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Abstract
In the realm of quantum computing, circuit description languages represent a valid alternative to
traditional QRAM-style languages. They indeed allow for finer control over the output circuit,
without sacrificing flexibility nor modularity. We introduce a generalization of the paradigmatic
lambda-calculus Proto-Quipper-M, which models the core features of the quantum circuit description
language Quipper. The extension, called Proto-Quipper-K, is meant to capture a very general form
of dynamic lifting. This is made possible by the introduction of a rich type and effect system in
which not only computations, but also the very types are effectful. The main results we give for the
introduced language are the classic type soundness results, namely subject reduction and progress.
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1 Introduction

Despite the undeniable fact that large-scale, error-free quantum hardware has yet to be
built [19], research into programming languages specifically designed to be compiled towards
architectures including quantum hardware has taken hold in recent years [17]. Most of the
proposals in this sense (see [9, 22, 24] for some surveys) concern languages that either express
or can be compiled into some form of quantum circuit [15], which can then be executed
by quantum hardware. This reflects the need to have tighter control over the kind and
amount of quantum resources that programs employ. In this scenario, the idea of considering
high-level languages that are specifically designed to describe circuits and in which the latter
are treated as first-class citizens is particularly appealing.

A typical example of this class of languages is Quipper [10, 11], whose underlying design
principle is precisely that of enriching a very expressive and powerful functional language like
Haskell with the possibility of manipulating quantum circuits. In other words, programs do
not just build circuits, but also treat them like data, as can be seen in the example from
Figure 1. Quipper’s meta-theory has been studied in recent years through the introduction of
a family of research languages that correspond to suitable Quipper fragments and extensions,
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3:2 On Dynamic Lifting and Effect Typing in Circuit Description Languages

alice :: Qubit -> Qubit -> Circ (Bit,Bit)
alice q a = do
a <- qnot a ‘controlled‘ q
q <- hadamard q
(x,y) <- measure (q,a)
return (x,y)

q H x

a y

Figure 1 Alice’s part of the quantum teleportation circuit. The Quipper program on the left
builds the circuit on the right, but while doing so it also manipulates the smaller circuit qnot a,
enriching it with control.

teleport :: Qubit -> Qubit -> Qubit -> Circ Qubit
teleport b q a = do
a <- qnot a ‘controlled‘ q
q <- hadamard q
(x,y) <- measure (q,a)
(u,s) <- dynamic_lift (x,y)
b <- if s then gate_X b else return b
b <- if u then gate_Z b else return b
return b

x

y

b

b

q H X

a Z

X Z

00

⇑ u 01

⇑ s 10

11

Figure 2 Quantum teleportation circuit with dynamic lifting. The gray box is not a gate, but
rather represents the dynamic lifting of bit wires x and y into variables u and s and the extension
of the circuit with one of four possible continuations for the remaining wire b, depending on the
outcome of the intermediate measurements.

which usually take the form of linear λ-calculi. We are talking about a family of languages
whose members include Proto-Quipper-S [21], Proto-Quipper-M [20], Proto-Quipper-D [5, 7],
Proto-Quipper-L [13] and Proto-Quipper-Dyn [6].

An aspect that until very recently has only marginally been considered by the research
community is the study of the meta-theory of so-called dynamic lifting, i.e. the possibility of
allowing the (classical) value flowing in one of the wires of the underlying circuit, naturally
unknown at circuit building time, to be visible in the host program for control flow. As an
example, one could append a unitary to some of the wires only if a previously performed
measurement has yielded a certain outcome. This is commonly achieved in many quantum
algorithms via classical control, but Quipper also offers a higher-level solution precisely in
the form of dynamic lifting, as can be seen in the example program in Figure 2. Notably,
such a program cannot be captured by any of the calculi in the Proto-Quipper family, with
the exception of Proto-Quipper-L [13] and Proto-Quipper-Dyn [6], arguably the most recent
additions to the family.

Looking at the Quipper program in Figure 2, one immediately realizes that the two
branches of both occurrences of the if operator change the underlying circuit in a uniform
way, i.e. the number and type of the wires are the same in either branch. What if, for
instance, we wanted to condition the execution of a measurement on a lifted value, like in
Figure 3? Unfortunately, Quipper does not allow the program in Figure 3 to be typed, on
account of the two branches of the if operators having different types. A program such as
this could come from the so-called measurement calculus [4], where it would be referred to as
a pattern, i.e. a sequence of simple operations that act on qubits in a way not so different
from what happens in quantum circuits, but with the crucial difference that the basis of a
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oneWay :: Qubit -> Qubit -> Bit
oneWay q a = do
q <- hadamard q
x <- measure q
u <- dynamic_lift x
a <- if u then meas_alpha a else return a
a <- if not u then meas_beta a else return a
return a

xq H measβ
a

a measα

⇑ u 0

1

Figure 3 An example of conditional measurement, where measα and measβ measure a qubit in
two distinct bases. This program is ill-typed in Quipper.

xq H
a

a measα

⇑ u 0

1

Figure 4 The circuit produced by the program in Figure 3 without the last conditional.

measurement can depend on the outcome of previous measurements. Globally, the program
builds a uniformly typed circuit (which always outputs a bit), but locally there are some
intermediate steps where the output type is heterogeneous. Of course, in this case, the two
if operators could be collapsed into one, avoiding local heterogeneity, but there are cases in
which keeping two conditionals would be preferable. For example, we might be interested in
doing away with the second if and reusing the resulting heterogeneous sub-circuit (shown in
Figure 4) multiple times when building a more complex circuit, changing only the basis of
the second measurement from time to time.

Giving a proper status to the programs that build this kind of heterogeneous circuits
would thus endow the programming language with greater flexibility and modularity, so it
is natural to wonder whether that of Quipper is an intrinsic limitation or if a richer type
system can deal with a more general form of circuits.

In this paper, we introduce a generalization of Proto-Quipper-M, called Proto-Quipper-K,
in which dynamic lifting is available in a very general form, even more so than in the original
Quipper language. This newly introduced language is capable of producing not only circuits
like the one in Figure 2, but rather a more general class of circuits whose structure and
type essentially depend on the values flowing through the lifted channels, like the one in
Figure 4. We show throughout the paper that this asks for a non-trivial generalization
of Proto-Quipper-M’s type system, in which types reflect the different behaviors a circuit
can have. This is achieved through a type and effect system [16] which assigns any Proto-
Quipper-K computation (possibly) distinct types depending on the state of the lifted variables.
The main results, beside the introduction of the language itself, its type system, and its
operational semantics, are the type soundness results of subject reduction and progress,
which together let us conclude that well-typed Proto-Quipper-K programs do not go wrong.
An extended version of this paper with more detailed definitions and proofs is available [2].

2 Circuits and Dynamic Lifting: a Bird’s-Eye View

This section is meant to provide an informal introduction to the peculiarities of the Proto-
Quipper family of paradigmatic programming languages, for the non-specialists. The host
language, namely Haskell, is modeled as a linearly typed λ-calculus. Terms, in addition
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λqQubit.λaQubit.let (q, a) = apply(CNOT , (q, a)) in
let q = apply(H , q) in apply(Meas2 , (q, a))

Figure 5 A Proto-Quipper-M program describing the circuit shown in Figure 1. We assume that
we have a constant boxed circuit CNOT , H , Meas2 , etc. for every available primitive operation.

to manipulating ordinary data structures and computing (possibly) higher-order functions,
are allowed to act on an underlying circuit, which we usually refer to as C. During program
evaluation, C can be modified with the addition of wires, gates or entire sub-circuits. This
is made possible through a dedicated operator called apply. But how can the programmer
specify where in C these modifications have to be carried out? This is possible thanks to
the presence of labels, that is, names that identify distinct output wires of C. These labels
are ordinary terms which can be passed around, but have to be treated linearly. Among
other things, they can be passed to apply, together with the specification of which gate or
sub-circuit is to be appended to the underlying circuit C.

