
Separating Incremental and Non-Incremental
Bottom-Up Compilation
Alexis de Colnet #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
The aim of a compiler is, given a function represented in some language, to generate an equivalent
representation in a target language L. In bottom-up (BU) compilation of functions given as
CNF formulas, constructing the new representation requires compiling several subformulas in L.
The compiler starts by compiling the clauses in L and iteratively constructs representations for
new subformulas using an “Apply” operator that performs conjunction in L, until all clauses are
combined into one representation. In principle, BU compilation can generate representations for
any subformulas and conjoin them in any way. But an attractive strategy from a practical point
of view is to augment one main representation – which we call the core – by conjoining to it the
clauses one at a time. We refer to this strategy as incremental BU compilation. We prove that,
for known relevant languages L for BU compilation, there is a class of CNF formulas that admit
BU compilations to L that generate only polynomial-size intermediate representations, while their
incremental BU compilations all generate an exponential-size core.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases Knowledge Compilation, Bottom-up Compilation, DNNF, OBDD

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.7

Funding Alexis de Colnet: This work has been supported by the Austrian Science Fund (FWF),
ESPRIT project FWF ESP 235.

1 Introduction

Knowledge compilation (KC) is a domain of computer sciences that deals with different
models for representing knowledge, or functions. Here, a compilation is a procedure that
changes the representation of a function into something that allows for efficient reasoning.
One aspect of KC is to find classes of representations, or compilation languages, that render
interesting queries tractable [6, 15]. For Boolean functions, many such languages are subsets
of the class of circuits in decomposable negation normal form (DNNF) [5].

When the function to compile into a sublanguage L of DNNF is given as a system
of constraints, say a CNF formula (where constraints are clauses), different compilation
paradigms are available, in particular top-down (TD) compilation and bottom-up (BU)
compilation. TD compilers produce a compiled form as the trace of an algorithm that
explores the space of solutions to the system, for instance the trace of a DPLL algorithm
that does not stop after finding a solution but instead keep searching for more [11, 20]. A
more general description is that TD compilers start from the whole system of constraints and
recursively consider smaller systems. In contrast, BU compilers first compile each constraint
independently, and then combine their compiled representations in pairs to construct a
representation of the whole system. A key component in this paradigm is an “Apply”
operator that, given two functions written in L, efficiently constructs a representation of their
conjunction in L. Since binary conjunction is tractable, under some conditions, for ordered
binary decision diagrams (OBDD) [2], for sentential decision diagrams (SDD) [4], and more
generally for circuits in structured decomposable negation normal form (strDNNF) [19], in
practice the target languages of BU compilers are restricted to sublanguages of strDNNF

© Alexis de Colnet;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:decolnet@ac.tuwien.ac.at
https://orcid.org/0000-0002-7517-6735
https://doi.org/10.4230/LIPIcs.SAT.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Separating Incremental and Non-Incremental Bottom-Up Compilation

(including OBDD and SDD). A inconvenience of BU compilation is that, to compile a CNF
formula in L, one must first compile several of its subformulas. Empirical observations
show that intermediate subformulas sometimes require representations that are much larger
than both the input and the output of the compiler [10, 16]. A good BU compiler tries to
avoid such hard subformulas by combining the clauses in a smart way following heuristics.
Unfortunately, for some formulas, hard subformulas simply are unavoidable. This has been
proved for several models of BU compilation into OBDD [14, 23, 9, 12] and more generally
into strDNNF [8, 13]. To be more precise, these results show exponential lower bounds on
the size of intermediate results for L-based refutations of unsatisfiable CNF formulas [1],
which can be seen as BU compilations to L when they do not use weakening or projection
rules.

In this paper, we study how BU compilers differ space-wise for different strategies to
combine the clauses. Our main result is that the variant of BU compilation often used
in practice, which we call incremental BU compilation, is less powerful than general BU
compilation in the sense that for some formulas, incremental BU compilation always generates
intermediate representations of exponential size, while general BU compilation can avoid it.
Let us now precise what we mean by incremental BU compilers for CNF formulas. These
are compilers that work clause by clause. An incremental compiler keeps in memory a single
representation for subformulas – that we call the core – and repeatedly combines the core with
a clause until it represents the whole formula. So whenever an “Apply” is done, one of the
inputs is the core and the other represents a clause. Importantly, the next clause to conjoin
to the core may be selected just before the “Apply”, so the order for combining the clauses is
not necessarily decided ahead of compilation. Examples of incremental compiler can be found
in [16] for the compilation of configuration problems into BDD; in the compiler SALADD1 for
compiling systems of pseudo-Boolean constraints into multi-valued decision diagrams (MDD);
and we will later argue that the approach described in [3], which is the basis for the default
compiler of the SDD package2, can in fact be simulated by incremental compilation with only
a polynomial size increase. The BU framework makes no assumption on how the constraints
or clauses are combined and our objective is to show that fixing a strategy, while completely
legitimate in practice, results in unavoidable exponential-size intermediate representations
for some formulas that are otherwise “easy” to compile. Formally our result is the following

▶ Theorem 1. There is an infinite class Φ of CNF formulas such that every ϕ ∈ Φ
over n variables admits polynomial-size compilations in OBDD(∧,r) but all its incremental
compilations in strDNNF(∧,r) create intermediate circuits of size 2Ω(

√
n)poly(1/n).

An L(∧, r) compilation refers to a BU compilation in L that uses the “Apply” to conjoin
elements in L that are “similarly structured” and where arbitrary modifications preserving
equivalence can be made to an intermediate result before it is fed to an “Apply” (this
accounts for the so-called “restructuring” or “reordering” operation). To put our result into
perspective, for L ∈ {OBDD, SDD, strDNNF}, the lower bounds shown in [14, 23, 12, 8, 13]
hold regardless of the BU compilation strategy and, in the few cases where the clauses
are chosen in a certain order, for instance in [9], it is not clear that the formulas for the
lower bounds are easily compiled non-incrementally. Further, we are not aware of practical
BU compilers for CNF formulas that are not incremental or that can not be simulated
by incremental compilation. We do not claim that the development of non-incremental

1 https://www.irit.fr/~Helene.Fargier/BR4CP/CompilateurSALADD.html
2 http://reasoning.cs.ucla.edu/sdd/

https://www.irit.fr/~Helene.Fargier/BR4CP/CompilateurSALADD.html
http://reasoning.cs.ucla.edu/sdd/

A. de Colnet 7:3

compilers is the path to follow since we doubt of the practicability of that strategy. But we
argue that while lower bounds in the general general framework are strong results, positive
results on the other hand have no practical implication unless they can be proved for the
incremental strategy. Things are different for OBDD-based refutations that rely on the
weakening rule, so we can not make any claim in this context. Some refutation strategies
improve upon the incremental approach using a clustering step [17, 18]. These approaches
are non-incremental but are not very relevant to this work since the clusters are defined
so that variables can be forgotten (i.e., existentially quantified out) after compilation of a
cluster, which is forbidden in our setting as this modifies the function to compile. This is
also the reason why the techniques used by Segerlind to separate tree-like OBDD-based
refutations and general OBDD-based refutations [22] are not applicable in our setting, despite
the apparent proximity with our topic.

The paper is organized as follows. We start in Section 2 with preliminaries where we
describe the compilation languages considered and the general framework for BU compilation.
Then in Section 3 we formalize incremental BU compilation and discuss some of its advantages
compared to general BU compilation. The main part of the paper is Section 4 where we
prove our main result on the separation between incremental and general BU compilation.
Finally, Section 5 briefly discusses the implications of this result in practice and regarding
the choice of a framework for modeling the behavior of algorithms.

2 Preliminaries

A Boolean variable is a variable x over {0, 1} (0 for false, 1 for true). An assignment to
a set X of Boolean variables is a mapping from X to {0, 1}. We call {0, 1}X the set of
assignments to X. A Boolean function f over X is a mapping from {0, 1}X to {0, 1}. When
not specified, var(f) denotes the set of variables of f . A literal is Boolean variable x or its
negation x. We use the usual symbols ∧ and ∨ for conjunction and disjunction. A clause is
a disjunction of literals and a CNF formula ϕ is a conjunction of clauses. We often see ϕ
as the set of its clauses, so that we can write c ∈ ϕ to denote that c is a clause of ϕ, and
ϕ \ c to denote the CNF formula whose clauses are all clauses of ϕ except c. Given a set of
clauses S, we sometimes write

∧
S to denote the CNF formula

∧
c∈S c. CNF formulas are

representations of Boolean functions. Two representations Σ and Σ′ are equivalent, denoted
by Σ ≡ Σ′ if they represent the same function, in particular they must be defined over the
same set of variables. We say that Σ entails Σ′, denoted by Σ |= Σ′ if var(Σ′) ⊆ var(Σ) and
every assignment to var(Σ) that satisfies Σ also satisfies Σ′.

