
An Analysis of Core-Guided Maximum Satisfiability
Solvers Using Linear Programming
George Katsirelos #

Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France

Abstract
Many current complete MaxSAT algorithms fall into two categories: core-guided or implicit hitting
set. The two kinds of algorithms seem to have complementary strengths in practice, so that each
kind of solver is better able to handle different families of instances. This suggests that a hybrid
might match and outperform either, but the techniques used seem incompatible. In this paper, we
focus on PMRES and OLL, two core-guided algorithms based on max resolution and soft cardinality
constraints, respectively. We show that these algorithms implicitly discover cores of the original
formula, as has been previously shown for PM1. Moreover, we show that in some cases, including
unweighted instances, they compute the optimum hitting set of these cores at each iteration. We also
give compact integer linear programs for each which encode this hitting set problem. Importantly,
their continuous relaxation has an optimum that matches the bound computed by the respective
algorithms. This goes some way towards resolving the incompatibility of implicit hitting set and
core-guided algorithms, since solvers based on the implicit hitting set algorithm typically solve the
problem by encoding it as a linear program.

2012 ACM Subject Classification Theory of computation → Discrete optimization; Mathematics
of computing → Combinatorial optimization; Theory of computation → Logic; Mathematics of
computing → Solvers

Keywords and phrases maximum satisfiability, core-guided solvers, minimum hitting set problem,
linear programming

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.12

Funding This work has been partly funded by the “Agence nationale de la Recherche” (ANR-19-
PIA3-0004 ANITI-DIL chair of Thomas Schiex).

1 Introduction

MaxSAT is the optimization version of SAT, in which we are given a set of hard clauses
which must always be satisfied, as well as a set of weighted soft clauses, with the objective
to find an assignment which minimizes the weight of the falsified soft clauses. Much like
the case for SAT, the performance of MaxSAT solvers has been steadily improving over
the past few years [5]. Two classes of algorithms have contributed significantly to this
improvement: implicit hitting set (IHS) solvers [12, 14, 13, 6, 8] and core-guided solvers
[18, 2, 24, 23, 22, 19]. Both are based on iteratively calling a SAT solver on formulas derived
from the original MaxSAT instance and extracting unsatisfiable cores, but they are very
different in their operation. IHS solvers exploit the hitting set duality of cores and correction
sets (solutions)[26], and they try to build up a collection of cores that are enough to make
the minimum hitting set match the optimum solution. Crucially, IHS solvers only ask
the SAT solver to extract cores from subsets of the initial MaxSAT instance, which are
all approximately equally hard. Core-guided solvers, on the other hand, reformulate the
input instance with each core they discover so that it exhibits a higher lower bound. The
reformulation generates ever more constrained formulas, which get harder and harder.

Despite their different approaches, both classes of algorithms are competitive, but they
perform well in different families of instances. Hence, it would be desirable to understand
exactly how they relate to each other and build algorithms with the strength of both. In that

© George Katsirelos;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 12; pp. 12:1–12:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gkatsi@gmail.com
https://orcid.org/0000-0002-3727-6698
https://doi.org/10.4230/LIPIcs.SAT.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Analysis of Core-Guided MaxSAT Using Linear Programming

direction, Bacchus and Narodytska [7] showed that the cores discovered by the PM1 [18]
algorithm correspond to a collection of cores of the original instance. Later, Narodytska and
Bjørner [25] showed that for unweighted instances, PM1 actually discovers a hitting set of
these cores of the original formula at every iteration. These results showed that there exists
a close relationship between IHS and core-guided solvers.

Here, we focus on PMRES [24] and OLL [22]. Our contributions are as follows.

We show that, like PM1, each core computed by PMRES and OLL corresponds to a set
of cores of the original MaxSAT instance.
We identify a condition for when the lower bound computed by PMRES or OLL matches
the optimum hitting set of the set of cores of the original formula. This includes the case
when the input instance is unweighted.
We show that the hitting set problem over these cores can be formulated compactly as
an integer linear program for both PMRES and OLL. Moreover, the linear relaxation of
that ILP has a lower bound which is at least as great as the bound computed by PMRES
or OLL, respectively.
The linear program that we give is actually a subset of a higher level relaxation of that
hitting set problem in the Sherali-Adams hierarchy [28].

The first two contributions match what has been done for PM1 previously, although
our proofs are notably simpler, owing to the fact that the cores of PMRES and OLL have
a much more regular structure than those of PM1. The latter two contributions provide
further insight into the relationship between these core-guided algorithms and IHS. The LP
formulation points the way to an algorithm that combines features of both core-guided and
implicit hitting set solvers, since IHS solvers typically solve the hitting set problem with an
ILP solver: any bounds computed by PMRES or OLL can be imported into IHS by way of
this LP. The fact that this LP is a subset of a high level Sherali-Adams relaxation also shows
IHS and core-guided solvers as being two extreme instantiations of the same algorithmic
framework, where both solvers try to solve an implicit hitting set problem. But whereas IHS
discovers only cores of the original formula and offloads solving of the hitting set problem to
an external solver, PMRES very aggressively searches for a non-obvious set of new variables
to add to the linear relaxation of the hitting set problem, in order to keep it as close as
possible to the optimum integer solution, but places a great burden on the SAT solver. This
suggests a more effective tradeoff could be found.

2 Background

In addition to the basics of MaxSAT, we also introduce necessary background on linear
programming and weighted constraint satisfaction problems (WCSPs).

2.1 Satisfiability
A SAT formula ϕ in conjunctive normal form (CNF) is a conjunction of clauses and a clause
is a disjunction of literals. We also view a CNF formula as a set of clauses and a clause as
a set of literals. For a CNF formula F , we write vars(F) for the set of all variables whose
literals appear in the clauses of F . The Weighted Partial MaxSAT (WPMS) problem is a
generalization of SAT to optimization. A WPMS formula is a triple W = ⟨H,S,w⟩ where H
is a set of hard clauses, S is a set of soft clauses and w : S → R≥0 is a cost function over the
soft clauses. We also write H(W) = H,S(W) = S, vars(W) = vars(H) ∪ vars(S). For an
assignment I over vars(W), we overload notation to write w(I) ≜

∑
c∈S:I⊢¬c w(c) for the

G. Katsirelos 12:3

cost of the soft clauses that I falsifies. The objective is to find an assignment I to vars(W)
such that all clauses in H are satisfied and the cost of the falsified soft clauses, i.e., w(I), is
minimized. We write opt(W) ≜ minIw(I) for this value. A WPMS formula ⟨H,S,w⟩ with
w(c) = 1 for all c ∈ S, is a partial MaxSAT formula. If, additionally, H is empty, it is a
MaxSAT formula.

Two WPMS formula W = {H,S,w} and W ′ = {H ′, S′, w′} are equivalent if for each
assignment I to vars(W) that satisfies H, we can extend it to an assignment I ′ to vars(W ′)
that satisfies H ′ and w(I) = w′(I ′) + b, for some constant b that is the same for all
assignments. For example, W = {∅, {(x), (x)}, w}, where w((x)) = 5, w((x)) = 3 is equivalent
to W ′ = {∅, {(x)}, w′}, where w′((x)) = 2, because the weight of all assignments differs by 3
in W,W ′. This notion of equivalence is important in our subsequent analysis.

Given an unsatisfiable CNF formula F , a set C ⊂ F is a core of F if C is unsatisfiable.
If C is minimal by set inclusion, it is a MUS (minimal unsatisfiable subset) of F . Given a
WPMS formula W = ⟨H,S,w⟩, a set C ⊆ S is a core of W if H ∪ C is unsatisfiable. In the
rest of this paper, we assume for simplicity that H is satisfiable and H ∪ S is unsatisfiable.

In the sequel, we make some assumptions without loss of generality. First, we assume that
all soft clauses in a MaxSAT formula W = ⟨H,S,w⟩ are unit. If there exists a clause ci ∈ S

which is not unit, we create the formula W ′ = ⟨H ′, S′, w′⟩ with H ′ = H ∪ cnf(¬ci ⇐⇒ bi),
S′ = S ∪ {(bi)} \ {ci}, where bi is a fresh variable, called the blocking variable for ci, and
w′((bi)) = w(ci), w′(c) = w(c) for all c ∈ S ∩S′. We see that W is equivalent to W by noting
that we can extend any assignment of W to W ′ by setting bi so that it satisfies bi ⇐⇒ ¬ci.
Moreover, we assume that the unique literal in all soft clauses appears with negative polarity.
If this does not hold, we can make it so by renaming. Because of this assumption, we identify
each soft clause with the unique variable it contains and we use that literal to refer to it.
Finally, we assume that there exist no soft clauses with cost 0, as we can remove those
without affecting satisfiability or cost. However, we use the convention that w(x) = 0 for
all positive literals and all negative literals of variables that do not appear in a soft clause.
Given this convention, a WPMS instance can be written as W = ⟨H,w⟩, and S is implicitly
S = {(xi | w(xi) > 0}. We use the two formulations interchangeably.