But is apply the only way of manipulating circuits? The answer is negative. Circuits,
once built by means of a term, can be “boxed”, potentially copied, and passed to other parts
of the program, where they can be used, usually by appending them to multiple parts of the
underlying circuit. From a linguistic point of view, this is possible thanks to an additional
operator, called box, which is responsible for turning a circuit-building term M of type
!(T ⊸ U) – the type of duplicable functions from label tuples to label tuples – into a term
of type Circ(T,U) – the type of circuits. The term boxM does not touch the underlying
circuit, but rather evaluates M “behind the scenes”, in a sandboxed environment, to obtain
a standalone circuit which is then returned as a boxed circuit.

Measure as a Label-Lifting Operation

The above considerations are agnostic to the kind of circuits being built. In fact, any
type of circuit-like structure can be produced in output by programs of the Proto-Quipper
family of languages, provided that it can be interpreted as a morphism in an underlying
symmetric monoidal category [20]. If we imagine that the produced structure is an actual
quantum circuit, however, it is only natural to wonder whether all the examples of circuits
that we talked about informally in the introduction can be captured by some instance of
Proto-Quipper. Unsurprisingly, the program in Figure 1 is not at all problematic, and can be
handled easily by all languages in the Proto-Quipper family (see Figure 5).

The program in Figure 2, on the other hand, can only be handled by Proto-Quipper-L (see
Figure 6) and Proto-Quipper-Dyn. In Proto-Quipper-L, a measurement can return the Boolean
value corresponding to the outcome of the measurement. When this happens, the ongoing
computation is split into two branches: one in which the Boolean output is true and one in
which it is false. This way, further circuit-altering operations down the line can depend on
the classical information produced by the intermediate measurement. In Proto-Quipper-Dyn
on the other hand, a bespoke operator dynlift allows to turn a term of type Bit into a term
of type Bool, whose result can be used to a similar effect.

How about the program in Figure 3? Unfortunately, this case exceeds the expressiveness
of both Proto-Quipper-L and Proto-Quipper-Dyn, in that it requires the distinct execution
branches to yield values of different types, although only temporarily. The two languages,
on the other hand, require all branches of a computation to share the same type, like in
Quipper. This is where our contribution starts.
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λbQubit.λqQubit.λaQubit.let (q, a) = (unbox CNOT ) (q, a) in
let q = (unbox H ) q in
let (u, s) = (unbox MeasLift2 ) (q, a) in
let b = if s then (unbox X) b else b in
let b = if u then (unbox Z ) b else b in b

Figure 6 A Proto-Quipper-L program describing the circuit shown in Figure 2. Informally, terms
of the form (unbox H ) q correspond to terms of the form apply(H , q) in Proto-Quipper-M.

u
s

ϵ

ϵ
ϵ

0
0

1
1

Figure 7 An example of a lifting tree. The empty tree is denoted by ϵ.

The Basic Ideas Underlying Proto-Quipper-K

The approach to dynamic lifting that we follow in this paper is radical. The evaluation
of a term M involving the apply operator can give rise to the lifting of a bit value into
a variable u and consequently produce in output not a single result in the set VAL of
values, but possibly one distinct result for each possible value of u. Therefore, it is natural
to think of M as a computation that results in an object in the set K{u}(VAL), where
K{u} = X 7→ ({u} → {0, 1}) → X is a functor such that, for each possible assignment of a
Boolean value to u, K{u}(X) returns an element of X.

What if more than one variable is lifted? For example, a program could lift s after having
lifted u, but only if the latter has value 0. This shows that one cannot just take K{u,s} =
X 7→ ({u, s} → {0, 1}) → X, simply because not all assignments in {u, s} → {0, 1} are
relevant. Instead, one should just focus on the three assignments (u = 0, s = 0), (u = 0, s = 1)
and (u = 1), namely those assignments which are consistent with the tree in Figure 7, which
we call a lifting tree. This is a key concept in this work, which we will discuss in detail in
Section 3. Our type system captures the lifting pattern of an underlying well-typed program
through a lifting tree t and the result of the corresponding computation is an element of
Kt(VAL) where Kt = X 7→ (Pt → X) and Pt is the set of all assignments of variables
which describe a root-to-leaf path in t. Since by design we want to handle situations in which
a circuit, and by necessity the term building it, can produce results which have distinct
types – and not only distinct values – depending on the values of the lifted variables, we also
employ (in the spirit of the type and effects paradigm [16]) an effectful notion of type, in
which computations are typed according to an element of Kt(TYPE), where TYPE is the
set of Proto-Quipper-K types.

3 Generalized Quantum Circuits

A quantum circuit describes a quantum computation by means of the application of quantum
gates, which represent basic unitary operations, to a number of typed input wires, to obtain
a number of typed output wires. In this section, we introduce a general form of circuits in
which the application of any gate to one or more wires can be carried out conditionally on
the classical value flowing in a lifted channel. This is possible even when the gate inputs are
not the same number and type of the gate outputs. This implies that the number and type
of the outputs of a circuit can depend on the values flowing in its wires.

TYPES 2022
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M-types MTYPE T, U ::= 1 | w | T ⊗ U.

M-values MVAL ℓ⃗, k⃗ ::= ∗ | ℓ | (ℓ⃗, k⃗).

unit
∅ ⊢m ∗ : 1

label
ℓ : w ⊢m ℓ : w tuple

Q ⊢m ℓ⃗ : T L ⊢m k⃗ : U
Q,L ⊢m (ℓ⃗, k⃗) : T ⊗ U

Figure 8 Syntax and rule system for M-types and M-values.

A Syntax for Circuits

We represent the inputs and outputs of a circuit as label contexts, that is, partial mappings
from the set L of label names to the set W = {Bit,Qubit} of wire types. The set L contains
precisely the kind of labels that we mentioned in Section 2, therefore a label context is a way
to attach type information to labeled wires. We write the set of all label contexts as Q.

Whereas the order of wires in a circuit as a whole is irrelevant, the order of wires in a gate
application is crucial. For this reason, we perform gate applications not on label contexts,
but rather on label tuples, which imbue label contexts with a specific ordering via a simple
form of typing judgment. The grammar and typing rules for label tuples, which we call
M-values and whose types we call M-types, following [20], are given in Figure 8. Note that
ℓ ∈ L , w ∈ W , and Q and L are label contexts whose disjoint union is denoted by Q,L.

▶ Definition 1 (Gate Set). Let G be a set of gates, equipped with two functions inType : G →
MTYPE and outType : G → MTYPE. We denote by G (T,U) the set of gates with input
type T and output type U .

As an example, G (Qubit,Qubit) includes the so-called Hadamard gate, which is used to put a
single qubit into a perfect superposition. Besides the set of labels L , there is also another set
of names, called V , which is disjoint from it and contains the lifted variables. An assignment
of lifted variables is then simply a finite sequence of equalities (u1 = p1, . . . , un = pn) which
assign the values p1, . . . , pn ∈ {0, 1} to the distinct variables u1, . . . , un ∈ V , respectively.
We usually indicate assignments with metavariables such as a, b and c.

We now introduce a low-level language to describe quantum circuits at the gate level, which
will serve as a target for circuit building in Proto-Quipper-K. We call it circuit representation
language (CRL) and define it via the following grammar:

C,D ::= input(Q) | C; a ? g(ℓ⃗) → k⃗ | C; a ? lift(ℓ) ⇒ u. (1)

The base case input(Q) corresponds to the trivial identity circuit that takes as input the
wires represented by Q and does nothing to them. The notation a ? g(ℓ⃗) → k⃗ denotes the
application of a gate g to the wires identified by ℓ⃗ to obtain the wires in k⃗, provided that
the condition expressed by a is met. We simply write g(ℓ⃗) → k⃗ when a gate is applied
unconditionally (i.e. when a = ∅). Figure 9a shows a simple example of a CRL circuit
consisting exclusively of gate applications.