Circuits in strDNNF

A circuit is in negation normal form (NNF) is a Boolean circuit whose gates are ∨-gates and
∧-gates and whose inputs are literals or {0, 1} inputs. In particular there are no ¬-gates
in a circuit in NNF. The set of variables below a gate g is denoted by var(g). A gate g
with inputs g1, . . . , gk is called decomposable when var(gi) ∩ var(gj) = ∅ for every i ≠ j. A
circuit in NNF is in decomposable NNF (DNNF) when all its ∧-gates are decomposable.
Circuits in strDNNF respect a more constrained variant of decomposability called structured
decomposability. It requires a vtree (variable tree), that is, a rooted binary tree T whose
leaves are in bijection with the circuit’s variables. For t a node of T , we denote by var(t)
the set of variables that label leaves under t. The circuit D in DNNF respects T when all
∧-gates have fan-in 2 and when there is a mapping λ from D’s gates to T ’s nodes such that
for every gate g of D,

SAT 2023

7:4 Separating Incremental and Non-Incremental Bottom-Up Compilation

∨

∧ ∧

∨ ∨ ∨

∧ ∧ ∧ ∧

x y x y z w z w

x y z w

vtree

Figure 1 A circuit in strDNNF.

var(g) ⊆ var(λ(g)),
if g is a ∨-gate with inputs g1, . . . , gk, then λ(g) = λ(g1) = · · · = λ(gk),
if g is a ∧-gate with inputs g1, g2 then λ(g) = t is an internal node of T and there is a
node t1 under its first child and a node t2 under its second child such that λ(g1) = t1
and λ(g2) = t2.

The size of D, denoted by |D| is the number of connectors in the circuit. Not all circuits in
DNNF are in strDNNF but the class of circuits in strDNNF, called the strDNNF language, is
sufficiently expressive to represent all Boolean functions over finitely many variables [19]. An
example of circuit in strDNNF is shown Figure 1: the mapping between internal gates and
nodes of the vtree is represented with solid, dashed and dotted boxes. Important function
representations in compilation admit linear-time translations into strDNNF, including SDDs
whose definition we omit (see [4]) and OBDDs which we define now.

OBDDs

Given two Boolean functions c0, c1 and a Boolean variable x, the decision node x

c0 c1
represents the function (x∧ c0) ∨ (x∧ c1). Graphically, if x is set to 0 then follow the dashed
arrow, otherwise if x is set to 1 then follow the solid arrow. A binary decision diagram (BDD)
is a directed acyclic graph (DAG) with a single root and two sinks labelled by 0 and 1, and
whose internal nodes are decision nodes. BDDs are interpreted as Boolean functions over
the variables that label their decision nodes. The satisfying assignments are those whose
unique corresponding path leads to the sink 1. An ordered BDD (OBDD) is such that the
variables appear in the same order and at most once along every path from the root to
a sink. Examples of OBDDs are shown in Example 2. The class of OBDDs is called the
OBDD language. The size of an OBDD B, denoted by |B|, is its number of nodes. OBDDs
can be transformed in linear time into strDNNF circuits respecting linear vtrees, that is,
vtrees where every internal node has a child that is a leaf. So OBDDs can be seen as being
structured by linear vtrees.

Bottom-up compilation

Given a language L whose elements are structured by vtrees and a system of finitely many
constraints ϕ (for instance a CNF formula, where constraints are clauses), an L(∧, r) bottom-
up compilation of ϕ in L is a sequence

(Σ1, I1), (Σ2, I2), . . . , (ΣN , IN)

where Σ1, . . . ,ΣN are elements of L such that ΣN ≡ ϕ and where, for every i ∈ {1, . . . , N},
Ii is an instruction telling how Σi is obtained. Three types of instructions are possible:

A. de Colnet 7:5

Σi = Compile(c) for some constraint c of ϕ. Then Σi ≡ c.
Σi = Apply(Σj ,Σk,∧) for some j, k < i such that Σi,Σj ,Σk respect the same vtree. Then
Σi ≡ Σj ∧ Σk.
Σi = Restructure(Σj) for some j < i. Then Σi ≡ Σj and their vtrees may differ.

The size of the compilation is defined as max1≤i≤N |Σi|. The Restructure instruction accounts
for the r in the name “L(∧, r) compilation”. When this instruction is not used, we say that
we have an L(∧) compilation. Regarding the Apply instruction, the assumption that Σi, Σj
and Σk respect the same vtree is essential since, for many languages L, polynomial-time
conjunction of two elements in L into a another element in L is feasible only when the initial
elements have compatible vtrees. Quadratic-time Apply procedures for conjunction are known
for the languages considered in this paper, namely for OBDD [2], SDD [4] and strDNNF [19].

3 Incremental and Non-Incremental Bottom-Up Compilation

To compile a CNF formula in a bottom-up manner, some compilers work clause by clause.
The idea is to keep one main representation, which we call the core, to which clauses are
conjoined one after the other. We call this strategy incremental bottom-up compilation.
Formally, an incremental L(∧, r) compilation is an L(∧, r) compilation where every Apply
instruction is of the form Apply(Σ, Compile(c), ∧), where Σ ∈ L has been computed previously
in the compilation and c is a clause/constraint of the formula to compile. We used a simplified
framework where, for all Ii, the core is Σi−1 (by convention Σ0 = 1).

Σi = Apply(Σi−1,Σc,∧) where c ∈ ϕ and Σc ≡ c respects the same vtree as Σi−1 and Σi.
Σi = Restructure(Σi−1). Then Σi ≡ Σi−1 and their vtrees may differ.

For convenience the compilation of Σc is implicit. We can visualize the compilation
(Σ1, I1), . . . , (ΣN , IN) as a directed acyclic graph whose vertices are in bijection with the Σis.
If Ii is a Compile instruction, then Σi is a source of the DAG, else if Ii is Σi = Restructure(Σj)
then there is an edge from Σj to Σi, and if Ii is Σi = Apply(Σj , Σk, ∧), then there is an edge
from Σj to Σi and another one from Σk to Σi. In this DAG representation, if we bypass
the nodes of in-degree 1 created by the Restructure instructions, then an incremental BU
compilation is shaped like a linear tree, that is, a tree such where every node is either a leaf
or has a leaf child. In general BU compilation, the DAG can be shaped like a tree, in which
case we have a tree-like compilation, or it can have a general DAG structure (some Σis may
be inputs to more than one Apply).

▶ Example 2. Consider the CNF formula ϕ = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x3) =
c1 ∧ c2 ∧ c3 ∧ c4, and the following OBDDs:

x0

x1

x2

10︸ ︷︷ ︸
B1

x0

x1

x2

10︸ ︷︷ ︸
B2

x0

x1

x3

10︸ ︷︷ ︸
B3

x0

x1

x3

10︸ ︷︷ ︸
B4

x0

x1

x2 x2

10︸ ︷︷ ︸
B5

x1

x2

x2

x3

10︸ ︷︷ ︸
B6

x0

x1

x3 x3

10︸ ︷︷ ︸
B′

6

x1

x2 x2

x3 x3

10︸ ︷︷ ︸
B7

B1, B2, B3 and B4 represent the clauses c1, c2, c3 and c4, respectively. Now consider the
following bottom-up compilations of ϕ:

SAT 2023

7:6 Separating Incremental and Non-Incremental Bottom-Up Compilation

B1 = Compile(c1)
B2 = Compile(c2)
B5 = Apply(B1, B2,∧)
B3 = Compile(c3)
B6 = Apply(B3, B5,∧)
B4 = Compile(c4)
B7 = Apply(B4, B6,∧) B1 B2 B3 B4

B5

B6

B7 B1 = Compile(c1)
B2 = Compile(c2)
B3 = Compile(c3)
B4 = Compile(c4)
B5 = Apply(B1, B2,∧)
B′

6 = Apply(B3, B4,∧)
B7 = Apply(B5, B

′
6,∧) B1 B2 B3 B4

B5 B′
6

B7

The left compilation is incremental whereas the one on the right is tree-like but non-
incremental since B7 is obtained from B5 and B′

6, none of which represents a clause from ϕ.

In incremental BU compilation, the constraints are conjoined in a certain order. The
framework is general enough that, in practice, the order for the constraints is not necessarily
fixed before the first Apply: an incremental BU compiler that has run a few steps and
computed the core Σ can dynamically decide the next clause to conjoin based on Σ.

Some strategies for BU compilation are definitely not incremental but can be simulated
by incremental BU compilation. For instance, we claim it is the case of the compiler
scheme described in [3] for compiling a CNF formula into an SDD. Since we have omitted
the definition of SDDs, we look at it as a compilation to strDNNF (of which SDD is a
sublanguage). Say ϕ(X) be the CNF formula to compile and let T be a vtree over X. Let Tv
denotes the subtree of T rooted under node v. Reusing some of the terminology in [4], we say
that each clause c of ϕ is hosted at the unique deepest node v of T such that var(c) ⊆ var(v).
Let ϕv be the subformula of ϕ made uniquely of clauses over var(v) and let ϕhostv be the
subformula of ϕ made uniquely of clauses of ϕ hosted at v. Suppose v is not a leaf and let
v1 and v2 be its children. The idea is, given T , to recursively compute a strDNNF circuit
Dv ≡ ϕv for the node v as follows
(1) compute the strDNNF circuits Dv1 ≡ ϕv1 and Dv2 ≡ ϕv2 for v1 and v2 respecting the

vtrees Tv1 and Tv2 respectively
(2) compute D = Apply(Dv1 , Dv2 ,∧) that respects Tv
(3) incrementally conjoin all clauses of ϕhostv to D, perhaps restructuring D to change its

vtree under v between two Apply (so T is modified but only under v).
The strDNNF circuit for the root node of T represents ϕ. Observe that, by definition of a
vtree, in step (2) there is var(ϕv1) ∩ var(ϕv2) = var(v1) ∩ var(v2) = ∅, so we say that the
Apply occurring there is decomposable. We claim that this approach can be simulated by an
incremental strDNNF(∧,r) compilation because any Apply that does not fit the incremental
approach is a decomposable Apply from step (2) and such Apply are easy to simulate in the
incremental approach. The proof of the following is deferred to the appendix.

