problem comprises
the following two components: a rectangular grid region of fixed size and a finite set of
rectangular cells of user-given widths and heights. We are interested in feasible placements,
that is, placements in which no cell overlaps other cells. An example of a feasible placement
is shown below (placing five cells of sizes 4ˆ 1, 4ˆ 3, 2ˆ 2, 2ˆ 4 and 1ˆ 5 on a 7ˆ 6 grid):

SAT 2023

17:4 Solving Huge Instances with Intel® SAT Solver

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6

c1

c2

c3

c4c5

To encode placement into SAT, first, we associate two bitvectors cl and cb with the
left-bottom coordinate pcl, cbq of every cell c (where a Bitvector (BV) b “ tbn, bn´1, . . . , b1u

is a sequence of |b| Boolean variables, called bits). Second, we create two sets of constraints
in BV logic [3] over cl’s and cb’s to ensure that all the cells are inside the grid and there is no
overlap. Third, we apply an eager BV solver [10], which, after preprocessing, translates the
formula to SAT and solves it using a SAT solver. We refer the reader to [8] for all the details.

This paper also considers the N-placement problem of finding a user-given number of
placements. To solve N -placement, we apply the following algorithm, we call SimpleBlock
(first proposed in [16] in the context of model checking). SimpleBlock, shown below,
iteratively finds a solution (placement) µ and immediately blocks it using a single blocking
clause containing the falsified literal per every important variable, where, in our case, the set
of the important variables comprises all the bits of the left-bottom coordinates of every cell:

1: Create a CNF formula F representing the given problem.
2: Invoke a SAT solver over F . Let µ be the returned model (if any).
3: while F is satisfied with µ and the user-given solution threshold N not reached do
4: Block the current solution by adding the following blocking clause to F :

p
ł

cPC
␣ µcl

1 _␣ µcl
2 _ . . ._␣ µcl

|cl|q_ (
Ž

cPC ␣ µcb
1 _␣ µcb

2 _ . . ._␣ µcb
|cb|
q

5: Invoke a SAT solver over F . Let µ be the returned model (if any).

To evaluate different SAT solvers within SimpleBlock, we have implemented SimpleBlock
in both IS23 and CaDiCaL, whereas CryptoMiniSat already supports it.

AllSAT is the problem of enumerating all the solutions in a CNF formula. In practice,
AllSAT tools can stop after finding N solutions, which makes them applicable for solving
N -placement. [27] contains an extensive survey of AllSAT approaches; it also presents three
state-of-the-art AllSAT tools, called Toda tools (solvers) herein. The Toda tools include one
solver per each of the following three families of AllSAT algorithms. The first family of the
so-called blocking solvers use SimpleBlock enhanced (mainly by generalizing each solution
by turning as many variables as possible into don’t cares, thus shortening the blocking
clauses). The second family of nonblocking solvers [11] modifies the SAT solver to enumerate
the solutions explicitly without using blocking clauses. The third family is based on BDD
caching [12] and can be combined with the other two methods. Our empirical evaluation of
N -placement approaches in Sect. 4.3 includes the Toda tools.

3 IS23: the New Release of IntelSAT

This section introduces the IS23 release of IntelSAT. Sect. 3.1 describes the new parametrized
API. Sect. 3.2 is about clause compression.

We would also like to mention a new feature of out-of-memory recovery: when the
operating system refuses to allocate memory, IS23 compacts its data structures and retries,
rather than immediately returning a failure.

A. Nadel 17:5

3.1 The API
The users of the solver’s C++ library class, denoted herein by IS23 xα, β, γy, can now para-
metrize the solver at compile-time with the following template parameters:
1. clause-index width α: the width of the C++ variables, used to represent the clause indices.
2. literal-index width β: the width of the C++ variables, used to represent the literal indices.
3. compression flag γ: a Boolean flag indicating whether to compress clauses using bit-arrays.

For the solver to compile, α and β must be powers of 2 and the following assertion must
hold: 8 ď β ď α ď K for a K-bit operating system.

The default version is IS23 ” IS23 x32, 32, 0y. In this paper, we also experiment with
IS23-64 ” IS23 x64, 32, 0y and IS23-64C ” IS23 x64, 32, 1y, where IS23-64 and IS23-64C
can also be accessed from the command-line of the solver’s executable (the executable works
with the standard DIMACS file format).

