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Abstract
Hard real time-systems are often small devices operating on batteries that must react within a
given deadline, so they must satisfy their timing, code size, and energy consumption requirements.
Since these three objectives contradict each other, compilers for real-time systems go towards
multiobjective optimizations which result in sets of trade-off solutions. A system designer can
use the solution sets to choose the most suitable system configuration. Evolutionary algorithms
can find trade-off solutions but the solution set might be large which complicates the task of the
system designer. We propose to divide the solution set into clusters, so the system designer chooses
the most suitable cluster and examines a smaller subset in detail. In contrast to other clustering
techniques, our method guarantees that the sizes of all clusters are less than a predefined limit. Our
method clusters a set by using any existing clustering method, divides clusters with sizes exceeding
the predefined size into smaller clusters, and reduces the number of clusters by merging small
clusters. The method guarantees that the final clusters satisfy the size constraint. We demonstrate
our approach by considering a well-known compiler-based optimization called function inlining. It
substitutes function calls by the function bodies which decreases the execution time and energy
consumption of a program but increases its code size.
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1 Introduction

Hard real-time systems are computing systems that must react before a given deadline to
avoid catastrophic consequences. The Worst-Case Execution Time (WCET) of a program is
its worst possible execution time independent of input data. By minimizing WCETs, we can
guarantee that hard real-time systems satisfy their timing constraints. Since many embedded
systems have small memories and operate on batteries, code size and energy consumption
should also be minimized.

Modern compilers offer optimizations [20] that automatically improve code quality by
decreasing code size, execution time, or energy consumption. But these three objectives
contradict each other, i.e. when a compiler decreases one of them, it usually increases the
others. An optimization problem with conflicting objectives is called multiobjective.

To choose the most desirable trade-off between the objectives, the preferences of a system
designer must be incorporated into the solution process. If the designer knows the preferences
before the solution process, three main approaches exist [5]: (1) all but one of the objectives
are placed into constraints; (2) all objectives are combined into a single objective; (3) a
decision maker conducts the solution process in direction of the desired solution.
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If the designer wants to know all possible trade-offs before choosing the best one, a Pareto
set is generated by, e.g. using an evolutionary algorithm [6]. A Pareto set consists of trade-off
solutions for which improvement in one objective worsens at least one of the other objectives.

“The magical number seven, plus or minus two” effect [19] says that humans can handle
only a limited amount of information simultaneously, so the system designer cannot examine
a Pareto set that consists of dozens of solutions. To improve the decision-making process,
two main approaches exist:
1. select a small number of solutions that represent the entire Pareto set [25, 14, 11];
2. divide the Pareto set into clusters of small sizes [3].
In this paper, we focus on the second approach: we cluster a solution set of a multiobjective
compiler-based optimization into subsets not larger than a given size.

Many existing clustering methods generate a specified number of clusters ignoring the
size of each cluster. Due to “the magical number seven, plus or minus two” effect, we want
to guarantee that the sizes of clusters are less than a predefined size to simplify the task of
the system designer. We propose the following procedure:
1. we cluster a solution set by using an existing clustering method,
2. if the size of a cluster exceeds the predefined size, we divide the cluster into smaller

clusters such that the sizes of the new clusters satisfy the size constraint,
3. we reduce the number of clusters by merging small clusters such that new clusters satisfy

the size constraint.
We demonstrate the applicability of the proposed clustering method on a well-known compiler-
based optimization called function inlining. This optimization substitutes a function call by
the body of the callee. It potentially decreases WCET and energy consumption but increases
code size, so no single optimal solution exists that minimizes the objectives simultaneously
and the problem becomes multiobjective [21].

We organized the paper as follows: Section 2 presents related work, Section 3 describes
the concepts of multiobjective optimization problems and introduces the proposed cluster-
ing method, Section 4 evaluates the clustering method by applying it to compiler-based
optimization called function inlining, and Section 5 gives a conclusion.

2 Related Work

Compiler-based optimizations rarely employ multiobjective methods. Lokuciejewski et al. [16]
considered bi-objective problems with WCET, average-case performance, and code size as
objectives when searching for optimal compiler optimization sequences. Jadhav and Falk [12]
presented a bi-objective static SPM allocation with WCET and energy consumption as
objectives. Muts [21] studied a multiobjective function inlining with three objectives: WCET,
energy consumption, and code size. Section 4 describes the multiobjective function inlining
problem, since we use it to demonstrate the applicability of the clustering method proposed
in this paper.