▶ Proposition 3. Every strDNNF(∧,r) compilation of a CNF formula ϕ where every Apply
that does not involve a clause of ϕ computes the conjunction of two strDNNF circuits
representing subformulas of ϕ over disjoint set of variables, can be transformed into an
incremental strDNNF(∧,r) compilation with only a polynomial increase in size.

Let us mention some advantages of incremental BU compilation. First, many guarantees
on the size of the final output of a BU compilation also hold for incremental BU compilation.
Especially, it is known that if the primal graph of a CNF formula has logarithmic treewidth,
then the formula can be compiled into a polynomial-size SDD [4] and, since the primal
treewidth cannot increase for subformulas it follows that, in the case of a logarithmic
treewidth, polynomial-size compilations in SDD(∧,r) exist even in the incremental case.

A. de Colnet 7:7

Another example is on the role of restructuring in BU compilation: it is shown in [12] that
OBDD(∧,r) compilations are exponentially more compact than OBDD(∧) compilations and
a careful observation of the proof reveals that the OBDD(∧,r) compilations used there can
be made incremental. So restructuring does not require stronger strategies than incremental
compilation to have a positive effect. From a practical point of view, incremental compilers
have the advantage that the purpose of restructuring is clear (at least when compiling CNF
formulas): it is to reduce the size of the core. This is fairly intuitive and corresponds to what
is done in practice, in particular by the default compiler of the SDD package. One can actually
prove that there is not much interest space-wise in using restructuring for anything else as
any incremental L(∧,r) compilation for L ∈ {OBDD,SDD, strDNNF} can be transformed in
polynomial-time into another L(∧,r) compilation where restructuring never increases the
size of the core. The proof of the following appears in appendix.

▶ Proposition 4. Let L ∈ {OBDD,SDD, strDNNF}, let (Σ1, I1), . . . , (ΣN , IN) be an
incremental L(∧,r) compilation of the CNF formula ϕ over n variables. There exists an
incremental L(∧,r) compilation (Σ′

1, I
′
1), . . . , (Σ′

M , I
′
M) of ϕ such that M ≤ 2N and, for every

j ∈ {1, . . . ,M} there is an i ∈ {1, . . . , N} such that Σ′
j ≡ Σi and |Σ′

j | ≤ 2n|Σi|. In addition,
when Σ′

j is obtained by restructuring Σ′
j−1, we have |Σ′

j | ≤ |Σ′
j−1|.

We note that Proposition 4 holds because every clause has a linear-size representation in L

for every vtree. The statement holds for other types of constraints that share this property,
for instance parity constraints [20], but it is not clear whether it applies to general systems
of constraints as well.

In non-incremental BU compilation, restructuring may not be used only for reducing the
size. Indeed, given two circuits in L respecting different vtrees over the same variables, using
an Apply to obtain their conjunction requires changing the vtree of at least one of them, so
it requires a restructuring step. But it can be the case that there is no way to make both
circuits respect the same vtree without a global size increase.

4 Separating Incremental and Non-Incremental Compilation

In this section, we prove the main result of the paper, which is the separation between
incremental and non-incremental bottom-up compilation.

▶ Theorem 1. There is an infinite class Φ of CNF formulas such that every ϕ ∈ Φ
over n variables admits polynomial-size compilations in OBDD(∧,r) but all its incremental
compilations in strDNNF(∧,r) create intermediate circuits of size 2Ω(

√
n)poly(1/n).

4.1 General Idea for the Separation
First we sketch the general idea for proving the separation. We use two CNF formulas ϕ1(X)
and ϕ2(X) and consider the formula ϕ(X) =

∧
c1∈ϕ1

∧
c2∈ϕ2

(c1 ∨ c2). This formula is in
CNF and is equivalent to ϕ1 ∨ ϕ2. Let us say that ϕ1 is unsatisfiable, then ϕ is equivalent
to ϕ2. To compile ϕ in non-incremental OBDD(∧,r), we can first compile independently
the subformulas

∧
c1∈ϕ1

(c1 ∨ c2) ≡ ϕ1 ∨ c2 ≡ c2 for every c2 ∈ ϕ2. This gives one OBDD
Bc2 for every clause of ϕ2. Any clause can be represented by a small OBDD with respect
to any variable ordering so, using restructuring, we can freely choose the variable ordering
for Bc2 . Then, starting from the OBDDs Bc2 for all c2 ∈ ϕ2, we can compile an OBDD
representing ϕ as if we were doing a BU compilation of ϕ2. The idea is summarized in Figure 2

SAT 2023

7:8 Separating Incremental and Non-Incremental Bottom-Up Compilation

BU
compile
ϕ1∨c1

2

Bc1
2

∧
c1∈ϕ1

(c1 ∨ c1
2)

BU
compile
ϕ1∨c2

2

Bc2
2

∧
c1∈ϕ1

(c1 ∨ c2
2)

· · ·
BU

compile
ϕ1∨cm

2

Bcm
2

∧
c1∈ϕ1

(c1 ∨ cm2)

BU compile ϕ2

Bϕ

Figure 2 A bottom-up compilation of ϕ ≡ ϕ1 ∨ ϕ2 when ϕ1 is unsatisfiable.

where c1
2, c

2
2, . . . , c

m
2 are the clauses of ϕ2. The small triangles represent BU compilations of∧

c1∈ϕ1
(c1 ∨ ci2). Each costs roughly the same as a BU compilation of ϕ1. So the cost of this

compilation scheme is roughly m times the cost of a BU compilation of ϕ1, plus the cost of a
BU compilation of ϕ2.

Now what happens when compiling ϕ incrementally in strDNNF(∧,r) (which is more
general than OBDD(∧,r))? Well, let us look at the last instruction Apply of the compilation:
suppose it is D′ = Apply(D,Dγ1∨γ2 ,∧), that is, we conjoin the core circuit D with a
circuit in strDNNF representing the clause γ1 ∨ γ2 where γ1 ∈ ϕ1 and γ2 ∈ ϕ2. But
then D computes the CNF formula ϕ \ (γ1 ∨ γ2), which one can show is equivalent to
(ϕ2 ∨ (ϕ1 \ γ1)) ∧ (ϕ1 ∨ (ϕ2 \ γ2)) ≡ ((ϕ1 \ γ1) ∧ (ϕ2 \ γ2)) ∨ ϕ2 since ϕ1 is unsatisfiable. For
convenience let us assume that ϕ2 is also unsatisfiable and that the minimal unsatisfiable
subsets of ϕ1 and ϕ2 are themselves (so both ϕ1 \ γ1 and ϕ2 \ γ2 are satisfiable). Then the
cost of compiling ϕ incrementally is at least the cost of compiling (ϕ1 \ γ1) ∧ (ϕ2 \ γ2).

To separate general BU compilation from incremental BU compilation, we look for
formulas ϕ1 and ϕ2 that are both easy to compile in OBDD(∧,r), so that ϕ is easy to compile
in non-incremental OBDD(∧,r) using the scheme of Figure 2, but such that (ϕ1 \γ1)∧(ϕ2 \γ2)
can only be represented by exponential-size strDNNF circuits regardless of the vtree and
regardless of the choice of γ1 and γ2. In the next sections, we describe our formulas and give
the formal proof. For the sake of keeping the proof simple, we will choose a formula ϕ2 that
is satisfiable and we will not necessarily look at the very last Apply of the compilation, but
the idea behind the proof is unchanged.

4.2 The Formula ϕ for the Separation
Let X = {xi,j | 1 ≤ i, j ≤ n} and consider the following functions:

ROWn(X) (resp. COLn(X)) is the function over X whose satisfying assignments are
that for which each row (resp. column) of the n×n matrix [xi,j]i,j contains exactly one 1.
ODD(X) (resp. EVEN(X)) is the function over X whose satisfying assignments are that
for which there is an odd (resp. even) number of 1s in the n× n matrix [xi,j]i,j .

We will consider CNF formulas representing ROWn(X) and COLn(X), and CNF formulas
encoding ODD(X) and EVEN(X). We distinguish a representation from an encoding in that
the latter uses auxiliary variables while the former does not. The CNF formulas representing
ROWn(X) and COLn(X) are:

A. de Colnet 7:9

rown(X) =
∧

1≤i≤n

(
(xi,1 ∨ · · · ∨ xi,n) ∧

∧
1≤j<k≤n

(xi,j ∨ xi,k)
)

coln(X) =
∧

1≤j≤n

(
(x1,j ∨ · · · ∨ xn,j) ∧

∧
1≤h<i≤n

(xh,j ∨ xi,j)
)

ODD and EVEN do not have polynomial-size representations in CNF but they have linear-
size encodings. We use the notation (a+ b+ c = 0 mod 2) to denote the clauses (a ∨ b ∨
c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c). We use the standard encoding [21]:

oddn(X,Y) = yn ∧
∧

1≤j≤n

∧
1≤i≤n

(yi,j + yi−1,j + xi,j = 0 mod 2)

where y0,j = yn,j−1 if j > 1, and y0,1 = 0. In oddn(X,Y), the matrix is browsed row-wise
and a satisfying assignment sets yi,j to 1 if and only if the number of 1s found before the cell
i, j is odd.