The literal-index width β had been 32 bits for every open-source SAT solver so far, hence
they can accommodate at most 231 ´ 1 variables. In fact, it is 231 ´ 1 for CaDiCaL, but
only 228 ´ 1 for Kissat and CryptoMiniSat due to additional bookkeeping. Specifically,
Kissat borrows bits from the literal-index to be able to inline binary clauses (that is, store
them in the WLs only without maintaining a copy in the clause buffer), while efficiently
implementing inprocessing [6] as well as failed literal probing and vivification [14]. In
IntelSAT, the WLs are organized similarly to Kissat, but there is currently no need to
borrow bits from the literal-index as inprocessing, failed literal probing and vivification are
expected to be too heavy for both solving rapid satisfiable incremental queries (the original
IntelSAT application) and solving gigantic instances (the current IntelSAT application).

Notably, IS23 is the first solver which can be compiled to allow for a practically unlimited
number of variables (263´1 “ 9,223,372,036,854,775,807 variables using β “ 64, if no bits are
borrowed from the literal-index), where borrowing several bits, if required, is not expected
to limit the number of variables in practice. One could also potentially take advantage of
IS23’s architecture for saving the memory when the number of variables is limited by 215 ´ 1
(using β “ 16). We leave experiments with different literal-index widths to future work.

3.2 Clause Compression
In this section, we describe how IS23-64C manages clauses. For simplicity, we assume herein
that the literal-index width β is 32. Similarly to most SAT solvers, IS23 represents a positive
literal vi by the literal index lipviq “ 2 ˆ i and a negative literal ␣vi by the literal index
lip␣viq “ 2ˆ i`1. As we have mentioned, IS23 inlines any binary clauses into the WLs [4,7],
hence the discussion below concerns long clauses only.

For our purposes, a bit-array is a data structure which supports reading and writing of up
to 64 bits starting from a specific bit to a dynamically allocated buffer (using several bitwise
operations for every access [22]). We have engineered efficient bit-array support in IS23.

Recall from Sect. 1 that the literal-width lwpCq represents the minimal number of bits,
required to store C’s highest literal-index. Our core idea is compressing memory by storing
clauses as bit-arrays, where each literal is represented by lwpCq bits, and the width of the
clause-size field is also clause-dependent. Consequently, we have implemented a new data
structure for storing and accessing clauses, which serves as an alternative for the clause buffer.
The vast majority of the solver’s code is agnostic to how clauses are managed underneath.

Clearly, to access literals in a clause C, lwpCq must be known. To avoid the overhead of
storing lwpCq with every C, we maintain a hash-table of bit-arrays which store clauses, where
the bit-array of a given clause C is determined by its 11-bit hash ID hashpCq, including:

SAT 2023

17:6 Solving Huge Instances with Intel® SAT Solver

1. 5 bits: the literal-width lw,
2. 5 bits: clause-size-width sw, that is, the number of bits allocated per clause size, and
3. 1 bit: learnt-status ls, that is, whether the clause is learnt or initial.
The last two fields are useful for compactly storing the clause sizes and simplifying the
implementation of clause deletion strategies, respectively.

For a clause C, hashpCq is maintained as part of its clause-index ci(C), which, for α=64,
leaves more than enough bits (64-11=53) to store the bit-index, where the clause starts in its
bit-array.

Given C, let |C|˚ be C’s compressed size, which we store instead of C’s actual size to
save memory (details will follow).