Solving WPMS
Most current SAT solvers have the ability to not only report SAT or UNSAT for a given
formula, but also, given a partition of its clauses so that ϕ = ψ ∪χ, report a subset of χ such
that ψ ∪ χ is unsatisfiable. In terms of WPMS, it means a modern SAT solver can give a
subset of S such that H ∪ S is unsatisfiable, i.e., a core of the WPMS formula. Because we
have assumed that S contains negative unit clauses only, it follows that each core of W is a
positive clause entailed by H.

The implicit hitting set (IHS) algorithm for WPMS [12, 14, 13, 6, 8] is based on the
observation that the set of soft clauses CS ⊆ S violated by a solution I is a hitting set of
the set of all cores of W [26]. Hence, an optimal solution is a minimum hitting set of the
cores of W . Hitting sets of all cores are called correction sets.

The IHS algorithm maintains an initially empty set of discovered cores C of W and a
minimum hitting set of C, hs(C). If the SAT formula H ∪ (S \ hs(C)) is satisfiable, then
its solutions are optimal solutions of W and w(hs(C)) = w(W). Otherwise, a new core is
extracted and added to C and the loop repeats. Actual implementations of the IHS algorithm
in MaxHS [12] and LMHS [27, 9] contain many optimizations over this basic loop.

A core-guided algorithm for WPMS [18, 24, 23, 22, 19] is an iterative algorithm that
generates a sequence of WPMS instances W 0 =

〈
H0, w0〉

= W, . . . ,Wm = ⟨Hm, wm⟩ and a
sequence of lower bounds lb0 = 0 < lb1 < . . . < lbm such that Hi |= Hi−1 for all i ∈ [1,m]

SAT 2023

12:4 Analysis of Core-Guided MaxSAT Using Linear Programming

and W 0 is equivalent to W i for all i ∈ [1,m] and the weights of the assignments differ by lbi,
therefore opt(W) = lbi + opt(W i). Moreover, in the last iteration it holds opt(Wm) = 0, so
opt(W) = lbm. In words, a core-guided algorithm generates a sequence of equivalent WPMS
instances such that each successive instance is used to derive an increased lower bound
for the original instance, while decreasing the cost of every solution by the same amount.
The final instance admits a solution with zero weight, and each such solution of Wm is an
optimal solution of W . All such solutions are solutions of the SAT formula Hm |0, defined as
Hm ∪ (x) | w(x) > 0, i.e., with all soft clauses made into hard clauses. In order to derive each
successive instance W i+1 in the sequence, it extracts a core from W i and uses it to transform
it into W i+1 and increase the lower bound, hence the name core-guided. The algorithms
we study here, PMRES and OLL, are core-guided algorithms. Following Narodytska and
Bjørner [25], we call cores of W i for i > 0 meta cores, or metas, to distinguish them from
cores of the original formula W 0. We write mi for the meta discovered at iteration i.

2.2 Linear programming and Weighted Constraint Satisfaction
An integer linear program (ILP) IP has the form min cTx : Ax ≥ b ∧ x ∈ Z≥0, where x
is a vector of n variables, c ∈ Rn, A ∈ Rm×n, b ∈ Rm. For a given x, if Ax ≥ b, then it
is a feasible solution of IP. We write c(x) = cTx for the cost1 of x. We write c(IP) for
the cost of a feasible solution with minimum cost. The linear relaxation P of IP is the
problem min cTx : Ax ≥ b ∧ x ∈ Rn

≥0, i.e., one where we relax the integrality constraint
x ∈ Zn

≥0. This is called a linear program (LP). Linear programs have the strong duality
property, namely that for every linear program P in the above form, there exists another
linear program PD = max bT y : AT y ≤ c ∧ y ∈ Rm

≥0, with the property that cP D (ŷ) ≤ cP (x̂)
for every feasible solution x̂ of P and ŷ of PD and cP D (y∗) = cP (x∗) for optimal solutions x∗

and y∗. Given a feasible dual solution ŷ, the value AT
i y − ci, the slack of the dual constraint

corresponding to the primal variable xi, is called the reduced cost of xi, denoted rci(ŷ). A
necessary condition for optimality called complementary slackness links the two solutions:
x∗

i rci(y∗) = 0, i.e., for each variable xi, either it is zero or its corresponding dual constraint
(Aiy ≤ ci) is tight (has zero slack).

A Boolean Cost Function Network (CFN) is a pair ⟨V,D,C⟩, where V is a set of variables,
D is a function mapping variables to domains, and C is a set of cost functions. If the domain
of a variable v is binary, we write v for the value v = 1 and v for v = 0. Each cost function
is a pair ⟨S, c⟩ where S ⊆ V is its scope and cS is a function

∏
x∈S D(x) → R≥0 ∪ ∞. We

assume there exists at most one cost function for each scope, so cS is a shortcut for ⟨S, cS⟩.
An assignment IS to a scope S is a function which maps every variable x ∈ S to a value
in D(x). When we omit S, it means S = V . When convenient, we also use I to denote
the set {v = a | I(v) = a, v ∈ V } ∪ {v ̸= b | I(v) ̸= b, v ∈ V, b ∈ D(x)}. For a scope S and
assignment I, I↓S is the projection of I to S. t(S) denotes all possible assignments to S.

We use the convention that for a cost function cS , cS(I) = cS(I↓S), i.e., we implicitly
project to S. For a CFN P , we write cP (I) =

∑
cS∈F cS(I). The Weighted Constraint

Satisfaction Problem (WCSP) is to find an assignment I such that cP (I) < ∞ and that
minimizes cP . The term WCSP is often used to refer both to the underlying CFN and to
the optimization problem, and we do the same here. Additionally, we assume the existence
of a unary cost function c{v} (abbreviated as cv) for every variable v ∈ V and a nullary cost
function c∅, which is a lower bound for cP , becayse all costs are non-negative. A CSP is a
WCSP in which the domain of all cost functions is {0,∞}.

1 We stick to the terminology of weights in MaxSAT and costs in ILP and WCSP, even though they serve
the same purpose.

G. Katsirelos 12:5

A WCSP P = ⟨V,C⟩ can be formulated as the following ILP:

min
∑

cS∈C,l∈t(S)

cS(l)xSl (1)

s.t. (2)

x{v},a =
∑

l∈t(S):v=a∈l

xSl ∀v ∈ V, a ∈ D(v), cS ∈ C (3)

∑
a∈D(v)

x{v},a = 1 ∀v ∈ V (4)

xSl ∈ Z≥0 ∀v ∈ V, cS ∈ C, l ∈ t(S) (5)

The linear relaxation of (1)– (5) defines the local polytope of P . A dual feasible solution
of the local polytope LP has a particular interpretation: it defines a reformulation of the
WCSP. A reformulation can be seen as a set of operations on a WCSP P that create a
new WCSP P̂ with modified costs, but cP (I) = cP̂ (I) for all I. Therefore, a reformulation
is said to preserve equivalence. This notion of equivalence is identical to the equivalence
preserved by core-guided algorithms, with the primary difference being that the lower bound
is explicitly represented in a WCSP in c∅. These operations can intuitively be thought of as
moving cost among cost functions:

Extention: ext(v = a, cS , α), with v ∈ S, a ∈ D(v). This subtracts cost α from c({v}, a)
and adds it to c(S, l) for all tuples l ∈ t(S) : (v = a) ∈ l. To see the correctness of this,
consider the subset of the objective function cv(a)x{v},a +

∑
l∈t(S):(v=a)∈l cS(l)xSl, as

well as constraint (3). Since x{v},a is equal to the sum, the value of the objective remains
unchanged by adding α to one and subtracting it from the other.

Projection: prj(cS , v = a, α), with v ∈ S, a ∈ D(v). This is the same as ext(v, cS ,−α).

Nullary projection: prj0(cS , w). This subtracts cost α from each tuple l ∈ t(S) and moves
it to c∅. This is justified because

∑
l∈t(S) xSl = 1 and the cost of c∅ is a constant in the

objective function.

