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Abstract
We describe a new meta-logical system for mechanising foundations of mathematics. Using dependent
sorts and first order logic, our system (implemented as an LCF-style theorem-prover) improves on the
state-of-the-art by providing efficient type-checking, convenient automatic rewriting and interactive
proof support. We assess our implementation by axiomatising Lawvere’s Elementary Theory of
the Category of Sets (ETCS) [5], and Shulman’s Sets, Elements and Relations (SEAR) [17]. We
then demonstrate our system’s ability to perform some basic mathematical constructions such as
quotienting, induction and coinduction by constructing integers, lists and colists. We also compare
with some existing work on modal model theory done in HOL4 [20]. Using the analogue of type-
quantification, we are able to prove a theorem that this earlier work could not. Finally, we show
that SEAR can construct sets that are larger than any finite iteration of the power set operation.
This shows that SEAR, unlike HOL, can construct sets beyond Vω+ω.
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1 Introduction

Mathematicians claim to work with set theory all the time, but many do so without really
having to, or trying to, grapple with set theory’s axioms. Moreover, this attitude is not
unreasonable: it is not clear that standard ZF set theory should be mathematicians’ foundation
of choice. Few people are particularly happy with a foundation insisting that, for example,
1 ∈ 2. It is not surprising then that a number of different foundations have been proposed
in the literature. Considering variants of set theory, some famous examples are Lawvere’s
ETCS [5], Shulman’s SEAR [17], Quine’s New Foundation [14], Tarski-Grothendieck set
theory [18] and von Neumann–Bernays–Gödel set theory (see, for example, Mendelson’s
presentation [11]) . Category theory has also been proposed as a mathematical foundation,
in McLarty’s CCAF [8] and Lawvere’s ETCC [6], with the former having been shown capable
of capturing many non-trivial results. And, though ETCC is known to be flawed, people
have never lost interest in fixing it, and are continuing to work on similar systems.

Axiomatising a foundation for all of mathematics is a project that must be approached
with the utmost care. Our belief is that this care should include mechanical support. That
is, we should develop a theorem-proving system to serve as a tool for checking proofs in these
foundations.
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33:2 Dependently Sorted Theorem Proving for Mathematical Foundations

Our second goal is expressiveness: we want our system to be flexible enough to capture
a variety of systems. At the same time, it is readily apparent that a significant amount of
work on mathematical foundations concentrates on first-order logic. Certainly, in all of the
examples above, first-order logic is enough. We’re quite happy to live with this constraint:
a richer logic can conceal foundational decisions that we’d prefer to make apparent in our
axioms. In the following, we present a first-order system that gains its expressiveness through
a simple notion of dependent sort. Despite its simplicity, our system captures three of the
foundational systems mentioned above, and is capable of fairly involved constructions in
them all.

Contributions

We develop a logical system that is able to express various first order axiomatic systems,
where sorts can depend on terms. We specialise this ambient logical system so as to
capture the foundational systems ETCS and SEAR.
Building on these foundations, we demonstrate that our system can handle common
mathematical constructions such as the development of the algebraic and co-algebraic
lists.
In one example, we also demonstrate SEAR’s set-theoretic power by extending an existing
example in model theory (done in HOL), and prove a theorem impossible to capture in
HOL.
We provide a proof-of-concept implementation that makes logical developments practical
through the development of a number of important, though basic tools. For example,
in ETCS, where proofs greatly rely on internal logic, we build a tool to automatically
construct the internal logic predicates corresponding to “external” predicates. In both
ETCS and SEAR, we automate inductive definitions, and provide tools to help with the
construction of quotients.

The paper is structured as follows: we first introduce our fundamental logic, which is
used for all three foundations. Then we briefly introduce the two structural set theories,
ETCS and SEAR. After discussing the automation of comprehension in ETCS, for reasons
of space, we present the remaining proofs in SEAR only. We note that with the exception of
the modal model theory result (where the bounded comprehension schema is not sufficient)
and the construction of the large set, all these formalised SEAR results can be formalised in
ETCS as well. The proofs of a SEAR statement and its ETCS counterpart are often identical,
in the sense that a proof in one system can be cut and pasted into the other. At the end of
the paper, we compare our work with some existing logics developed for related purposes.

2 Logical System

We begin with the syntax of our logical system, which is “three-layered”, consisting of sorts,
terms, and formulas.

2.1 Sorts and Terms
Every sort depends on a (possibly empty) list of terms. The sorts are all of the form
s(t0, · · · , tn), where t0, · · · , tn are terms of some pre-existing sorts and s is the name of the
sort. A term is either a variable or a function application:

t := Var(n, s) | Fun(f, s, t⃗)
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That is, a variable consists of a name and a sort, and a function term consists of the name
of the function symbol, the sort, and the arguments, which is a list of terms. A constant
is a nullary function. Each term has a unique sort, carried as a piece of information as an
intrinsic property. A sort which does not depend on any term is called a ground sort. A term
with a ground sort is called a ground term.