On the other hand, a ? lift(ℓ) ⇒ u represents the dynamic lifting of the bit wire ℓ if the
condition expressed by a is met. When we perform dynamic lifting on a bit, we promote its
contents to a Boolean value that is bound to the lifted variable u. This variable can then be
mentioned in subsequent assignments to control whether further operations in the circuit
are executed or not. The introduction of u thus naturally leads to two distinct execution
branches: one in which u = 0 and one in which u = 1. As we do for gate applications, we
write lift(ℓ) ⇒ u when a lifting operation is unconditional. A CRL circuit that performs
dynamic lifting is shown in Figure 9b.
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input(q0 : Qubit, a0 : Qubit);
CNOT(q0, a0) → (q1, a1);
H(q1) → q2;
Meas2(q2, a1) → (x, y);

(a) Circuit from Figure 1.

input(b0 : Qubit, q0 : Qubit, a0 : Qubit);
CNOT(q0, a0) → (q1, a1);
H(q1) → q2;
Meas2(q2, a1) → (x, y);
lift(x) ⇒ u;
lift(y) ⇒ s;
(s = 1) ? X(b0) → b1;
(u = 1; s = 0) ? Z(b0) → b2;
(u = 1; s = 1) ? Z(b1) → b3;

(b) Circuit from Figure 2.

Figure 9 Two examples of CRL descriptions of a quantum circuit.

Lifting Trees

Naturally, not all CRL expressions denote reasonable circuits. For example, conditioning
the application of a gate on the value of a lifted variable which has not yet been introduced
should be avoided, for obvious reasons. Capturing this idea at the type level is nontrivial,
since the presence of a variable can itself depend on previous liftings. This is where the
concept of lifting tree, which we introduced informally in Section 2, really comes into play.

▶ Definition 2 (Lifting Tree). We define the set T of lifting trees, along with their variable
set on assignment a, seen as a function vara : T → P(V ), as the smallest set of expressions
and functions such that

ϵ ∈ T with vara(ϵ) = ∅.
If t0 ∈ T and t1 ∈ T , then for every u that is neither in var∅(t0) nor in var∅(t1) we have
u {t0}{t1} ∈ T and

vara(u {t0}{t1}) = {u} ∪


vara (t0) if a(u) = 0,
vara (t1) if a(u) = 1,
vara(t0) ∪ vara(t1) if a(u) is undefined.

(2)

We often write var(t) as shorthand for var∅(t) to denote all the variables mentioned
in t. By way of lifting trees, we can keep track of whether an assignment, representing
a condition, is consistent with the current state of the lifted variables. Given a lifting
tree t, we call At the set of such assignments (which is easily defined by induction on
t, see [2]). Among these consistent assignments, there are some which are maximal, i.e.
that cannot be further extended: they describe root-to-leaf paths in t and correspond
exactly to the elements of the set Pt which we introduced in Section 2. Unsurprisingly,
for all t we have Pt ⊆ At. As an example, let t be the tree from Figure 7. We have
var(t) = {u, s},At = {∅, (u = 0), (u = 1), (s = 0), (s = 1), (u = 0, s = 0), (u = 0, s = 1)} and
Pt = {(u = 1), (u = 0, s = 0), (u = 0, s = 1)}.

Finally, we can formally define one of the key notions of this paper, not only for circuits,
but also for programs: given a generic set X, Kt(X) indicates the set Pt → X, which we
call the lifting of X, and whose elements we refer to as lifted objects. Despite the fact that
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u
s

q0 : Qubit

c1 : Bit
c2 : Bit

0
0

1
1

(a) Before composition.

u

s
c0 : Bit

c1 : Bit

c2 : Bit

0
0

1

1

(b) After composition.

Figure 10 An example of composition with overwriting.

lifted objects are formally mappings, seeing them as decorated lifting trees whose leaves
are labeled with objects from X is perhaps more intuitive. Following this interpretation,
given x ∈ X, we indicate by {x} the trivial lifted object in Kϵ(X) defined as the mapping
∅ 7→ x, and by u {ξ0}{ξ1} the object in Ku {t0}{t1}(X) defined as a 7→ ξa(u)(a′), where
ξ0 ∈ Kt0(X), ξ1 ∈ Kt1(X) and a′ ∈ Pta(u) is obtained from a by excluding u from its domain.
A graphical representation of this intuition can be found in the form of the trees shown in
figures 10 and 11.

▶ Example 3. Consider Figure 9. The CRL circuit on the left does not perform lifting and
therefore has a trivial output {x : Bit, y : Bit}, while the CRL circuit on the right does and
has output u {s {b0 : Qubit}{b1 : Qubit}}{s {b2 : Qubit}{b3 : Qubit}}.

The same intuition informs the various operations that we define homogeneously on lifting
trees and lifted objects. The first is a very natural one: if t is a lifting tree and {xa}a∈I is
a family of elements in X indexed on a subset I ⊆ Pt of the root-to-leaf paths of t, then
the expression t[xa]Ia stands for the lifted object obtained by sticking each xa to the leaf
of t identified by a ∈ I. Note that this operation, which we call composition, is generally
loosely typed and can give rise to heterogeneous lifted objects. However, in the case I = Pt,
the resulting lifted object belongs to Kt(X). In this case we also write t[xa]a as shorthand
for t[xa]Pt

a , whereas when I is a singleton {b} we usually omit the subscript a and write
t[x]{b} for t[xa]{b}

a . We also allow already specified lifted objects to appear on the left of a
composition, in which case we overwrite the interested leaves. For instance, if ∆ is a lifted
label context, we often write the expression ∆[Q]{a} to denote the lifted label context that
associates Q to a and is otherwise equal to ∆ on all the other branches.

▶ Definition 4 (Composition). Given ξ ∈ Kt(X), an index set I ⊆ Pt and a family {xa}a∈I

of elements in X, we define the composition of ξ and {xa}a∈I , written ξ[xa]Ia, as

{y}[xa]∅a = {y},

{y}[xa]{∅}
a = {xa},

u {ξ0}{ξ1}[xa]Ia = u {ξ0[xa]I0
a }{ξ1[xa]I1

a },
(3)

where Ib = {a|var(t)\{u} | a ∈ I ∧ a(u) = b} and a|var(t)\{u} denotes the exclusion of u from
the domain of a.

▶ Example 5. Let t = u {s {ϵ}{ϵ}}{ϵ} and let ∆ = u {s {q0 : Qubit}{c1 : Bit}}{c2 : Bit} ∈
Kt(Q) be a lifted label context, which graphically corresponds to the tree shown in Figure
10a. We have ∆[c0 : Bit]{u=0,s=0} = u {s {c0 : Bit}{c1 : Bit}}{c2 : Bit} ∈ Kt(Q), which
corresponds to the tree shown in Figure 10b.

The second operation is a flattening operation, which we indicate with ⌊·⌋. Intuitively, if
we have a lifted object whose leaves are themselves trees, the flattening operation “unwraps”
the trees in the leaves so that they become sub-trees of said lifted object. Given a family of



A. Colledan and U. Dal Lago 3:9

u

s
c0 : Bit

c1 : Bit

s
c2 : Bit

c3 : Bit

0

0

1

1 0

1

(a) Before flattening.

u

s
c0 : Bit

c1 : Bit

s
c2 : Bit

c3 : Bit

0

0

1

1 0

1

(b) After flattening.

Figure 11 An example of flattening.

trees {ra}a∈Pt
the difference between t[ra]a and ⌊t[ra]a⌋ is therefore that the former is an

element of Kt(T ), whereas the latter is a proper element of T . This operation is well-defined
when vara(t) ∩ var(ra) = ∅ for every a ∈ Pt. We can also flatten when we have have lifted
objects on the right side of a composition: if we have t[ξa]a, where ξa ∈ Kra

(X) for every
a ∈ Pt, then ⌊t[ξa]a⌋ ∈ K⌊t[ra]a⌋(X).