Because these operations preserve equivalence, they are called Equivalence Preserving
Transformations (EPTs). A valid set of EPTs ensures that all cost functions are non-negative
everywhere, but there are valid sets of EPTs for which any sequence of performing them
leaves intermediate negative costs. A valid set of EPTs can be mapped to a feasible dual
solution of the local polytope LP and vice versa. A set of EPTs which achieves the greatest
increase in c∅, and hence the lower bound, can be mapped to an optimal dual solution of
the local polytope LP [11]. Given a dual solution, the cost of each tuple l ∈ t(S) is given by
the reduced cost of the variable xSl.

For a WCSP P , let Bool(P) be the CSP (not weighted) defined by accepting exactly
those tuples which have cost 0, i.e., changing all costs which are greater than 0 to ∞. Let
P̂ be a reformulation of P . A consequence of complementary slackness is that if P̂ is an
optimal reformulation, then Bool(P̂) has a non-empty arc consistency closure [11, 15], in
which case it is said that P̂ is virtually arc consistent (VAC). This is not a sufficient condition
for optimality, however. Conversely, if P̂ is not VAC, therefore Bool(P̂) has an empty arc
consistency closure, there exists a reformulation with a higher c∅.

SAT 2023

12:6 Analysis of Core-Guided MaxSAT Using Linear Programming

3 PMRES

The PMRES algorithm is a core guided solver which was introduced by Narodytska and
Bacchus [24] and is implemented primarily in the Eva solver. We describe it briefly here. In
this description, we use the view of WPMS as hard and soft clauses, rather than hard clauses
and an objective, because the transformations performed by PMRES temporarily violate
the assumptions that allow us to take this alternative view. However, these assumptions are
always restored at the end of each iteration.

3.1 Max-Resolution
Max resolution [20] is a complete inference rule for MaxSAT [10]. It consists of the following
rule on soft clauses, in which the conclusions replace the premises:

(A ∨ x,w)
(B ∨ x,w)
(A ∨B,w)

(A ∨ x ∨B,w)
(B ∨ x ∨A,w)

The first clause in the conclusions is equivalent to what resolution derives. The latter
two are called compensation clauses, as they compensate for the cost of assignments which
do not falsify the conclusion A ∨B but falsify one of the discarded premises. Depending on
the exact form of A and B, the compensation “clauses” may not actually be in clausal form
and would have to be converted to a set of clauses each. We ignore this complication here,
as our presentation of PMRES mostly avoids this case.

The rule is generalized to clauses with different costs w1 > w2 by cloning the heavier
clause into clauses with costs w2 and w1 −w2. When one of the clauses is hard, e.g., w1 = ∞,
we keep it in the conclusions.

Max resolution has the property that if W and Ŵ are the formulas before and after
application of the rule, then they are equivalent.

3.2 Max-Resolution with cores
PMRES uses the specialization of this rule for a binary clause and a unit clause, i.e.,
|A| = 1, B = ∅.

(A ∨ x,w)
(x,w)
(A,w)

(x ∨A,w)

As a core-guided solver, PMRES is an iterative algorithm and the first step in each
iteration is to extract a meta core from W i, or terminate if Hi ∪ Si is satisfiable. Suppose
that the meta is mi = {bi

1, b
i
2, . . . , b

i
ri} ⊆ Si−1 and wi

min = minbj∈C c
i(bi

j). This implies
the presence of the soft clauses (bi

1, w1), . . . , (bi

ri , wri). PMRES first splits each soft clause
(bi

j , w
′) with w′ > wi

min into (bi

j , w
i
min) and (bi

j , w
′ − wi

min). This temporarily violates our
assumption that each soft clause contains a unique literal, but as we will see, this invariant
is restored before the next iteration starts. In the next step, it adds to Hi+1 the hard clause
corresponding to C using the CNF encoding of (bi

1 ∨ di
1), (di

1 ⇐⇒ bi
2 ∨ di

2), . . . (di
ri−2 ⇐⇒

G. Katsirelos 12:7

(b1 ∨ b2 ∨ b3 ∨ b4)
(b5 ∨ b2)
(b5 ∨ b3 ∨ b4)

Figure 1 Cores of the instance used in the running example.

bi
ri−1 ∨ di

ri
1
), (di

ri−1 ⇐⇒ bi
r), where di

1, . . . , d
i
r−1 are fresh variables. It is clear that we can

recover the clause (bi
1 ∨ . . . ∨ bi

r) by resolving (not with max-resolution, as the clauses are
all hard) the first two clauses on di

1, then on di
2, and so on, therefore the encoding and the

clause are equivalent. PMRES then applies max-resolution as follows:

Premises Conclusions

(bi
1 ∨ d1, w

i
min) (bi

1, w
i
min) (d1, w

i
min), (bi

1 ∨ d1, w
i
min)

(d1, w
i
min) (d1 ∨ bi

2 ∨ d2, w
i
min) (bi

2 ∨ d2, w
i
min), ((bi

2 ∨ d2) ∨ d1, w
i
min)

...

(bi
r−1 ∨ dr−1, w

i
min) (bi

r−1, w
i
min) (dr−1, w

i
min), (bi

r−1 ∨ dr−1, w
i
min)

(dr−1, w
i
min) (dr−1 ∨ bi

r, w
i
min) (bi

r, w
i
min), (bi

r ∨ dr−1, w
i
min)

(bi
r, w

i
min) (bi

r, w
i
min) (□, wi

min)

The non-clausal constraints in light gray are tautologies and can be discarded. For
example, by (di

1 ⇐⇒ bi
2 ∨ di

2), (bi
2 ∨ di

2) ∨ di
1 is equivalent to (di

1 ∨ di
1), a tautology. The

clauses in gray are used as input for the next max-resolution step. The framed clauses are
new soft clauses that are kept for the next iteration. Since they are not unary, they are
reified using fresh variables and converted to unit soft clauses, e.g., f ⇐⇒ bi

1 ∧di
1 and (f, w),

where f is the fresh variable. Finally, the empty soft clause (□, wmin) is used to increase the
lower bound for the next iteration by wmin.

Consider now a clause (bi

j , w
′) that was split into two clones (bi

j , wmin) and (bi

j , w
′ −wmin).

The former is consumed by max-resolution, therefore the invariant that each soft clause
contains a unique literal is restored. This also allows us to implement the cloning process as
a simple update: wi+1(bj) = wi(bj) − wmin = w′ − wmin. If it happens that w′ = wmin, we
maintain by the previously mentioned convention that wi+1(bj) = 0.

In the following, we write Hi
R for the formula consisting only of the clauses introduced

by PMRES, therefore Hi = H ∪Hi
R. We also write F i and Di for the set of all variables,

introduced to reify soft clauses (e.g. f above) or to encode the meta core clause (the di
j

variables above), respectively. It has also been previously noted [25, 3] that the conjunction
of the definitions of the F and D and the clauses (bi

1 ∨ di
1) define a monotone circuit, with a

binary gate corresponding to each v ∈ F i ∪ Di, an unnamed ∨ gate corresponding to the
clause (bi

1 ∨ di
1), and an implicit ∧ gate whose inputs are the unnamed ∨ gates, which is the

output of the circuit.

▶ Example 1 (Running Example). Consider an instance W with 5 soft clauses with cost 1
each and corresponding literals b1, . . . , b5, and the cores shown in Figure 1. We show a run
of PMRES in Figure 2 (for readability, we show the objective function rather than the set of
soft clauses) that discovers first the core (b1 ∨ b2 ∨ b3 ∨ b4). It increases the lower bound by
1, adds the variables D1 = {d1

1, d
1
2, d

1
3} and F 1 = {f1

1 , f
1
2 , f

1
3 }, defined as shown in the row

corresponding to iteration 1. Since weights are unit, all original variables except b5 disappear
from the objective. In the next iteration, PMRES discovers the meta {b5, f

1
2 }, increases the

SAT 2023

12:8 Analysis of Core-Guided MaxSAT Using Linear Programming

Iteration Meta New clauses Objective
1 {b1, b2, b3, b4} d1

1 ⇐⇒ b2 ∨ d1
2, d1

2 ⇐⇒ b3 ∨ d1
3,

d1
3 ⇐⇒ b4,
f1

1 ⇐⇒ b1 ∧ d1
1, f1

2 ⇐⇒ b2 ∧ d1
2,

f1
3 ⇐⇒ b3 ∧ d1

3 1 + b5 + f1
1 + f1

2 + f1
3

2 {f1
2 , b5} d2

1 ⇐⇒ b5
f2

1 ⇐⇒ b7 ∧ d2
1 2 + f1

1 + f1
3 + f2

1

Figure 2 PMRES on the running example.

lower bound to 2, and introduces the variables d2
1 and f2

1 . In the next iteration, the instance
is satisfiable. One of the possible solutions is b4, b5, with cost 2, which matches the lower
bound.