2.2 Formulas
We are working with a classical logic, and can afford to be minimal with our syntax: a
formula Φ is either falsity, a predicate, an implication, a universally quantified formula, or a
formula variable.

Φ ::= ⊥ | Pred(P, t⃗) | ϕ1 =⇒ ϕ2 | ∀n : s. ϕ | fVar(F , s⃗, t⃗)

In the above, P is a predicate name, and F is the name of a formula variable. Boolean
operators ∧,∨,¬ can hence be built from the implication. We write ⊤ as an abbreviation
⊥ =⇒ ⊥. In the ∀ case, the n and s carry the name and sort of the quantified variable.
A formula Pred(P, t⃗) is a concrete predicate symbol applied to the argument list t⃗. Such a
predicate symbol is either primitive, which comes together with the axiomatic setting or is
defined by the user. A formula variable fVar(F , s⃗, t⃗) is analogous to a higher-order lambda
expression taking an argument list t⃗ with sorts s⃗. We provide an inference rule to instantiate
them below in Section 2.3.1. In the following, we will write a predicate formula as P (⃗t). For
a formula variable with name F on arguments of sorts s⃗ applied on t⃗, we write F [s⃗](⃗t).

The only primitive predicate embedded in the system is equality between terms of the
same sort. However, we need not allow equalities between terms just because they have the
same sort. We cannot, for example, write equality between objects in ETCS, or equality
between sets in SEAR. Thus, each foundation must record (along with function symbols,
predicates symbols and axioms), the list of sorts supporting equality.

2.3 Theorems
A theorem consists of a set of variables Γ, called the context, a finite set A of formulas
(the assumptions), and a formula ϕ as the conclusion. A theorem Γ, A ⊢ ϕ reads “for all
assignments σ of variables in Γ to terms respecting their sorts, if all the formulas in σ(A)
hold, then we can conclude σ(ϕ)”.

The context is the set of variables we require for the conclusion to be true given the
assumptions: it contains at least all the free variables appearing in the assumptions or the
conclusion. It can be regarded as a special form of assumption, asserting the existence of
terms of certain sorts. We need the context to make sure we cannot use terms before either
constructing them or assuming their existence. For instance, there is no arrow from the
terminal object 1 to the initial object 0 in either ETCS or SEAR. Using a context, it can be
proved that: {f : 1 → 0} ⊢ ∃f : 1 → 0. ⊤, but ⊢ ∃f : 1 → 0. ⊤ is easily proved to be false.

2.3.1 Proof System
We now introduce the primitive rules. Rules for the propositional connectives are standard,
as in Figure 1. The quantifier rules take some extra care of the sort information. When
specialising a universal by a term, we need to put all the free variables of such a term into
the context. Let Vars(t) denote the set of variables occurring in the term t, then:

Γ, A ⊢ ∀x : s.ϕ(x)
∀-E, t is of sort s

Γ ∪ Vars(t), A ⊢ ϕ(t)

ITP 2023



33:4 Dependently Sorted Theorem Proving for Mathematical Foundations

Assume Vars(ϕ), {ϕ} ⊢ ϕ
Ax ϕ is an axiom

Vars(ϕ) ⊢ ϕ

Γ, A ∪ {¬ϕ} ⊢ ⊥
CContr Γ, A ⊢ ϕ

ExF Vars(A ∪ {ϕ}), A ∪ {⊥} ⊢ ϕ

Γ, A ⊢ ϕ
Disch Γ ∪ Vars(ψ), A \ {ψ} ⊢ ψ =⇒ ϕ

Γ1, A1 ⊢ ϕ =⇒ ψ Γ2, A2 ⊢ ϕ
MP Γ1 ∪ Γ2, A1 ∪A2 ⊢ ψ

Refl Vars(a) ⊢ a = a
Γ, A ⊢ a = bSym
Γ, A ⊢ b = a

Γ1, A1 ⊢ a = b Γ2, A2 ⊢ b = c
Trans Γ1 ∪ Γ2, A1 ∪A2 ⊢ a = c

Γ, A ⊢ ϕ
InstTM σ is a well-formed map

σ(Γ), σ(A) ⊢ σ(ϕ)

Γ1, A1 ⊢ t1 = t′1, · · · , Γn, An ⊢ tn = t′nFVCong ⋃n

i=1 Γi,
⋃n

i=1 Ai ⊢ F [s⃗](⃗t) ⇔ F [s⃗](t⃗′)

Figure 1 Natural Deduction style presentation of our sorted FOL.