We define evenn(X,Y) analogously: we just replace the (a + b + c = 0 mod 2) by
(a+ b+ c = 1 mod 2), which clauses are (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c).
The following holds:

rown(X) ≡ ROWn(X) and coln(X) ≡ COLn(X) and
∃Y.oddn(X,Y) ≡ ODD(X) and ∃Y.evenn(X,Y) ≡ EVEN(X).

Let n be an even integer, let ϕ1(X) = rown(X), and let

ϕ∗
1(X,Y) = ϕ1(X) ∧ oddn(X,Y) and ϕ2(X) =

∧
1≤j≤n

∧
1≤h<i≤n

(xh,j ∨ xi,j). (1)

ϕ2 represents the function that accepts exactly the matrices [xi,j]i,j whose columns all
contains at most one 1. We will later refer to this function as AMOpCOLn (at most one per
column). ϕ∗

1 is unsatisfiable since n is even. We will use the following CNF formula for the
separation:

ϕ =
∧

c1∈ϕ∗
1

∧
c2∈ϕ2

(c1 ∨ c2) ≡ ϕ∗
1 ∨ ϕ2 ≡ ϕ2. (2)

4.3 ϕ is Easy to Compile in OBDD(∧,r)
Let us start with the proof that ϕ can be compiled in OBDD(∧,r) using only polynomial-size
OBDDs. The key element here is that both ϕ∗

1 and ϕ2 are easily compiled in OBDD(∧,r).

▶ Lemma 5. The formulas ϕ∗
1 and ϕ2 defined in (1) have polynomial-size OBDD(∧,r)

compilations.

Proof. Let us start with ϕ∗
1. We fix an i between 1 and n. For every j, we separately compile∧

k>j(xi,j ∨ xi,k) ≡ xi,j ∨
∧
k>j xi,k into an OBDD Bj that respects the variable ordering

xi,1, xi,2, . . . , xi,n. It is easy to see that compiling each Bj is feasible in polynomial time in
OBDD(∧,r).

▷ Claim 6. B1 ∧ · · · ∧Bj is equivalent to the OBDD represented in Figure (3a).

SAT 2023

7:10 Separating Incremental and Non-Incremental Bottom-Up Compilation

xi,1

xi,2 xi,2

xi,3 xi,3

xi,4 xi,4

.

0

0

0

xi,j xi,j 0

01
∧
k>j

xi,k

xi,j+1

xi,j+2

. . .

xi,n

1

0

0

0

0

︸ ︷︷ ︸∧
k>j

xi,k

(a) Intermediate step in the compilation of rown.

x1,1

y1,1 y1,1

x1,2 x1,2

y1,2 y1,2

x1,3 x1,3

y1,3 y1,3

0

0

0
· · ·

(b) Intermediate step in the compilation of oddn.

Figure 3 Intermediate steps in the compilation of ϕ∗
1.

The proof of the Claim 6 is deferred to the appendix. We compile B1 ∧ · · · ∧ Bn ≡∧
j ̸=k(xi,j ∨ xi,k) using only OBDDs of size O(n). Let Bi be the resulting OBDD. Next, it

is easy to compile the clause xi,1 ∧ · · · ∧ xi,n into an OBDD of size O(n) and that respects
the variable ordering xi,1, xi,2, . . . , xi,n. We conjoin this OBDD to Bi and thus obtain an
OBDD that represents xi,1 + · · · + xi,n = 1 whose size is O(n) and that we call Bith row.
Now the OBDDs Bith row for every 1 ≤ i ≤ n have disjoint sets of variables so they can be
incrementally conjoined into a single OBDD Brows of size O(n2) that represents ROWn and
whose variable ordering is x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xn,n.

It remains to compile oddn and to conjoin it to Brows. We can com-
pile oddn incrementally in OBDD(∧,r) using only the variable ordering
x1,1, y1,1, x1,2, y1,2, . . . , x1,n, y1,n, x2,1, y2,1, . . . , xn,n, yn,n. First we conjoin the OB-
DDs for the clauses of the parity constraint y1,1 + x1,1 = 0 mod 2 together, then we add
the OBDDs for the clauses of the parity constraint y1,1 + x1,2 + y1,2 = 0 mod 2, and so
on. Once we have added all clauses of a parity constraint, we end up with an OBDD that
looks like that represented Figure (3b). To add the next parity constraints, we only have
four OBDDs to conjoin before we attain again an OBDD that looks like that represented
Figure (3b). So the sizes of the OBDDs used to compile oddn never grow bigger than O(n2).
We call Bodd the final OBDD.

Finally, since Bodd and Brows have compatible variable orderings, they can be conjoined
in quadratic time, and the compilation of ϕ∗

1 is finished.

For ϕ2, the OBDD(∧,r) compilation scheme used to compile the OBDD Bi computing∧
j ̸=k(xi,j ∨ xi,k), respecting the variable ordering xi,1, . . . , xi,n, and whose is size is in O(n),

can be adapted to compile an OBDD Qj computing
∧
h̸=i(xh,j ∨xi,j), respecting the variable

ordering x1,j , . . . , xn,j and whose size is in O(n). Since the OBDDs Q1, . . . , Qn have pairwise
disjoint sets of variables, they can be incrementally conjoined in polynomial time to obtain
an OBDD computing Q1 ∧ · · · ∧Qn ≡ ϕ2. ◀

A. de Colnet 7:11

▶ Lemma 7. The formula ϕ defined by (2) can be compiled in OBDD(∧,r) using only OBDDs
of size polynomial in n.

Proof. For every clause c2 ∈ ϕ2, we use Lemma 5 to construct a small OBDD(∧,r) compilation
of

∧
c1∈ϕ∗

1
(c1 ∨ c2): we take the polynomial-size OBDD(∧,r) compilation of ϕ∗

1 described
in the lemma and we apply a disjunction between every OBDD of the compilation and a
small OBDD representing c2. This gives a compilation of

∧
c1∈ϕ∗

1
(c1 ∨ c2) ≡ ϕ∗

1 ∨ c2 ≡ c2
and increases the size of every OBDD by a constant factor only. We do this for each clause
c2 ∈ ϕ2 independently and obtain an OBDD Bc2 for every c2. Then we use restructuring
to change the variable ordering of the Bc2s (clauses admit linear-size OBDDs under every
variable ordering) so that we can use the polynomial-size compilation of ϕ2 described in
Lemma 5. ◀

4.4 ϕ is Hard to Compile Incrementally in strDNNF(∧,r)
We move to the more difficult part that consists in proving that every incremental
strDNNF(∧,r) compilation of ϕ generates intermediate circuits of exponential size. To
this end, we will need the following lemma (which we prove later):

▶ Lemma 8. Let ϕ be the formula defined by (2). Every incremental strDNNF(∧,r) compil-
ation of ϕ generates an intermediate circuit that can be transformed in polynomial-time into
a circuit in strDNNF computing ROWn−∆ ∧ COLn−∆ for some integer ∆ ≤ 3.

The function ROWn(X) ∧ COLn(X) is widely studied in computer sciences and is often
called the permanent. Its satisfying assignments are the 0/1 matrices [xi,j]i,j that contain
exactly one 1 in every row and exactly one 1 in every column. In particular, these assignments
are in bijection with the permutations of {1, . . . , n} since every assignment a to X that
satisfies ROWn(X) ∧ COLn(X) uniquely corresponds to the permutation that maps every
i ∈ {1, . . . , n} to the unique j ∈ {1, . . . , n} such that a(xi,j) = 1. The permanent is known
to be hard to represent as OBDDs, as read-once branching programs [25, Theorem 6.2.12.]3,
as circuits in strDNNF [24, Proposition 7 and Lemma 27], and even as circuits in DNNF.

▶ Lemma 9 ([7, Proof of Theorem 1]). Every circuit in DNNF representing ROWn(X) ∧
COLn(X) has size 2Ω(n).

The desired lower bound on incremental bottom-up compilation of ϕ follows directly from
Lemmas 8 and 9. Thus the proof of Theorem 1 is straightforward given Lemmas 7, 8 and 9.
The rest of the section is dedicated to the proof of Lemma 8. Due to space constraint, the
proof of several claims is deferred to appendix.

Consider an incremental strDNNF(∧, r) compilation (D1, I1), . . . , (DN , IN) of ϕ. The
Apply operations are of the form

Di+1 = Apply(Di, Dc1∨c2 ,∧).

where c1 ∈ ϕ1 ∧ oddn and c2 ∈ ϕ2. Consider the largest integer k < N such that
we have that Dk+1 = Apply(Dk, Dγ1∨γ2 ,∧)
and γ1 is a clause of ϕ1 = rown (and not a clause of oddn)
and there are no clauses c1 ∈ ϕ1 and c2 ∈ ϕ2 such that c1∨c2 ̸= γ1∨γ2 and c1∨c2 |= γ1∨γ2.

3 The functions that we call ROWn and COLn do not equal the functions ROWn and COLn from [25].
Our ROWn(X) ∧ COLn(X) corresponds to PERMn in [25]

SAT 2023

7:12 Separating Incremental and Non-Incremental Bottom-Up Compilation

D
Conjoin

missing clauses
D=Dk

Forget
variables Y

D′≡
ψ(X,Y)∧

∧
S\γ1∨γ2

Conjoin
with ODD(X)

D′′≡
∃Y.ψ(X,Y)∧

∧
S\γ1∨γ2

Case disjunction
on γ1∨γ2

D′′′≡
ODD(X)∧

∧
S\γ1∨γ2

Figure 4 Strategy for proving Lemma 8.