3.3 Cores and Hitting Sets of PMRES
We first observe that the f i and di variables created on iteration i are functionally dependent
on the bi variables. Therefore, the formula Hi generated after the ith iteration is logically
equivalent to H, i.e., every solution of H can be extended to exactly one solution of Hi.

▶ Lemma 2. There exists a set Ci such that mi is a core of Hi if and only if for each c ∈ Ci,
c is a core of ϕ.

Proof. The set Ci can be derived from mi and Hi
R by forgetting the variables f and d

that were introduced by PMRES. More concretely, let E0 = {mi}. If there exists c ∈ Ej

such that f ∈ c and f was introduced by PMRES and defined as f ⇐⇒ b ∧ d, we set
Ej+1 = Ej \ {c} ∪ {c \ {f} ∪ {b}, c \ {f} ∪ {d}}, i.e., we replace c by two clauses which have b
and d, respectively, instead of f . If there exists c ∈ Ej such that d ∈ c and d was introduced
by PMRES and defined as d ⇐⇒ b ∨ d′, we set Ej+1 = Ej \ {c} ∪ {c \ {d} ∪ {b, d′}}, i.e.,
we replace d by b, d′ in c. The process eventually terminates because it removes one reference
to a variable introduced by PMRES and replaces it by a variable corresponding to a gate at
a deeper level of the Boolean circuit defined by Hi

R, hence all variables must eventually be
original variables of W 0. It is also confluent because the choice of variable to forget does not
hinder other choices.

Since both forgetting variables and introducing functionally defined variables are
satisfiability-preserving operations, we have mi ∧Hi

R |= Ci and Ci |= mi ∧Hi
R. ◀

▶ Lemma 3. Let hs ⊆ S. Then hs as an assignment can be extended to a solution of Hi
R if

and only it is a hitting set of Ci
∪.

Proof. This follows from lemma 2.
(⇒) hs satisfies Hi

R, hence it satisfies all clauses in Ci, which are cores, so it hits all the
cores.

(⇐) hs is a hitting set of Ci, hence it satisfies all the corresponding clauses, hence it
satisfies Hi

R. ◀

In the following, let Ci
∪ = ∪j∈[1,i]Cj .

▶ Observation 4.
〈
Hi

R, w
0〉

and
〈
Hi

R, w
i
〉

are equivalent.

G. Katsirelos 12:9

Proof. Consider H0 =
〈
Hi

R, w
0〉

. We know that m0 is a core of H0. By applying max
resolution to m0 as described in section 3.2, we get new variables and soft clauses. But these
new variables are defined identically to the variables PMRES introduced to get H1

R, which
is a subset of Hi

R. Hence, we can identify them. By correctness of PMRES, we get that〈
Hi

R, w
1〉

is equivalent to
〈
Hi

R, w
0〉

. We apply the same argument inductively to complete
the proof. ◀

▶ Corollary 5. The WPMS Whs
i =

〈
Hi

R, w
i
〉

encodes the minimum hitting set problem over
Ci

∪, with weights shifted by lbi. Hitting sets with cost lbi, if they exist, are solutions of W i
hs

that use only soft clauses with soft 0.

Proof. From Lemma 3,
〈
Hi

R, w
0〉

encodes minimum hitting set over Ci
∪. From Observation 4,〈

Hi
R, w

0〉
and

〈
Hi

R, w
i
〉

are equivalent, therefore Whs
i encodes minimum hitting set over Ci

∪.
The second part follows from the fact that, for any assignment I, w0(I) = lbi + wi(I), so

if w0(I) = lbi, then wi(I) = 0. ◀

Let us denote by Hi
R |0 the formula Hi

R with all variables x such that w(x) > 0 set
to false so that all models of Hi

R |0 are minimum hitting sets of Ci. Therefore if Hi
R |0 is

satisfiable, the bound computed by PMRES matches the cost of the minimum hitting set
of Ci

∪.

▶ Lemma 6. If W is a PMS instance, Hi
R |0 is satisfiable for all iterations i of PMRES.

Proof.
All variables in D have cost 0.
Moreover, all variables which appear in any meta have cost 0, because it is moved away
by max-resolution.
Therefore, all variables in bj

1, . . . , b
j
rj for j ∈ [1, i] have zero cost.

We construct a solution to Hi
R |0 by setting to false all variables which are inputs to

false ∧-gates (which is done by unit propagation), then we set variables to true by traversing
metas in reverse chronological order:
1. For mi, we pick the first variable in bj

1, . . . , b
j
rj and set it to true. We set all variables in

F i and Di to false (the former is required for mi because, as the last discovered core, all
variables in F i have non-zero weight.

2. Supposing we have satisfied all metas mj+1, . . . ,mi, consider mj . Suppose that 0 ≤
q < |mj | variables in F j that have been set to true by previous steps, with indices
P j = {p1, . . . , p

j
q}. For simplicity of notation, assume that if P j is empty, then pj

q = 0.
Then we set to true the variables bj

r | r ∈ P j as well as bj
pq+1, and set the rest to false.

When pj
q = 0, this reduces to setting the first variable in bj

1 to true.
a. This assignment satisfies the constraints introduced in Hj

R.
b. Moreover, all the variables that appear in mj have cost 0 after the jth iteration.

Therefore they cannot appear in any meta discovered in iterations j + 1, . . . , i and
the assignment we have chosen here does not contradict the assignments chosen in
iterations j + 1, . . . , i. ◀

We can see where the proof of Lemma 6 breaks when applied to WPMS: the assertion 2b
does not hold, because a variable whose cost has not been reduced to 0 may appear in later
metas and our procedure may therefore create a conflicting assignment.

SAT 2023

12:10 Analysis of Core-Guided MaxSAT Using Linear Programming

Iteration Core New clauses Objective
1 {b1, b2, b3, b4} d1

1 ⇐⇒ b2 ∨ d1
2, d1

2 ⇐⇒ b3 ∨ d1
3, 1 + b2 + 2b3 + 3b4 + 5b5+

d1
3 ⇐⇒ b4, f1

1 + f1
2 + f1

3
f1

1 ⇐⇒ b1 ∧ d1
1, f1

2 ⇐⇒ b2 ∧ d1
2,

f1
3 ⇐⇒ b3 ∧ d1

3
2 {f1

2 , b5} d2
1 ⇐⇒ b5 2 + b2 + 2b3 + 3b4 + 4b5+
f2

1 ⇐⇒ f1
2 ∧ d2

1 f1
1 + f1

3 + f2
1

3 {b3, b4, b5} d3
1 ⇐⇒ b4 ∨ d3

2, d3
2 ⇐⇒ b5 4 + b2 + b4 + 2b5+

f3
1 ⇐⇒ b3 ∧ d3

1, f3
2 ⇐⇒ b4 ∧ d3

2 f1
1 + f1

3 + f2
1 + 2f3

1 + 2f3
2

4 {b2, b5} d4
1 ⇐⇒ b5 5 + b4 + b5+
f4

1 ⇐⇒ b2 ∧ d4
1 f1

1 + f1
3 + f2

1 + 2f3
1 + 2f3

2 + f4
1

Figure 3 PMRES on the running example with modified, non-unit weights.

▶ Example 7 (PMRES on a weighted formula). Consider the running example, but with the
modified weights (1, 2, 3, 4, 5), respectively. We assume the same trail as shown in figure 2,
and show in figure 3 the modified execution. After the first two iterations the lower bound will
be 2, as shown. The optimum hitting set is {b2, b3} with cost 5, so the lower bound does not
match the optimum. Indeed, H2

R |0 is unsatisfiable: the clause (f1
2 ∨ b5) can only be satisfied

by f1
2 , because w2(b5) > 0. But f1

2 ⇐⇒ b2 ∧(b3 ∨b4) and w2(b2) > 0, w2(b3) > 0, w2(b4) > 0,
therefore f1

2 is forced to false. Hence, PMRES has to perform more iterations before matching
the bound of the hitting set. A possible trail finds the metas {b3, b4, b5} and {b2, b5} (which
also happen to be cores of W 0), as shown.

We are now ready to state the main result of this section.