To apply generalisation (∀-I) with a variable a : s(t1, · · · , tn), we require that (i) a does not
occur in the assumption set; (ii) there is no term in the context depending on a; (iii) all the
variables of sort s must also be in Γ \ {x}, and (iv) a does not appear in the sort list of any
formula variable appearing in the conclusion. Once all these conditions are satisfied, we have

Γ, A ⊢ ϕ(x)
∀-I Γ \ {x : s}, A ⊢ ∀x : s. ϕ(x)

We define (∃x.ϕ) = ¬(∀x.¬ϕ). The instantiation rule for formula variables is given as:

Γ, A(F [s⃗]) ⊢ ϕ(F [s⃗])
Form-Inst Γ ∪ Vars(ψ), A[F [s⃗] 7→ ψ] ⊢ ϕ[F [s⃗] 7→ ψ]

Instantiating a formula variable F [s⃗] is to replace each occurrence of F [s⃗] into a concrete
formula on an argument list with sorts s⃗, and apply this predicate on t⃗. This is done by
providing a map sending each such formula variable to a formula. This formula may or may
not contain more formula variables, and is encoded by a pair consisting of a variable list
v1, · · · , vn of sort s⃗ and a formula ϕ, such that ∀v1, · · · , vn.ϕ is a well-formed formula. We
rely on the term instantiation rule to make changes to the sort list, and then instantiate the
formula variable when required.

When defining a new foundation we assume the existence of a signature recording that
foundation’s sorts, function symbols and predicate symbols. We extend the signature with
new predicate symbols using the predicate specification rule.

Pred-spec P does not occur in ϕ
Vars(⃗t) ⊢ P (⃗t) ⇔ ϕ(⃗t)

Applying such a rule will define a new predicate with the name P. The defined predicate
will be polymorphic, where each tuple whose sort is matchable with the list t⃗ can be taken
as the arguments. Here the argument of the new predicate symbol is not required to be all
of Vars(ϕ), we only require the whole set of free variables involved can be recovered from the
arguments. For instance, if {a1 : s1, a2 : s2(a1)} exhausts the free variables involved, then
the predicate can just take the single argument a2 instead of both a1 and a2.
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2.3.1.1 Function specification rule

The specification rule for new function symbols is the most complicated. Given a theorem
Γ, A ⊢ ∃a1 : s1, · · · an : sn.Q(a1, · · · , an), if the existence of the tuple (a1, · · · , an) is unique
up to any sense which is accepted as suitable by the foundation, we define function symbols
f1, · · · , fn such that their output tuple satisfies Q. To define a new function symbol, we
provide a theorem stating the unique existence of some terms up to some relation, a theorem
stating the relation is an equivalence relation, and a theorem guaranteeing non-emptiness of
the relevant sorts.

In general, an equivalence must be captured by a predicate on two lists of variables,
representing the two entities being related. As the built-in logic does not have a notion of
tuples, we cannot define an equivalence relation to be a subset of the set consisting pairs of
tuples of a certain form. Instead, we require theorems of the form:

⊢ R(⟨a1 : s1, ..., an : sn⟩, ⟨a1 : s1, ..., an : sn⟩)

⊢ R(⟨a1 : s1, ..., an : sn⟩, ⟨a′
1 : s′

1, ..., a
′
n : s′

n⟩)
=⇒ R(⟨a′

1 : s′
1, ..., a

′
n : s′

n⟩, ⟨a1 : s1, ..., an : sn⟩)

⊢ R(⟨a1
1 : s1

1, ..., a
1
n : s1

n⟩, ⟨a2
1 : s2

1, ..., a
2
n : s2

n⟩) ∧R(⟨a2
1 : s2

1, ..., a
2
n : s2

n⟩, ⟨a3
1 : s3

1, ..., a
3
n : s3

n⟩)
=⇒ R(⟨a1

1 : s1
1, ..., a

1
n : s1

n⟩, ⟨a3
1 : s3

1, ..., a
3
n : s3

n⟩)

If the three theorems all hold for a concrete property R, then R is an equivalence relation
(abbreviated as eqth(R) in the rest of the discussion). If R is used as the equivalence relation
above, the unique existential theorem is required to be of the form:

∃ai : si. Q(⟨a1 : s1, ..., an : sn⟩) ∧
∀a′

i : s′
i. Q(⟨a′

1 : s′
1, ..., a

′
n : s′

n⟩) =⇒ R(⟨a1 : s1, ..., an : sn⟩, ⟨a′
1 : s′

1, ..., a
′
n : s′

n⟩)

We abbreviate the formula above as ∃!Rai : si. Q(⟨a1 : s1, ..., an : sn⟩). The sorts of the
two argument lists are not required to be equal, and they are generally not equal because
the sorts of the latter variables often depend on the previous ones. The rule is expressed as:

Γ0, ∅ ⊢ ∃ai : si.⊤ Γ′, A′ ⊢ eqth(R) Γ, A ⊢ ∃!Rai : si.Q(⟨a1 : s1, ..., an : sn⟩)
Γ, A ⊢ Q(⟨f1(Γ′), ..., fn(Γ′)⟩)

where
Q and R do not contain any formula variables; and
Γ0 ⊆ Γ, Γ′ ⊆ Γ, and A′ ⊆ A.