The layout of a clause C “ l1 _ l2 _ . . ._ l|C| in a bit-array looks as follows (the width is
shown over-brace; glue, stay and act are commonly used fields [1,18] present only in learnt
clauses):

C

swpCq
hkkikkj

|C|
˚

,

11
hkkikkj

glue ,

1
hkkikkj

stay ,

31
hkkikkj

act
loooooooooooomoooooooooooon

learnt clauses only

;

lwpCq
hkkikkj

lipl1q ;

lwpCq
hkkikkj

lipl2q ; . . . ;

lwpCq
hkkikkj

lipl|C|q

G

Given a clause C, how do we determine its clause-size-width swpCq and its compressed size
|C|

˚? Our guiding principle is to use as few bits as possible. Specifically, we use swpCq “ 0
for storing 3-clauses, that is, |C|˚ is not stored for them at all. For every swpCq ą 0, we
reserve the special value |C|˚ “ 0 for clause-deletion heuristic’s machinery. Therefore, the
clause-size-width swpCq “ 1 can accommodate only clauses of size 4, where |C|˚ “ 1 for every
such clause. To determine swpCq for arbitrary clauses, we pre-compute, for clause-size-widths
0 ď w ă 32, the minimal clause size mcspwq stored using w bits to accommodate the special
value 0 and as many clauses sizes as possible for every w. The first 10 values and the recursive
function for mcspwq are shown below:

w 0 1 2 3 4 5 6 7 8 9 an arbitrary n ą 2
mcspwq 3 4 5 8 15 30 61 124 251 506 mcspn ´ 1q ` 2n´1

´ 1

Given a clause C, let wC be the highest w, such that |C| ě mcspwq. We set swpCq “ wC

and for |C| ą 3 : |C|˚ “ |C| ´mcspwCq ` 1.
Let G be the following example formula, where C1 and C2 are initial and C3 is learnt:

G “ pC1 “ v1 _ v2 _␣v6q ^ pC2 “ ␣v1 _ v2 _ v6q
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

initial clauses

^pC3 “ v1 _ v2 _ v3 _ v4 _ v5q
loooooooooooooooooomoooooooooooooooooon

learnt clause

Note that the clauses C1 and C2 share the hash ID tlw “ 4, sw “ 0, ls “ 0u, while C3 has the
hash ID tlw “ 4, sw “ 2, ls “ 1u. Thus, G would be stored in two bit-arrays as follows (the
widths are shown over-brace, while labels appear under-brace):

Bit-array’s Hash ID Clauses
5

hkkikkj

4
loomoon

lw

,

5
hkkikkj

0
loomoon

sw

,

1
hkkikkj

0
loomoon

ls

4
hkkikkj

2 ,

4
hkkikkj

4 ,

4
hkkikkj

13
loooooooooooomoooooooooooon

C1

,

4
hkkikkj

3 ,

4
hkkikkj

4 ,

4
hkkikkj

12
loooooooooooomoooooooooooon

C2
5

hkkikkj

4
loomoon

lw

,

5
hkkikkj

2
loomoon

sw

,

1
hkkikkj

1
loomoon

ls

2
hkkkkikkkkj

|C3|
˚

“ 1,

11
hkkikkj

glue ,

1
hkkikkj

stay ,

31
hkkikkj

act ,

4
hkkikkj

2 ,

4
hkkikkj

4 ,

4
hkkikkj

6 ,

4
hkkikkj

8 ,

4
hkkikkj

10
loomoon

C3

The 64-bit clause-indices would be as follows:

A. Nadel 17:7

cipC1q “ 261 cipC2q “ 261
` 12 cipC3q “ 261

` 255
` 253

5
hkkikkj

4
loomoon

lw

,

5
hkkikkj

0
loomoon

sw

,

1
hkkikkj

0
loomoon

ls

,

53
hkkikkj

0
loomoon

bit-index

5
hkkikkj

4
loomoon

lw

,

5
hkkikkj

0
loomoon

sw

,

1
hkkikkj

0
loomoon

ls

,

53
hkkikkj

12
loomoon

bit-index

5
hkkikkj

4
loomoon

lw

,

5
hkkikkj

2
loomoon

sw

,

1
hkkikkj

1
loomoon

ls

,

53
hkkikkj

0
loomoon

bit-index

3.2.1 Clause Compression and Variable Succession

Variables succession has an immediate impact on the memory footprint of IS23-64C, since it
impacts the literal-widths of clauses.

For example, in our latest toy formula G, swapping v3 and v6 would reduce the literal-
width of both C1 and C2 from 4 to 3 without changing the literal-width of C3, thus saving 1
bit per every literal in C1 and C2 and 6 bits overall.