▶ Theorem 8. For a PMS instance, at each iteration, PMRES computes an optimum hitting
set of Ci

∪.

Proof. Follows from Lemma 2, Corollary 5, and Lemma 6. ◀

For a WPMS instance, we can get a weaker result: since cores of Hi
R |0 are also cores of

Hi |0, we can extract cores of Hi
R |0, which are metas of W until it becomes satisfiable, at

which point the bound is a hitting set of Ci
∪. It is not clear if that is a desirable thing to do

from a performance perspective.

3.4 PMRES and Linear Programming
In this section, we prove the following.

▶ Theorem 9. There exists an integer linear program ILP i
P which (1) is logically equivalent

to the minimum hitting set problem with sets Ci
∪, (2) has size polynomial in |Hi

R|, and (3)
whose linear relaxation has an optimum which matches that derived by PMRES.

Given the results of section 3.3, (1) is easy to show, since we can generate the set Ci
∪,

then write the hitting constraint for each set in Ci
∪, and use w0 as the objective. Call this

ILP i
hs. But ILP i

hs may be exponentially larger than Hi
R. It is not much harder to show

that we can achieve (1) and (2). As Corollary 5 shows, Hi
R is logically equivalent to that

hitting set problem, so we can replace the constraints of ILP i
hs by Hi

R (i.e., by the standard
encoding of clauses to linear constraints) and get an equivalent problem. Call that ILP i

R

and its linear relaxation LP i
R.

However, we can see that LP i
R is weak, specifically, that c(LP i

R) < c(ILP i
R).

G. Katsirelos 12:11

▶ Example 10 (Running example, continued). Consider the ILPs ILP 2
hs and ILP 2

R corres-
ponding to the hitting set problems for the 2nd iteration of PMRES on the instance W in
our running example. The optimum of both ILP 2

hs and ILP 2
R is 2, as expected, but the

optimum of LP 2
R is only 1.5.

In this specific example, since we have integer costs, the bound of the linear relaxation
allows us to derive a bound of 2 for ILP 2

R, but in general we can get an arbitrarily large
difference. This is not surprising in general, but the fact that PMRES does compute an
optimal hitting set at each iteration suggests that we should be able to do better. This is
the objective of this section.

To construct an LP that meets the requirement of the theorem, we give a WCSP and
its reformulation, which yield an LP (the local polytope) and a dual solution (one which is
created from the formulation), as described in section 2.2. The result could be proved by
directly giving an appropriate LP and dual solution, and proving the result on that, but it
would be more cumbersome and would lack the existing intuitive understanding that has
been developed in WCSP of dual solutions as reformulations.

Proof of theorem 9. We will give first a WCSP P i which admits the same solutions as Hi
R

and has unary costs such that its feasible solutions have the same cost as the hitting set
problem entailed at iteration i of PMRES. This means that the optimum solution of P i

matches the minimum hitting set of Ci
∪. Further, we show that its linear relaxation LP (P i)

admits a dual feasible solution whose cost matches the bound computed by PMRES. We
give this dual solution as a sequence of equivalence preserving transformations of P i, using
the results presented in section 2.2. That linear program, LP (P i), satisfies the requirements
of the theorem.

We first define P i. The high level idea is that the we encode the objective function of
ILP i

R directly as unary costs, and each meta using the well known decomposition into ternary
constraints. The d variables have exactly the same semantics as the auxiliary variables used
in that decomposition. The corresponding f variable corresponds to a single tuple of these
ternary constraints, so we add an f variable to each ternary constraint in order to capture
the cost of that ternary tuple into a unary cost. More precisely, let P 0 = ∅. At iteration i,
where the core discovered is {bi

1, b
i
2, . . . , b

i
r} ⊆ Si−1, P i is defined as P i−1 and additionally

the following variables and cost functions:
0/1 variables b1, . . . , bn, di

j , f i
k, corresponding to the propositional variables of the same

name in W i.
Unary cost functions with scope bi for each bi ∈ vars(W 0), with cbi

(0) = 0, cbi
(1) = c0(bi)

A ternary cost function with scope {bi
1, d

i
1, f

i
1} where each tuple that satisfies bi

1 ∨ di
1 and

f i
1 ⇐⇒ di

1 ∧ bi
1 has cost 0 and the rest have infinite cost.

Quaternary cost functions with scope {bi
j , d

i
j−1, d

i
j , f

i
j}, for j ∈ [2, r− 2], where each tuple

that satisfies di
j−1 ⇐⇒ di

j ∨ bi
j and f i

j ⇐⇒ di
j ∧ bi

j has cost 0 and the rest have infinite
cost.
A binary cost function with cost 0 for each tuple that satisfies di

r−1 = bi
r and infinite cost

otherwise.

It is straightforward to see that P i is equivalent to ILP i
R: (i) they have the same set of

variables, (ii) the only costs in P i are in unary cost functions, so the objective functions are
the same, (iii) the quaternary cost functions satisfy, by construction, the clauses included in
the scope of these functions, and (iv) each clause is present in one cost function. Therefore,
solutions of P i are hitting sets of Ci

∪ and the cost of each solution matches the cost of the
corresponding hitting set.

SAT 2023

12:12 Analysis of Core-Guided MaxSAT Using Linear Programming

b1
1 d1

1 f1
1 0 1 2

0 1 0 0
1 0 0 0 w 0
1 1 1 0 w 0

b1
2 d1

1 d1
2 f1

2 0 3 4

0 0 0 0 0 w 0
0 1 1 0 0
1 1 0 0 0 w 0
1 1 1 1 0 w 0

b1
1 0 1

0 0
1 w 0

d1
1 0 2 3

0 0 w 0
1 0

f1
1 0 2

0 0
1 0 w

b1
2 0 3

0 0
1 w 0

b1
3 0 4 5

0 0 w 0
1 w w 0

f1
2 0 4

0 0
1 0 w

c∅ 0 5

0 w

Figure 4 The evolution of cost functions that leads to the increase of the lower bound by w for the
core {b1

1, b1
2, b1

3}. Each table shows a cost function and how it evolves after each EPT. We omit the rows
which would violate one of the clauses introduced by PMRES, as infinity absorbs all costs, so they are
unaffected by EPTs. The column 0 gives the initial costs. Subsequent columns give the state of each
cost function after all EPTs to that point. Only points in the sequence which affect a given cost func-
tion are given in the corresponding table. Since d1

2 = b1
3 for this core, we simplify the problem here and

replace occurrences of d1
2 by b1

3 rather than include an extra binary cost function to enforce their equal-
ity. The sequence is 1 : ext(b1

1, {b1
1, d1

1, f1
1 }, w), 2 : prj({b1

1, d1
1, f1

1 }, d
1
1, w) and prj({b1

1, d1
1, f1

1 }, f1
1 , w),

3 : ext(b1
2, {b1

, d1
1, b1

3, f1
1 }, w) and ext(d1

1, {b1
, d1

1, b1
3, f1

1 }, w), 4 : prj({b1
, d1

1, b1
3, f1

1 }, b
1
3, w) and

prj({b1
, d1

1, b1
3, f1

1 }, f1
2 , w), 5 : prj0(b1

3, w).

It remains only to show that the LP optimum of relax(P i) matches that produced by PM-
RES. We show a slightly stronger result, namely that there exists a sequence of EPTs such that
in P i, not only does the bound match that produced by PMRES, but the unary costs of each
variable match the weights computed by PMRES. We show this by induction on the number
of iterations. At iteration 0, this holds trivially, as the bound is 0 for both P 0 and PMRES
and the unary costs match the weights by construction. Suppose it holds at iteration k − 1.
Then, the core at iteration k is {bk