The Pareto front is a set in the objective space that represents the objectives of a Pareto
set. To the best of our knowledge, clustering has been never integrated into compiler-
based optimizations but it has been used to reduce Pareto fronts of other multiobjective
optimizations.

Mattson, Mullur, and Messac [18] proposed a method to reduce a Pareto front such that
the reduced set represents its trade-off properties. A designer controls the set size and the
degree of practically insignificant trade-offs, which defines how far two solutions should be
from each other to keep both of them in the reduced set. The authors used the approach
to reduce Pareto fronts of bi- and tri-objective mathematical problems and a physical truss
design problem.
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Catania et al. [4] aimed to reduce a Pareto front that represents the performance, power,
and area of an Application Specific Instruction-set Processor (ASIP) when configuring it, e.g.
by setting the size of a cache. The authors used fuzzy c-means to partition the Pareto front
and kept one solution from each cluster in the reduced set. They used Xie-Beni index [29] to
identify the number of clusters.

Ishibuchi, Pang, and Shang [11] used an expected loss function to select a representative
subset of the Pareto front. The expected loss function measures the loss when one solution
is chosen instead of another, so the final subset minimizes the expected loss. The authors
compared the approach to hypervolume-based subset selection methods [14] by considering
mathematical test problems.

Kong et al. [13] proposed a clustering-based decision-making method for the multiobjective
reservoir operation problem. The authors clustered a Pareto set and its Pareto front in the
decision and objective spaces, respectively, to identify solutions in high-density areas of the
decision and objective spaces. They selected a compromise solution by using both clustering
results.

Li, Wu, and Yang [15] used TOPSIS [30] – the technique for order performance by
similarity to an ideal solution – to select solutions from a Pareto front when solving a
multiobjective conceptual design problem with product assembly, manufacturing, and cost
as objectives. For the TOPSIS method, a designer provides a decision matrix that contains
scores of the objectives for each solution of the Pareto front. TOPSIS ranks and selects
solutions based on the distances to the positive- and negative-ideal solutions. The authors
demonstrated the approach by considering the conceptual design of a centrifugal compressor.

Smedberg and Bandaru [26] developed an interactive decision support system that allows
decision makers to visualize Pareto fronts and to study their impact in the decision space.
To visualize two-dimensional projections of solutions from high-dimensional objective spaces,
the authors implemented radial coordinate visualization, t-distributed stochastic neighbour
embedding, uniform manifold approximation and projection, scatter plots, and parallel
coordinate plots. To select solutions from a Pareto front, the authors implemented reference
point-, lasso- and slider-based selections. To extract knowledge about the decision vectors of
the selected solutions, the authors implemented two data mining techniques: Flexible Pattern
Mining [2] and Simulation-Based Innovization [9] which generate decision rules. To visualize
the extracted knowledge, the authors implemented a graph-based technique, where nodes
represent decision rules and edges connect the rules such that the combined rule meets the
significance thresholds set by a user. They used the system to study benchmark optimization
problems with up to 10 objectives and real-world problems with up to six objectives.

The approaches described above extract a subset of a Pareto front that represents the
entire Pareto front, and a system designer chooses the final solution from the extracted set.
Such approaches might discard solutions that suit most of the system designer’s requirements.
Our method divides a Pareto front into clusters without discarding any solutions, and the
system designer selects first a cluster and then the most suitable solution from the cluster.

Bejarano, Espitia, and Montenegro [3] studied k-means and c-means fuzzy algorithms in
terms of clustering Pareto fronts obtained by solving eight artificial multiobjective problems.
The authors clustered the Pareto fronts into 2–6 clusters. Both clustering algorithms produced
similar clusters for continuous Pareto fronts but complementary clusters for discontinuous
fronts. K-Means was slower than fuzzy c-means on the considered Pareto fronts. In contrast
to our approach, this method ignores the sizes of clusters.

WCET 2023
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3 Clustering Pareto Front

Many real-world optimization problems deal with conflicting objectives, i.e. when we improve
one objective, we degrade the others. Optimization problems with conflicting objectives are
called multiobjective. A general multiobjective minimization problem without constraints is
formulated as follows:

minimize f(x) = (f1(x), f2(x), . . . , fm(x)) , (1)

where m ∈ N and fi : X → R with X ⊂ Rd and i = 1, 2, . . . , m.
For a minimization problem with m objectives, a decision vector x1 dominates another

vector x2 or in symbols x1 ≺ x2, if fi(x1) ≤ fi(x2) for all i ∈ {1, 2, . . . , m} and there
exists j ∈ {1, 2, . . . , m} such that fj(x1) < fj(x2). A solution x ∈ X is called Pareto
optimal, if it is not dominated by any other solution. Any multiobjective optimization
problem results in a solution set P called Pareto set which consists of trade-off solutions:
P = {x ∈ X : x is Pareto optimal} ⊂ Rd. The Pareto front F represents the subset of the
objective space corresponding to the Pareto set: F = {f(x) : x ∈ P} ⊂ Rm.