Our rule’s leftmost premise requires the existence of terms of the required (output) sorts,
given the existence of variables in the context corresponding to the sorts of the arguments.
In this way, the rule guarantees that terms built using the new function symbol will always
denote values in the output sort. For the equivalence relation, we can take R to be equality,
meaning we are specifying new function symbols according to unique existence. If we take R
to be the everywhere-true relation we have imported the Axiom of Choice into our system.
The choice of which R’s to allow is up to the designer of the object logic.

2.3.2 Semantics via Translation to Sorted FOL
In work that is not further described here, we have mechanised the proof that formula
variables and their proof rules represent a conservative extension and can be eliminated.
Subsequently, the term-instantiation rule (InstTM in Figure 1) can be derived from ∀-I and
∀-E and can also be removed from the list of primitive rules. As a result, our semantics

ITP 2023



33:6 Dependently Sorted Theorem Proving for Mathematical Foundations

below ignores them (meaning that our formulas come in just four forms: ⊥, implications, the
universal quantifier and predicate symbols). Our logic can be translated into non-dependent
sorted FOL, which is equivalent to FOL. Given a list of sorts s1, · · · , sn, such that sk only
depends on terms with sorts occurring earlier in the list for each 1 ≤ k ≤ n, we create
non-dependent sorts s1, · · · , sn. These sorts are thought of as the non-dependent versions of
s1, · · · sn. We can think of the set of terms of sort si as the union of all terms of sort si(⃗t)
for all possible tuples t⃗ of terms.

{a | a : si} =
⋃
t⃗k

{a | a : si(t⃗k)}

For example, the ETCS terms f : A → B and g : C → D are of different arrow sorts,
but their translation both have sort ar. For a function symbol f taking a list of terms
[t1 : s1, · · · , tn : sn], we create a non-dependent sorted function symbol f , such that its
argument term list has the corresponding sort list s1, · · · , sn. We do the same for predicate
symbols. Translation from terms of sk into those of FOL sort sk is done by forgetting sort
dependency:

JVar(x, sk(t1, · · · tm))Kt = Var(x, sk)
JFun(f, sk(t1, · · · , tm), (a1, · · · , an))Kt = Fun(f, sk, (Ja1Kt, · · · , JanK))

For sorts s depending on terms t1 : s1, · · · , tm : sm, we create function constants ds,1, · · · ,
ds,m. For 1 ≤ i ≤ m, ds,i takes an argument of sort s and outputs a term of sort si. If a
function symbol f takes arguments (t1 : s1, · · · , tn : sn), and outputs a non-ground sort s,
where s depends on terms r1, · · · , rn, and each sk depends on terms qk,i, then we add an axiom
to regulate the dependency information of its sort when translated into non-dependent-sort
FOL:∧

k

∧
i

dsk,i(JvkKt) = Jqk,iKt =⇒
∧
j

ds,j(Jf(v1, · · · , vn)Kt) = JrjKt

As an example, the composition function symbol in ETCS takes g : B → C and f : A → B,
and outputs g ◦ f : A → C. The corresponding axiom is:

∀(A : ob) (B : ob) (C : ob) (f : ar) (g : ar).
dar,1(f) = A ∧ dar,2(f) = B ∧ dar,1(g) = B ∧ dar,2(g) = C =⇒
dar,1(g ◦ f) = A ∧ dar,2(g ◦ f) = C

For an arbitrary function symbol f , although its arguments can include ground terms, the
axiom only needs to state information about the dependently sorted argument, where the
functions dk, as shown above, exist. If the output of a function symbol is a ground sort, we
do not need such an axiom for it.

Translation of formulas only makes sense under the translation of some context that
contains at least all of its free variables. Defining the translation of a context amounts to
translating sort judgments of variables. We translate the sort judgment of any ground sort
into ⊤. As for a variable a : sk(t1, · · · , tn), we write

Ja : sk(t1, · · · , tn)Kts =
∧

i

dk,i(JaKt) = JtnKt

to denote the translation of a context element (J· · ·Kts calculates the denotation of a term’s
sorting assertion). An entire context Γ is translated into the conjunction of the translation
of its elements.
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As we do for function symbols, we create for each dependent sorted predicate symbol
P a corresponding non-dependent sorted one, written as P. We define the translation of
formulas by induction as:

JP(t1 : s1, · · · , tn : sn)Kf = P(Jt1Kt, · · · , JtnKt)
Jϕ =⇒ ψKf = JϕKf =⇒ JψKf

J∀x : s. ψKf = ∀x : s. JxKts =⇒ JψKf

Finally, a theorem Γ, A ⊢ ψ translates into

∀v1 . . . vn.
∧

(vi:si)∈Γ

Jvi : siKts ∧ JAKf =⇒ JψKf

It is routine to check that the rules are valid under the translation and hence have the
intended sense. As an example, consider ∀-I. Assume Γ, {a : s(t1, · · · , tn)}, A ⊢ ϕ(a) and the
variable a appears in neither Γ nor A. The theorem translates into