For this k we have that every Dh for h > k + 1 is obtained either by a Restructure operation,
or by an Apply with an strDNNF circuit Dc1∨c2 such that c1 is a clause of oddn, or by an
Apply with an strDNNF circuit Dc1∨c2 that is entailed by Dk+1.

▷ Claim 10. For any h > k + 1 such that Dh = Apply(Dh−1, Dc1∨c2 ,∧) and c1 ∈ rown, we
have that Dk |= c1 ∨ c2 or γ1 ∨ γ2 |= c1 ∨ c2.

In the rest of the proof, we write D = Dk for convenience. The strategy for showing
Lemma 8 is to turn D into a circuit in strDNNF representing ROWn−∆ ∧ COLn−∆ by means
of a few polynomial-time transformations, as schematized in Figure 4. This differs slightly
from the strategy described in Section 4.1: we are not considering the very last Apply. The
reason is that the formula ϕ contains some clauses c such that ϕ \ c |= c. A few of these
clauses are even tautological. In a sense, these clauses are “irrelevant” in ϕ. Clearly, if the
last Apply of the compilation is conjoining the core to an irrelevant clause, then this Apply is
in fact not modifying the core and we should look at a previous Apply. One could think that
we could prove the statement for a formula ϕ where irrelevant clauses have been removed.
This is certainly true if we only remove tautologuous clauses. However we do not want to
remove the irrelevant clauses that are non-tautologous since such clauses are not necessarily
irrelevant for subformulas of ϕ. So, rather than removing irrelevant clauses from ϕ, we choose
to keep them and to consider another Apply than the very last one.

By definition, not all clauses of the form c1 ∨ c2 with c1 ∈ ϕ1 and c2 ∈ ϕ2 have been
conjoined to the core during the first k steps of the compilation. Let S = {c1 ∨ c2 | c1 ∈
ϕ1, c2 ∈ ϕ2} and let SD⊨ = {c ∈ S | D |= c} be the set of clauses of S that are entailed by D
and let S′ = SD⊨ \ {γ1 ∨ γ2}. Since γ1 ∨ γ2 has not been conjoined to D we have that

D ≡ ψ ∧
∧
S′

where ψ is a subformula of
∧
c∈oddn

∧
c2∈ϕ2

(c∨c2). Ideally we would like S′ to be S \{γ1 ∨γ2},
but this is generally not the case. Given a clause c, let Sc⊨ = {c′ | c′ ∈ S, c′ ̸= c and c |= c′}
be the set of clauses in S that are distinct from c and that are entailed by c. By Claim 10,
each clause in S is either entailed by D or is entailed by γ1 ∨γ2, so S′ ∪Sγ1∨γ2⊨ = S \{γ1 ∨γ2}.

▷ Claim 11. Let γ = γ1 ∨ γ2. For every vtree over X, there is a strDNNF of size O(n2)
respecting that vtree that represents

∧
Sγ⊨ (by convention

∧
∅ = 1).

By Claim 11, there is an strDNNF circuit Dγ1∨γ2⊨ of size O(n2) that computes
∧
Sγ1∨γ2⊨,

and that respects the same vtree as D, so let D′ = Apply(D,Dγ1∨γ2⊨,∧) whose size is
O(n2|D|). We have that:

D′ ≡ ψ ∧
∧

(S′ ∪ Sγ1∨γ2⊨) = ψ ∧
∧

(S \ {γ1 ∨ γ2})

≡ ψ ∧
∧

c1∈ϕ1\γ1

∧
c2∈ϕ2

(c1 ∨ c2) ∧
∧

c2∈ϕ2\γ2

∧
c1∈ϕ1

(c1 ∨ c2)

≡ ψ ∧ ((ϕ1 \ γ1) ∨ ϕ2) ∧ (ϕ1 ∨ (ϕ2 \ γ2))

The next step is to get rid of ψ, or rather to replace it somehow by the function ODD(X)
that is more convenient to manipulate.

▷ Claim 12. We have that ODD(X) |= ∃Y.ψ(X,Y).

A. de Colnet 7:13

In knowledge compilation, the forgetting transformation is, given a Boolean function repres-
entation Σ in some fixed language L and a set Z ⊂ var(Σ), to modify Σ into another function
representation Σ′ in L that is equivalent to ∃Z.Σ [6]. Forgetting is feasible in linear time
for the language of circuits in strDNNF [19]. So we can construct a circuit D′′ in strDNNF
representing ∃Y.D′(X,Y) and such that |D′′| = O(|D′|) = O(n2|D|). Since ϕ1 and ϕ2 are
formulas over X, we have that

D′′(X) ≡ ∃Y.D′(X,Y) ≡ ((ϕ1 \ γ1) ∨ ϕ2) ∧ (ϕ1 ∨ (ϕ2 \ γ2)) ∧ ∃Y.ψ(X,Y).

For every vtree over X, there exists a strDNNF circuit that represents ODD(X), that
respects the vtree, and whose size is in O(|X|) [20, Proposition 5]. Let DODD be such a
circuit respecting the same vtree as D′′. Then we have D′′′ = Apply(D′′, DODD,∧) whose
size is O(|X||D′′|) = O(n4|D|) and such that

D′′′(X) ≡ D′′(X) ∧ ODD(X) ≡
(
(ϕ1 \ γ1) ∨ ϕ2

)
∧

(
ϕ1 ∨ (ϕ2 \ γ2)

)
∧ ODD(X),

where the last equivalence follows from Claim 12. Furthermore, since ODD(X) ∧ ϕ1(X) =
ODD(X) ∧ rown(X) is unsatisfiable (because n is even), we have that

D′′′(X) ≡
((

(ϕ1 \ γ1) ∧ (ϕ2 \ γ2)
)

∨ ϕ2

)
∧ ODD(X).

We have gotten rid of ψ as promised. The rest of the proof requires a case disjunction over
γ1 and γ2.

If γ1 = (xi,1 ∨ · · · ∨xi,n) and γ2 = (xi′,j ∨xi′′,j), we can assume, without loss of generality,
that i ̸= i′ and i ̸= i′′ for otherwise γ1 ∨ γ2 would be tautological. We consider the
partial assignment a to X that maps all variables of the ith row to 0, that maps xi′,j and
xi′′,j to 1, and all other variable of the i′th and i′′th row 0, and that maps two columns
distinct from the jth column to 0. We denote by X ′ all other variables left unassigned.
For instance when i = 1, i′ = 2, i′′ = 3 and j = 1 we may have:

a =

0 0 0 · · · · · · 0
1 0 0 · · · · · · 0
1 0 0 · · · · · · 0
0 0 0
...

...
... X ′

0 0 0




.

Then we observe that (ϕ1 \ γ1)|a = (rown \ γ1)|a = rown−3(X ′), that ϕ2|a ≡ 0, that
(ϕ2 \ γ2)|a ≡ AMOpCOLn−3(X ′), and that ODD(X)|a = ODD(X ′). Thus

D′′′(X)|a ≡ rown−3(X ′) ∧ AMOpCOLn−3(X ′) ∧ ODD(X ′),

but since n− 3 is odd, we have that rown−3(X ′) |= ODD(X ′) and thus

D′′′(X)|a ≡ rown−3(X ′) ∧ AMOpCOLn−3(X ′) ≡ ROWn−3(X ′) ∧ COLn−3(X ′).

If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi,j ∨ xi′,j), then we consider the partial assignment a to
X that maps xi,j , xi,j′ and xi′,j to 1, and all other variables of the ith and i′th rows to
0, and all other variables of the jth and j′th column to 0. We denote by X ′ all other
variables left unassigned. For instance when i = 1, i′ = 2, j = 1 and j′ = 2 we have:

SAT 2023

7:14 Separating Incremental and Non-Incremental Bottom-Up Compilation

a =

1 1 0 · · · 0
1 0 0 · · · 0
0 0
...

... X ′

0 0




.

Then we observe that (ϕ1 \ γ1)|a = (rown \ γ1)|a = rown−2(X ′), that ϕ2|a ≡ 0, that
(ϕ2 \ γ2)|a ≡ AMOpCOLn−2(X ′), and that ODD(X)|a = EVEN(X ′). Thus

D′′′(X)|a ≡ rown−2(X ′) ∧ AMOpCOLn−2(X ′) ∧ EVEN(X ′),

but since n− 2 is even, we have that rown−2(X ′) |= EVEN(X ′) so

D′′′(X)|a ≡ rown−2(X ′) ∧ AMOpCOLn−2(X ′) ≡ ROWn−2(X ′) ∧ COLn−2(X ′).

If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi′,j′′ ∨ xi′′,j′′), where j j′ and j′′ are pairwise distinct
and where i, i′ and i′′ are pairwise distinct, then we consider the partial assignment a to
X that maps xi,j , xi,j′ , xi′,j′′ and xi′′,j′′ to 1, and that maps all other variables of the
ith, i′th and i′′th rows to 0, and that maps all other variables of the jth, j′th and j′′th
columns to 0. We denote by X ′ all other variables left unassigned. For instance when
i = 1, i′ = 2, i′′ = 3 and j = 2, j′ = 3, j′′ = 1 we have:

a =

0 1 1 0 · · · 0
1 0 0 0 · · · 0
1 0 0 0 · · · 0
0 0 0
...