A formal definition of flattening requires us to consider a slightly more general operation
⌊·⌋V, where V is a finite set of lifted variables which are accumulated as a lifted object is
traversed. At the leaf level, ⌊{x}⌋V = x only if x is a lifted object in which none of the lifted
variables in V occur (a condition expressed in the first line of Equation 4). In case of name
clashes, the whole operation is undefined and a renaming of lifted variables is required prior
to composition and flattening.

▶ Definition 6 (Flattening). Given ξ ∈ Kt(X), we define the flattening of ξ under V, written
⌊ξ⌋V, as

⌊{y}⌋V =
{
y if ∃r, Y s.t. y ∈ Kr(Y ) and V ∩ var(r) = ∅,
{y} if ∄r, Y s.t. y ∈ Kr(Y ),

⌊u {ξ0}{ξ1}⌋V = u {⌊ξ0⌋V∪{u}}{⌊ξ1⌋V∪{u}}.

(4)

The actual flattening operation that we employ in the rest of the paper can then be
defined as ⌊·⌋ = ⌊·⌋∅.

▶ Example 7. Reconsider t and u {s {c0 : Bit}{c1 : Bit}}{c2 : Bit} = ∆′ from Example 5.
Let ξ = ∆′[s {c2 : Bit}{c3 : Bit}]{u=1} = u {s {c0 : Bit}{c1 : Bit}}{{s {c2 : Bit}{c3 : Bit}}} ∈
Kt(Q ∪ Ks {ϵ}{ϵ}(Q)). Note that this object, corresponding to Figure 11a, is not properly
a lifted label context, as one of its leaves is itself a lifted label context. Because s does
not occur in varu=1(t) = {u}, we can write ⌊ξ⌋ = u {s {c0 : Bit}{c1 : Bit}}{s {c2 : Bit}{c3 :
Bit}} ∈ Kt′(Q), for t′ = u {s {ϵ}{ϵ}}{s {ϵ}{ϵ}}. This is an actual lifted label context, which
corresponds to Figure 11b.

In conjunction, these two operations greatly simplify our treatment of dynamic lifting, as
they allow us to describe in detail the desired shape of a lifted object. For example, in later
sections we often write ∆ = ⌊∆′[∆′′,Λ]{a}⌋ to say that the lifted label context ∆ is such that
if we start from its root and follow the path described by a, we find a sub-tree ∆′′,Λ (the
disjoint union is lifted in a natural way, as the disjoint union of the corresponding leaves of
∆′′ and Λ when these have the same underlying lifted tree), and that we are interested in
only some elements of the corresponding lifted label context, for instance those that occur
in Λ.
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id
input(Q) ⊢ϵ Q ▷ {Q}

lift
C ⊢t Q ▷∆ a, ℓ : Bit a ∈ At u /∈ vara(t)

C; a ? lift(ℓ) ⇒ u ⊢t�au {ϵ}{ϵ} Q ▷∆ �a u {ϵ}{ϵ}

gate
C ⊢t Q ▷∆ a, Q′ a ∈ At g ∈ G (T,U) Q′ ⊢m ℓ⃗ : T L ⊢m k⃗ : U fresh(k⃗, C)

C; a ? g(ℓ⃗) → k⃗ ⊢t Q ▷∆ a, L

Figure 12 The rules for CRL circuit signatures.

A Formal System for Circuit Signatures

Now that we have introduced lifting trees and lifted objects as a means to reason about
dynamic lifting, we are ready to introduce the notion of signature of a circuit.

▶ Definition 8 (Circuit Signature). Given a circuit C, a lifting tree t, a label context Q and a
lifted label context ∆, a circuit signature is an expression of the form C ⊢t Q ▷∆.

Informally, C ⊢t Q ▷ ∆ means that C takes as input the labels in Q, performs lifting
according to tree t and outputs any of the leaves in ∆, which is a lifted label context backed
by t. More formally, a valid circuit signature is derived by the rules in Figure 12. Note
that ∆ a, Q′ represents the extension of ∆ with Q′ on all leaves reachable by an assignment
consistent with a. Formally, ∆ a, Q′ is shorthand for ∆′[Q′, Qb]

Pa
t

b if ∆ = ∆′[Qb]
Pa

t

b , where
Pa

t contains the paths in Pt which extend a ∈ At. On the other hand, for any ξ ∈ Kt(X)
and r ∈ T such that vara(t) ∩ var(r) = ∅, we write ξ �a r to denote ξ in which every leaf x
reachable by an assignment consistent with a is expanded to a sub-tree r whose leaves are all
x. More formally, ξ �a r is shorthand for ⌊ξ′[r[xb]c]P

a
t

b ⌋, if ξ = ξ′[xb]P
a
t

b .

4 Proto-Quipper-K

We are finally ready to introduce Proto-Quipper-K, a programming language designed exactly
to manipulate the kind of circuits that we presented in the previous section and guarantee
the degree of flexibility that we mentioned in Section 2.

4.1 Types and Terms
The types and syntax of Proto-Quipper-K are given in Figure 13, where x and y range over
the set of variable names, u1, . . . , un over the set V of lifted variable names, t over the
set T of lifting trees and Greek letters generally indicate lifted objects. More precisely,
α, β ∈ Kt(TYPE), υ ∈ Kt(MTYPE), µ ∈ Kt(TERM ) and λ ∈ Kt(MVAL), each for some t.
Note that parameter types are the types given to non-linear resources, i.e. duplicable values.
Note also that the M-values and M-types that we introduced in Section 3 are now a proper
subset of Proto-Quipper-K’s values and types, respectively.

A value of the form (ℓ⃗, C, λ)t is what we called a boxed circuit in Section 2, that is, a
datum representation of a circuit C that takes as input the labels in the tuple ℓ⃗, performs
lifting according to t and outputs one of the possible label tuples of λ depending on the lifted
variables in t. Correspondingly, parameter types of the form Circt(T, υ) are called circuit types
and represent boxed circuits. Both boxed circuits and circuit types abstract over the lifted
variables in var(t) and thus enjoy a notion of α-equivalence. The box and apply constructs
are those described in Section 2 and they respectively introduce and consume boxed circuits.
Specifically, the programmer is never expected to write values of the form (ℓ⃗, C, λ)t by hand.
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Types TYPE A, B ::= 1 | w | A ⊸t β | !α | Circt(T, υ) | A ⊗ B.

Parameter Types PTYPE P, R ::= 1 | !α | Circt(T, υ) | P ⊗ R.

M-types MTYPE T, U ::= 1 | w | T ⊗ U.

Terms TERM M, N ::= V W | let x = M in µ | let (x, y) = V in M

| force V | boxT V | applyu1,...,un
(V, W ) | return V.

Values VAL V, W ::= ∗ | x | ℓ | λxA.M | lift M | (ℓ⃗, C, λ)t | (V, W ).
M-values MVAL ℓ⃗, k⃗ ::= ∗ | ℓ | (ℓ⃗, k⃗).

Figure 13 Types and terms of Proto-Quipper-K.

Rather, they are expected to introduce the desired circuit by supplying an appropriate
circuit-building term M to the box operator, obtaining a term of the form boxT (liftM). The
use of lift guarantees that M does not make use of any linear resources from the current
environment, i.e. that it can be safely evaluated in an isolated environment to produce C.
After a boxed circuit (ℓ⃗, C, λ)t is introduced, the programmer can potentially copy it and
apply it to the underlying circuit D via a term of the form applyu1,...,un

((ℓ⃗, C, λ)t, k⃗). Such a
term “unboxes” C, finds the wires identified by k⃗ among the outputs of D and appends C
to them. In this process, any lifted variables in var(t), which were abstracted in (ℓ⃗, C, λ)t,
have to be instantiated with concrete names. To this end, the programmer supplies the
n = | var(t)| lifted variables u1, . . . , un, which are expected to be fresh.