Two main approaches exist to solve multiobjective problems: (1) iterative scalarization
methods iteratively change their parameter values to generate a Pareto set; (2) evolutionary
algorithms evolve a set of solutions - called population - over several iterations - called
generations - by using bio-inspired genetic operators. Evolutionary algorithms are commonly
used in practice [7], since scalarization methods produce one solution per iteration, whereas
evolutionary algorithms generate a set of solutions in each iteration.

After solving a multiobjective optimization problem, a system designer selects a desirable
solution from the resulting Pareto front. Since Pareto fronts are usually large and humans
can handle only a limited amount of information, clustering techniques simplify the designer’s
task by dividing the Pareto front into clusters.

Well-known clustering methods, e.g. k-means, generate a specified number of clusters but
ignore cluster sizes. We aim to cluster a Pareto front such that the size of each cluster does
not exceed a given maximum size.

Algorithm 1 Clustering.

Require: Set S ⊂ Rm, clustering algorithm Cluster, maximum cluster size τ , maximum
distance distmax between two clusters to be merged

Ensure: Set of clusters S = {Si} with Si ⊂ S,
⋃

Si = S, and Si ∩ Sj = ∅ for i ̸= j

1: n←
⌈

|S|
τ

⌉
▷ Number of clusters

2: S← Cluster(S, n)
3: S← RefineClusters(S, Cluster, τ) ▷ Algorithm 2
4: S←MergeClusters(S, τ, distmax) ▷ Algorithm 3

Algorithm 1 presents the proposed clustering procedure. The algorithm takes a set S

(Pareto front) to be clustered, a clustering algorithm Cluster, e.g. k-means, a desired
maximum cluster size τ , and a maximum possible distance between two clusters distmax

for merging the clusters. The parameter distmax guarantees that two clusters are merged
only if they are close enough to each other. The algorithm returns a set of clusters S. Since
many clustering algorithms require a number of clusters as an input, at Line 1, the algorithm
computes the number of clusters n based on the size of the set S denoted by |S| and the
maximum cluster size τ . The clustering algorithm Cluster clusters the set into n clusters.
Since the clustering algorithm might generate clusters larger than the maximum size τ ,
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at Line 3, the algorithm refines the clusters such that the size of each cluster is not larger
than τ . The refinement might generate small clusters with sizes much smaller than τ , so at
Line 4, the algorithm merges the small clusters if it is possible.

Algorithm 2 Refine clusters.

Require: Set of clusters S = {Si} with Si ⊂ Rm, clustering algorithm Cluster, maximum
cluster size τ

Ensure: Set of refined clusters R = {Ri} with Ri ⊂ Rm, |Ri| ≤ τ , and
⋃

Ri =
⋃

Si

1: Clargest ← LargestCluster(S)
2: R← S

3: while |Clargest| > τ do
4: Crefined ← Cluster

(
Clargest,

⌈
|Clargest|

τ

⌉)
5: R← R \ {Clargest} ∪ Crefined ▷ Update R

6: Clargest ← LargestCluster(R)
7: end while

Algorithm 2 presents a procedure to refine clusters with sizes larger than τ . It takes a set
of clusters S, a clustering algorithm Cluster, and a maximum cluster size τ . The algorithm
returns a set of refined clusters R with sizes of all clusters less than or equal to τ .

At Lines 1 and 2, we denote by Clargest the largest cluster in S and assign the resulting
set R to the original set S. While the size of the largest cluster |Clargest| is larger than the
desired size τ , we cluster it in smaller clusters at Line 4. We update the current set R with
the new clusters at Line 5 and get the largest cluster Clargest of the updated set R at Line 6.
We repeat the refinement until the sizes of all clusters are less than or equal to τ .

▶ Lemma 1. If the input set S and its clusters Si ∈ S are finite, and 0 < τ <∞, Algorithm 2
terminates and returns clusters of size less than or equal to τ .