1 , b
k
2 , . . . , b

k
r } ⊆ Sk−1. The EPT ext(bk

1 , {bk
1 , d

k
1 , f

k
1 }, wk

min)
enables the EPTs prj({bk

1 , d
k

1 , f
k
1 }, fk

1 , w
k
min) and prj({bk

1 , d
k
1 , f

k
1 }, dk

1 , w
k
min). For j ∈ [2, rk−2],

in addition to extending cost from bk
j , we also extend from d

k

j−1, which has just received
this amount of cost: ext(bk

j , {bk
j , d

k
j−1, d

k
j , f

k
j }, wk

min) and ext(dk

j−1, {bk
j , d

k

j−1, d
k
j , f

k
j }, wk

min),
which enable prj({bk

j , d
k
j−1, d

k
j , f

k
j }, fk

j , w
k
min) and prj({bk

j , d
k
j−1, d

k
j , f

k
j }, dk

j , w
k
min). Finally,

after j = r − 2, we are left with wk
min in dk

r−1. Using dk
r−1 ⇐⇒ bk

r , we move cost from bk
r to

dk
r−1 (specifically: ext((, bk

r , {bk
r , d

k
r })wk

min, then prj({bk
r , d

k
r }, dk

r , w
k
min). Since both dk

r and
d

k

r have cost wk
min, we can apply prj0(dk

r , w
k
min) to increase the lower bound by wk

min.
After these EPTs, not only is the lower bound increased by wk

min, but the variables
bk

1 , . . . , b
k
r have their cost decreased by wk

min, the variables fk
1 , . . . , f

k
r−1 receive cost wk

min,
and the variables dk

1 , . . . , d
k
r−1 stay at 0. This matches the effects of PMRES, as required by

the inductive hypothesis. ◀

▶ Example 11. We move away from our running example here, as showing and explaining
all the cost moves would be tedious and space consuming. Instead, we give a small example
with the core {b1

1, b
1
2, b

1
3} in figure 4. All variables of this core have uniform weight w. We

show how the EPTs remove cost from b1
1, b

1
2, b

1
3 and move it to f1

1 , f1
2 and c∅, leaving all

other cost functions unchanged, even though they were used to make the cost moves possible.
The increase in c∅ comes from a nullary projection from b1

3.

G. Katsirelos 12:13

Note that theorem 9 does not prove that the optimum of (P i) is identical to that of
PMRES at iteration i, but only that it is at least as high, as the following example shows.

▶ Example 12 (Running example, continued). After iteration 2, in the running example, unit
propagation alone detects the core {b3, b4, b5}. This means that when we set these variables
to false because their weight is non-zero, unit propagation generates the empty clause.

Let P̂ i be the reformulation of P i given by theorem 9. Then Hi
R and P̂ i have the same

costs/weights. Hi
R |0 is constructed from Hi

R in the same way as Bool(P i) is constructed
from Bool(P): by making each non zero cost (weight) into an infinite cost (weight). so Hi

R |0
admits the same solutions as Bool(P̂ i). Moreover, each clause of Hi

R |0 is contained in at
least one constraint of P̂ i, therfore arc consistency on Bool(P̂ i) is at least as strong as unit
propagation on Hi

R |0. And since the core {b3, b4, b5} is not satisfied, the arc consistency
closure of Bool(P̂ i) is empty, therefore its bound can be improved further.

On the other hand, there is no reason to expect that the the optimum of (P i) will
necessarily be higher than the bound computed by PMRES. For example, if Hi

R |0 has no
cores that can be detected by unit propagation, the argument of example 12 does not apply.

4 OLL

OLL [22] is probably the most relevant core-guided algorithm currently, since solvers based on
it, like RC2 [19] and CASHWMaxSAT-CorePlus [21] have done very well in recent MaxSAT
evaluations [5].

4.1 MaxSAT with soft cardinality constraints
OLL is an iterative algorithm, similar to PMRES. For the purposes of this discussion,
it only differs in how it processes each meta that it finds. At iteration i, given the meta
mi = {bi

1, b
i
2, . . . , b

i
ri} ⊆ Si−1, it adds fresh variables oi

1, . . . , o
i
ri−1 and constraints oj ⇐⇒∑ri

k=1 b
i
k > j, then decreases the weight of each variable in mi by wi

min, increases the lower
bound by wi

min, and sets the weight of the fresh variables oi
1, . . . , o

i
ri−1 to wi

min. The o
variables are called sum variables.

OLL with implied cores
We use here a minor modification of OLL, which we denote OLL′. In this variant, before
processing a meta at iteration i, each sum variable oj

k, j < i, k ∈ [2, rj − 1] is replaced by oj
k′

where k′ < k is the lowest index for which w(oj
k′) > 0. This is sound because oj

k → oj
k′ for all

k′ < k, which can be written as ¬oj
k ∨ ok′ . We can resolve the meta at iteration i with this

clause to effectively replace oj
k by oj

k′ . This procedure can be repeated as long as it results in
a meta with non-zero minimum weight, although that step is not required for the results we
obtain next.

We argue that OLL′ matches the behaviour of a realistic implementation like RC2, when
used with an assumption-based solver such as Minisat [16] or a derivative like Glucose [4].
In order to extract a core with Minisat, RC2 asserts the negation of all literals which may
appear in a core as assumptions. These literals are passed to Minisat as a sequence. Minisat
returns a subset of these literals as a core. Crucially, Minisat immediately propagates each
assumption in sequence and never returns in a core a literal which is implied by earlier
assumptions. Therefore, if the literals of the soft clauses introduced by OLL are given in the
order

〈
oi

1, . . . o
i
ri

〉
, we get from oi

j+1 =⇒ oi
j , or equivalently oi

j =⇒ oi
j+1, that all literals oi

j

SAT 2023

12:14 Analysis of Core-Guided MaxSAT Using Linear Programming

are implied by unit propagation from oi
j′ with j′ < j. Therefore, Minisat will not return a

core that contains oi
j if oi

j′ is in the assumptions. This means that OLL′ is identical to OLL
given these implementation details. By inspection of the code of RC2, we can confirm that
it does indeed use this order of assumptions with Minisat, and therefore implements OLL′.

4.2 Cores and Hitting Sets of OLL
In the following, we overload notation that we have used already for PMRES, but we use
them now in the context of OLL′, with the same meaning: Hi

R, Ci, Ci
∪.

▶ Lemma 13. There exists a set Ci such that mi is a core of Hi if and only if for each
c ∈ Ci, c is a core of ϕ.

Proof Sketch. We observe that oi
j =

∨
S⊆mi,|S|>j(∧b∈Sb), therefore it is a monotone function

of the inputs of the core. The entire formula constructed by OLL is therefore also monotone.
We show the result using a similar variable forgetting argument as we did in lemma 2. ◀

The proofs of Lemma 3, Observation 4, and Corollary 5 transfer to OLL′ immediately.
These establish that the WPMS instance

〈
Hi

R, cost
i
〉

encodes the minimum hitting set
problem over Ci

∪, where the cores are derived as described in lemma 13 this time.
In order to show that OLL′ does compute minimum hitting sets at each iteration for

PMS, we have to prove the equivalent of lemma 6.

▶ Lemma 14. If W is a PMS instance, Hi
R |0 is satisfiable for all iterations i of OLL′.

Proof Sketch. The following invariant holds in OLL′: for each meta mi, there exists
0 ≤ k < ri such that w(oi

k′) = 0 for all k′ ≤ k and w(oi
k′) > 0 for all k′ > k. Therefore, any

assignment that sets oj
k′ , k′ < k, to true can be extended by setting oj

k′′ to true as well for all
k′′ < k′ and exactly k′ variables of mi, so that all sum constraints of iteration i are satisfied.

From there, we use the same argument as we did in the proof of lemma 6 to show that,
given an assignment to the variables of the metas mj , . . . ,mi, j < i, we can extend to an
assignment to the variables of mj−1 because any two sum constraints from different iterations
sum over disjoint sets of variables. ◀

As was the case for the corresponding lemma in PMRES, Lemma 14 says nothing about
instances with non-uniform weights.

4.3 OLL and Linear Programming
We prove the equivalent of theorem 9 for OLL′.

▶ Theorem 15. There exists an integer linear program ILP i
P which (1) is logically equivalent

to the minimum hitting set problem with sets Ci
∪, (2) has size polynomial in |Hi

R|, and (3)
whose linear relaxation has an optimum which matches that derived by OLL′.

Proof. We construct a WCSP P i. Its linear relaxation, the local polytope LP (P i), is the LP
we want. Let P 0 = ∅. At iteration i, where the core discovered is {bi

1, b
i
2, . . . , b

i
ri} ⊆ Si−1,

P i is defined as P i−1 and additionally the following variables and cost functions:
0/1 variables bi

1, . . . , b
i
n, oi

1, . . . , o
i
ri−1, corresponding to the propositional variables of the

same name in W i.
Unary cost functions with scope bi for each bi ∈ vars(W 0), with c(bi, 0) = 0, c(bi, 1) =
c0(bi)

G. Katsirelos 12:15

A variable Oi with domain [0, rj], with c(Oi, 0) = ∞ and c(Oi, j) = 0 for all j ∈ [1, ri].
A decomposition of the sum constraint

∑
j∈[1,ri] b

i
j = Oi, as described by Allouche et

al. [1].
Binary cost functions with scope {Oi, oi

j}, for all j ∈ [1, ri − 1] where the tuples {j′, 1}
and {j′′, 0}, for all 1 ≤ j′ < j < j′′ < ri, have infinite cost, and the rest have cost 0.
These encode the constraint oi

j ⇐⇒ Oi > j.