Notice that there exists a strong distinction between values and terms, the latter rep-
resenting effectful computations that can introduce new lifted variables as a consequence of
dynamic lifting. This choice does not detract from the expressiveness of the language, since
first and foremost a value V can always be turned into an effectless computation returnV .
Furthermore, we have that terms such as MN can still be recovered in Proto-Quipper-K
as let x = M in {let y = N in {xy}}. The let construct is in fact a central construct in
Proto-Quipper-K: on top of serving as a sequencing operator it also doubles as a conditional
statement. When we evaluate the term let x = M in µ, we first carry out the computation
described by M , which performs dynamic lifting according to some lifting tree t and con-
sequently results in a lifted value ϕ ∈ Kt(VAL). At this point, we are not limited to passing
each and every possible value of ϕ to the same continuation. Rather, we can define a different
continuation for every possible outcome of the liftings in t. To this effect, the programmer
supplies a lifted term µ ∈ Kt(TERM ), which matches ϕ’s lifting tree and thus effectively
provides such a roster of continuations. The following example is meant to help convey the
role of let as a control flow operator.

▶ Example 9. Imagine we wanted to measure qubit ℓ, dynamically lift its value into a
variable u and then apply the Hadamard gate to a second qubit k only if u = 1. Suppose
we had CRL definitions ML = input(ℓ : Qubit); Meas(ℓ) → ℓ′; lift(ℓ′) ⇒ u and H = input(ℓ :
Qubit); H(ℓ) → ℓ′, corresponding to the circuit that measures and then lifts a qubit and the
circuit that just applies the Hadamard gate to its input, respectively. We would write the
following Proto-Quipper-K program:

let _ = applyu((ℓ,ML, u {∗}{∗})u {ϵ}{ϵ}, ℓ) in
u {return k}{apply((ℓ,H, {ℓ′})ϵ, k)},

(5)

which may appear more familiar under the following Haskell-like syntactic sugar:

applyu((ℓ,ML, u {∗}{∗})u {ϵ}{ϵ}, ℓ)
when (u = 1) apply((ℓ,H, {ℓ′})ϵ, k).

(6)

⌟
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λqQubit. returnλaQubit.let q = apply((ℓ,H, {ℓ′}), q) in {
let _ = applyu((ℓ,ML, u {∗}{∗})u {ϵ}{ϵ}, q) in
u {return a}{apply((ℓ,Measα, {ℓ′}), a)}}

Figure 14 A Proto-Quipper-K program describing the circuit shown in Figure 4.

In light of this example, we can see how the circuit shown in Figure 4 can be described in
Proto-Quipper-K through a program such as the one in Figure 14. To conclude this section,
recall that we mentioned earlier that whenever we apply a boxed circuit we need to instantiate
its lifted variables with concrete names. This process is formalized through the lifted variable
analog of substitution, which we call renaming.

▶ Definition 10 (Renaming of Lifted Variables). Given a lifted variable-bearing object x and a
permutation π of V , we call π a renaming of lifted variables and we define x⟨π⟩ as x in which
every occurrence of a lifted variable u is replaced by π(u). We denote by s1/u1, . . . , sn/un a
permutation that exchanges s1 for u1, . . . sn for un.

4.2 Proto-Quipper-K’s Typing Rules
At its core, Proto-Quipper-K’s type system is a linear type system which distinguishes between
computations (i.e. terms), which can be effectful, and values. We therefore introduce two
kinds of typing judgments. One for terms, which are given lifted types, and one for values,
which have regular types.

▶ Definition 11 (Typing Judgments). Given a typing context Γ, a label context Q, a term M

and a lifted type α, a computational typing judgment is an expression of the form

Γ;Q ⊢t
c M : α. (7)

Given Γ, Q, a value V and a type A, a value typing judgment is an expression of the form

Γ;Q ⊢v V : A. (8)

When a typing context contains exclusively variables with parameter types, we write it as
Φ, but in general a typing context Γ can contain both linear and parameter variables. Typing
judgments are derived via the rules in Figure 15, where s1, . . . , sn range over V . Note that
we assume that V is totally ordered, so that when we write var(t) = {u1, . . . , un}, e.g. in
the apply rule, we have u1 ≤ u2 ≤ · · · ≤ un. The relational symbols ⊩c and ⊩v denote the
lifting of the computation and value typing judgments to some tree t.

▶ Definition 12 (Lifted Typing Judgments). Given a lifting tree t, if for all a ∈ Pt we have
Γa;Qa ⊢ra

c Ma : αa, then we write

t[Γa]a; t[Qa]a ⊩t[ra]a
c t[Ma]a : t[αa]a. (9)

If for all a ∈ Pt we have Γa;Qa ⊢v Va : Aa, then we write

t[Γa]a; t[Qa]a ⊩t
v t[Va]a : t[Aa]a. (10)

For convenience, within such judgments, every lifted object (e.g. ∆ in ∅; ∆ ⊩t
v λ : υ in

the circ rule) is assumed to be backed by t, whereas every component which is not a lifted
object (e.g. Φ or x in Φ,Γ2, x : α;Q2 ⊩t[ra]a

c µ : θ in the let rule) is assumed to be constant
across the branches of t.
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unit
Φ; ∅ ⊢v ∗ : 1

var
Φ, x : A; ∅ ⊢v x : A

labelΦ; ℓ : w ⊢v ℓ : w

abs
Γ, x : A;Q ⊢t

c M : β
Γ;Q ⊢v λxA.M : A⊸t β

app
Φ,Γ1;Q1 ⊢v V : A⊸t β Φ,Γ2;Q2 ⊢v W : A

Φ,Γ1,Γ2;Q1, Q2 ⊢t
c VW : β

let
Φ,Γ1;Q1 ⊢t

c M : α µ ∈ Kt(TERM ) Φ,Γ2, x : α;Q2 ⊩t[ra]a
c µ : θ

Φ,Γ1,Γ2;Q1, Q2 ⊢⌊t[ra]a⌋
c let x = M in µ : ⌊θ⌋

tuple
Φ,Γ1;Q1 ⊢v V : A Φ,Γ2;Q2 ⊢v W : B

Φ,Γ1,Γ2;Q1, Q2 ⊢v (V,W ) : A⊗B

dest
Φ,Γ1;Q1 ⊢v V : A⊗B Φ,Γ2, x : A, y : B;Q2 ⊢t

c M : α
Φ,Γ1,Γ2;Q1, Q2 ⊢t

c let (x, y) = V in M : α
lift

Φ; ∅ ⊢ϵ
c M : α

Φ; ∅ ⊢v liftM : !α

force
Γ;Q ⊢v V : !α

Γ;Q ⊢ϵ
c forceV : α box

Γ;Q ⊢v V : !{T ⊸t υ}
Γ;Q ⊢ϵ

c boxT V : {Circt(T, υ)}

apply

Φ,Γ1;Q1 ⊢v V : Circt(T, υ) Φ,Γ2;Q2 ⊢v W : T
var(t) = {u1, . . . , un} π = s1/u1, . . . , sn/un

Φ,Γ1,Γ2;Q1, Q2 ⊢t⟨π⟩
c applys1,...,sn

(V,W ) : υ⟨π⟩

circ
C ⊢t Q ▷∆ ∅;Q ⊢v ℓ⃗ : T ∅; ∆ ⊩t

v λ : υ
Φ; ∅ ⊢v (ℓ⃗, C, λ)t : Circt(T, υ)

return
Γ;Q ⊢v V : A

Γ;Q ⊢ϵ
c returnV : {A}

Figure 15 The typing rules of Proto-Quipper-K.

The let rule is unsurprisingly the most interesting rule of the system: if M is a term of lifted
type α ∈ Kt(TYPE), µ is a lifted term with the same underlying tree structure t and for every
root-to-leaf path a in t we have Φ,Γ2, x : α;Q2 ⊢ra

c µ(a) : θ(a) (note that this last condition
is captured by the lifted typing judgment), then the lifted type of let x = M in µ is obtained
by simply flattening the generic lifted object θ to ⌊θ⌋ ∈ K⌊t[ra]a⌋(TYPE). The apply rule also
plays a pivotal role, as it actually introduces lifting into the type of a term. If V is a value of
type Circt(T, υ), and thus corresponds to a boxed circuit which performs lifting according
to t, then applying V to some appropriate wires W of the underlying circuit introduces the
same lifting pattern into the computation, which has type υ⟨π⟩ ∈ Kt⟨π⟩(MTYPE). The
renaming of lifted variables π is required to avoid name clashes.