Proof. If |Si| ≤ τ for all Si ∈ S, the algorithm terminates and returns the original clusters Si.
To prove that the algorithm terminates if there exist clusters with sizes greater than τ ,

we prove that the while loop at Lines 3–7 terminates. We denote by W a set of all clusters of
size greater than τ in S:

W = {W ∈ S : |W | > τ} . (2)

Since the input set S is finite, the set W is finite.
At the first iteration of the while loop, Clargest ∈ W is split into n =

⌈
|Clargest|

τ

⌉
< ∞

clusters at Line 4. We prove by contradiction that the size of at least one of the newly
created clusters is less than or equal to τ : if |Cnew

k | > τ for all newly created clusters Cnew
k

with k = 1, 2, . . . , n, then

|Clargest| =
n∑

k=1
|Cnew

k | >
n∑

k=1
τ = n · τ =

⌈
|Clargest|

τ

⌉
· τ ≥ |Clargest|. (3)

The newly created clusters with sizes less than or equal to τ are removed from W: W =
W\ {Cnew

k : |Cnew
k | ≤ τ}. At the next iteration, the largest cluster from the updated set W

is split into smaller clusters, and clusters with sizes less than or equal to τ are removed from
W. Since the set W is finite and monotonically decreases in cardinality, we continue until
the set W is empty. It proves that the algorithm terminates.

WCET 2023
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The set R is updated at each iteration and

R = {W ∈ S : |W | ≤ τ} ∪ {W ∈ S : |W | > τ} = {W ∈ S : |W | ≤ τ} ∪W (4)

Since the algorithm terminates when W = ∅, the final set R contains clusters of size less than
or equal to τ . ◀

Algorithm 3 Merge clusters.

Require: Maximum cluster size τ , set of clusters S = {Si} with Si ⊂ Rm and |Si| < τ ,
maximum distance distmax between two clusters to be merged

Ensure: Set of clusters R = {Ri} with Ri ⊂ Rm, |Ri| ≤ τ , and
⋃

Ri =
⋃

Si

1: R← S

2: for C ∈ R do
3: Cclosest ← ClosestCluster(C,R) ▷ Cclosest ̸= C.
4: if dist(C, Cclosest) < distmax AND |C|+ |Cclosest| < τ then
5: Cmerged ←Merge(C, Cclosest)
6: R← R \ {C, Cclosest} ∪ {Cmerged} ▷ Update R

7: go to 2
8: end if
9: end for

Algorithm 3 presents a procedure to merge small clusters after refinement. It takes a
maximum cluster size τ to preserve the desired sizes of clusters, a set of clusters S, and a
maximum distance distmax between two clusters to be merged. The algorithm returns a set
of clusters R with a reduced number of clusters. At Line 1, the algorithm assigns the output
set R to the original set S. For each cluster, it gets the cluster Cclosest ̸= C closest to the
current cluster C. At Line 4, we denote by dist the distance between two sets P, Q ⊂ Rm

defined as the Euclidean distance between the centroids gp and gQ of the sets P and Q,
respectively. If the distance between the clusters is smaller than distmax and the sum of the
cluster sizes is less than the maximum cluster size τ , we merge the clusters and update the
current set R. When the set R is updated, the for loop iterates over the updated set R.

▶ Lemma 2. If 0 < τ <∞, the input set S is finite, and |Si| < τ for all Si ∈ S, Algorithm 3
terminates and returns clusters of size less than or equal to τ .

Proof. To prove that the algorithm terminates, we prove that the for loop terminates. The
algorithm starts with S assigned to R. Since S is finite, R is finite and |R| < τ for all R ∈ R.

Case 1. If for all C ∈ R, the closest cluster Cclosest does not satisfy the conditions at
Line 4, the loop terminates after |R| <∞ iterations.

Case 2. If there exists C ∈ R such that its closest cluster Cclosest satisfies the conditions
at Line 4, the clusters C and Cclosest are merged, the size of the merged cluster is less than τ ,
and the set R is updated by substituting the clusters C and Cclosest by one merged cluster.
We denote by R1 the updated set R. The new set R1 satisfies the following conditions:
|R1| = |R| − 1 <∞,

|R| < τ for all R ∈ R1.