Our core observation is that, if a variable is likely to appear in many clauses, it is crucial
for this variable to appear as early as possible in variable succession. In this work, we suggest
relying on the expert user knowledge of the problem to determine a good variable succession.
We provide two examples below, one of which is backed up by experimental results later in
the paper.

Recall the SAT-based SimpleBlock N -placement algorithm, where we add many blocking
clauses over the same set of important variables. In Sect. 4, we evaluate two versions of
IS23-64C: IS23-64CL has the important variables first in the succession, while IS23-64CH
has them last. Unsurprisingly, IS23-64CL turns out to be significantly more efficient.

Furthermore, many applications of incremental SAT solving augment clauses with the so-
called selector variables (selectors) to be able to enable and disable clauses using assumptions.
Normally, selectors appear late in variable succession, since they are created after the rest
of the instance, thus they are associated with highest possible indices. We expect that, for
certain applications, having the selectors early in the succession would have a substantial
positive impact on IS23-64C’s performance. We leave testing this hypothesis to future work.

Automating the variable succession, that is, having the solver renumber the variables
automatically, while still compressing the clauses efficiently, would not be trivial. In principle,
the solver could try to figure out a good variable succession out of existing clauses, when
a sufficient number of them is provided by the user, and then renumber the variables and
compress the clauses. However, that would require to temporarily store a significant amount
of clauses non-compressedly, which might ruin the compression’s efficiency. To alleviate
this problem, one might renumber variables and recompress clauses frequently, but that
might have a negative impact on the solver’s performance. Hence, automating the variable
succession is a non-trivial task, which we leave to future work.

4 Experimental Results

We carried out three sets of experiments. We denote by CrM-32 and CrM-64 the versions of
CryptoMiniSat with a 32- and 64-bit clause-index, respectively. We omit the results of the
previous version of IntelSAT, since the default IS23 performs at least equally as well, while
our goal is introducing the novel IS23-64 and IS23-64C variants of IS23.

We dub solver errors and exceptions as follows: CIErr or VIErr mean that the clause-
index space or the variable-index space, respectively, has been exhausted; TO or MO stand for
a time-out or a memory-out, respectively; Err stands for other errors (mostly crashes).

The code and the binaries of all the tools and all the benchmarks are publicly available
at [20]. Additionally, IntelSAT’s repository [19] has been updated to IS23.

SAT 2023

17:8 Solving Huge Instances with Intel® SAT Solver

Table 1 Solving Spnq. Rows represent instances. The first column contains n. Each pair of
subsequent columns shows the time in seconds and memory in GB for the corresponding SAT solver.

n Kissat CaDiCaL MergeSat CrM-64 IS23 IS23-64 IS23-64C
T M T M T M T M T M T M T M

27 171 21 172 26 5070 35 247 30 227 21 228 21 261 10
28 374 42 347 52 CIErr 505 60 CIErr 459 44 508 19
29 CIErr 702 105 CIErr 1254 125 CIErr 975 90 1023 43
30 CIErr 1523 226 CIErr 2468 249 CIErr 1914 184 2096 81
31 CIErr 3348 453 CIErr 6117 515 CIErr 4262 379 4509 199
32 CIErr 8186 784 CIErr Err CIErr 9064 774 9723 365
33 CIErr Err CIErr Err CIErr MO 20311 678

Table 2 Finding one placement. The first three columns provide the number of rectangles (in
hundreds), variables in CNF (in millions) and clauses in CNF (in millions). Each subsequent pair
or triplet of columns corresponds to one solver. Each shows, for the corresponding solver, either:
(1) the run-time (in hours), the memory usage (in GB) and, optionally, the number of conflicts (in
thousands), or (2) the reason for a failure.

R
102

V
106

C
106

IS23 IS23-64 IS23-64C CrM-64 Kissat CaDiCaL
T M T M CO

103 T M CO
103 T M T M T M

20 152 682 1.4 41 1.6 61 19 2.2 60 19 1.7 114 1.6 64 4.3 151
25 238 1066 CIErr 4.2 95 26 4.3 93 21 7.0 180 CIErr 23.5 217
30 342 1535 CIErr 5.6 138 31 8.9 136 31 VIErr CIErr 27.1 349
35 466 2089 CIErr 14.4 190 54 13.8 186 39 VIErr CIErr TO
40 608 2728 CIErr 13.8 245 46 24.0 245 44 VIErr Err Err
45 770 3453 CIErr 21.8 308 55 25.7 306 55 VIErr Err Err
50 950 4263 CIErr 33.3 382 59 TO VIErr Err Err

4.1 Gigantic Trivially Satisfiable Instances
To compare solvers’ capacity, we created a family of trivially satisfiable instances as follows.

