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1 Introduction

The ability to determine upper bounds for the number of execution steps of a program in
compilation time is a relevant problem, since it allows us to know in advance the computational
resources needed to run the program.

Type systems are a powerful and successful tool of static program analysis that are used,
for example, to detect errors in programs before running them. Quantitative type systems,
besides helping on the detection of errors, can also provide quantitative information related
to computational properties.

Intersection types, defined by the grammar σ ::= α | σ1 ∩ · · · ∩ σn → σ (where α is a type
variable and n ≥ 1), are used in several type systems for the λ-calculus [6, 7, 18, 27] and allow
λ-terms to have more than one type. Non-idempotent intersection types [16, 20, 12, 4], also
known as quantitative types, are a flavour of intersection types in which the type constructor
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8:2 Linear Rank Intersection Types

∩ is non-idempotent, and provide more than just qualitative information about programs.
They are particularly useful in contexts where we are interested in measuring the use of
resources, as they are related to the consumption of time and space in programs. Type
systems based on non-idempotent intersection types, use non-idempotence to count the
number of evaluation steps and the size of the result. For instance in [1], the authors define
several quantitative type systems, corresponding to different evaluation strategies, for which
they are able to measure the number of steps taken by that strategy to reduce a term to
its normal form, and the size of the term’s normal form. Typability is undecidable for
intersection type systems, as it corresponds to termination. One way to get around this
is to restrict intersection types to finite ranks, a notion defined by Daniel Leivant in [21]
that makes typability decidable - Kfoury and Wells [19] define an intersection type system
that, when restricted to any finite-rank, has principal typings and decidable type inference.
Type systems that use finite-rank intersection types are still very powerful and useful. For
instance, rank 2 intersection type systems [18, 26, 11] are more powerful, in the sense that
they can type strictly more terms, than popular systems like the ML type system [10]. Still
related to decidability of typability for finite ranks, Dudenhefner and Rehof [14] studied the
problem for a notion of bounded-dimensional intersection types. This notion was previously
defined in the context of type inhabitation [13], where it was used to prove decidability of
type inhabitation for a non-idempotent intersection type system (the problem is known to
be undecidable above rank 2, for idempotent intersection types [25]).

In this paper we present a new definition of rank for the quantitative types, which we call
linear rank and differs from the classical one in the base case – instead of simple types, linear
rank 0 intersection types are the linear types. In a non-idempotent intersection type system,
every linear term is typable with a simple type (in fact, in many of those systems, only the
linear terms are), which is the motivation to use linear types for the base case. The relation
between non-idempotent intersection types and linearity has already been studied by Kfoury
[20], de Carvalho [12], Gardner [16] and Florido and Damas [15]. Our motivation to redefine
rank in the first place, has to do with our interest in using non-idempotent intersection types
to estimate the number of evaluation steps of a λ-term to normal form while inferring its
type, and the realization that there is a way to define rank that is more suitable for the
quantitative types. We define a new intersection type system for the λ-calculus, restricted to
linear rank 2 non-idempotent intersection types, and a new type inference algorithm that we
prove to be sound and complete with respect to the type system.

Finally we extend our type system and inference algorithm to use the quantitative
properties of the linear rank 2 non-idempotent intersection types to infer not only the type
of a λ-term, but also the number of evaluation steps of the term to its normal form. The new
type system is the result of a merge between our Linear Rank 2 Intersection Type System
and the system for the leftmost-outermost evaluation strategy presented in [1]. The type
system in [1] is a quantitative typing system extended with the notion of tight types (which
provide an effective characterisation of minimal typings) that is crucial to extract exact
bounds for reduction. We prove that the system gives the correct number of evaluation steps
for a kind of derivation. As for the new type inference algorithm, we show that it is sound
and complete with respect to the type system for the inferred types, and conjecture that the
inferred measures correspond to the ones given by the type system (i.e., correspond to the
number of evaluation steps of the term to its normal form, when using the leftmost-outermost
evaluation strategy).

Thus, the main contributions of this paper are the following:
A new definition of rank for non-idempotent intersection types, which we call linear rank
(Section 3);
A Linear Rank 2 Intersection Type System for the λ-calculus (Section 3);
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A type inference algorithm that is sound and complete with respect to the Linear Rank 2
Intersection Type System (Section 3);
A Linear Rank 2 Quantitative Type System for the λ-calculus that derives a measure
related to the number of evaluation steps for the leftmost-outermost strategy (Section 4);
A type inference algorithm that is sound and complete with respect to the Linear
Rank 2 Quantitative Type System, for the inferred types, and gives a measure that we
conjecture to correspond to the number of evaluation steps of the typed term for the
leftmost-outermost strategy (Section 4).

In this paper we assume that the reader is familiar with the λ-calculus [3]. From now on,
in the rest of the paper, terms of the λ-calculus are considered modulo α-equivalence and we
use Barendregt’s variable convention [2].

2 Intersection Types

The simply typed λ-calculus is a typed version of the λ-calculus, introduced by Alonzo Church
in [5] and by Haskell Curry and Robert Feys in [9]. One system that uses simple types is
the Curry Type System, which was first introduced in [8] for the theory of combinators, and
then modified for the λ-calculus in [9]. Typability in this system is decidable and there is
an algorithm that given a term, returns its principal pair. However, the system presents
some disadvantages when comparing to others, one of them being the large number of terms
that cannot be typed. For example, in the Curry Type System we cannot assign a type
to the λ-term λx.xx. This term, on the other hand, can be typed in systems that use
intersection types, which allow terms to have more than one type. Such a system is the
Coppo-Dezani Type System [6], which was one of the first to use intersection types, and a
basis for subsequent systems.

▶ Definition 1 (Intersection types). Intersection types σ, σ1, σ2, . . . ∈ T are defined by the
following grammar:

σ ::= α | σ1 ∩ · · · ∩ σn → σ

where n ≥ 1 and σ1 ∩ · · · ∩ σn is called a sequence of types.
Note that intersections arise in different systems in different scopes. Here we follow

several previous presentations where intersections are only allowed directly on the left-hand
side of arrow types and sequences are non-empty [6, 7, 18, 27].

▶ Notation. The intersection type constructor ∩ binds stronger than →: α1 ∩ α2 → α3
stands for (α1 ∩ α2) → α3.

▶ Example 2. Some examples of intersection types are:

α;
α1 → α2;
α1 ∩ α2 → α3;
(α1 ∩ α2 → α3) → α4;
α1 ∩ (α1 → α2) → α3.

▶ Definition 3 (Coppo-Dezani Type System). In the Coppo-Dezani Type System, we say that
M has type σ given the environment Γ (where the predicates of declarations are sequences),
and write Γ ⊢CD M : σ, if Γ ⊢CD M : σ can be obtained from the derivation rules in Figure 1,
where 1 ≤ i ≤ n:

TYPES 2022



8:4 Linear Rank Intersection Types

Γ ∪ {x : σ1 ∩ · · · ∩ σn} ⊢CD x : σi (Axiom)

Γ ∪ {x : σ1 ∩ · · · ∩ σn} ⊢CD M : σ

Γ ⊢CD λx.M : σ1 ∩ · · · ∩ σn → σ
(→ Intro)

Γ ⊢CD M1 : σ1 ∩ · · · ∩ σn → σ Γ ⊢CD M2 : σ1 · · · Γ ⊢CD M2 : σn

Γ ⊢CD M1M2 : σ
(→ Elim)

Figure 1 Coppo-Dezani Type System.