The set R1 satisfies either Case 1 or Case 2 with R = R1. Case 1 terminates the algorithm
and Case 2 generates a new set of clusters which we denote by R2. By repeating the
procedure, we generate a sequence of finite sets {R1,R2, . . . ,Rs}. The sets monotonically
decrease in cardinality and |R| < τ for all R ∈ Ri, i = 1, 2, . . . , s, which proves the lemma. ◀
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We considered one of the most widely used clustering algorithm k-means [17] as a
clustering method in Algorithms 1 and 2. We also compared the results of k-means with
the results of two other clustering methods: spectral clustering [8, 22] and agglomerative
clustering with the complete linkage criterion [27].

4 Results

We demonstrate the applicability of the proposed clustering method on a well-known compiler-
based optimization called function inlining [20].

Performing function inlining, a compiler replaces a function call with the body of the
function: it stores the inputs of the function call to local variables, removes the function call,
inserts the function body into the code, and removes the return instruction.

Function inlining can decrease WCET and energy consumption since it
removes call and return instructions which smooths pipeline behaviour;
reduces parameter handling;
enables more possibilities for subsequent optimizations, e.g. redundant path elimination
or constant propagation which tightens WCET and energy consumption estimations.

Function inlining combined with other optimizations, e.g. redundant path elimination, might
decrease code size but it often increases code size due to duplicated function bodies.

The multiobjective function inlining problem with WCET, energy consumption, and code
size as objectives is formulated as follows [21]:

decision space: X = [0, 1]d, where the dimension d is equal to the total number of function
calls in a program. A decision vector x = (x1, x2, . . . , xd) is defined as follows:

xi =
{

1, the function is inlined at the function call i,

0, otherwise .
(5)

objective function: f = (WCET, Energy Consumption, Code Size)
optimization problem: min

x∈X
f(x).

After solving the multiobjective function inlining problem by the evolutionary algorithm
MBPOA [28] and getting a Pareto front, we cluster the solutions as described in the previous
section.

We use the WCC compiler framework [10] for the ARM Cortex-M0 microcontroller. We
computed WCET and energy consumption by AbsInt’s aiT and EnergyAnalyser 20.10i [1]
and code size by WCC. We ran all evaluations on a computer with Dual CPU Intel Core i7-
5600U, RAM 15 GB, 2 CPU cores, and 2.60 GHz CPU frequency. We implemented Al-
gorithms 1, 2, and 3 in Python 3.10.

Function inlining shows the most significant improvement of a final executable in com-
bination with other optimizations, e.g. constant propagation and dead code elimination,
so we perform all evaluations with the compiler optimization level O2. The Cortex-M0
microcontroller lacks a hardware floating-point unit, so we use the WCC software math library
to tackle this issue. We considered functions of the floating-point library as candidates for
inlining. We used benchmarks from EEMBC benchmark suite [24] where MBPOA resulted in
more than 10 solutions because otherwise, the clustering problem is trivial. We assumed that
a benchmark fits into the Flash memory of the architecture.

When clustering a Pareto front found by MBPOA, we consider only meaningful solutions,
i.e. solutions with decreasing WCET or energy consumption compared to the original
program. Table 1 lists the total number of solutions and the number of meaningful solutions.
For all benchmarks, except bitmnp01, the applied constraint insignificantly reduced the
Pareto fronts.

WCET 2023
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Table 1 The number of solutions when solving the multiobjective function inlining problem by
evolutionary algorithm MBPOA.

Benchmark

Number of solutions a2
tim

e0
1

ai
fir

f0
1

ba
se

fp
01

bi
tm

np
01

ca
ch

eb
01

ca
nr

dr
01

de
s

iir
flt

01

pn
tr

ch
01

pu
w

m
od

01

rs
pe

ed
01

tb
lo

ok
01

tt
sp

rk
01

Total 29 38 13 41 21 42 15 26 43 91 17 13 96
Meaningful solutions 29 37 13 11 20 41 15 26 43 91 16 13 96

We used Algorithm 1 to cluster the Pareto fronts. We utilized k-means, spectral clustering,
and agglomerative clustering as input clustering methods in the algorithm. We used the
implementation of the clustering methods provided by the tool scikit-learn [23]. We
preserved the scikit’s default values provided for the methods. We set maximum cluster
size τ = 7 in Algorithm 1 due to “the magical number seven, plus or minus two” effect [19],
and maximum distance distmax was computed as described in the following remark:
▶ Remark 3. We did not pass maximum distance distmax as input to Algorithms 1 and 3
but computed it in Algorithm 3 as follows:

distmax = dmax

n− 1 , (6)

where n is the number of clusters in the input set S and dmax is the maximum distance
between two points from the union of sets Si ∈ S:

dmax = max
p,q∈∪Si

||p− q|| . (7)