First, consider the following family U of trivially unsatisfiable instances: U(n) contains
2n clauses, where every clause contains a literal for every one of the n variables v1, . . . , vn,
and all the clauses are different (so, every clause falsifies exactly one potential solution). For
example, Up2q “ p␣v1 _␣v2q ^ p␣v1 _ v2q ^ pv1 _␣v2q ^ pv1 _ v2q.

The trivially satisfiable family S is generated from U by adding a new variable vn`1 to every
clause. For example, Sp2q “ p␣v1_␣v2_v3q^p␣v1_v2_v3q^pv1_␣v2_v3q^pv1_v2_v3q.

For the experiments in this and the next subsection (Sect 4.2), we used a machine having
790Mb of memory and an Intel® Xeon® processor of 2.70Ghz CPU frequency. Table 1
compares Kissat, CaDiCaL, MergeSat, CrM-64, IS23, IS23-64 and IS23-64C on S instances
without any time or memory limits (CrM-32 failed with CIErr already on Sp25q).

IS23-64C is the only solver, which can solve the gigantic instance S(33) having 233 “

8,589,934,592 clauses and 233 ˆ p33` 1q “ 292,057,776,128 literals overall.
Note that IS23-64C consumes around half the memory of IS23-64. Why is the gap so

low, given that, for e.g. n “ 32, each literal takes 32{6 “ 5.3 times fewer bits in the clause
buffer (so, seemingly, one could expect IS23-64C to use 5 times rather than 2 times less
memory than IS23-64)? Shortly, because of the Watch Lists. WLs occupy the same amount
of memory for both IS23-64 and IS23-64C, but, for IS23-64C, they dominate the memory
consumption using over 60% of the memory. Thus, compressing the WLs is a promising
direction for future work.

4.2 Finding One Placement
We generated publicly available placement instances in CNF as follows. Each instance in the
family P(R) corresponds to the problem of placing R rectangles of randomly chosen width
and height in the range r1´ 10s on a 103 ˆ 103 grid. The results on these instances roughly
correspond to results on industrial instances of similar size, which we, unfortunately, cannot
share due to IP restrictions.

A. Nadel 17:9

For finding one placement, we ran Kissat, CaDiCaL, MergeSat, CrM-32 CrM-64, IS23,
IS23-64 and IS23-64C with the timeout of 48 hours and the memory limit of 512Gb on
instances in rPp2000q, Pp2500q, . . . , Pp5000qs (all the solvers failed on P(5500)). The results are
shown in Table 2 (MergeSat and CrM-32 are omitted as they solved none of the instances).

Our new release of IntelSAT, IS23, is clearly the most scalable solver as IS23-64 solved
even the instance P(5000) having almost 1 billion variables and 4.3 billion clauses, whereas
the next best solver CaDiCaL managed to solve only the P(3000) instance, while being 4.8X

slower and using 2.5X more memory than IS23-64 for P(3000).
Compare IS23-64 with IS23-64C. Usually, IS23-64 outperformed IS23-64C in terms of

run-time. IS23-64C never generated more conflicts than IS23-64, but was almost always
slower, apparently because of the overhead of the bit-wise operations. Surprisingly, IS23-64C
was only slightly more efficient than IS23 in terms of memory consumption. Further analysis
showed that IS23-64C did compress the clause buffer (e.g., by 1.5X for P(4500)), but other
data structures (WLs and variable/literal-indexed arrays) dominated the memory usage.

4.3 Finding Many Placements
In our last experiment, we evaluated the different solvers for finding N “ 1,000,000 placements.
Since finding 106 placements is substantially more difficult than only one, we used smaller
instances in rPp200q, Pp300q, Pp400q, . . .s. However, we decided to also limit the resources: we
used machines with 32Gb of memory only running Intel® Xeon® processors of 3Ghz CPU
frequency and set the timeout to 10 hours.