▶ Example 4. For the λ-term λx.xx the following derivation is obtained:

{x : σ1 ∩ (σ1 → σ2)} ⊢CD x : σ1 → σ2 {x : σ1 ∩ (σ1 → σ2)} ⊢CD x : σ1

{x : σ1 ∩ (σ1 → σ2)} ⊢CD xx : σ2

⊢CD λx.xx : σ1 ∩ (σ1 → σ2) → σ2

This system is a true extension of the Curry Type System, allowing term variables to
have more than one type in the (→ Intro) derivation rule and the right-hand term to also
have more than one type in the (→ Elim) derivation rule.

2.1 Finite Rank
Intersection type systems, like the Coppo-Dezani Type System, characterize termination, in
the sense that a λ-term is strongly normalizable if and only if it is typable in an intersection
type system. Thus, typability is undecidable for these systems.

To get around this, some current intersection type systems are restricted to types of
finite rank [18, 26, 19, 11] using a notion of rank first defined by Daniel Leivant in [21]. This
restriction makes typability decidable [19]. Despite using finite-rank intersection types, these
systems are still very powerful and useful. For instance, rank 2 intersection type systems
[18, 26, 11] are more powerful, in the sense that they can type strictly more terms, than
popular systems like the ML type system [10].

The rank of an intersection type is related to the depth of the nested intersections and it
can be easily determined by examining the type in tree form: a type is of rank k if no path
from the root of the type to an intersection type constructor ∩ passes to the left of k arrows.

▶ Example 5. The intersection type α1 ∩ (α1 → α2) → α2 (tree on the left) is a rank 2 type
and (α1 ∩ α2 → α3) → α4 (tree on the right) is a rank 3 type:

→

∩

α1 →

α1 α2

α2

→

→

∩

α1 α2

α3

α4
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▶ Definition 6 (Rank of intersection types). Let T0 be the set of simple types and T1 =
{τ1 ∩ · · · ∩ τm | τ1, . . . , τm ∈ T0, m ≥ 1} the set of sequences of simple types (written as τ⃗).
The set Tk, of rank k intersection types (for k ≥ 2), can be defined recursively in the following
way (n ≥ 3, m ≥ 1):

T2 = T0 ∪ {τ⃗ → σ | τ⃗ ∈ T1, σ ∈ T2}
Tn = Tn−1 ∪ {ρ1 ∩ · · · ∩ ρm → σ | ρ1, . . . , ρm ∈ Tn−1, σ ∈ Tn}

▶ Notation. We consider the intersection type constructor ∩ to be associative, commutative
and non-idempotent (meaning that α ∩ α is not equivalent to α).

We are particularly interested in non-idempotent intersection types, also known as
quantitative types, because they provide more quantitative information than the idempotent
ones.

3 Linear Rank Intersection Types

In the previous chapter, we mentioned several intersection type systems in which intersection
is idempotent and types are rank-restricted. There are also many quantitative type systems
[16, 20, 12, 4] that, on the other hand, make use of non-idempotent intersection types, for
which there is no specific definition of rank.

The generalization of ranking for non-idempotent intersection types is not trivial and
raises interesting questions that we will address in this chapter, along with a definition of a
new non-idempotent intersection type system and a type inference algorithm.

This and the following sections cover original work that we presented at the TYPES 2022
conference [23].

3.1 Linear Rank
The set of terms typed using idempotent rank 2 intersection types and non-idempotent rank 2
intersection types is not the same. For instance, the term (λx.xx)(λfx.f(fx)) is typable with
a simple type when using idempotent intersection types, but not when using non-idempotent
intersection types. This comes from the two different occurrences of f in λfx.f(fx), which
even if typed with the same type, are not contractible because intersection is non-idempotent.
Note that this is strongly related to the linearity features of terms. A λ-term M is called
a linear term if and only if, for each subterm of the form λx.N in M , x occurs free in N

exactly once, and if each free variable of M has just one occurrence free in M . So the term
(λx.xx)(λfx.f(fx)) is not typable with a non-idempotent rank 2 intersection type precisely
because the term λfx.f(fx) is not linear.

Note that in a non-idempotent intersection type system, every linear term is typable with
a simple type (in fact, in many of those systems, only the linear terms are). This motivated
us to come up with a new notion of rank for non-idempotent intersection types, based on
linear types (the ones derived in a linear type system – a substructural type system in which
each assumption must be used exactly once, corresponding to the implicational fragment of
linear logic [17]). The relation between non-idempotent intersection types and linearity was
first introduced by Kfoury [20] and further explored by de Carvalho [12], who established its
relation with linear logic.

Here we propose a new definition of rank for intersection types, which we call linear
rank and differs from the classical one in the base case – instead of simple types, linear
rank 0 intersection types are the linear types – and in the introduction of the functional type
constructor “linear arrow” ⊸.

TYPES 2022
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▶ Definition 7 (Linear rank of intersection types). Let TL0 = V ∪ {τ1 ⊸ τ2 | τ1, τ2 ∈ TL0}
be the set of linear types and TL1 = {τ1 ∩ · · · ∩ τm | τ1, . . . , τm ∈ TL0, m ≥ 1} the set of
sequences of linear types. The set TLk, of linear rank k intersection types (for k ≥ 2), can
be defined recursively in the following way (n ≥ 3, m ≥ 2):

TL2 = TL0 ∪ {τ ⊸ σ | τ ∈ TL0, σ ∈ TL2}
∪ {τ1 ∩ · · · ∩ τm → σ | τ1, . . . , τm ∈ TL0, σ ∈ TL2}

TLn = TLn−1 ∪ {ρ ⊸ σ | ρ ∈ TLn−1, σ ∈ TLn}
∪ {ρ1 ∩ · · · ∩ ρm → σ | ρ1, . . . , ρm ∈ TLn−1, σ ∈ TLn}

Initially, the idea for the change arose from our interest in using rank-restricted intersection
types to estimate the number of evaluation steps of a λ-term while inferring its type. While
defining the intersection type system to obtain quantitative information, we realized that
the ranks could be potentially more useful for that purpose if the base case was changed to
types that give more quantitative information in comparison to simple types, which is the
case for linear types – for instance, if a term is typed with a linear rank 2 intersection type,
one knows that each occurrence of its arguments is linear, meaning that they will be used
exactly once.

The relation between the standard definition of rank and our definition of linear rank
is not clear, and most likely non-trivial. Note that the set of terms typed using standard
rank 2 intersection types [18, 26] and linear rank 2 intersection types is not the same. For
instance, again, the term (λx.xx)(λfx.f(fx)), typable with a simple type in the standard
Rank 2 Intersection Type System, is not typable in the Linear Rank 2 Intersection Type
System, because, as the term (λfx.f(fx)) is not linear and intersection is not idempotent, by
Definition 7, the type of (λx.xx)(λfx.f(fx)) is now (linear) rank 3. This relation between
rank and linear rank is an interesting question that will not be covered here, but one that we
would like to explore in the future.

3.2 Type System
We now define a new type system for the λ-calculus with linear rank 2 non-idempotent
intersection types.

▶ Definition 8 (Substitution). Let S = [N/x] denote a substitution. Then the result of
substituting the term N for each free occurrence of x in the term M , denoted by M [N/x] (or
S(M)), is inductively defined as follows:

x[N/x] = N ;
x1[N/x2] = x1, if x1 ̸= x2;

(M1M2)[N/x] = (M1[N/x])(M2[N/x]);
(λx.M)[N/x] = λx.M ;

(λx1.M)[N/x2] = λx1.(M [N/x2]), if x1 ̸= x2.