An example of a type derivation that leverages the full expressiveness of Proto-Quipper-K’s
type system is the one for the program shown in Figure 14 (describing the circuit in Figure 4),
which can be found in Appendix A. To conclude this section, notice how just like M-values
and M-types are a subset of the values and types of Proto-Quipper-K, the type system for
M-values is in a one-to-one correspondence with a subset of Proto-Quipper-K’s type system.

4.3 A Big-Step Operational Semantics

The big-step operational semantics of the language is based on an evaluation relation
(C, a,M) ⇓ (D,ϕ), where ϕ is a lifted value. This means that the term M evaluates to one
of the possible values in ϕ, depending on the outcome of intermediate measurements, and
updates the underlying circuit C upon branch a as a side effect, obtaining an updated circuit
D. We call (C, a,M) a left configuration and (D,ϕ) a right configuration. Before we give the
actual rules of the semantics, we must first give some definitions.
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First and foremost, note that we are not as interested in the actual names of labels within
a boxed circuit as much as we are in the structure that they convey. In fact, when we apply
circuits to one another, it might be necessary to rename some of the labels occurring in the
applicand in order to avoid naming conflicts, all the while preserving its structure. For this
reason, whenever two circuits share the same structure and only differ by their respective
labels, we consider them to be equivalent.

▶ Definition 13 (Equivalent Boxed Circuits). We say that two boxed circuits (ℓ⃗, C, λ)t and
(ℓ⃗′, C ′, λ′)t are equivalent, and we write (ℓ⃗, C, λ)t ∼= (ℓ⃗′, C ′, λ′)t, when they only differ by a
renaming of labels.

Next, we define the two operations that actually implement the semantics of apply. The
circuit insertion function ::a is just a simple concatenation function defined on CRL circuits
and all the heavy lifting is actually performed by the append function. This function is
responsible for the actual unboxing of a boxed circuit, the renaming of its labels (to match
the outputs of the underlying circuit and avoid labeling conflicts), the instantiation of the
abstracted lifted variable names within it and its insertion in the underlying circuit.

▶ Definition 14 (Insertion of Circuits). Suppose C and D are two circuits. We define the
insertion of D in C on branch a, written C ::a D as:

C ::a input(Q) = C,

C ::a (D′; b ? g(ℓ⃗) → k⃗) = (C ::a D′); a ∪ b ? g(ℓ⃗) → k⃗,

C ::a (D′; b ? lift(ℓ) ⇒ u) = (C ::a D′); a ∪ b ? lift(ℓ) ⇒ u,

(11)

where a ∪ b denotes the union of two assignments with disjoint domains.

▶ Definition 15 (append). Suppose C ⊢t Q ▷∆ is a circuit and (ℓ⃗, D, λ)r is a boxed circuit
with var(r) = {u1, . . . , un}. Suppose a ∈ Pt and let k⃗ be a label tuple whose labels all occur
in ∆(a). Finally, let s1, . . . , sn be a sequence of distinct lifted variable names which do not
occur in vara(t). We define append(C, a, k⃗, (ℓ⃗, D, λ)r, s1, . . . , sn) as the function that
1. Finds (k⃗, D′, λ′)t ∼= (ℓ⃗, D, λ)t such that all the labels occurring in D′, but not in k⃗, are

fresh in C,
2. Computes D′′ = D′⟨s1/u1, . . . , sn/un⟩ and λ′′ = λ′⟨s1/u1, . . . , sn/un⟩,
3. Returns (C ::a D′′, λ′′).

The rules of the operational semantics can be found in Figure 16, where freshlabels(T )
produces a pair (Q, ℓ⃗) such that Q ⊢m ℓ⃗ : T . Note that, for each t, we assume to have
a total order over the elements of Pt, so that when we write Pt = {a1, . . . , an} we have
a1 ≤ a2 ≤ · · · ≤ an and the semantics is deterministic. In order to prove progress in Section
5, we also consider a notion of divergence for configurations. Intuitively, a configuration
(C, a,M) diverges, and we write (C, a,M) ⇑, when its evaluation does not terminate. More
formally, divergence is defined coinductively by means of the rules in Figure 17.

5 Type Soundness

In general, the well-typedness of a Proto-Quipper-K configuration strongly depends on the
underlying circuit. Specifically, a term M is well-typed when all the free labels occurring in it
can be found with the appropriate type in the outputs of the underlying circuit, on the branch
that M is manipulating. For this reason, we give the following notions of well-typedness.
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app
(C, a,M [V/x]) ⇓ (D,ϕ)

(C, a, (λxA.M)V ) ⇓ (D,ϕ)
dest

(C, a,M [V/x,W/y]) ⇓ (D,ϕ)
(C, a, let (x, y) = (V,W ) in M) ⇓ (D,ϕ)

let

(C, a,M) ⇓ (C1, ϕ) ϕ ∈ Kt(VAL) µ ∈ Kt(TERM )
Pt = {a1, . . . , an} (Ci, a ∪ ai, µ(ai)[ϕ(ai)/x]) ⇓ (Ci+1, ψai

) for i = 1, . . . , n
(C, a, let x = M in µ) ⇓ (Cn+1, ⌊t[ψa]a⌋)

force
(C, a,M) ⇓ (D,ϕ)

(C, a, force(liftM)) ⇓ (D,ϕ)
apply

(C ′, λ′) = append(C, a, k⃗, (ℓ⃗, D, λ)t, s1, . . . , sn)
(C, a, applys1,...,sn

((ℓ⃗, D, λ)t, k⃗)) ⇓ (C ′, λ′)

box
(Q, ℓ⃗) = freshlabels(T ) (input(Q), ∅, let x = M in {xℓ⃗}) ⇓ (D,λ) λ ∈ Kt(MVAL)

(C, a, boxT (liftM)) ⇓ (C, {(ℓ⃗, D, λ)t})

return
(C, a, returnV ) ⇓ (C, {V })

Figure 16 The big-step operational semantics of Proto-Quipper-K.

app
(C, a,M [V/x]) ⇑

(C, a, (λxA.M)V ) ⇑
dest

(C, a,M [V/x,W/y]) ⇑
(C, a, let (x, y) = (V,W ) in M) ⇑

force
(C, a,M) ⇑

(C, a, force(liftM)) ⇑
let-now

(C, a,M) ⇑
(C, a, let x = M in µ) ⇑

let-then

(C, a,M) ⇓ (C1, ϕ) ϕ ∈ Kt(VAL) µ ∈ Kt(TERM )
Pt = {a1, . . . , an} (Ci, a ∪ ai, µ(ai)[ϕ(ai)/x]) ⇓ (Ci+1, ψai) for i = 1, . . . , j − 1

(Cj , a ∪ aj , µ(aj)[ϕ(aj)/x]) ⇑
(C, a, let x = M in µ) ⇑

box
(Q, ℓ⃗) = freshlabels(T ) (input(Q), ∅, let x = M in {xℓ⃗}) ⇑

(C, a, boxT (liftM)) ⇑

Figure 17 The big-step divergence rules of Proto-Quipper-K.

▶ Definition 16 (Well-Typed Configuration). We say that
a left configuration (C, a,M) is well-typed with input Q, past lifting tree t, future
lifting tree r, lifted type α and outputs ∆, and we write Q ⊢r

t (C, a,M) : α; ∆, when
a ∈ Pt, vara(t) ∩ var(r) = ∅, C ⊢t Q ▷∆ a, Q′ and ∅;Q′ ⊢r

c M : α,
a right configuration (C, ϕ) is well-typed in the a branch with input Q, overall lifting tree
t, lifted type α and outputs ∆, and we write Q ⊢a

t (C, ϕ) : α; ∆, when t = ⌊t′[r]{a}⌋,∆ =
⌊∆′[∆′′]{a}⌋, C ⊢t Q ▷ ⌊∆′[∆′′,Λ]{a}⌋ and ∅; Λ ⊩r

v ϕ : α.