We ran CaDiCaL, CrM-64, IS23, IS23-64 and the two versions of IS23-64C, IS23-64CL
and IS23-64CH (recall Sect. 3.2.1), within the SimpleBlock algorithm. We also launched
the Toda tools (recall Sect. 2): bc_minisat_all, nbc_minisat_all and bdd_minisat_all.
The last instance for which at least one solver succeeded to find 106 placements was Pp1000q.

The results are shown in Table 3. Observe that only IS23-64CL was able to find 106

placements for all the instances. Unlike for finding one placement, IS23-64 consumed
significantly more memory than IS23-64CL, since the long blocking clauses dominated the
memory consumption (the size of every blocking clause for P(R) is the number of important
variables = 20ˆR). Observe that the various IS23 versions managed to squeeze the memory
usage into 31Gb for several instances of different complexity due to the out-of-memory
recovery feature (recall Sect. 3).

IS23-64CH failed on two instances providing evidence that variable succession scheme
is crucial. In addition to IS23-64CL and IS23-64CH, we have also tested IS23-64CD: the
variable succession scheme, generated by default by our in-house eager SMT solver. IS23-64CD
was able to solve P(900), but not P(1000), hence we upgraded our default to IS23-64CL.

Notably, IntelSAT scaled substantially better than both CaDiCaL and CrM-64 within
SimpleBlock. The explanation may be related to the Incremental Lazy Backtracking (ILB)
principle, implemented already in the original IntelSAT [18]. Specifically, before every
incremental SAT query, CaDiCaL and CrM-64 backtrack to the global decision level after each
model is found, while IntelSAT backtracks to the highest possible decision level, where the
latest blocking clause halts to be falsified. Note that implementing or disabling ILB in any
of the solvers would have no impact on the experiments reported in Table 1 and Table 2,
since the benchmarks used in these experiments are not incremental.

Finally, our IS23-64CL-based N-placement tool scaled much better than the state-of-
the-art AllSAT solvers (Toda tools), despite us using only the basic SimpleBlock algorithm,
which can be substantially improved by techniques, inspired by blocking AllSAT solvers.

SAT 2023

17:10 Solving Huge Instances with Intel® SAT Solver

Table 3 Finding 106 placements. The first column in both the sub-tables shows the number of
rectangles (in hundreds); the upper table also contains two columns with the number of variables
and clauses in CNF (in millions). Each subsequent triplet of columns shows, for one solver: the
number of solutions (in thousands), the run-time (in hours) and the memory usage (in GB); in case
of a failure, the last two columns per solver show its reason instead.

R
102

V
106

C
106

IS23 IS23-64 IS23-64CL IS23-64CH
S

103 T M S
103 T M S

103 T M S
103 T M

3 3 15 1000 0.4 15 1000 0.5 16 1000 0.6 10 1000 0.5 14
4 6 27 829 CIErr 1000 0.7 22 1000 0.9 12 1000 0.8 20
5 10 43 644 CIErr 1000 0.9 28 1000 1.3 17 1000 1.2 29
6 14 61 513 CIErr 1000 1.3 31 1000 1.8 23 1000 1.4 31
7 19 84 438 CIErr 1000 1.6 31 1000 2.2 25 1000 1.8 31
8 24 109 372 CIErr 668 MO 1000 2.7 31 1000 2.4 31
9 31 138 338 CIErr 482 MO 1000 3.2 31 769 MO
10 38 171 265 CIErr 449 MO 1000 3.6 31 682 MO

R
102

CrM-64 CaDiCaL bc_minisat_all nbc_minisat_all bdd_minisat_all
S

103 T M S
103 T M S

103 T M S
103 T M S

103 T M
3 30 TO 15 TO 19 TO 1000 0.1 1 0 Err
4 15 TO 8 TO 8 TO 1000 3.4 3 0 Err
5 10 TO 5 TO 0 TO 0 TO 0 TO
6 6 TO 3 TO 0 TO 0 TO 0 TO
7 4 TO 2 TO 0 TO 0 TO 0 TO
8 3 TO 2 TO 0 TO 0 TO 0 TO
9 0 Err 1 TO 0 TO 0 TO 0 TO
10 0 Err 1 TO 0 TO 0 TO 0 TO