▶ Notation. We write M [M1/x1, M2/x2, . . . , Mn/xn] for
(. . . ((M [M1/x1])[M2/x2]) . . . )[Mn/xn].

Composing two substitutions S1 and S2 results in a substitution S2 ◦S1 that when applied,
has the same effect as applying S1 followed by S2.
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▶ Definition 9 (Substitution composition). The composition of two substitutions S1 = [N1/x1]
and S2 = [N2/x2], denoted by S2 ◦ S1, is defined as:

S2 ◦ S1(M) = M [N1/x1, N2/x2].

Also, we consider that the operation is right-associative:

S1 ◦ S2 ◦ · · · ◦ Sn−1 ◦ Sn = S1 ◦ (S2 ◦ · · · ◦ (Sn−1 ◦ Sn) . . . ).

▶ Notation. From now on, we will use α to range over a countable infinite set V of type
variables, τ to range over the set TL0 of linear types, τ⃗ to range over the set TL1 of linear
type sequences and σ to range over the set TL2 of linear rank 2 intersection types. In all
cases, we may use or not single quotes and/or number subscripts.

▶ Definition 10.
A statement is an expression of the form M : τ⃗ , where τ⃗ is called the predicate, and the
term M is called the subject of the statement.
A declaration is a statement where the subject is a term variable.
The comma operator (,) appends a declaration to the end of a list (of declarations). The
list (Γ1, Γ2) is the list that results from appending the list Γ2 to the end of the list Γ1.
A finite list of declarations is consistent if and only if the term variables are all distinct.
An environment is a consistent finite list of declarations which predicates are sequences
of linear types (i.e., elements of TL1) and we use Γ (possibly with single quotes and/or
number subscripts) to range over environments.
An environment Γ = [x1 : τ⃗1, . . . , xn : τ⃗n] induces a partial function Γ with domain
dom(Γ) = {x1, . . . , xn}, and Γ(xi) = τ⃗i.
We write Γx for the resulting environment of eliminating the declaration of x from Γ (if
there is no declaration of x in Γ, then Γx = Γ).
We extend the notion of substitution to environments in the following way:

S(Γ) = [S(x1) : τ⃗1, . . . , S(xn) : τ⃗n] if Γ = [x1 : τ⃗1, . . . , xn : τ⃗n]

We write Γ1 ≡ Γ2 if the environments Γ1 and Γ2 are equal up to the order of the
declarations.
If Γ1 and Γ2 are environments, the environment Γ1 + Γ2 is defined as follows:
for each x ∈ dom(Γ1) ∪ dom(Γ2),

(Γ1 + Γ2)(x) =


Γ1(x) if x /∈ dom(Γ2)
Γ2(x) if x /∈ dom(Γ1)
Γ1(x) ∩ Γ2(x) otherwise

with the declarations of the variables in dom(Γ1) in the beginning of the list, by the same
order they appear in Γ1, followed by the declarations of the variables in dom(Γ2)\dom(Γ1),
by the order they appear in Γ2.

▶ Definition 11 (Linear Rank 2 Intersection Type System). In the Linear Rank 2 Intersection
Type System, we say that M has type σ given the environment Γ, and write Γ ⊢2 M : σ, if it
can be obtained from the derivation rules in Figure 2.

▶ Example 12. Let us write ⊸α for the type (α ⊸ α). For the λ-term (λx.xx)(λy.y), the
following derivation is obtained:

[x1 : ⊸α⊸⊸α ] ⊢2 x1 : ⊸α⊸⊸α [x2 : ⊸α ] ⊢2 x2 : ⊸α

[x1 : ⊸α⊸⊸α, x2 : ⊸α ] ⊢2 x1x2 : ⊸α

[x : (⊸α⊸⊸α ) ∩ ⊸α ] ⊢2 xx : ⊸α

[ ] ⊢2 λx.xx : (⊸α⊸⊸α ) ∩ ⊸α→⊸α

[y : ⊸α ] ⊢2 y : ⊸α

[ ] ⊢2 λy.y : ⊸α⊸⊸α

[y : α] ⊢2 y : α

[ ] ⊢2 λy.y : ⊸α

[ ] ⊢2 (λx.xx)(λy.y) : ⊸α

TYPES 2022



8:8 Linear Rank Intersection Types

[x : τ ] ⊢2 x : τ (Axiom)

Γ1, x : τ⃗1, y : τ⃗2, Γ2 ⊢2 M : σ

Γ1, y : τ⃗2, x : τ⃗1, Γ2 ⊢2 M : σ
(Exchange)

Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M : σ

Γ1, x : τ⃗1 ∩ τ⃗2, Γ2 ⊢2 M [x/x1, x/x2] : σ
(Contraction)

Γ, x : τ1 ∩ · · · ∩ τn ⊢2 M : σ n ≥ 2
Γ ⊢2 λx.M : τ1 ∩ · · · ∩ τn → σ

(→ Intro)

Γ ⊢2 M1 : τ1 ∩ · · · ∩ τn → σ Γ1 ⊢2 M2 : τ1 · · · Γn ⊢2 M2 : τn n ≥ 2
Γ,

∑n
i=1 Γi ⊢2 M1M2 : σ

(→ Elim)

Γ, x : τ ⊢2 M : σ

Γ ⊢2 λx.M : τ ⊸ σ
(⊸ Intro)

Γ1 ⊢2 M1 : τ ⊸ σ Γ2 ⊢2 M2 : τ

Γ1, Γ2 ⊢2 M1M2 : σ
(⊸ Elim)

Figure 2 Linear Rank 2 Intersection Type System.

3.3 Type Inference Algorithm
In this section we define a new type inference algorithm for the λ-calculus (Definition 23),
which is sound (Theorem 32) and complete (Theorem 35) with respect to the Linear Rank 2
Intersection Type System.

Our algorithm is based on Trevor Jim’s type inference algorithm [18] for a Rank 2
Intersection Type System that was introduced by Daniel Leivant in [21], where the algorithm
was briefly covered. Different versions of the algorithm were later defined by Steffen van
Bakel in [26] and by Trevor Jim in [18].

Part of the definitions, properties and proofs here presented are also adapted from [18].

▶ Definition 13 (Type substitution). Let S = [τ1/α1, . . . , τn/αn] denote a type substitution,
where α1, . . . , αn are distinct type variables in V and τ1, . . . , τn are types in TL0.

For any τ in TL0, S(τ) = τ [τ1/α1, . . . , τn/αn] is the type obtained by simultaneously
substituting αi by τi in τ , with 1 ≤ i ≤ n.

The type S(τ) is called an instance of the type τ .
The notion of type substitution can be extended to environments in the following way:

S(Γ) = [x1 : S(τ⃗1), . . . , xn : S(τ⃗n)] if Γ = [x1 : τ⃗1, . . . , xn : τ⃗n]

The environment S(Γ) is called an instance of the environment Γ.
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If S1 = [τ1/α1, . . . , τn/αn] and S2 = [τ ′
1/α′

1, . . . , τ ′
n/α′

n] are type substitutions such that
the variables α1, . . . , αn, α′

1, . . . , α′
n are all distinct, then the type substitution S1 ∪ S2 is

defined as S1 ∪ S2 = [τ1/α1, . . . , τn/αn, τ ′
1/α′

1, . . . , τ ′
n/α′

n].