That being said, we are mainly interested in closed computations, in which the evaluation
of a term builds the underlying circuit entirely from scratch. That is, we are interested
in computations that start from configurations of the form (input(∅), ∅,M), for some M .
Whenever (input(∅), ∅,M) ⇓ (C, ϕ) for some C, ϕ, we simply write M ⇓ (C, ϕ) and whenever
(input(∅), ∅,M) ⇑ we write M ⇑. In the same guise, we say that M is a well-typed term with
lifted type α depending on t, and we write ⊢t M : α, whenever ∅ ⊢t

ϵ (input(∅), ∅,M) : α; {∅},
while we say that (C, ϕ) is a well-typed closed configuration with lifted type α depending on
t, and we write ⊢t (C, ϕ) : α, whenever ∅ ⊢∅

t (C, ϕ) : α; t[∅]b. We are now ready to give the
relevant type safety results for Proto-Quipper-K.
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▶ Theorem 17 (Subject Reduction). If ⊢t M : α and ∃C, ϕ s.t. M ⇓ (C, ϕ), then ⊢t (C, ϕ) : α.

Proof sketch. We prove the more general claim that whenever Q ⊢t
r (D, a,M) : α; ∆ and

∃C, ϕ s.t. (D, a,M) ⇓ (C, ϕ), then Q ⊢a
⌊r[t]{a}⌋ (C, ϕ) : α; ∆ �a t, from which we obtain the

subject reduction claim by choosing D = input(∅), a = ∅, Q = ∅, r = ϵ and ∆ = {∅}. We
proceed by induction on (D, a,M) ⇓ (C, ϕ) and case analysis on the last rule used in its
derivation. A number of cases require additional lemmata, more specifically:
1. A substitution lemma is naturally required for the app, dest, let cases. In our scenario,

this amounts to proving that whenever Φ,Γ′;Q′ ⊢v V : A and Π is a type derivation, then
a. If the conclusion of Π is Φ,Γ, x : A;Q ⊢t

c M : α, then Φ,Γ,Γ′;Q,Q′ ⊢t
c M [V/x] : α,

b. If the conclusion of Π is Φ,Γ, x : A;Q ⊢v W : B, then Φ,Γ,Γ′;Q,Q′ ⊢v W [V/x] : B,
We prove the claim separately for the cases in which V has parameter type and linear
type. In both cases, we proceed by induction on the size of Π and case analysis on its
last rule.

2. The apply case is particularly delicate and requires us to prove that all the operations
performed by the append function on the applicand and the underlying circuit alter their
respective circuit signatures in a predictable way. More specifically:
a. For the first step of append, we show that equivalent circuits have the same type,

that is, that whenever ∅; ∅ ⊢v (ℓ⃗, C, λ)t : Circt(T, υ) and (ℓ⃗, C, λ)t ∼= (ℓ⃗′, C ′, λ′)t, then
∅; ∅ ⊢v (ℓ⃗′, C ′, λ′)t : Circt(T, υ). This reflects the idea that the type of a circuit depends
on its structure, and not on the specific labels used to convey said structure.

b. Similarly, for the second step, we show that lifted variable renaming preserves circuit
signatures and lifted typing judgments, that is, that for every renaming of lifted
variables π, C ⊢t Q ▷ ∆ implies C⟨π⟩ ⊢t⟨π⟩ Q ▷ ∆⟨π⟩ and γ; ∆ ⊩t

v ϕ : α implies
γ⟨π⟩; ∆⟨π⟩ ⊩t⟨π⟩

v ϕ⟨π⟩ : α⟨π⟩, where γ is a lifted context in Kt(CONTEXT ). Similarly
to the previous point, this reflects the idea that the structure of a lifted object is more
important than the specific lifted variable names used to convey said structure.

c. For the third step, we show that whenever we have an underlying circuit C and an
applicand D whose labels and lifted variables have already been renamed appropriately,
the concatenated circuit C ::a D is such that its output on branch a contains both the
outputs of D and the outputs of C that D was not applied on. That is, we prove that
whenever C ⊢t Q ▷ ∆[Q′, Q′′]{a} for some a ∈ Pt and D ⊢r Q′ ▷ Λ for some D such
that the labels that occur in D, but not in Q′, are fresh in C and vara(t) ∩ var(r) = ∅,
then C ::a D ⊢⌊t[r]{a}⌋ Q ▷ ⌊∆[Λ, Q′′]{a}⌋. We prove this by induction on D ⊢r Q′ ▷ Λ.
This result clearly allows us to conclude the subject reduction claim for the apply case.

3. The let case is also particularly delicate, although more technical than the apply case:
it requires us to apply the inductive hypothesis once for the evaluation of the left side
of the let and n times for the evaluation of each of the possible branches on the right
side, which happens in sequence. This means that the conclusion of each application of
the inductive hypothesis must become the premise of the following application. More
specifically, for every well-typed right configuration (Ci+1, ψai

) we must be able to
prove that (Ci+1, a ∪ ai+1, µ(ai+1)[ϕ(ai+1)/x]) is a well-typed left configuration. A key
lemma in this process tells us that for any two generic lifted objects ξ ∈ Kt(X) and
θ ∈ Kr(X) and any two assignments a ∈ Pt and b ∈ Ar, we have ⌊ξ[θ[xc]P

b
r

c ]{a}⌋ =

⌊ξ[θ]{a}⌋[xc]
Pa∪b

⌊t[r]{a}⌋
c . ◀

▶ Theorem 18 (Progress). If ⊢t M : α, then either ∃C, ϕ s.t. M ⇓ (C, ϕ) or M ⇑.
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Proof sketch. We consider the equivalent claim that if ⊢t M : α and ∄C, ϕ.M ⇓ (C, ϕ),
then M ⇑. We then prove the more general result that if Q ⊢t

r (D, a,M) : α; ∆ and
∄C, ϕ.(D, a,M) ⇓ (C, ϕ), then (D, a,M) ⇑, from which we obtain the progress claim by
choosing D = input(∅), a = ∅, Q = ∅, r = ϵ and ∆ = {∅}. We proceed by coinduction and case
analysis on M . The proof is fairly straightforward and makes extensive use of the general
subject reduction theorem and of some of its lemmata. The one interesting case is apply,
which is proven vacuously by showing that append is always defined under the hypothesis:
1. The first step of append must find a circuit (k⃗, D′, λ′)t ∼= (ℓ⃗, D, λ)t such that the labels

in k⃗ are given and correspond to the target labels in the underlying circuit C and all
the other labels in D′ are fresh in C. A key lemma tells us that since ℓ⃗ and k⃗ have
the same M-type T , then it is possible to rename the former to the latter. It is then
straightforward to extend this renaming to all the labels occurring in D in a way that
fulfills the aforementioned requirements.

2. The second step must compute D′⟨π⟩ and λ′⟨π⟩. This is always possible since π is a valid
renaming of lifted variables and thus a permutation.

3. The last step must compute C ::a D′⟨π⟩. We show that for every assignment b occurring
in D′⟨π⟩ it holds that dom(a) ∩ dom(b) = ∅. Therefore, the concatenation operation is
defined and append returns (C ::a D′⟨π⟩, λ′⟨π⟩). ◀

Detailed proofs of subject reduction (Theorem 17) and progress (Theorem 18) can be
found in the extended version of the paper [2].