Figure 1 shows cluster sizes as box plots after each stage of Algorithm 1 shown in x-axes:
original clustering, refinement of large clusters, and merger of small clusters. The figure
shows the results when using agglomerative clustering, k-means, and spectral clustering in
Algorithm 1. The numbers on the medians show the total number of clusters. E.g. for the
benchmark canrdr01, the original agglomerative clustering resulted in six clusters with the
largest cluster size 16; after refinement, the algorithm produced 9 clusters with the maximum
cluster size 7; and after merging, the algorithm returned 8 clusters. As expected, refinement
reduces the cluster sizes to the desired value but increases the number of clusters, whereas
merging small clusters may reduce the number of clusters.

If we choose the best clustering method to be used in Algorithm 1 based on the number
of final clusters: fewer clusters are better, k-means outperforms the two other clustering
methods. For all benchmarks, Algorithm 1 with k-means resulted in the same or smaller
number of clusters than when it was combined with the two other clustering methods.

Table 1 shows that six benchmarks bitmnp01, des, rspeed, basefp01, cacheb01, and
tblook have a few meaningful solutions compared to the remaining benchmarks. For these
benchmarks, Figure 1 shows that

the refinement and merging stages of Algorithm 1 preserved the original clusters (bitmnp01,
des, rspeed) or
refinement was required to generate clusters of the desired sizes (basefp01, cacheb01,
and tblook), whereas merging was useless.

For the remaining seven benchmarks with more solutions to be clustered, the refinement
stage was necessary to generate clusters of the desired sizes. For all these benchmarks, except
aifirf01, the merging stage reduced the number of final clusters for at least one of the
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Figure 1 Cluster sizes after each stage of Algorithm 1 when using agglomerative, k-means, and
spectral clustering. The numbers on the medians show the total number of clusters.

considered clustering methods. We observed the most significant reduction for benchmark
puwmod01 with spectral clustering where the merge algorithm returned 18 clusters instead
of 23 produced at the refinement stage. This benchmark is one of the largest benchmarks
considered in the evaluation.

▶ Remark 4. For large Pareto fronts, Algorithm 1 results in many clusters when the maximum
cluster size τ is small. We observed these results for benchmarks puwmod01 and ttsprk01.
If a Pareto front is large, a system designer should iteratively invoke Algorithm 1:
1. set τ to a large value to divide the Pareto front into fewer clusters of large sizes;
2. choose the best cluster;
3. pass the cluster to the algorithm and decrease τ to divide the cluster into smaller clusters.
Repeat Steps 2 and 3 until the desired maximum cluster size is achieved.

Figure 2 shows the runtime of the stages of Algorithm 1 as a stack diagram with three
parts starting from 0: original clustering, refinement, and merging. For all benchmarks, the
runtime of the three approaches was less than 0.3 s. Agglomerative clustering resulted in the
shortest runtime for all benchmarks, except des. For 12 out of 13 benchmarks, Algorithm 1
with spectral clustering was the slowest approach. For most benchmarks, the refinement
stage was the most time-consuming part of the algorithm, whereas the merge stage was the
least-time consuming part.

To sum up, in general, the three considered approaches showed very similar results
according to Figure 1, but Figure 2 shows that Algorithm 1 with agglomerative clustering
was finished in less than 0.03 s for all benchmarks. It is 0.012 s and 0.066 s faster, on average,
than Algorithm 1 with k-means and spectral clustering, respectively.
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Figure 2 Runtime of the stages of Algorithm 1 with agglomerative clustering, k-means, and
spectral clustering. The parts of the stack diagram starting from 0: original clustering, refinement,
and merging.

5 Conclusion

We presented a method to cluster trade-off solutions of a multiobjective optimization problem.
To guarantee that the size of all clusters is less than a predefined limit, our method clusters
the solutions by using a known clustering method, refines clusters with exceeding sizes, and
merges small clusters if possible. The last step tries to reduce the number of clusters which
may increase after the refinement.

We demonstrated our approach by clustering solutions of multiobjective function inlining
problem. We compared the results by using three clustering methods as a base for our
approach: k-means, agglomerative and spectral clusterings. By using the three clustering
methods, the proposed clustering techniques showed similar results in terms of the number
of clusters and their sizes, but it showed the smallest runtime when using agglomerative
clustering.

In future work, the proposed method should be verified by using other multiobjective
optimizations, including compiler-based optimizations.
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