Composing two type substitutions S1 and S2 results in a type substitution S2 ◦ S1 that
when applied, has the same effect as applying S1 followed by S2.

▶ Definition 14 (Type substitution composition). The composition of two type substitutions
S1 = [τ1/α1, . . . , τn/αn] and S2 = [τ ′

1/α′
1, . . . , τ ′

m/α′
m], denoted by S2 ◦ S1, is defined as:

S2 ◦ S1 = [τ ′
i1

/α′
i1

, . . . , τ ′
ik

/α′
ik

,S2(τ1)/α1, . . . ,S2(τn)/αn],

where {α′
i1

, . . . , α′
ik

} = {α′
1, . . . , α′

m} \ {α1, . . . , αn}.
Also, we consider that the operation is right-associative:

S1 ◦ S2 ◦ · · · ◦ Sn−1 ◦ Sn = S1 ◦ (S2 ◦ · · · ◦ (Sn−1 ◦ Sn) . . . ).

3.3.1 Unification
We now recall Robinson’s unification [24], for the special case of equations involving simple
types. For the unification algorithm we follow a latter (more efficient) presentation by
Martelli and Montanari [22].

▶ Definition 15 (Unification problem). A unification problem is a finite set of equations P =
{τ1 = τ ′

1, . . . , τn = τ ′
n}. A unifier (or solution) is a substitution S, such that S(τi) = S(τ ′

i),
for 1 ≤ i ≤ n. We call S(τi) (or S(τ ′

i)) a common instance of τi and τ ′
i . P is unifiable if it

has at least one unifier. U(P ) is the set of unifiers of P .

▶ Example 16. The types α1 ⊸ α2 ⊸ α1 and (α3 ⊸ α3) ⊸ α4 are unifiable. For the
type substitution S = [(α3 ⊸ α3)/α1, (α2 ⊸ (α3 ⊸ α3))/α4], the common instance is
(α3 ⊸ α3) ⊸ α2 ⊸ (α3 ⊸ α3).

▶ Definition 17 (Most general unifier). A substitution S is a most general unifier (MGU) of
P if S is the least element of U(P ). That is,

S ∈ U(P ) and ∀S1 ∈ U(P ). ∃S2.S1 = S2 ◦ S.

▶ Example 18. Consider the types τ1 = (α1 ⊸ α1) and τ2 = (α2 ⊸ α3).
The type substitution S′ = [(α4 ⊸ α5)/α1, (α4 ⊸ α5)/α2, (α4 ⊸ α5)/α3] is a unifier of

τ1 and τ2, but it is not the MGU.
The MGU of τ1 and τ2 is S = [α3/α1, α3/α2]. The common instance of τ1 and τ2 by S′,

(α4 ⊸ α5) ⊸ (α4 ⊸ α5), is an instance of (α3 ⊸ α3), the common instance by S.

▶ Definition 19 (Solved form). A unification problem P = {α1 = τ1, . . . , αn = τn} is in
solved form if α1, . . . , αn are all pairwise distinct variables that do not occur in any of the
τi. In this case, we define SP = [τ1/α1, . . . , τn/αn].

▶ Definition 20 (Type unification). We define the following relation ⇒ on type unification
problems (for types in TL0):

{τ = τ} ∪ P ⇒ P

{τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P ⇒ {τ1 = τ3, τ2 = τ4} ∪ P

{τ1 ⊸ τ2 = α} ∪ P ⇒ {α = τ1 ⊸ τ2} ∪ P

{α = τ} ∪ P ⇒ {α = τ} ∪ P [τ/α] if α ∈ fv(P ) \ fv(τ)
{α = τ} ∪ P ⇒ FAIL if α ∈ fv(τ) and α ̸= τ
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where P [τ/α] corresponds to the notion of type substitution extended to type unification
problems. If P = {τ1 = τ ′

1, . . . , τn = τ ′
n}, then P [τ/α] = {τ1[τ/α] = τ ′

1[τ/α], . . . , τn[τ/α] =
τ ′

n[τ/α]}. And fv(P ) and fv(τ) are the sets of free type variables in P and τ , respectively.
Since in our system all occurrences of type variables are free, fv(P ) and fv(τ) are the sets of
type variables in P and τ , respectively.

▶ Definition 21 (Unification algorithm). Let P be a unification problem (with types in TL0).
The unification function UNIFY(P ) that decides whether P has a solution and, if so, returns
the MGU of P (see [24]), is defined as:

function UNIFY(P )
while P ⇒ P ′ do

P := P ′;
if P is in solved form then

return SP ;
else

FAIL;

▶ Example 22. Consider again the types α1 ⊸ α1 and α2 ⊸ α3 in Example 18. For
the unification problem P = {α1 ⊸ α1 = α2 ⊸ α3}, UNIFY(P ) performs the following
transformations over P :

{α1 ⊸ α1 = α2 ⊸ α3} ⇒ {α1 = α2, α1 = α3} ∪ { } = {α1 = α2, α1 = α3}
⇒ {α1 = α2} ∪ {α1 = α3}[α2/α1] = {α1 = α2, α2 = α3}
⇒ {α2 = α3} ∪ {α1 = α2}[α3/α2] = {α1 = α3, α2 = α3}

and, since {α1 = α3, α2 = α3} is in solved form, it returns the type substitution
[α3/α1, α3/α2].

3.3.2 Type Inference
▶ Definition 23 (Type inference algorithm). Let Γ be an environment, M a λ-term, σ a linear
rank 2 intersection type and UNIFY the function in Definition 21. The function T(M) = (Γ, σ)
defines a type inference algorithm for the λ-calculus in the Linear Rank 2 Intersection Type
System, in the following way:
1. If M = x, then Γ = [x : α] and σ = α, where α is a new variable;
2. If M = λx.M1 and T(M1) = (Γ1, σ1) then:

a. if x /∈ dom(Γ1), then FAIL;
b. if (x : τ) ∈ Γ1, then T(M) = (Γ1x, τ ⊸ σ1);
c. if (x : τ1 ∩ · · · ∩ τn) ∈ Γ1 (with n ≥ 2), then T(M) = (Γ1x, τ1 ∩ · · · ∩ τn → σ1).

3. If M = M1M2, then:
a. if T(M1) = (Γ1, α1) and T(M2) = (Γ2, τ2),

then T(M) = (S(Γ1 + Γ2),S(α3)),
where S = UNIFY({α1 = α2 ⊸ α3, τ2 = α2}) and α2, α3 are new variables;

b. if T(M1) = (Γ′
1, τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1) (with n ≥ 2) and, for each 1 ≤ i ≤ n,
T(M2) = (Γi, τi)A,
then T(M) = (S(Γ′

1 +
∑n

i=1 Γi),S(σ′
1)),

where S = UNIFY({τi = τ ′
i | 1 ≤ i ≤ n});

A Note that Γi, τi can all be different up to renaming of variables.
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c. if T(M1) = (Γ1, τ ⊸ σ1) and T(M2) = (Γ2, τ2),
then T(M) = (S(Γ1 + Γ2),S(σ1)),
where S = UNIFY({τ2 = τ});

d. otherwise FAIL.

▶ Example 24. Let us show the type inference process for the λ-term λx.xx.