JΓKts, Ja : s(t1, · · · , tn)Kts,
∧

JAKf ⊢ Jϕ(a)Kf

(where we overload J· · ·Kts and J· · ·Kf to include the versions mapping sets to conjunctions
of translations). The fact that a does not appear in Γ translates into the corresponding
variable a : s not appearing in JAKf , and the requirement that no variable depends on a

translates to the requirement that Ja : s(. . . )Kts does not appear in JΓKts either. Therefore,
we can discharge JaKts from the assumption and deduce from the FOL universal elimination
rule that JΓKts, JAKf ⊢ ∀a : JsKs. Ja : sKts =⇒ Jϕ(a)Kf . This is the translation of Γ, A ⊢ ∀a :
s(t1, · · · , tn).ϕ(a), as required.

Implementation

Our implementation is a proof-of-concept written in SML. It provides a simple REPL similar
to those provided by HOL4 and HOL Light. The kernel (core syntax and proof rules) is
implemented in 2443 lines of code; user-level parsing (including a simple type inference
algorithm) and printing is a further 1633 lines of code. Additional core libraries (goal stack
package, common tactics including the rewriting tactic) take 4386 lines.

The source code for this implementation is available from https://github.com/u5943321/
DiaToM

3 ETCS and SEAR

ETCS [5] and SEAR [17] are both structural set theories. With each, we work within a
well-pointed boolean topos. In particular, they both have products, coproducts, exponentials,
an initial object 0 and a terminal object 1. Whereas the existence of all of these are given as
primitive axioms in ETCS, we can construct them in SEAR.

ETCS has two sorts: objects (A, B, . . . ; a ground sort) and arrows (e.g., A → B), where
an arrow sort depends on two object terms. Equality can only hold between arrows. An object
is to be considered as a set in the usual sense: an arrow 1 → X is regarded as an element of
the set X. As per Shulman’s original construction, SEAR has three sorts: sets (A, B, . . . ; a
ground sort); members (_ ∈ A, depending on a set term); and relations (A↬ B, depending
on two set terms). SEAR also adds a primitive predicate Holds(R : A ↬ B, a ∈ A, b ∈ B),
declaring that the relation R relates a and b.Equality can hold between relations with the
same domain and codomain, and elements of the same set.

ITP 2023
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In SEAR, a relation R is called a function if ∀a.∃!b. Holds(R, a, b). In practice, we want to
be able to write f(a) as the result of applying a function to an argument, but we cannot do
this if we are restricted to just the relation sort. A first thought might be to create a function
symbol Eval, that takes a relation and a member of A, so the term Eval(R : A↬ B, a ∈ A)
is a member of B. However, such a function symbol breaks soundness, as the term Eval(R, a)
can be expressed for every a of the correct sort before checking the function condition on R.
In particular, we can write a term Eval(R : 1 ↬ 0, ∗), nominally producing an element of 0.

Rather, we introduce a function sort which is a “proper subsort” of the relation sort.1 A
function f from A to B is written f : A → B, and we add the following axiom describing
terms of function sorts:

isFunction(R) =⇒
∃!f : A → B. ∀(a ∈ A) (b ∈ B).Eval(f, a) = b ⇔ Holds(R, a, b)

The isFunction predicate embodies the definition above, and we also have a new Eval function
symbol that takes a function term from A to B and an element term of A, and outputs an
element term of B.

We will write Eval(f, a) simply as f(a) in the rest of paper. The Eval symbol is typed so
that only functions terms can be its first argument. It is clear that this is a conservative
extension, as any theorems involving Eval can be expressed using just Holds and uses of the
isFunction hypothesis if desired.

Subsets are handled differently in ETCS and SEAR. Using the SEAR axioms, it is
straightforward to show that for each formula ϕ on members x ∈ X, we can form the subset
{x | ϕ(x)}. In what follows, F is an arbitrary formula variable, and we are defining a
comprehension schema. Our subset is constructed via a member of the power set Pow(X),2
and ultimately as a term of set sort with an injection to X. This construction is described
by the following two theorems (following Shulman [17]). First, we prove the existence of
the member of the power-set. Given that A is a set, then IN requires two arguments of sort
_ ∈ A and _ ∈ Pow(A). Then:

∃!s ∈ Pow(A). ∀a. IN(a, s) ⇔ F [mem(A)](a)

We also have the existence of a set B, and an injection from it into A:

∃B (i : B → A). Inj(i) ∧ ∀(a ∈ A). F [mem(A)](a) ⇔ ∃b ∈ B. a = i(b) (1)