5 Conclusion

We introduced the IS23 release of our SAT solver IntelSAT, targeted to solve huge instances
beyond the capacity of other solvers. IS23 can compress the memory by storing clauses in
bit-arrays. We showed that only IS23 can solve a gigantic trivially satisfiable instance with
over 8.5 billion clauses. IS23 also enabled solving huge instances of the industrial placement
problem with up to 4.3 billion clauses. Additionally, IS23 turned out to be substantially
more efficient than other solvers for finding 106 placements on instances with up to 170
million clauses, where a carefully chosen variable succession scheme enabled the best results.

References
1 Gilles Audemard and Laurent Simon. On the glucose SAT solver. Int. J. Artif. Intell. Tools,

27(1):1840001:1–1840001:25, 2018. doi:10.1142/S0218213018400018.
2 Tomas Balyo, Marijn J.H. Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions. Department of
Computer Science Series of Publications B. Department of Computer Science, University of
Helsinki, Finland, 2022.

3 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6.
Technical report, Department of Computer Science, The University of Iowa, 2017. Available
at http://smt-lib.org/.

4 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

5 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2021.

6 Armin Biere, Matti Järvisalo, and Benjamin Kiesl. Preprocessing in sat solving. In Armin
Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 391–435. IOS Press,
2021. doi:10.3233/FAIA200992.

https://doi.org/10.1142/S0218213018400018
http://smt-lib.org/
https://doi.org/10.3233/FAIA200992

A. Nadel 17:11

7 Geoffrey Chu, Aaron Harwood, and Peter J. Stuckey. Cache conscious data structures
for boolean satisfiability solvers. J. Satisf. Boolean Model. Comput., 6(1-3):99–120, 2009.
doi:10.3233/sat190064.

8 Aviad Cohen, Alexander Nadel, and Vadim Ryvchin. Local search with a SAT oracle for
combinatorial optimization. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools
and Algorithms for the Construction and Analysis of Systems – 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 – April 1, 2021, Proceedings,
Part II, volume 12652 of Lecture Notes in Computer Science, pages 87–104. Springer, 2021.
doi:10.1007/978-3-030-72013-1_5.

9 Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.
doi:10.1007/978-3-540-24605-3_37.

10 Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In Werner
Damm and Holger Hermanns, editors, Computer Aided Verification, 19th International Confer-
ence, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes
in Computer Science, pages 519–531. Springer, 2007. doi:10.1007/978-3-540-73368-3_52.

11 Orna Grumberg, Assaf Schuster, and Avi Yadgar. Memory efficient all-solutions SAT solver
and its application for reachability analysis. In Alan J. Hu and Andrew K. Martin, editors,
Formal Methods in Computer-Aided Design, 5th International Conference, FMCAD 2004,
Austin, Texas, USA, November 15-17, 2004, Proceedings, volume 3312 of Lecture Notes in
Computer Science, pages 275–289. Springer, 2004. doi:10.1007/978-3-540-30494-4_20.

12 Jinbo Huang and Adnan Darwiche. The language of search. J. Artif. Intell. Res., 29:191–219,
2007. doi:10.1613/jair.2097.

13 Richard Korf, Michael Moffitt, and Martha Pollack. Optimal rectangle packing. Annals OR,
179:261–295, September 2010. doi:10.1007/s10479-008-0463-6.

14 Chu-Min Li, Fan Xiao, Mao Luo, Felip Manyà, Zhipeng Lü, and Yu Li. Clause vivification
by unit propagation in CDCL SAT solvers. Artif. Intell., 279, 2020. doi:10.1016/j.artint.
2019.103197.

15 Norbert Manthey. The mergesat solver. In Chu-Min Li and Felip Manyà, editors, Theory and
Applications of Satisfiability Testing – SAT 2021 – 24th International Conference, Barcelona,
Spain, July 5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer Science, pages
387–398. Springer, 2021. doi:10.1007/978-3-030-80223-3_27.