By rule 1., T(x) = ([x : α1], α1).
By rule 1., again, T(x) = ([x : α2], α2).
Then by rule 3.(a), T(xx) = (S([x : α1] + [x : α2]),S(α4)) = (S([x : α1 ∩ α2]),S(α4)),
where S = UNIFY({α1 = α3 ⊸ α4, α2 = α3}) = [α3 ⊸ α4/α1, α3/α2].
So T(xx) = ([x : (α3 ⊸ α4) ∩ α3], α4).
Finally, by rule 2.(c), T(λx.xx) = ([ ], (α3 ⊸ α4) ∩ α3 → α4).

▶ Example 25. Let us now show the type inference process for the λ-term (λx.xx)(λy.y).

From the previous example, we have T(λx.xx) = ([ ], (α3 ⊸ α4) ∩ α3 → α4).
By rules 1. and 2.(b), for the identity, the algorithm gives T(λy.y) = ([ ], α1 ⊸ α1).
By rules 1. and 2.(b), again, for the identity, T(λy.y) = ([ ], α2 ⊸ α2).
Then by rule 3.(b), T((λx.xx)(λy.y)) = (S([ ] + [ ] + [ ]),S(α4)) = ([ ],S(α4)),
where S = UNIFY({α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3}), calculated by performing the
following transformations:

{α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3} ⇒ {α1 = α3, α1 = α4, α2 ⊸ α2 = α3}
⇒ {α1 = α3, α3 = α4, α2 ⊸ α2 = α3}
⇒ {α1 = α4, α3 = α4, α2 ⊸ α2 = α4}
⇒ {α1 = α4, α3 = α4, α4 = α2 ⊸ α2}
⇒ {α1 = α2 ⊸ α2, α3 = α2 ⊸ α2, α4 = α2 ⊸ α2}

So S = [(α2 ⊸ α2)/α1, (α2 ⊸ α2)/α3, (α2 ⊸ α2)/α4]
and T((λx.xx)(λy.y)) = ([ ], α2 ⊸ α2).

Now we show several properties of our type system and type inference algorithm, in order
to prove the soundness and completeness of the algorithm with respect to the system.

▶ Notation. We write Φ ▷ Γ ⊢2 M : σ to denote that Φ is a derivation tree ending with
Γ ⊢2 M : σ. In this case, |Φ| is the depth of the derivation tree Φ.

▶ Lemma 26 (Substitution). If Φ▷Γ ⊢2 M : σ, then S(Γ) ⊢2 M : S(σ) for any substitution S.

▶ Lemma 27 (Relevance). If Φ ▷ Γ ⊢2 M : σ, then x ∈ dom(Γ) if and only if x ∈ FV(M).

▶ Lemma 28. If T(M) = (Γ, σ), then x ∈ dom(Γ) if and only if x ∈ FV(M).

▶ Corollary 29. From Lemma 27 and Lemma 28, it follows that if T(M) = (Γ, σ) and
Γ′ ⊢2 M : σ′, then dom(Γ) = dom(Γ′).

▶ Lemma 30. If Φ1 ▷ Γ ⊢2 M : σ, x ∈ FV(M) and y does not occur in M , then there exists
Φ2 ▷ Γ[y/x] ⊢2 M [y/x] : σ, with |Φ1| = |Φ2|.

▶ Corollary 31. From Lemma 30, it follows that if Γ ⊢2 M : σ, {x1, . . . , xn} ⊆ FV(M)
and y1, . . . , yn are all different variables not occurring in M , then Γ[y1/x1, . . . , yn/xn] ⊢2
M [y1/x1, . . . , yn/xn] : σ.
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▶ Theorem 32 (Soundness). If T(M) = (Γ, σ), then Γ ⊢2 M : σ.

▶ Lemma 33. If T(M) = (Γ, σ), x ∈ FV(M) and y does not occur in M , then T(M [y/x]) =
(Γ[y/x], σ).

▶ Lemma 34. If T(M) = (Γ, σ), with Γ ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), and y does not occur in M ,
then T(M [y/y1, y/y2]) = (Γ′′, σ), with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

▶ Theorem 35 (Completeness). If Φ ▷ Γ ⊢2 M : σ, then T(M) = (Γ′, σ′) (for some
environment Γ′ and type σ′) and there is a substitution S such that S(σ′) = σ and S(Γ′) ≡ Γ.

Hence, we end up with a sound and complete type inference algorithm for the Linear
Rank 2 Intersection Type System.

3.4 Remarks
A λ-term M is called a λI-term if and only if, for each subterm of the form λx.N in M , x

occurs free in N at least once. Note that our type system and type inference algorithm only
type λI-terms, but we could have extended them for the affine terms – a λ-term M is affine
if and only if, for each subterm of the form λx.N in M , x occurs free in N at most once,
and if each free variable of M has just one occurrence free in M .

There is no unique and final way of typing affine terms. For instance, in the systems
in [1], arguments that do not occur in the body of the function get the empty type [ ]. Since
we do not allow the empty sequence in our definition and adding it would make the system
more complex, we decided to only work with λI-terms.

Regarding our choice of defining environments as lists and having the rules (Exchange)
and (Contraction) in the type system, instead of defining environments as sets and using the
(+) operation for concatenation, that decision had to do with the fact that, this way, the
system is closer to a linear type system. In the Linear Rank 2 Intersection Type System, a
term is linear until we need to contract variables, so using these definitions makes us have
more control over linearity and non-linearity. Also, it makes the system more easily extensible
for other algebraic properties of intersection. We could also have rewritten the rule (→ Elim)
in order not to use the (+) operation, which is something we might do in the future.

The downside of choosing these definitions is that it makes the proofs (in Section 3 and
Section 4) more complex, as they are not syntax directed because of the rules (Exchange)
and (Contraction).

4 Resource Inference

Given the quantitative properties of the Linear Rank 2 Intersection Types, we now aim
to redefine the type system and the type inference algorithm, in order to infer not only
the type of a λ-term, but also parameters related to resource usage. In this case, we are
interested in obtaining the number of evaluation steps of the λ-term to its normal form, for
the leftmost-outermost strategy.

4.1 Type System
The new type system defined in this chapter results from an adaptation and merge between
our Linear Rank 2 Intersection Type System (Definition 11) and the system for the leftmost-
outermost evaluation strategy presented in [1], as that system is able to derive a measure
related to the number of evaluation steps for the leftmost-outermost strategy. We then begin
by adapting some definitions from [1] and others that were already introduced in Section 3.
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The predicates normal and neutral defining, respectively, the leftmost-outermost normal
terms and neutral terms, are in Definition 36. The predicate abs(M) is true if and only if M

is an abstraction; normal(M) means that M is in normal form; and neutral(M) means that
M is in normal form and can never behave as an abstraction, i.e., it does not create a redex
when applied to an argument.

▶ Definition 36 (Leftmost-outermost normal forms).

neutral(x)
neutral(M) normal(N)

neutral(MN)
neutral(M)
normal(M)

normal(M)
normal(λx.M)

▶ Definition 37 (Leftmost-outermost evaluation strategy).