The combination of i and B can be seen as identifying the subset of A satisfying predicate P .
The following isset predicate, connecting a member (s) to a set (B, given implicitly in i’s

sort) is also occasionally useful:

isset(i : B → A, s ∈ Pow(A)) def⇔ Inj(i) ∧ image(i, B) = s

The “subset story” in ETCS is more restrictive. There we can only form subsets from
predicates on elements of X which can be captured by an arrow p : X → 2, where 2 is defined
to be the coproduct 1 + 1. Such arrows are turned into elements of the power object 2X by
taking transposes. We regard 2 as the set of truth values, where ⊤I ,⊥I : 1 → 2 denote truth

1 Shulman (personal communication) agrees that the resulting system is still effectively SEAR as he
conceives it.

2 The existence of the powerset function is easy to establish from the function specification rule: power
set of each set is unique up to isomorphism that respects the membership relation.
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and falsity respectively. Our arrow p gives rise to a separate object as characterised by the
theorem:

∀A (p : A → 2). ∃B (i : B → A). Inj(i) ∧ ∀a : 1 → A. p ◦ a = ⊤I ⇔ ∃b. a = i ◦ b

The existence of i is witnessed by the pullback of the map ⊤I along p. Note that this method
only shows the existence of subsets for arrows p : X → 2. We do not achieve the generality
of SEAR, where the construction starts with an arbitrary formula variable. ETCS does
allow for the construction of subsets using something resembling set comprehension, but this
requires a detour via its internal logic (see Section 4 below).

Another notable difference between the two logics is that ETCS comes with the axiom of
choice in the form of the statement that any epimorphism has a section, whereas this is not
given in SEAR. In fact, if we change SEAR by adding the axiom of choice, and also requiring
that the input formula of our comprehension schema be bounded, then the resulting system
has the same strength as ETCS.

For both ETCS and SEAR, the injection we construct from each predicate is unique up to
respectful isomorphism. This allows us to use the specification rule to obtain new constants
without the full form of choice. In SEAR, for example, we can prove if there are i : B → A and
i′ : B′ → A, which are both injections, and moreover, we have ∀a. P (a) ⇔ ∃b ∈ B. a = i(b)
and ∀a. P (a) ⇔ ∃b ∈ B′. a = i′(b), then the relation between pairs (B, i : B → A) and
(B′, i′ : B′ → A) defined by

∃(f : B → B′) (g : B′ → B).
f ◦ g = Id(B) ∧ g ◦ f = Id(B′) ∧ i′ ◦ f = i ∧ i ◦ g = i′

holds. This is clearly an equivalence relation. Moreover, for all sets A, the existence of a
set B and a map B → A is witnessed by the identity isomorphism. Therefore, once we
instantiate the P above into a concrete predicate without any formula variables, we have
met all of the specification rule’s antecedents, and we can use it to define two constants:
the subset and its inclusion into the ambient set. In SEAR, the sets of natural numbers,
integers, lists and co-lists are all constructed in this way. More generally, given any member
s ∈ Pow(A), we use the specification rule to turn it into a “real set” via the constant m2s(s)
of set sort. This set is injected into A by the map minc(s) : m2s(s) → A.

4 Internal logic in ETCS

As discussed in the last section, an arrow p : X → 2 corresponds to a predicate on X in
the sense that if x : 1 → X, then p ◦ x = ⊤I means p is true for x. An ETCS formula is
bounded precisely when all quantified variables are elements (i.e., arrows with domain 1). Let
us call the formulas of our logic (all formulas seen so far) external formulas. If an external
formula is bounded with all free variables also elements, we can automatically construct
a corresponding internal formula as a term of the logic. When the external formula is on
variables with sorts (1 → X1), (1 → X2), . . . , then the internal formula will be an arrow of
sort ΠXi → 2. For an external formula Φ[x1 : 1 → X1, . . . ], then let p : ΠXi → 2 be the
corresponding formula. We require

∀a : 1 → ΠXi. p ◦ a = ⊤I ⇔ Φ[(πi ◦ a)/xi]

where Φ[t/x] is the substitution of term t for variable x. This could be regarded as an axiom,
one rather like Separation in ZF. However, we can instead prove all results of this form
automatically. This is simply by rewriting with all the theorems with relevant definitions
and properties of the internal logic operators as explained below.
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We have implemented an automatic translation (a “derived rule”) that generates an
internal logic formula given a list of variables, considered as the arguments, and the formula.
The translation produces an internal logic predicate and proves that it gives the value ⊤I if
and only if the formula is true when applied to the arguments. We illustrate our algorithm
with an example over N, the natural number object, the arrow SUC : N → N, and the function
symbol _+, such that n+ def= SUC ◦ n. Then, the pair ([n],m+ − n+ = m − n) encodes a
simple unary predicate on n. In this case, the output of our derived rule is an arrow term
p : N → 2 satisfying:

∀n : 1 → N. p ◦ n = ⊤ ⇔ m+ − n+ = m− n

If the list of arguments is [m,n] instead, the produced arrow p : N × N → 2 will satisfy:

∀m,n : 1 → N. p ◦ ⟨m,n⟩ = ⊤ ⇔ m+ − n+ = m− n

Table 1 Operators of the Internal Logic.