...
... X ′

0 0 0




.

Then we observe that (ϕ1 \ γ1)|a = (rown \ γ1)|a = rown−3(X ′), that ϕ2|a ≡ 0, that
(ϕ2 \ γ2)|a ≡ AMOpCOLn−3(X ′), and that ODD(X)|a = ODD(X ′). Thus

D′′′(X)|a ≡ rown−3(X ′) ∧ AMOpCOLn−3(X ′) ∧ ODD(X ′),

but since n− 3 is odd, we have that rown−3(X ′) |= ODD(X ′) and thus

D′′′(X)|a ≡ rown−3(X ′) ∧ AMOpCOLn−3(X ′) ≡ ROWn−3(X ′) ∧ COLn−3(X ′).

All other cases are either similar to the these three, or correspond to cases where γ1 ∨ γ2 is
tautological or entailed by some other clause of S, which is impossible due to the assumptions
on k at the beginning of the proof. So, in all relevant cases, we have a partial assignment a
to X such that

D′′′(X)|a ≡ ROWn−∆(X ′) ∧ COLn−∆(X ′)

for some ∆ ≤ 3. Then we just condition D′′′ on a in linear time and we obtain a strDNNF
circuit over X ′ that computes ROWn−∆(X ′) ∧ COLn−∆(X ′). This concludes the proof of
Lemma 8. Given Lemmas 7 and 9, Theorem 1 follows.

A. de Colnet 7:15

5 Discussion and Conclusion

In this paper we have shown that non-incremental bottom-up (BU) compilation largely
outperforms incremental BU compilation space-wise. This raises several questions which
we address here. Perhaps the first that comes to mind is: what does it mean regarding
potential improvements of practical BU compilers? We have mentioned a non-incremental
BU compilation algorithm in Proposition 3 and the discussion before but only to give an
example that could be simulated by incremental BU compilation. Looking back at Figure 2,
it seems clustering is the key to the efficient compilation of ϕ into OBDD: first the clauses
are partitioned into disjoint clusters, then each cluster is compiled, and finally the resulting
circuits/diagrams are compiled incrementally together. Clustering is used in OBDD-based
refutations where heuristics create each cluster so that a variable can be forgotten (i.e.,
existentially quantified out) after compilation of the cluster [17, 18]. Contrary to refutations,
compilations do not allow forgetting variables so one should think of different clustering
strategies. But it is reasonable to believe that some formula can actually be compiled quite
efficiently incrementally while a systematic clustering step into a constant number of clusters
would make the compilation much harder. Actually it is not clear this work will fuel any
practical research on BU compilation. Indeed it is not hard to buy into the claim that
hypothetical efficient non-incremental BU compilers ought to be much more complex that
incremental ones. Aguably, finding a good ordering of the clauses for incremental compilers
is not an easy task and it is reasonable to expect that finding a good “DAG ordering” or
“tree ordering” is much harder as the space of possible orderings gets larger.

A discussion that we think is more interesting is about the strength of the frameworks
used to analyze practical algorithms. The framework for BU compilation is very general
and thus exponential lower bounds in this framework are strong results. On the other
hand, positive results may not translate into practical observations as they are obtained in a
framework that is too general. In our case, the positive results on the BU compilation of the
formulas from Theorem 1 will not be observed for any of the practical BU compilers that we
are aware of, as they all work (close to) incrementally. Going further, narrow frameworks
can also help explaining the behavior of algorithms on certain instances. For instance in [8],
specific CNF formulas are shown to be hard for BU compilation and the proof distinguishes
two cases: one where the last Apply conjoins representations for two large subformulas, and
another one where it conjoins at least one representation of a subformula with only a few
clauses. To explain the behavior of incremental BU compilers on these formulas, the second
case would be enough, and this case is arguably the easiest one in [8]. A future direction for
us is the comparison of top-down (TD) compilers and BU compilers. Are there formulas that
are provably hard for TD compilers (described in a suitable framework) but easy for BU
compilers, and vice-versa? For the separation to be observed empirically, tractability results
for BU compilation should use the incremental approach. In particular, should the formulas
of Theorem 1 be hard for TD compilers, we would not be completely satisfied saying that
these formulas answer one direction of the problem.

From a purely theoretical perspective, there are still open problems on BU compilation.
One that is related to this work is the separation of tree-like and general BU compilation. A
careful observation of the nice BU compilations of the formulas of Theorem 1 shows that
they are tree-like, that is, every intermediate OBDD is an input to at most one Apply. We
ask whether there exists a class of formulas that have polynomial-size BU compilation but
such that all tree-like BU compilations generate intermediate results of exponential size.

SAT 2023

7:16 Separating Incremental and Non-Incremental Bottom-Up Compilation

References
1 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint Propagation as a Proof

System. In Mark Wallace, editor, Principles and Practice of Constraint Programming – CP
2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 – October 1,
2004, Proceedings, volume 3258 of Lecture Notes in Computer Science, pages 77–91. Springer,
2004. doi:10.1007/978-3-540-30201-8_9.

2 Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677–692, 1986.

3 Arthur Choi and Adnan Darwiche. Dynamic Minimization of Sentential Decision Diagrams. In
Marie desJardins and Michael L. Littman, editors, Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA. AAAI
Press, 2013. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6470.

4 A. Darwiche. SDD: A New Canonical Representation of Propositional Knowledge Bases. In
Proc. of IJCAI’11, pages 819–826, 2011.

5 Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–647, 2001.
doi:10.1145/502090.502091.

6 Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. J. Artif. Intell. Res.,
17:229–264, 2002. doi:10.1613/jair.989.

7 Alexis de Colnet. A Lower Bound on DNNF Encodings of Pseudo-Boolean Constraints. In
Luca Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing
– SAT 2020 – 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings,
volume 12178 of Lecture Notes in Computer Science, pages 312–321. Springer, 2020. doi:
10.1007/978-3-030-51825-7_22.

8 Alexis de Colnet and Stefan Mengel. Lower Bounds on Intermediate Results in Bottom-Up
Knowledge Compilation. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI
2022 Virtual Event, February 22 – March 1, 2022, pages 5564–5572. AAAI Press, 2022. URL:
https://ojs.aaai.org/index.php/AAAI/article/view/20496.

9 Luke Friedman and Yixin Xu. Exponential Lower Bounds for Refuting Random Formulas
Using Ordered Binary Decision Diagrams. In Andrei A. Bulatov and Arseny M. Shur,
editors, Computer Science – Theory and Applications – 8th International Computer Science
Symposium in Russia, CSR 2013, Ekaterinburg, Russia, June 25-29, 2013. Proceedings,
volume 7913 of Lecture Notes in Computer Science, pages 127–138. Springer, 2013. doi:
10.1007/978-3-642-38536-0_11.

10 Jinbo Huang and Adnan Darwiche. Using DPLL for Efficient OBDD Construction. In SAT
2004 – The Seventh International Conference on Theory and Applications of Satisfiability
Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings, 2004. URL: http:
//www.satisfiability.org/SAT04/programme/61.pdf.

11 Jinbo Huang and Adnan Darwiche. DPLL with a Trace: From SAT to Knowledge Compilation.
In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland,
UK, July 30 – August 5, 2005, pages 156–162. Professional Book Center, 2005. URL: http:
//ijcai.org/Proceedings/05/Papers/0876.pdf.

12 Dmitry Itsykson, Alexander Knop, Andrei E. Romashchenko, and Dmitry Sokolov. On OBDD-
based Algorithms and Proof Systems that Dynamically Change the order of Variables. J.
Symb. Log., 85(2):632–670, 2020. doi:10.1017/jsl.2019.53.

13 Dmitry Itsykson, Artur Riazanov, and Petr Smirnov. Tight Bounds for Tseitin Formulas.
In Kuldeep S. Meel and Ofer Strichman, editors, 25th International Conference on Theory
and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel, volume
236 of LIPIcs, pages 6:1–6:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.SAT.2022.6.

https://doi.org/10.1007/978-3-540-30201-8_9
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6470
https://doi.org/10.1145/502090.502091
https://doi.org/10.1613/jair.989
https://doi.org/10.1007/978-3-030-51825-7_22
https://doi.org/10.1007/978-3-030-51825-7_22
https://ojs.aaai.org/index.php/AAAI/article/view/20496
https://doi.org/10.1007/978-3-642-38536-0_11
https://doi.org/10.1007/978-3-642-38536-0_11
http://www.satisfiability.org/SAT04/programme/61.pdf
http://www.satisfiability.org/SAT04/programme/61.pdf
http://ijcai.org/Proceedings/05/Papers/0876.pdf
http://ijcai.org/Proceedings/05/Papers/0876.pdf
https://doi.org/10.1017/jsl.2019.53
https://doi.org/10.4230/LIPIcs.SAT.2022.6

A. de Colnet 7:17

14 Jan Krajícek. An exponential lower bound for a constraint propagation proof system based
on ordered binary decision diagrams. J. Symb. Log., 73(1):227–237, 2008. doi:10.2178/jsl/
1208358751.

15 Pierre Marquis. Compile! In Blai Bonet and Sven Koenig, editors, Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA, pages 4112–4118. AAAI Press, 2015. URL: http://www.aaai.org/ocs/index.php/AAAI/
AAAI15/paper/view/9596.