(λx.M)N −→ M [N/x]
M −→ M ′

λx.M −→ λx.M ′
M −→ M ′ ¬abs(M)

MN −→ M ′N

neutral(N) M −→ M ′

NM −→ NM ′

▶ Definition 38 (Finite rank multi-types). We define the finite rank multi-types by the following
grammar:

tight ::= Neutral | Abs (Tight constants)
t ::= tight | α | t ⊸ t (Rank 0 multi-types)
t⃗ ::= t | t⃗ ∩ t⃗ (Rank 1 multi-types)
s ::= t | t⃗ → s (Rank 2 multi-types)

▶ Definition 39.
Here, a statement is an expression of the form M : (τ⃗ , t⃗), where the pair (τ⃗ , t⃗) is called
the predicate, and the term M is called the subject of the statement.
A declaration is a statement where the subject is a term variable.
The comma operator (,) appends a declaration to the end of a list (of declarations). The
list (Γ1, Γ2) is the list that results from appending the list Γ2 to the end of the list Γ1.
A finite list of declarations is consistent if and only if the term variables are all distinct.
An environment is a consistent finite list of declarations which predicates are pairs with
a sequence from TL1 as the first element and a rank 1 multi-type as the second element
of the pair (i.e., the declarations are of the form x : (τ⃗ , t⃗)), and we use Γ (possibly with
single quotes and/or number subscripts) to range over environments.
An environment Γ = [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] induces a partial function Γ with
domain dom(Γ) = {x1, . . . , xn}, and Γ(xi) = (τ⃗i, t⃗i).
We write Γx for the resulting environment of eliminating the declaration of x from Γ (if
there is no declaration of x in Γ, then Γx = Γ).
We write Γ1 ≡ Γ2 if the environments Γ1 and Γ2 are equal up to the order of the
declarations.
If Γ1 and Γ2 are environments, the environment Γ1 + Γ2 is defined as follows:
for each x ∈ dom(Γ1) ∪ dom(Γ2),

(Γ1 + Γ2)(x) =


Γ1(x) if x /∈ dom(Γ2)
Γ2(x) if x /∈ dom(Γ1)
(τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2) if Γ1(x) = (τ⃗1, t⃗1) and Γ2(x) = (τ⃗2, t⃗2)

with the declarations of the variables in dom(Γ1) in the beginning of the list, by the same
order they appear in Γ1, followed by the declarations of the variables in dom(Γ2)\dom(Γ1),
by the order they appear in Γ2.
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We write tight(s) if s is of the form tight and tight(t1 ∩· · ·∩tn) if tight(ti) for all 1 ≤ i ≤ n.
For Γ = [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)], we write tight(Γ) if tight(⃗ti) for all 1 ≤ i ≤ n, in
which case we also say that Γ is tight.

▶ Definition 40 (Linear Rank 2 Quantitative Type System). In the Linear Rank 2 Quantitative
Type System, we say that M has type σ and multi-type s given the environment Γ, with
index b, and write Γ ⊢b M : (σ, s), if it can be obtained from the derivation rules in Figure 3.

The tight rules (the t-indexed ones) are used to introduce the tight constants Neutral and
Abs, and they are related to minimal typings. Note that the index is only incremented in
rules (⊸ Intro) and (→ Intro), as these are used to type abstractions that will be applied,
contrary to the abstractions typed with the constant Abs.

▶ Notation. We write Φ▷Γ ⊢b M : (σ, s) if Φ is a derivation tree ending with Γ ⊢b M : (σ, s).
In this case, |Φ| is the depth of the derivation tree Φ.

▶ Definition 41 (Tight derivations). A derivation Φ ▷ Γ ⊢b M : (σ, s) is tight if tight(s) and
tight(Γ).

Similarly to what has been done in [1], in this section we prove that, in the Linear Rank 2
Quantitative Type System, whenever a term is tightly typable with index b, then b is exactly
the number of evaluations steps to leftmost-outermost normal form.

▶ Example 42. Let M = (λx1.(λx2.x2x1)x1)I, where I is the identity function λy.y.
Let us first consider the leftmost-outermost evaluation of M to normal form:

(λx1.(λx2.x2x1)x1)I −→ (λx2.x2I)I −→ II −→ I

So the evaluation sequence has length 3.
Let us write ⊸α for the type (α ⊸ α) and

−−◦
Abs for the type Abs ⊸ Abs.

To make the derivation tree easier to read, let us first get the following derivation Φ for
the term λx1.(λx2.x2x1)x1:

[x2 : (⊸α⊸⊸α,
−−◦
Abs)] ⊢0 x2 : (⊸α⊸⊸α,

−−◦
Abs) [x3 : (⊸α, Abs)] ⊢0 x3 : (⊸α, Abs)

[x2 : (⊸α⊸⊸α,
−−◦
Abs), x3 : (⊸α, Abs)] ⊢0 x2x3 : (⊸α, Abs)

[x3 : (⊸α, Abs)] ⊢1 λx2.x2x3 : ((⊸α⊸⊸α ) ⊸ ⊸α,
−−◦
Abs⊸ Abs) [x4 : (⊸α⊸⊸α,

−−◦
Abs)] ⊢0 x4 : (⊸α⊸⊸α,

−−◦
Abs))

[x3 : (⊸α, Abs), x4 : (⊸α⊸⊸α,
−−◦
Abs)] ⊢1 (λx2.x2x3)x4 : (⊸α, Abs)

[x1 : (⊸α ∩ (⊸α⊸⊸α ), Abs ∩
−−◦
Abs)] ⊢1 (λx2.x2x1)x1 : (⊸α, Abs)

[ ] ⊢2 λx1.(λx2.x2x1)x1 : ((⊸α ∩ (⊸α⊸⊸α )) → ⊸α, (Abs ∩
−−◦
Abs) → Abs)

Then for the λ-term M , the following tight derivation is obtained:

Φ
[y : (α, Neutral)] ⊢0 y : (α, Neutral)

[ ] ⊢0 I : (⊸α, Abs)

[y : (⊸α, Abs)] ⊢0 y : (⊸α, Abs)

[ ] ⊢1 I : (⊸α⊸⊸α,
−−◦
Abs)

[ ] ⊢3 (λx1.(λx2.x2x1)x1)I : (⊸α, Abs)

So indeed, the index 3 represents the number of evaluation steps to leftmost-outermost
normal form.

We now show several properties of the type system, adapted from [1], in order to prove
the tight correctness (Theorem 49).

▶ Lemma 43 (Tight spreading on neutral terms). If M is a term such that neutral(M) and
Φ ▷ Γ ⊢b M : (σ, s) is a typing derivation such that tight(Γ), then tight(s).
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[x : (τ, t)] ⊢0 x : (τ, t) (Axiom)

Γ1, x : (τ⃗1, t⃗1), y : (τ⃗2, t⃗2), Γ2 ⊢b M : (σ, s)
Γ1, y : (τ⃗2, t⃗2), x : (τ⃗1, t⃗1), Γ2 ⊢b M : (σ, s)

(Exchange)

Γ1, x1 : (τ⃗1, t⃗1), x2 : (τ⃗2, t⃗2), Γ2 ⊢b M : (σ, s)
Γ1, x : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ2 ⊢b M [x/x1, x/x2] : (σ, s)

(Contraction)

Γ, x : (τ, t) ⊢b M : (σ, s)
Γ ⊢b+1 λx.M : (τ ⊸ σ, t ⊸ s)

(⊸ Intro)

Γ, x : (τ, tight) ⊢b M : (σ, tight)
Γ ⊢b λx.M : (τ ⊸ σ, Abs)

(⊸ Introt)

Γ, x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ⊢b M : (σ, s) n ≥ 2
Γ ⊢b+1 λx.M : (τ1 ∩ · · · ∩ τn → σ, t1 ∩ · · · ∩ tn → s)

(→ Intro)