Operator Sort Defining Property
∧I 2 × 2 → 2 ∧I ◦ ⟨p1, p2⟩ ⇔ p1 = ⊤I ∧ p2 = ⊤I

∨I 2 × 2 → 2 ∨I ◦ ⟨p1, p2⟩ ⇔ p1 = ⊤I ∨ p2 = ⊤I

⇒I 2 × 2 → 2 ⇒I ◦⟨p1, p2⟩ ⇔ p1 = ⊤I =⇒ p2 = ⊤I

¬I 2 → 2 ¬I ◦ p = ⊤I ⇔ p = ⊥I

∀X 2X → 2 ∀X ◦ p ◦ y = ⊤I ⇔ ∀x.p ◦ ⟨x, y⟩ = ⊤I

∃X 2X → 2 ∃X ◦ p ◦ y = ⊤I ⇔ ∃x : 1 → X.p ◦ ⟨x, y⟩ = ⊤I

To convert formulas into internal formulas, we need to first convert terms into “internal
terms”. In particular, function symbols will map into arrows of an appropriate sort. For
example, if our “external formula” is on variables [x : 1 → N, y : 1 → N], then any “internal
term” built as part of this translation will be from N × N. In our N-example, the arrow
corresponding to y+ will be SUC ◦ π2(N,N). In most circumstances, the connection between
the function symbol and the arrow will simply be that symbol’s definition. For generality’s
sake, our implementation stores the external-internal correspondence of function and predicate
symbols in a simple dictionary data structure.

Our formula-converting function is recursive on the structure of formula, using the
semantics of the various connectives and quantifiers given in Table 1. The only built-in
predicate, equality, corresponds to the characteristic map of the diagonal monomorphism. For
user-defined predicates, such as < over natural numbers, users can store the correspondences
manually. The induction steps for the connectives are straightforward. For quantifiers, for
example, consider the formula ∀a : 1 → A. a = a0. Begin by converting the body a = a0
into a predicate on [a, a0]; and then transpose the output and post-compose with the internal
logic operator ∀A. The existential case is similar.

5 Quotients in ETCS and SEAR

In both ETCS and SEAR, we can make a number of definitions, and prove theorems about
quotienting by equivalence relations. Here we present our approach in the terminology of
SEAR. We only consider full equivalence relations, since partial equivalences become full by
restricting their domains. Our approach does not require any form of the Axiom of Choice.
Given a binary relation R on a set A, we say a map i : Q → Pow(A) is a quotient with respect
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to R if it injects Q into the set of relational images of R (which is the set of equivalence
classes if R is an equivalence relation). That is,

Quot(R : A↬ A, i : Q → Pow(A)) ⇔
Inj(i) ∧ ∀s ∈ Pow(A). (∃q ∈ Q. s = i(q)) ⇔ ∃a ∈ A. s = {b | Holds(R, a, b)}

In contrast to HOL, where any injection has an inverse, constructing an inverse of an injection
requires an element witnessing that the domain is non-empty. For an injection i from X to
Y , and given an element x ∈ X, we define LINV(i, x)(y) to map y ∈ Y to x0 if i(x0) = y, or
to x otherwise. This is then a left inverse of i. If i : Q → Pow(A) is a quotient of R, then
given any q0 ∈ Q, the composition of the map a 7→ {b | Holds(R, a, b)} and LINV(i, q0) is the
quotient map A → Q. We denote the output of this map applied to an element a ∈ A as
abs(R, i, q0, a). We write resp1(f,R) if f agrees on elements related by R and ER(R) for R
an equivalence relation. Then we prove:

ER(R) ∧ resp1(f,R) ∧ Quot(R, i) =⇒
∀q0 ∈ Q. ∃!f : Q → B. ∀a ∈ A. f(abs(R, i, q0, a)) = f(a)

This does not only allow us to lift functions at the level of elements related by R, but also
supports lifting predicates, which can be regarded as maps to 2. For instance, lifting the
definition of evenness of a natural number to that of an integer amounts to lifting a map
N → 2 into Z → 2.

A function into a quotient can be defined by composing with the inverse of the inclusion
map and hence is easy to define. The interesting case is when we want to define a function
from a product of quotients. In such cases, we realise the product of quotients as a quotient
as well in the following way: Given two relations R1 on A and R2 on B, we define their
product relation as:

Holds(prrel(R1, R2), (a1, b1), (a2, b2)) ⇔ Holds(R1, a1, a2) ∧ Holds(R2, b1, b2)

And given quotients i1 : Q1 → Pow(A), i2 : Q2 → Pow(B) of R1 and R2, we define a map
ipow2(i1, i2) : Q1 ×Q2 → Pow(A×B) such that for every pair (a, b) ∈ Q1 ×Q2, we have:

IN((a, b), ipow2(i1, i2)(q1, q2)) ⇔ IN(a, i1(q1)) ∧ IN(b, i2(q2))

If R1 and R2 are both equivalence relations, we have Quot(prrel(R1, R2), ipow2(i1, i2)) Ap-
plication of this result allows us to define maps such as integer addition and multiplication,
and more generally, the group operation in a quotient group.