16 Nina Narodytska and Toby Walsh. Constraint and Variable Ordering Heuristics for Compiling
Configuration Problems. In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,
2007, pages 149–154, 2007. URL: http://ijcai.org/Proceedings/07/Papers/022.pdf.

17 Guoqiang Pan and Moshe Y. Vardi. Search vs. Symbolic Techniques in Satisfiability Solving. In
SAT 2004 – The Seventh International Conference on Theory and Applications of Satisfiability
Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings, 2004. URL: http:
//www.satisfiability.org/SAT04/programme/62.pdf.

18 Guoqiang Pan and Moshe Y. Vardi. Symbolic Techniques in Satisfiability Solving. J. Autom.
Reason., 35(1-3):25–50, 2005. doi:10.1007/s10817-005-9009-7.

19 Knot Pipatsrisawat and Adnan Darwiche. New Compilation Languages Based on Structured
Decomposability. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, pages 517–522. AAAI Press, 2008. URL: http://www.aaai.org/Library/AAAI/2008/
aaai08-082.php.

20 Knot Pipatsrisawat and Adnan Darwiche. Top-Down Algorithms for Constructing Structured
DNNF: Theoretical and Practical Implications. In Helder Coelho, Rudi Studer, and Michael J.
Wooldridge, editors, ECAI 2010 – 19th European Conference on Artificial Intelligence, Lisbon,
Portugal, August 16-20, 2010, Proceedings, volume 215 of Frontiers in Artificial Intelligence
and Applications, pages 3–8. IOS Press, 2010. URL: http://www.booksonline.iospress.nl/
Content/View.aspx?piid=17704.

21 Steven D. Prestwich. CNF Encodings. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability – Second Edition, volume 336 of Frontiers
in Artificial Intelligence and Applications, pages 75–100. IOS Press, 2021. doi:10.3233/
FAIA200985.

22 Nathan Segerlind. On the Relative Efficiency of Resolution-Like Proofs and Ordered Binary
Decision Diagram Proofs. In Proceedings of the 23rd Annual IEEE Conference on Computa-
tional Complexity, CCC 2008, 23-26 June 2008, College Park, Maryland, USA, pages 100–111.
IEEE Computer Society, 2008. doi:10.1109/CCC.2008.34.

23 Olga Tveretina, Carsten Sinz, and Hans Zantema. Ordered Binary Decision Diagrams,
Pigeonhole Formulas and Beyond. J. Satisf. Boolean Model. Comput., 7(1):35–58, 2010.
doi:10.3233/sat190074.

24 Romain Wallon and Stefan Mengel. Revisiting Graph Width Measures for CNF-Encodings. J.
Artif. Intell. Res., 67:409–436, 2020. doi:10.1613/jair.1.11750.

25 Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000. URL:
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/.

A Appendix

A.1 Missing Proofs of Section 3
We show the following lemma before proving Proposition 3.

▶ Lemma 13. Let ϕ1 and ϕ2 be such that var(ϕ1)∩var(ϕ2) = ∅. Given (D1
1, I

1
1), . . . , (D1

s , I
1
s)

an incremental strDNNF(∧,r) compilation of ϕ1, and (D2
1, I

2
1), . . . , (D2

t , I
2
t) an incremental

strDNNF(∧,r) compilation of ϕ2, there is an incremental strDNNF(∧,r) compilation of
ϕ1 ∧ ϕ2 whose largest elements has size at most maxi |D1

i | + maxj |D2
j | + 1.

SAT 2023

https://doi.org/10.2178/jsl/1208358751
https://doi.org/10.2178/jsl/1208358751
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9596
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9596
http://ijcai.org/Proceedings/07/Papers/022.pdf
http://www.satisfiability.org/SAT04/programme/62.pdf
http://www.satisfiability.org/SAT04/programme/62.pdf
https://doi.org/10.1007/s10817-005-9009-7
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.booksonline.iospress.nl/Content/View.aspx?piid=17704
http://www.booksonline.iospress.nl/Content/View.aspx?piid=17704
https://doi.org/10.3233/FAIA200985
https://doi.org/10.3233/FAIA200985
https://doi.org/10.1109/CCC.2008.34
https://doi.org/10.3233/sat190074
https://doi.org/10.1613/jair.1.11750
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/

7:18 Separating Incremental and Non-Incremental Bottom-Up Compilation

Proof. Just take the compilation (D1, I1), . . . , (Ds, Is), (Ds+1, Is+1), . . . , (Ds+t, Is+t) where
Ii = I1

i and Di = D1
i for 1 ≤ i ≤ s and Is+j is Ij where every D2

j is replaced by Ds+j =
Ds ∧ D2

j (that is, the root of Ds+j is one ∧-node whose children are Ds and D2
j). Since

var(Ds) ∩ var(D2
j) ⊆ var(ϕ1) ∩ var(ϕ2) = ∅, each Ds+j is a strDNNF circuit. It is a bottom-

up compilation of ϕ1 ∧ ϕ2 whose size is at most max(maxi |D1
i |, 1 + |D1

s | + maxj |D2
j |). ◀

▶ Proposition 3. Every strDNNF(∧,r) compilation of a CNF formula ϕ where every Apply
that does not involve a clause of ϕ computes the conjunction of two strDNNF circuits
representing subformulas of ϕ over disjoint set of variables, can be transformed into an
incremental strDNNF(∧,r) compilation with only a polynomial increase in size.

Proof. We can restrict our focus to BU compilations where all circuits constructed, except
the last one, are used as premises for some Restructure or Apply instructions. For D an
intermediate circuit in the compilation, let pred(D) be the set containing D plus all circuits
constructed before D in the compilation and that are used in the construction of D. More
formally, if D = Compile(C) then pred(D) = {D}, if D = Apply(D′, D′′,∧) then pred(D) =
{D} ∪ pred(D′) ∪ pred(D′′) and if D = Restructure(D′) then pred(D) = {D} ∪ pred(D′).
In particular, calling D∗ ≡ ϕ the final circuit of the compilation, pred(D∗) is the set of all
circuits generated during the compilation. Let further kD be the number of decomposable
Apply done to construct D. Consider the last decomposable Apply in the compilation: D =
Apply(D′, D′′,∧) with var(D′)∩var(D′′) = ∅. Suppose there is an incremental strDNNF(∧,r)
compilation of D′ (resp. D′′) whose largest circuit has size at most kD′ +

∑
K∈pred(D′) |K|

(resp. kD′′ +
∑
K∈pred(D′′) |K|). By Lemma 13, there is an incremental BU compilation of D

that generates only circuits of size at most 1+kD′ +kD′′ +
∑
K∈pred(D′) |K|+

∑
K∈pred(D′′) |K|.

And since pred(D′) and pred(D′′) are disjoint for a decomposable Apply, this upper bound
equals kD +

∑
K∈pred(D) |K|. Calling D∗ ≡ ϕ the final circuit of the compilation, we obtain

by induction that ϕ can be compiled by an incremental strDNNF(∧,r) compilation that
generates only circuits of size at most kD∗ +

∑
K∈pred(D∗) |K| where kD∗ = O(|ϕ|), which is

a polynomial size increase compared to the original compilation. ◀

We are now going to prove Proposition 4. Before that, we recall a seemingly insignificant
property of OBDDs, SDDs and strDNNF circuits: given a set X of variables, for every vtree
T over X, every clause c over X has a representation in OBDD, SDD and strDNNF that
respects T and whose size is O(|c|).

▶ Proposition 4. Let L ∈ {OBDD,SDD, strDNNF}, let (Σ1, I1), . . . , (ΣN , IN) be an
incremental L(∧,r) compilation of the CNF formula ϕ over n variables. There exists an
incremental L(∧,r) compilation (Σ′

1, I
′
1), . . . , (Σ′

M , I
′
M) of ϕ such that M ≤ 2N and, for every

j ∈ {1, . . . ,M} there is an i ∈ {1, . . . , N} such that Σ′
j ≡ Σi and |Σ′

j | ≤ 2n|Σi|. In addition,
when Σ′

j is obtained by restructuring Σ′
j−1, we have |Σ′

j | ≤ |Σ′
j−1|.

Proof. We follow the instructions I1, . . . , IN and construct (Σ′
1, I

′
1), . . . , (Σ′

M , I
′
M) along the

way. We denote by Si the subsequence of this sequence, that we have after obtaining Σi.
We begin with Σ′

1 = Σ1, I ′
1 = I1 and S1 = ((Σ′

1, I
′
1)). We will denote by Si · x the sequence

obtained adding x at the end of Si. We say that invariant (I) holds at step i when, after Σi is
constructed, denoting Si = ((Σ′

1, I
′
1), . . . , (Σ′

j , I
′
j)), we have that Σ′

j ≡ Σi and |Σ′
j | ≤ |Σi|. (I)

clearly holds at step 1. Now let us assume that (I) holds at step i, let j = |Si|, and consider
the instruction Ii+1. There are three cases to consider.

Ii+1 is Σi+1 = Restructure(Σi). If |Σi+1| > |Σ′
j | then, since Σi+1 ≡ Σi ≡ Σ′

j , we
simply define Si+1 = Si. Otherwise, if |Σi+1| ≤ |Σ′

j | then we define Σ′
j+1 = Σi+1 and

I ′
j+1 : Σ′

j+1 = Restructure(Σ′
j) (recall that Σ′

j ≡ Σi ≡ Σi+1 = Σ′
j+1 by the invariant) and

Si+1 = Si · (Σ′
j+1, I

′
j+1). In both cases, invariant (I) holds at step i+ 1.