16 Kenneth L. McMillan. Applying SAT methods in unbounded symbolic model checking.
In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Verification, 14th
International Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings,
volume 2404 of Lecture Notes in Computer Science, pages 250–264. Springer, 2002. doi:
10.1007/3-540-45657-0_19.

17 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM, 2001.
doi:10.1145/378239.379017.

18 Alexander Nadel. Introducing intel(r) SAT solver. In Kuldeep S. Meel and Ofer Strichman,
editors, 25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 8:1–8:23. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.8.

19 Alexander Nadel. Intel® SAT Solver. https://github.com/alexander-nadel/intel_sat_
solver, 2022–2023.

SAT 2023

https://doi.org/10.3233/sat190064
https://doi.org/10.1007/978-3-030-72013-1_5
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-30494-4_20
https://doi.org/10.1613/jair.2097
https://doi.org/10.1007/s10479-008-0463-6
https://doi.org/10.1016/j.artint.2019.103197
https://doi.org/10.1016/j.artint.2019.103197
https://doi.org/10.1007/978-3-030-80223-3_27
https://doi.org/10.1007/3-540-45657-0_19
https://doi.org/10.1007/3-540-45657-0_19
https://doi.org/10.1145/378239.379017
https://doi.org/10.4230/LIPIcs.SAT.2022.8
https://github.com/alexander-nadel/intel_sat_solver
https://github.com/alexander-nadel/intel_sat_solver

17:12 Solving Huge Instances with Intel® SAT Solver

20 Alexander Nadel. Solving huge instances with intel® sat solver: Supplementary mater-
ial. https://technionmail-my.sharepoint.com/:f:/g/personal/alexandernad_technion_
ac_il/EtihJbiS1XBJoi0DRTGbCnIBlfs1__hkPRiZ3uTpIR_x_g, 2023.

21 Alexander Nadel and Vadim Ryvchin. Efficient SAT solving under assumptions. In Alessandro
Cimatti and Roberto Sebastiani, editors, Theory and Applications of Satisfiability Testing
– SAT 2012 – 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings,
volume 7317 of Lecture Notes in Computer Science, pages 242–255. Springer, 2012. doi:
10.1007/978-3-642-31612-8_19.

22 Collin Peterson. How to define and work with an array of bits in C?, November 2020. URL:
https://stackoverflow.com/a/30590727.

23 Naveed A. Sherwani. Algorithms for VLSI physical design automation. Kluwer, 3 edition,
November 1998.

24 Mate Soos. Allow memory to grow larger than 4gb per thread. https://github.com/msoos/
cryptominisat/issues/389, May 2017.

25 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic
problems. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing –
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 – July 3, 2009.
Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 244–257. Springer,
2009. doi:10.1007/978-3-642-02777-2_24.

26 Marc Thurley. sharpSAT – Counting models with advanced component caching and implicit
BCP. In Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability
Testing – SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006,
Proceedings, volume 4121 of Lecture Notes in Computer Science, pages 424–429. Springer,
2006. doi:10.1007/11814948_38.

27 Takahisa Toda. Implementing efficient all solutions SAT solvers. J. Exp. Algorithmics, 21:1,
2016. doi:10.1145/2975585.

https://technionmail-my.sharepoint.com/:f:/g/personal/alexandernad_technion_ac_il/EtihJbiS1XBJoi0DRTGbCnIBlfs1__hkPRiZ3uTpIR_x_g
https://technionmail-my.sharepoint.com/:f:/g/personal/alexandernad_technion_ac_il/EtihJbiS1XBJoi0DRTGbCnIBlfs1__hkPRiZ3uTpIR_x_g
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-642-31612-8_19
https://stackoverflow.com/a/30590727
https://github.com/msoos/cryptominisat/issues/389
https://github.com/msoos/cryptominisat/issues/389
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/11814948_38
https://doi.org/10.1145/2975585

	1 Introduction
	2 Preliminaries
	3 IS23: the New Release of IntelSAT
	3.1 The API
	3.2 Clause Compression
	3.2.1 Clause Compression and Variable Succession

	4 Experimental Results
	4.1 Gigantic Trivially Satisfiable Instances
	4.2 Finding One Placement
	4.3 Finding Many Placements

	5 Conclusion