As before, the equivalence of P i and Hi
R is immediate. We show that there exists a

reformulation of P i that yields the same costs as the weights computed by OLL′, as well as
the same lower bound. The latter relies on previous results [1], which imply that, we can
move cost wi

min from bi
1, . . . , b

i
n to Oi, so that we have c(Oi, j) = jwi

min. Since c(Oi, 0) = ∞,
we can apply prj0(Oi, wi

min). Finally, we can apply ext(Oi = j′, {Oi, oi
j}, wi

min) for all j′ ≥ j,
followed by prj({Oi, oi

j , o
i
j , w

i
min). Once we complete this for all j ∈ [1, ri], there is no cost

in Oi, and each oi
j has cost wi

min, as required. ◀

5 Connection to the Sherali-Adams hierarchy

The Sherali-Adams hierarchy of linear relaxations [28] of a 0/1 integer linear program is a
well known construction for building stronger relaxations. At its kth level, it uses monomials
of degree k and it is known that the level n relaxation (where n is the number of variables
in the ILP) represents the convex hull of the original ILP, meaning that it solves the ILP
exactly. On the flip side, the size of the relaxations grows exponentially with the level of the
hierarchy, meaning that even low level SA relaxations tend to be impractical.

Formally, we derive the kth level SA relaxation as follows. Let SAu
0 (LP) = LP , the

linear relaxation of the integer program. First, we define the set of multipliers Mk =
{
∏

i∈P1
xi

∏
i∈P2

(1 − xi) | P1, P2 ⊆ [1, n], |P1 ∪ P2| = k, P1 ∩ P2 = ∅}, i.e., the set of all
non-tautological monomials of degree k, using either xi or (1 − xi) as factors. We then
multiply each constraint c ∈ LP0 by each multiplier m ∈ Mk, simplify using x2 = 1 and
x(1 − x) = 0, and finally we replace each higher order monomial by a single 0/1 variable to
get SAu

k(LP).
In this description, SAu

k does not contain the variables and constraints of LP or any
SAu

j , j ∈ [1, k − 1]. Here, we use instead SAk(LP) = ∪k
i=0(SAu

k(LP) ∪ cns(k), where cns(k)
are constraints which ensure consistency between the variables at different levels, i.e., do not
allow xixj = 1 and xi = 0 at the same time.

To show the connection with PMRES, we define the depth measure for variables and,
by extension, cores and formulas. The set the depth of all variables appearing in W 0

to be 0, and we write dp(bj) = 0, for bj ∈ vars(W 0). Consider a meta mi. We define
dp(f i

j) = maxbj∈mi dp(bj) + 1 for all j ∈ [1, ri − 1], and similarly for di
j , j ∈ [1, ri − 1]. With

an overload of notation, we also write dp(mi) = dp(f i
1). Finally, at iteration i, we write

dp(W i) = maxj∈[1,i] dp(mj). In words, the depth of a variable of the original instance has
depth 0, the variables introduced by a meta are one level deeper than variables that appear
in the meta, the depth of a meta is the same as that of the variables it introduces, and the
depth of the instance at iteration i is the deepest meta PMRES has discovered.

The result of this section, is that LP (P i), the linear relaxation that achieves the bound
computed by PMRES, is a subset of the 2dp(W i) level Sherali-Adams relaxation of a specific
linear formulation of the hitting set instance Ci

∪.

▶ Theorem 16. The variables f i
j with dp(f i

j) = k are defined as a linear expression over
variables of at most the level 2k SA relaxation of the hitting set problem over Ci

∪.

SAT 2023

12:16 Analysis of Core-Guided MaxSAT Using Linear Programming

Proof. By induction. It holds for variables with depth 0, since they are variables of the
original formula. Assume that it holds for variables of depth k − 1.

The main observation is that, since f i
j = bi

j ∧ di
j , we can write it as f i

j = bi
jd

i
j , i.e.,

replace the conjunction by multiplication, which is valid for 0/1 variables. Then, since
di

j = bi
j+1 ∨ . . . ∨ bi

ri , we can write it as di
j = max(bi

j+1, . . . , b
i
ri). The max operator is a

piecewise linear function, so this expression is linear. Finally, we replace di
j in the definition

of f i
j to get f i

j = max(bi
jb

i
j+1, . . . , b

i
jb

i
ri). Recall that dp(bi

l) for l ∈ [j + 1, ri] is at most 2k−1,
so f i

j can be written as a linear expression over monomials of degree at most 2k, since it
multiplies two variables which are themselves a linear expression over monomials of degree
at most 2k−1. ◀

Theorem 16 reflects the already known connection between Max-Resolution and the
Sherali-Adams hierarchy in the context of proof systems for satisfiability [17]. Moreover, it is
known that the kth level of the Sherali Adams hierarchy based on the basic LP relaxation
(BLP) of a CSP, another name for the local polytope LP, establishes k-consistency [29].

Theorem 16 is fairly weak. The upper bound is extremely loose and there is no lower
bound. It is useful, however, as it suggests that discovering a meta of depth k involves
potentially proving 2k-inconsistency. It also hints towards minimizing the maximum degree
of monomials entailed by a meta as a metric for choosing among different potential metas.

In the greater context of PMRES compared to IHS, one way to interpret the result of
this section is that the two algorithms are instantiations of the same algorithm: they are
both implicit hitting set algorithms, but where IHS extracts a single core at a time and
offloads the hitting set computation to a specialized solver, PMRES shifts the burden to
the SAT solver to not only extract cores, but discover a higher level relaxation so that the
hitting set problem can be solved in polynomial time.

6 Discussion

6.1 PM1
The results of section 3.3 have of course already been shown for PM1 [7, 25]. The result we
have shown here that is not shown for PM1 is the existence of a compact LP that computes
the same bound as PM1. It is not easy to see how the results of section 3.4 could transfer.
For PMRES and OLL, Hi

R logically entails all the implied cores. This allows us to create
an ILP representation of the hitting set problem immediately, and then strenghten the LP
relaxation using higher order cost functions to achieve the same bound. But for PM1, cores
are solutions of a linear system, so it is not immediately obvious even how to create an ILP
representation of the hitting set problem without enumerating the (potentially exponentially
many) cores of the original formula.

6.2 Practical Implications
Besides revealing a tight connection between the operation of IHS and core-guided algorithms,
there are potential practical implications, in particular from theorem 9. We first observe
that the linear program used to prove theorem 9 is linear in the size of Hi

R, hence the size
of the LP is not too great. Moreover, it can be further reduced by noting that, in order to
replicate the bound of PMRES, the dual variable corresponding to several primal constraints
is always zero. Therefore, they can be removed from the LP without affecting the bound.
After that, the LP can be further simplified by removing variables that appear in only 1
constraint and forgetting (in the sense of the knowledge compilation operation of forgetting)

G. Katsirelos 12:17

variables that appear in only two constraints. In this way, the LP is reduced to contain only
the d and f variables, and uses ri constraints to relate them. In the running example, upon
discovering the core {b1, b2, b3, b4}, the LP needs only the following constraints to satisfy the
requirements of theorem 9:

b1
1 − f1

1 − d1
1 = 0

b1
2 − f1

2 − d1
2 + d1

1 = 0
b1

3 − f1
3 + b1

4 + d1
2 = 1

We omit the details of this mechanical reduction of the LP. But this suggests that the LP
of theorem 9 is not just a theoretical construct, but a practical way to replicate the reasoning
of PMRES. This allows a solver which runs PMRES until some heuristic condition is met,
then passes its progress to IHS using theorem 9 to represent the hitting set problem and the
lower bound. In the other direction, a solver can run IHS, then solve the hitting set problem
once with PMRES to construct Hi

R, then continue solving starting from
〈
Hi

R ∪H,wi
〉
, in

order to simplify solution of the ILP. However, running the two algorithms in sequence is the
simplest form of combining them. Presumably, the greatest performance can be gained by
an even deeper integration, using the LP to communicate progress.