Γ, x : (τ1 ∩ · · · ∩ τn, t⃗) ⊢b M : (σ, tight) tight(⃗t) n ≥ 2
Γ ⊢b λx.M : (τ1 ∩ · · · ∩ τn → σ, Abs)

(→ Introt)

Γ1 ⊢b1 M1 : (τ ⊸ σ, t ⊸ s) Γ2 ⊢b2 M2 : (τ, t)
Γ1, Γ2 ⊢b1+b2 M1M2 : (σ, s)

(⊸ Elim)

Γ1 ⊢b1 M1 : (τ ⊸ σ, Neutral) Γ2 ⊢b2 M2 : (τ, tight)
Γ1, Γ2 ⊢b1+b2 M1M2 : (σ, Neutral)

(⊸ Elimt)

Γ ⊢b M1 : (τ1 ∩ · · · ∩ τn → σ, t1 ∩ · · · ∩ tn → s)
Γ1 ⊢b1 M2 : (τ1, t1) · · · Γn ⊢bn M2 : (τn, tn) n ≥ 2

Γ,
∑n

i=1 Γi ⊢b+b1+···+bn M1M2 : (σ, s)
(→ Elim)

Γ ⊢b M1 : (τ1 ∩ · · · ∩ τn → σ, Neutral)
Γ1 ⊢b1 M2 : (τ1, tight) · · · Γn ⊢bn M2 : (τn, tight) n ≥ 2

Γ,
∑n

i=1 Γi ⊢b+b1+···+bn M1M2 : (σ, Neutral)
(→ Elimt)

Figure 3 Linear Rank 2 Quantitative Type System.
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▶ Lemma 44 (Properties of tight typings for normal forms). Let M be such that normal(M)
and Φ ▷ Γ ⊢b M : (σ, s) be a typing derivation.

(i) Tightness: if Φ is tight, then b = 0.
(ii) Neutrality: if s = Neutral then neutral(M).

▶ Lemma 45 (Relevance). If Φ▷Γ ⊢b M : (σ, s), then x ∈ dom(Γ) if and only if x ∈ FV(M).

▶ Lemma 46 (Substitution and typings). Let Φ ▷ Γ ⊢b M1 : (σ, s) be a derivation with
x ∈ dom(Γ) and Γ(x) = (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn), for n ≥ 1. And, for each 1 ≤ i ≤ n, let
Φi ▷ Γi ⊢bi M2 : (τi, ti).

Then there exists a derivation Φ′ ▷Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s). Moreover,
if the derivations Φ, Φ1, . . . , Φn are tight, then so is the derivation Φ′.

Proof (Sketch). The proof is by induction on |Φ|. In fact, without loss of generality, we
assume that FV(M1) ∩ FV(M2) = ∅, so that Γx,

∑n
i=1 Γi is consistent. Otherwise, we

could simply rename the free variables in M1 to get M ′
1 (and the same derivation Φ, with

the variables renamed) such that FV(M ′
1) ∩ FV(M2) = ∅. Then, our proof of the lemma

considers M1, M2 such that FV(M1) ∩ FV(M2) = ∅, obtaining a derivation Φ′ (with the
renamed variables) and finally we could apply the rule (Contraction) (and (Exchange), when
necessary) to the variables that were renamed in M1, in order to end up with the more
general form of the derivation. ◀

We now show an important property that relates contracted terms with their linear
counterpart. Basically, it says that the following diagram commutes (under the described
conditions):

M N

M ′ N ′

β

S(M ′)

β

S(N ′)

▶ Lemma 47. Let M −→ N and M = S(M ′) for some substitution S = [x/x1, x/x2] where
x1, x2 occur free in M ′ and x does not occur in M ′. Then there exists a term N ′ such that
N = S(N ′) and M ′ −→ N ′.

▶ Convention 4.1. Without loss of generality, we assume that, in a derivation tree, all
contracted variables (i.e., variables that, at some point in the derivation tree, disappear from
the term and environment by an application of the (Contraction) rule) are different from any
other variable in the derivation tree.
We also assume that when applying (Contraction), the new variables that substitute the
contracted ones are also different from any other variable in the derivation tree.

▶ Lemma 48 (Quantitative subject reduction). If Φ ▷ Γ ⊢b M : (σ, s) is tight and M −→ N ,
then b ≥ 1 and there exists a tight derivation Φ′ such that Φ′ ▷ Γ ⊢b−1 N : (σ, s).

Proof (Sketch). We prove the following stronger statement:
If M −→ N , Φ ▷ Γ ⊢b M : (σ, s), tight(Γ), and either tight(s) or ¬abs(M), then there

exists a derivation Φ′ ▷ Γ ⊢b−1 N : (σ, s).
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The proof of this statement follows by induction on M −→ N . The complexity of
this proof is related to the (Exchange) and (Contraction) rules. Since these rules are not
syntax-directed, we cannot use M do decide which rule was last applied in the derivation,
since (Exchange) and (Contraction) rules can always be the last rule applied. The proof is
therefore more complex and requires the use of Convention 4.1. ◀

▶ Theorem 49 (Tight correctness). If Φ ▷ Γ ⊢b M : (σ, s) is a tight derivation, then there
exists N such that M −→b N and normal(N). Moreover, if s = Neutral then neutral(N).

4.2 Type Inference Algorithm
We now extend the type inference algorithm defined in Section 3 (Definition 23) to also
infer the number of reduction steps of the typed term to its normal form, when using the
leftmost-outermost evaluation strategy.

This is done by slightly modifying the unification algorithm in Definition 21 and the
algorithm in Definition 23, which will now carry and update a measure b that relates to the
number of reduction steps. First, recall Definition 20, presented in Section 3.

▶ Definition 50 (Quantitative Unification Algorithm). Let P be a unification problem (with
types in TL0). The new unification function UNIFYQ(P ), which decides whether P has a
solution and, if so, returns the MGU of P and an integer b used for counting purposes in the
inference algorithm, is defined as:

function UNIFYQ(P )
b := 0;
while P ⇒ P ′ do

if P = {τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P1 and P ′ = {τ1 = τ3, τ2 = τ4} ∪ P1 then
b := b + 1;

P := P ′;
if P is in solved form then

return (SP , b);
else

FAIL;

Let TL1-environment be an environment as defined in Section 3, i.e., just like the definition
we use in the current chapter, but the predicates are only the first element of the pair (i.e., a
sequence from TL1).

▶ Definition 51 (Quantitative Type Inference Algorithm). Let Γ be a TL1-environment, M a
λ-term, σ a linear rank 2 intersection type, b a quantitative measure and UNIFYQ the function
in Definition 50. The function TQ(M) = (Γ, σ, b) defines a new type inference algorithm
that gives a quantitative measure for the λ-calculus in the Linear Rank 2 Quantitative Type
System, in the following way:
1. If M = x, then Γ = [x : α], σ = α and b = 0, where α is a new variable;
2. If M = λx.M1 and TQ(M1) = (Γ1, σ1, b1) then:

a. if x /∈ dom(Γ1), then FAIL;
b. if (x : τ) ∈ Γ1, then TQ(M) = (Γ1x, τ ⊸ σ1, b1);
c. if (x : τ1 ∩ · · · ∩ τn) ∈ Γ1 (with n ≥ 2), then TQ(M) = (Γ1x, τ1 ∩ · · · ∩ τn → σ1, b1).