A. de Colnet 7:19

Ii+1 is Σi+1 = Apply(Σi,Σc,∧) where c ∈ ϕ. Let Σ′
c be the linear-size representation of c

in L that respects the same vtree as Σ′
j . Now define I ′

j+1 as Σ′
j+1 = Apply(Σ′

j ,Σ′
c,∧). We

have that Σ′
j ≡ Σi so Σ′

j+1 ≡ Σi+1. Moreover, since |Σ′
c| ≤ 2|var(c)| ≤ 2n and since the

Apply is a quadratic-time procedure, we have that |Σ′
j+1| ≤ 2n|Σ′

j | ≤ 2n|Σi|. If |Σ′
j+1| ≤

|Σi+1|, then we define Si+1 = Si·(Σ′
j+1, I

′
j+1). Otherwise if |Σ′

j+1| > |Σi+1|, then we define
Σ′
j+2 = Σi+1, I ′

j+2 : Σ′
j+2 = Restructure(Σ′

j+1) and Si+1 = Si · (Σ′
j+1, I

′
j+1) · (Σ′

j+2, I
′
j+2).

In both cases, invariant (I) holds at step i+ 1.
At the end of the construction we have SN = ((Σ′

1, I
′
1), . . . , (Σ′

M , I
′
M)) and Σ′

M ≡ ΣN ≡ ϕ

since (I) holds at step N . At every step, we add at most two elements to Si, so M ≤ 2N .
Furthermore, for every j ≥ 1, Σ′

j+1 is either the result of an Apply between Σ′
j and a clause

of ϕ, or comes from restructuring Σ′
j . So SN is an incremental L(∧,r) compilation of ϕ.

Looking back at our construction of Si, we see that (1) restructuring is only used when it
decreases the size of the OBDD and (2) that every Σ′

j is equivalent to some Σi and that its
size is never greater than 2n|Σi|. ◀

A.2 Missing Proofs of Section 4
▷ Claim 6. B1 ∧ · · · ∧Bj is equivalent to the OBDD represented in Figure (3a).

Proof. Recall that Bj ≡ xi,j ∨
∧
k>j xi,k where i is fixed. So B1 ∧ B2 ∧ · · · ∧ Bj ≡(

xi,1 ∨
∧
k>1 xi,k

)
∧

(
xi,2 ∨

∧
k>2 xi,k

)
∧· · ·∧

(
xi,j ∨

∧
k>j xi,k

)
. We argue by case disjunction

on xi,1 + · · · + xi,j . First, any assignment to (xi,k)k that satisfies xi,1 + · · · + xi,j = 0 clearly
satisfies B1 ∧B2 ∧ · · · ∧Bj . Second, any assignment that satisfies xi,1 + · · · +xi,j = 1 satisfies
B1 ∧B2 ∧ · · · ∧Bj if and only if it satisfies

∧
k>j xi,k. Finally, any assignment that satisfies

xi,1 + · · · + xi,j > 1 falsifies B1 ∧B2 ∧ · · · ∧Bj . Thus B1 ∧B2 ∧ · · · ∧Bj is equivalent to

(xi,1 + · · · + xi,j = 0) ∨ ((xi,1 + · · · + xi,j = 1) ∧ (xi,j+1 + · · · + xi,n = 0))

It is clear that the OBDD represented in Figure (3b) computes the function written above.
◁

▷ Claim 10. For any h > k + 1 such that Dh = Apply(Dh−1, Dc1∨c2 ,∧) and c1 ∈ rown, we
have that Dk |= c1 ∨ c2 or γ1 ∨ γ2 |= c1 ∨ c2.

Proof. Suppose there is an h > k + 1 such that Dh = Apply(Dh−1, Dc1∨c2 ,∧), c1 ∈ rown,
and Dk ̸|= c1 ∨ c2 and γ1 ∨ γ2 ̸|= c1 ∨ c2. If there is no other clause of ϕ that entails c1 ∨ c2
then this contradicts the fact that k is maximal. Otherwise, if c1 ∨ c2 is entailed by another
clause c′

1 ∨ c′
2 of ϕ, then c′

1 ∈ rown(X) since c1 ∨ c2 uses only variables of X while every
clause of oddn(X,Y) features an encoding variable of Y . In addition, the integer h′ such
that Dh′ = Apply(Dh′−1, Dc′

1∨c′
2
,∧) is greater than k+ 1, for otherwise we would have either

Dk |= Dh′ |= Dc′
1∨c′

2
|= Dc1∨c2 |= c1 ∨ c2 (for h′ < k + 1) or γ1 ∨ γ2 = c′

1 ∨ c′
2 |= c1 ∨ c2

(for h′ = k + 1). So we repeat the argument with the clause c′
1 ∨ c′

2 instead of c1 ∨ c2 until
reaching a contradiction. ◁

▷ Claim 12. We have that ODD(X) |= ∃Y.ψ(X,Y).

Proof. First note that we have oddn(X,Y) |= oddn(X,Y) ∨ ϕ2(X) |= ψ(X,Y) since ψ is a
subformula of a formula equivalent to oddn(X,Y) ∨ϕ2(X). Since ∃Y.oddn(X,Y) ≡ ODD(X),
it only remains to explain that ∃Y.oddn(X,Y) |= ∃Y.ψ(X,Y). Let aX be an assignment to
X satisfying ∃Y.oddn(X,Y). Then there exists an assignment aY to Y such that aX ∪ aY
satisfies oddn(X,Y). But then aX ∪ aY satisfies ψ(X,Y), and thus aX satisfies ∃Y.ψ(X,Y).
So ∃Y.oddn(X,Y) |= ∃Y.ψ(X,Y). ◁

SAT 2023

7:20 Separating Incremental and Non-Incremental Bottom-Up Compilation

▷ Claim 11. Let γ = γ1 ∨ γ2. For every vtree over X, there is a strDNNF of size O(n2)
respecting that vtree that represents

∧
Sγ⊨ (by convention

∧
∅ = 1).

Proof. Some clauses of S are tautological, that is, they contain a variable x and its negation
x and are thus equivalent to 1, let Staut ⊂ S be the set of such clauses. We now consider the
different possibilities for γ1 ∨ γ2.

If γ1 = (xi,1 ∨ · · · ∨ xi,n) and γ2 = (xi,j ∨ xi′,j) then γ is tautological so Sγ⊨ ⊆ Staut.
If γ1 = (xi,1 ∨ · · · ∨ xi,n) and γ2 = (xi′,j ∨ xi′′,j) where i, i′ and i′′ are pairwise distinct,
then Sγ⊨ ⊆ Staut.
If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi′,j′′ ∨ xi′′,j′′) where i, i′, i′′ are pairwise distinct and
where j, j′, j′′ are pairwise distinct. Then Sγ⊨ ⊆ Staut.
If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi′,j ∨ xi′′,j) where i, i′, i′′ are pairwise distinct. Then
Sγ⊨ ⊆ Staut.
If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi,j′′ ∨ xi′,j′′) where j, j′, j′′ are pairwise distinct. Then
Sγ⊨ ⊆ Staut.
If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi,j ∨ xi′,j), then Sγ⊨ is the set of all clauses of the form
γ1 ∨ (xi′,j ∨ xi′′,j) for i′′ ̸= i and i′′ ̸= i′, plus all clauses of the form (xi,j′ ∨ xi,j′′) ∨ γ2 for
j′′ ̸= j and j′′ ̸= j′, plus all the tautological clauses.

The claim is trivially true when Sγ⊨ ⊆ Staut, so we only have the last case to consider. For any
given vtree, we want an small strDNNF circuit that computes

∧
i′′ ̸∈{i,i′}(γ1 ∨ xi′,j ∨ xi′′,j) ∧∧

j′′ ̸∈{j,j′}(xi,j′ ∨ xi,j′′ ∨ γ2) ≡
(
γ1 ∨ xi′,j ∨

∧
i′′ ̸∈{i,i′} xi′′,j

)
∧

(
γ2 ∨ xi,j′ ∨

∧
j′′ ̸∈{j,j′} xi,j′′

)
.

It is readily verified that, for any vtree, there are strDNNF circuits of size O(n) that computes∧
i′′ ̸∈{i,i′} xi′′,j and

∧
j′′ ̸∈{j,j′} xi,j′′ and that there are strDNNF circuits of size of size O(1)

computing γ1 ∨ xi′,j and γ2 ∨ xi,j′ . So, for any vtree, we start from these strDNNF circuits
and apply two disjunctions and one conjunction to obtain a strDNNF circuit of size O(n2)
computing the desired function. ◁

	1 Introduction
	2 Preliminaries
	3 Incremental and Non-Incremental Bottom-Up Compilation
	4 Separating Incremental and Non-Incremental Compilation
	4.1 General Idea for the Separation
	4.2 The Formula phi for the Separation
	4.3 phi is Easy to Compile in OBDD(land,r)
	4.4 phi is Hard to Compile Incrementally in strDNNF(land,r)

	5 Discussion and Conclusion
	A Appendix
	A.1 Missing Proofs of Section 3
	A.2 Missing Proofs of Section 4