7 Conclusion

We have narrowed the gap between implicit hitting set and core-guided algorithms for
MaxSAT. We have shown that the core-guided algorithms PMRES and OLL, the latter
of which is the basis for the winning solvers of some recent maxsat evaluations, implicitly
compute a potentially exponentially large set of cores of the original MaxSAT formula at
each iteration and a minimum hitting set of those cores under some conditions. Moreover,
we showed that they build a WPMS instance which is logically equivalent to the minimum
hitting set problem over those cores and can therefore be seen as a compressed, polynomial
sized, encoding of that problem. In addition, we showed how this problem is solved: by
generating a subset of a higher level of the Sherali-Adams linear relaxation of that hitting
set problem. These results open up the possibility for tighter integration between PMRES
and IHS.

References
1 David Allouche, Christian Bessiere, Patrice Boizumault, Simon de Givry, Patricia Gutierrez,

Jimmy H. M. Lee, Ka Lun Leung, Samir Loudni, Jean-Philippe Métivier, Thomas Schiex,
and Yi Wu. Tractability-preserving transformations of global cost functions. Artif. Intell.,
238:166–189, 2016. doi:10.1016/j.artint.2016.06.005.

2 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial maxsat
through satisfiability testing. In International conference on theory and applications of
satisfiability testing, pages 427–440. Springer, 2009.

3 Carlos Ansótegui and Joel Gabàs. WPM3: an (in)complete algorithm for weighted partial
maxsat. Artif. Intell., 250:37–57, 2017. doi:10.1016/j.artint.2017.05.003.

4 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI), pages
399–404, 2009.

5 F. Bacchus, J. Berg, M. Järvisalo, R. Martins, and A. (eds) Niskanen. MaxSAT evaluation 2022:
Solver and benchmark descriptions. Technical Report vol. B-2022-2, Department of Computer
Science, University of Helsinki, Helsinki, 2022. URL: http://hdl.handle.net/10138/318451.

SAT 2023

https://doi.org/10.1016/j.artint.2016.06.005
https://doi.org/10.1016/j.artint.2017.05.003
http://hdl.handle.net/10138/318451

12:18 Analysis of Core-Guided MaxSAT Using Linear Programming

6 Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in
maxsat. In J. Christopher Beck, editor, Principles and Practice of Constraint Programming –
23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 – September
1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 641–651.
Springer, 2017. doi:10.1007/978-3-319-66158-2_41.

7 Fahiem Bacchus and Nina Narodytska. Cores in core based maxsat algorithms: An analysis.
In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing – SAT
2014 – 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer
Science, pages 7–15. Springer, 2014. doi:10.1007/978-3-319-09284-3_2.

8 Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set
maxsat solving. In Luca Pulina and Martina Seidl, editors, Theory and Applications of
Satisfiability Testing – SAT 2020 – 23rd International Conference, Alghero, Italy, July 3-
10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294.
Springer, 2020. doi:10.1007/978-3-030-51825-7_20.

9 Jeremias Berg, Paul Saikko, and Matti Järvisalo. Improving the effectiveness of sat-based
preprocessing for maxsat. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 239–245. AAAI Press, 2015. URL: http:
//ijcai.org/Abstract/15/040.

10 Maria Luisa Bonet, Jordi Levy, and Felip Manyà. A complete calculus for max-sat. In Armin
Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing – SAT
2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,
volume 4121 of Lecture Notes in Computer Science, pages 240–251. Springer, 2006. doi:
10.1007/11814948_24.

11 M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc
consistency revisited. Artificial Intelligence, 174(7-8):449–478, May 2010. doi:10.1016/j.
artint.2010.02.001.

12 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming –
CP 2011 – 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.
Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer,
2011. doi:10.1007/978-3-642-23786-7_19.

13 Jessica Davies and Fahiem Bacchus. Exploiting the power of mip solvers in maxsat. In
Matti Järvisalo and Allen Van Gelder, editors, Theory and Applications of Satisfiability
Testing – SAT 2013 – 16th International Conference, Helsinki, Finland, July 8-12, 2013.
Proceedings, volume 7962 of Lecture Notes in Computer Science, pages 166–181. Springer,
2013. doi:10.1007/978-3-642-39071-5_13.

14 Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving.
In Christian Schulte, editor, Principles and Practice of Constraint Programming – 19th
International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,
volume 8124 of Lecture Notes in Computer Science, pages 247–262. Springer, 2013. doi:
10.1007/978-3-642-40627-0_21.

15 Tomás Dlask and Tomás Werner. On relation between constraint propagation and block-
coordinate descent in linear programs. In Helmut Simonis, editor, Principles and Practice
of Constraint Programming – 26th International Conference, CP 2020, Louvain-la-Neuve,
Belgium, September 7-11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer
Science, pages 194–210. Springer, 2020. doi:10.1007/978-3-030-58475-7_12.

16 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of Theory and
Applications of Satisfiability Testing (SAT), pages 502–518, 2003.

17 Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. Maxsat resolution and
subcube sums. ACM Trans. Comput. Logic, 24(1), January 2023. doi:10.1145/3565363.

https://doi.org/10.1007/978-3-319-66158-2_41
https://doi.org/10.1007/978-3-319-09284-3_2
https://doi.org/10.1007/978-3-030-51825-7_20
http://ijcai.org/Abstract/15/040
http://ijcai.org/Abstract/15/040
https://doi.org/10.1007/11814948_24
https://doi.org/10.1007/11814948_24
https://doi.org/10.1016/j.artint.2010.02.001
https://doi.org/10.1016/j.artint.2010.02.001
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-030-58475-7_12
https://doi.org/10.1145/3565363

G. Katsirelos 12:19

18 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin Biere and
Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing – SAT 2006, 9th
International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume 4121 of
Lecture Notes in Computer Science, pages 252–265. Springer, 2006. doi:10.1007/11814948_25.

19 Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient maxsat solver.
J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019. doi:10.3233/SAT190116.

20 Javier Larrosa and Federico Heras. Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In IJCAI-05, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 – August 5, 2005, pages 193–198,
2005.

21 Zhendong Lei, Yiyuan Wang, Shiwei Pan, Shaowei Cai, and Minghao Yin. CASHWMaxSAT-
CorePlus: Solver description. Technical report, Department of Computer Science, University
of Helsinki, Helsinki, 2022. URL: http://hdl.handle.net/10138/318451.

22 António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided maxsat with soft
cardinality constraints. In Barry O’Sullivan, editor, Principles and Practice of Constraint
Programming – 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 564–573. Springer,
2014. doi:10.1007/978-3-319-10428-7_41.

23 António Morgado, Alexey Ignatiev, and João Marques-Silva. MSCG: robust core-guided maxsat
solving. J. Satisf. Boolean Model. Comput., 9(1):129–134, 2014. doi:10.3233/sat190105.

24 Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided maxsat
resolution. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., pages 2717–2723, 2014. URL: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513.

25 Nina Narodytska and Nikolaj S. Bjørner. Analysis of core-guided maxsat using cores and
correction sets. In Kuldeep S. Meel and Ofer Strichman, editors, 25th International Conference
on Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel,
volume 236 of LIPIcs, pages 26:1–26:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.SAT.2022.26.

26 Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,
1987. doi:10.1016/0004-3702(87)90062-2.

27 Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP hybrid maxsat solver.
In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability
Testing – SAT 2016 – 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 539–546. Springer,
2016. doi:10.1007/978-3-319-40970-2_34.

28 Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3(3):411–430, 1990. doi:10.1137/0403036.

29 Johan Thapper and Stanislav Zivný. Sherali-adams relaxations for valued csps. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata,
Languages, and Programming – 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages
1058–1069. Springer, 2015. doi:10.1007/978-3-662-47672-7_86.

SAT 2023

https://doi.org/10.1007/11814948_25
https://doi.org/10.3233/SAT190116
http://hdl.handle.net/10138/318451
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.3233/sat190105
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
https://doi.org/10.4230/LIPIcs.SAT.2022.26
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-319-40970-2_34
https://doi.org/10.1137/0403036
https://doi.org/10.1007/978-3-662-47672-7_86

	1 Introduction
	2 Background
	2.1 Satisfiability
	2.2 Linear programming and Weighted Constraint Satisfaction

	3 PMRES
	3.1 Max-Resolution
	3.2 Max-Resolution with cores
	3.3 Cores and Hitting Sets of PMRES
	3.4 PMRES and Linear Programming

	4 OLL
	4.1 MaxSAT with soft cardinality constraints
	4.2 Cores and Hitting Sets of OLL
	4.3 OLL and Linear Programming

	5 Connection to the Sherali-Adams hierarchy
	6 Discussion
	6.1 PM1
	6.2 Practical Implications

	7 Conclusion