3. If M = M1M2, then:

TYPES 2022
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a. if TQ(M1) = (Γ1, α1, b1) and TQ(M2) = (Γ2, τ2, b2),
then TQ(M) = (S(Γ1 + Γ2),S(α3), b1 + b2),
where (S, _) = UNIFYQ({α1 = α2 ⊸ α3, τ2 = α2}) and α2, α3 are new variables;

b. if TQ(M1) = (Γ′
1, τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1, b1) (with n ≥ 2) and, for each 1 ≤ i ≤ n,
TQ(M2) = (Γi, τi, bi),
then TQ(M) = (S(Γ′

1 +
∑n

i=1 Γi),S(σ′
1), b1 +

∑n
i=1 bi + b3 + 1),

where (S, b3) = UNIFYQ({τi = τ ′
i | 1 ≤ i ≤ n});

c. if TQ(M1) = (Γ1, τ ⊸ σ1, b1) and TQ(M2) = (Γ2, τ2, b2),
then TQ(M) = (S(Γ1 + Γ2),S(σ1), b1 + b2 + b3 + 1),
where (S, b3) = UNIFYQ({τ2 = τ});

d. otherwise FAIL.

Note that b is only increased by 1 and added the quantity given by UNIFYQ in rules 3.(b)
and 3.(c), since these are the only cases in which the term M is a redex.

▶ Example 52. Let us show the type inference process for the λ-term λx.xx.

By rule 1., TQ(x) = ([x : α1], α1, 0).
By rule 1., again, TQ(x) = ([x : α2], α2, 0).
Then by rule 3.(a), TQ(xx) = (S([x : α1] + [x : α2]),S(α4), 0 + 0) = (S([x : α1 ∩
α2]),S(α4), 0),
where (S, _) = UNIFYQ({α1 = α3 ⊸ α4, α2 = α3}) = ([α3 ⊸ α4/α1, α3/α2], 0).
So TQ(xx) = ([x : (α3 ⊸ α4) ∩ α3], α4, 0).
Finally, by rule 2.(c), TQ(λx.xx) = ([ ], (α3 ⊸ α4) ∩ α3 → α4, 0).

▶ Example 53. Let us now show the type inference process for the λ-term (λx.xx)(λy.y).

From the previous example, we have TQ(λx.xx) = ([ ], (α3 ⊸ α4) ∩ α3 → α4, 0).
By rules 1. and 2.(b), for the identity, the algorithm gives TQ(λy.y) = ([ ], α1 ⊸ α1, 0).
By rules 1. and 2.(b), again, for the identity, TQ(λy.y) = ([ ], α2 ⊸ α2, 0).
Then by rule 3.(b), TQ((λx.xx)(λy.y)) = (S([ ] + [ ] + [ ]),S(α4), 0 + 0 + 0 + b3 + 1) =
([ ],S(α4), b3 + 1), where (S, b3) = UNIFYQ({α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3}),
calculated by performing the following transformations:

{α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3} ⇒ {α1 = α3, α1 = α4, α2 ⊸ α2 = α3}
⇒ {α1 = α3, α3 = α4, α2 ⊸ α2 = α3}
⇒ {α1 = α4, α3 = α4, α2 ⊸ α2 = α4}
⇒ {α1 = α4, α3 = α4, α4 = α2 ⊸ α2}
⇒ {α1 = α2 ⊸ α2, α3 = α2 ⊸ α2, α4 = α2 ⊸ α2}

So S = [(α2 ⊸ α2)/α1, (α2 ⊸ α2)/α3, (α2 ⊸ α2)/α4]
and b3 = 1 because there was performed one transformation (the first) of the form
{τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P ⇒ {τ1 = τ3, τ2 = τ4} ∪ P .
And then, TQ((λx.xx)(λy.y)) = ([ ], α2 ⊸ α2, 1 + 1) = ([ ], α2 ⊸ α2, 2).

Since the Quantitative Type Inference Algorithm only differs from the algorithm in
Section 3 on the addition of the quantitative measure, and only infers a linear rank 2
intersection type and not a multi-type, the typing soundness (Theorem 54) and completeness
(Theorem 55) are formalized in a similar way.

▶ Theorem 54 (Typing soundness). If TQ(M) = ([x1 : τ⃗1, . . . , xn : τ⃗n], σ, b), then [x1 :
(τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] ⊢b′

M : (σ, s) (for some measure b′ and multi-types s, t⃗1, . . . , t⃗n).
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▶ Theorem 55 (Typing completeness). If Φ ▷ [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] ⊢b M : (σ, s),
then TQ(M) = (Γ′, σ′, b′) (for some TL1-environment Γ′, type σ′ and measure b′) and there
is a substitution S such that S(σ′) = σ and S(Γ′) ≡ [x1 : τ⃗1, . . . , xn : τ⃗n].

As for the quantitative measure given by the algorithm, we conjecture that it corresponds
to the number of evaluation steps of the typed term to normal form, when using the
leftmost-outermost evaluation strategy. We strongly believe the conjecture holds, based on
the attempted proofs so far and because it holds for every experimental results obtained by
our implementation. We have not yet proven this property, which we formalize, in part, in
the second point of the strong soundness:

▶ Conjecture 56 (Strong soundness). If TQ(M) = ([x1 : τ⃗1, . . . , xn : τ⃗n], σ, b), then:
1. There is a derivation Φ▷ [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] ⊢b′

M : (σ, s) (for some measure b′

and multi-types s, t⃗1, . . . , t⃗n);
2. If Φ is a tight derivation, then b = b′.

Note that the second point implies, by Theorem 49, that there exists N such that
M −→b N and normal(N), which is what we conjecture.

We believe that proving this conjecture is not a trivial task. A first approach could be to
try to use induction on the definition of TQ(M). However, this does not work because the
subderivations within a tight derivation are not necessarily tight. For that same reason, it is
also not trivial to construct a tight derivation from the result given by the algorithm or from
a non-tight derivation. Thus, in order to prove this conjecture, we believe that it will be
necessary to establish a stronger relation between the algorithm and tight derivations.

5 Conclusions and Future Work

When developing a non-idempotent intersection type system capable of obtaining quantitative
information about a λ-term while inferring its type, we realized that the classical notion of
rank was not a proper fit for non-idempotent intersection types, and that the ranks could be
quantitatively more useful if the base case was changed to types that give more quantitative
information in comparison to simple types, which is the case for linear types. We then came
up with a new definition of rank for intersection types based on linear types, which we call
linear rank [23]. Based on the notion of linear rank, we defined a new intersection type
system for the λ-calculus, restricted to linear rank 2 non-idempotent intersection types, and
a new type inference algorithm which we proved to be sound and complete with respect to
the type system.

We then merged that intersection type system with the system for the leftmost-outermost
evaluation strategy presented in [1] in order to use the linear rank 2 non-idempotent intersec-
tion types to obtain quantitative information about the typed terms, and we proved that the
resulting type system gives the correct number of evaluation steps for a kind of derivations.
We also extended the type inference algorithm we had defined, in order to also give that
measure, and showed that it is sound and complete with respect to the type system for the
inferred types, and conjectured that the inferred measures correspond to the ones given by
the type system.

TYPES 2022



8:20 Linear Rank Intersection Types

In the future, we would like to:
prove Conjecture 56;
further explore the relation between our definition of linear rank and the classical definition
of rank;
extend the type systems and the type inference algorithms for the affine terms;
adapt the Linear Rank 2 Quantitative Type System and the Quantitative Type Inference
Algorithm for other evaluation strategies.
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