6 Conclusion

Our Contributions

This paper introduces a new paradigmatic language for dynamic lifting belonging to the
Proto-Quipper family of languages. The language, called Proto-Quipper-K, can be seen as
an extension of Proto-Quipper-M which allows for the Boolean information flowing within
bit wires to be lifted from the circuit level to the program level. In order to make the
circuit construction process as flexible and as general as possible, a powerful type and effect
system based on lifting trees has been introduced. This allows for the typing of programs
which produce highly non-uniform circuits, making Proto-Quipper-K strictly more expressive
than Quipper and potentially useful in scenarios such as one-way quantum computing [4].
Although the use of the syntax introduced in this paper is not essential to implement the
measurement patterns encountered in one-way quantum computing (which, after all, can be
simulated by regular quantum circuits), the non-uniform approach to dynamic lifting that we
adopt in our work would allow for a higher degree of flexibility in building and manipulating
patterns. In other words, even when the circuit produced at the end of the computation is a
uniform circuit, we can build it incrementally, going through non-uniform circuits. The main
technical results we obtained for Proto-Quipper-K are type soundness, in the sense of subject
reduction and progress theorems.

Future Work

In this paper we focused on the operational aspects, leaving an investigation about a possible
denotational account of Proto-Quipper-K as future work. A related problem is that of
understanding the precise nature of the lifting operation that we use pervasively in the paper.
In particular, while it would be tempting to interpret Kt as a graded monad [8, 12] with
unit η : X → Kϵ(X) defined as η x = {x} and multiplication ⌊·⌋ : Kt(Kr(X)) → Kt[r]a

(X),
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we generally work with objects that do not belong to Kt(Kr(X)) for some fixed t, r, so we
find that this interpretation is not entirely appropriate, at least if we assume grades to be
elements of one fixed monoid.

Another aspect that we left open is the consolidation of homogeneous branches in a
computation. In many contexts, it is extremely natural to ask that the type of a term be
uniform with respect to a certain lifted variable u, i.e. that it be of the form u {α}{α}. If a
term M were typed this way, it would be natural to construct a new term νu.M in which u

is no longer lifted and which could thus be given the type α. We claim that such a local
name binder can be added to the language without substantially altering its metatheory.

The last problem that we deliberately leave open concerns the notion of generalized circuits
used in this paper. On the one hand, it can certainly be said that it can model quantum
circuits in their full generality, including those measurement patterns found in measurement-
based quantum computing [4]. On the other hand, while it is clear that such circuits make
computational sense (after all, any such computation can be simulated by a classically
controlled quantum Turing machine [18]), it is not clear what kind of correspondence exists
between them and quantum circuits in their usual form [15], which is the one most often
considered in the literature.

Related Work

As already mentioned in the introduction, various paradigmatic λ-calculi modeling the
Quipper programming language have been introduced in the literature [6, 7, 13, 20, 21]. In
this work, we took inspiration from Proto-Quipper-M [20], which however cannot handle
dynamic lifting. The only members of the Proto-Quipper family that can handle dynamic
lifting, in a uniform and more restricted form than ours, are Proto-Quipper-L [13] and Proto-
Quipper-Dyn [6], which have been introduced very recently and independently of this work.
Interestingly, the class of circuits targeted by Proto-Quipper-L– which the authors have named
quantum channels – indeed includes non-uniform circuits like the one in Figure 4, which
leads us to believe that they actually match our generalized quantum circuits in terms of
expressiveness. However, Proto-Quipper-L’s type system rejects the programs that build
such circuits. On the other hand, Proto-Quipper-Dyn follows a different approach, with two
interleaved operational semantics: one for circuit building, which only happens inside a boxing
operator and does not support dynamic lifting, and one for circuit execution, where dynamic
lifting is allowed. Therefore, as a circuit description language, Proto-Quipper-Dyn targets
traditional circuits. At the type level, this distinction is reflected in a modal type system
which keeps track of whether dynamic lifting is used, and therefore whether a circuit-building
function can be boxed or not. That being said, most of the aforementioned contributions
differ from ours in that they focus mainly on the denotational semantics of the language
rather than its operational semantics.

The type and effect system paradigm is well known from the literature [3, 12, 14, 16] and
has been used in various contexts as a way to reflect information on the effects produced by
a program in its type. In our case, the relevant effect is a choice effect, which is mirrored
both in the operational semantics and in the type system. As already stated, the problem of
giving a proper monadic status to the considered choice effect remains open, although this
work shows that operationally speaking everything works smoothly.

Finally, it is worth mentioning that the circuit description paradigm is not the only
approach to designing quantum programming languages and calculi. For instance, QCL [25],
QML [1] and Selinger and Valiron’s quantum λ-calculus [23] are some examples of quantum
programming languages whose instructions are designed to be executed immediately on
quantum hardware, without any direct reference to quantum circuits.
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A Type Derivations

return
var

_ : 1, a : Qubit; ∅ ⊢v a : Qubit
_ : 1, a : Qubit; ∅ ⊢ϵ

c return a : {Qubit}

Figure 18 Sub-derivation Π′, corresponding to the u = 0 branch of the lifted computational
judgment _ : u {1}{1}, a : Qubit; ∅ ⊩u {{ϵ}}{{ϵ}}

c u {return a}{apply(Measα, a)} : u {{Qubit}}{{Bit}}
required by sub-derivation Π of Figure 20.

apply
_ : 1; ∅ ⊢v Measα : Circϵ(Qubit, {Bit})

var
_ : 1, a : Qubit; ∅ ⊢v a : Qubit

_ : 1, a : Qubit; ∅ ⊢ϵ
c apply(Measα, a) : {Bit}

Figure 19 Sub-derivation Π′′, corresponding to the u = 1 branch of the lifted computational
judgment _ : u {1}{1}, a : Qubit; ∅ ⊩u {{ϵ}}{{ϵ}}

c u {return a}{apply(Measα, a)} : u {{Qubit}}{{Bit}}
required by sub-derivation Π of Figure 20.

let

apply
∅; ∅ ⊢v ML : Circu {ϵ}{ϵ}(Qubit, u {1}{1})

var
q : Qubit; ∅ ⊢v q : Qubit

q : Qubit; ∅ ⊢u {ϵ}{ϵ}
c applyu(ML, q) : u {1}{1} Π′ Π′′

u {return a}{apply(Measα, a)} ∈ Ku {ϵ}{ϵ}(TERM )

q : Qubit, a : Qubit; ∅ ⊢u {ϵ}{ϵ}
c let _ = applyu(ML, q) in

u {return a}{apply(Measα, a)} : u {Qubit}{Bit}

Figure 20 Sub-derivation Π, where the conclusion is the expansion of the (trivial) lifted compu-
tational judgment required by the let rule in Figure 21.
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abs

return

abs

let

apply
∅; ∅ ⊢v H : Circϵ(Qubit, {Qubit})

var
q : Qubit; ∅ ⊢v q : Qubit

q : Qubit; ∅ ⊢ϵ
c apply(H, q) : {Qubit} Π

{let _ = applyu(ML, q) in u {return a}{apply(Measα, a)}} ∈ Kϵ(TERM )
a : Qubit, q : Qubit; ∅ ⊢u {ϵ}{ϵ}

c let q = apply(H, q) in {

let _ = applyu(ML, q) in
u {return a}{apply(Measα, a)}} : u {Qubit}{Bit}

q : Qubit; ∅ ⊢v λaQubit.let q = apply(H, q) in {

let _ = applyu(ML, q) in
u {return a}{apply(Measα, a)}} : Qubit ⊸ u {Qubit}{Bit}

q : Qubit; ∅ ⊢ϵ
c return λaQubit.let q = apply(H, q) in {

let _ = applyu(ML, q) in
u {return a}{apply(Measα, a)}}

: {Qubit ⊸ u {Qubit}{Bit}}

∅; ∅ ⊢v λqQubit. return λaQubit.let q = apply(H, q) in {

let _ = applyu(ML, q) in
u {return a}{apply(Measα, a)}}

: Qubit ⊸ {Qubit ⊸ u {Qubit}{Bit}}

Figure 21 Type derivation for the Proto-Quipper-K program in Figure 14. For brevity, H, Measα

and ML stand for the corresponding boxed circuits employed in Figure 14 and arrow annotations
are omitted. Sub-derivation Π is given in Figure 20.
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