6 Group Theory

Many mathematical results look neater in theorem-provers based on dependent type theory
(DTT), since instead of assuming complicated predicates, we can internalise those predicates
as types, thereby shortening the statement. By formalising some group theory, we demonstrate
that we can prove similarly neat versions of statements in our simple logic.

We encode a group with underlying setG as an element of Grp(G). Such a set is constructed
from the comprehension schema which injects to the subset of the product GG×G ×GG ×G

satisfying the usual group axioms. For a group g ∈ Grp(G), also by comprehension, we
construct the set of its subgroups sgrp(g) as injected into Pow(G), and set of its normal
subgroups nsgrp(g) that injects to sgrp(g). As groups are encoded by members of sets, it is
possible to compare if two groups are equal, e.g., g1 = g2, with g1, g2 ∈ Grp(G). However,

ITP 2023



33:12 Dependently Sorted Theorem Proving for Mathematical Foundations

if h1 ∈ sgrp(g1) and h2 ∈ sgrp(g2), we cannot write h1 = h2 because such an equality will
not type check. We hold this to be appropriate because equality is not the correct way to
compare abstract structures such as groups. Even if we wanted to work with equality on
groups g1, g2, we should compare their representatives or define transferring functions like
the ones of sort sgrp(g1) → sgrp(g2), which map a subgroup of g1 to a subgroup of g2.

For a normal subgroup N ∈ nsgrp(g), the underlying set of the quotient group qgrp(N)
has as its underlying set the set of all right cosets of N . The function symbol qgrp only needs
to take the group N as argument, since the group being quotiented is contained in the sort
information of N . The quotient homomorphism qhom(N) is a member of ghom(g, qgrp(g))
of all homomorphisms between the original group and the quotient. Its underlying function
homfun(qhom(N)) sends a group element to its coset.

By construction, each underlying function of a homomorphism respects the relation
induced by its kernel. Then the first isomorphism theorem can be obtained by instantiating
the quotient mapping theorem as in the last section, giving

∀G1 G2 g1 ∈ Grp(G1) g2 ∈ Grp(G2) f ∈ ghom(g1, g2).
∃! f ∈ ghom(qgrp(ker(f)), g2).

Inj(homfun(f)) ∧ homfun(f) ◦ qmap(ker(f)) = homfun(f)
(2)

This is a nice illustration of the strengths of the “DTT style”.

6.1 Discussion

Our approach to group theory is very different from its counterpart in HOL. Firstly, the HOL
type α group is inhabited by values that must record their underlying carrier set. Secondly,
the HOL quotient group function takes two α groups and outputs a term of (α → bool)
group, which is proved to satisfy the group axioms if the first term satisfies the group axioms
and the second term is a normal subgroup. Further, as HOL types cannot depend on terms,
we certainly cannot construct the type of all homomorphisms between two groups.

There is actually a trade-off between choosing the HOL style and the DTT style of stating
theorems. Whereas the first isomorphism theorem is clearly better in DTT style (2), the
second and third isomorphism theorems in DTT style can look complicated, with a great
deal of coercions happening under the covers.3 Since the HOL quotient group only takes
two groups of the same type, we can use exactly the same term for the ambient group
and its subgroup, and do not need to construct different terms to regard the same group
as subgroups of an ambient group. In this case, the convenience of the HOL style (using
assumptions) is evident. We can choose each style in our system, so users can try both
approaches and compare them. To find the best form of a statement, we may try combining
the two approaches: we do not always have to create a subset once we come up with a new
property, but we may use them as assumptions as well.

7 Inductive and Coinductive definitions

We experiment with inductive definitions by mechanising induction on natural numbers,
finite sets and lists, and with coinductive definitions by constructing co-lists.

3 Of course, DTT systems offer the ability to write statements in HOL’s predicate-heavy style as well.
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7.1 Natural numbers, Finite sets and Lists
Our system implements a version of Harrison’s [3] inductive relation definition package. To
define an inductive subset, we just need to provide the inductive clauses.

For example, there is no primitive natural number object in SEAR. We are given only a
set N0 with an element z0 and an injection s0 : N0 → N0, where z0 is not in the range of s0.
To apply our induction tool to cut down N0 into a natural number object, we firstly define a
subset, i.e., a member of the power set Pow(N0), of N0, by giving two clauses saying that z0
is in N and if n0 is in N , then s0(n0) is in N . Using theorem 1 in Section 3 together with the
specification rule, we extract the subset of N0, which consists of elements in N , as a constant
term N of set sort. We call the lifted zero element and successor map 0 and SUC respectively,
with SUC obtained by specialising the following lemma with the inclusion from N0:

∀A A0 (i : A → A0) (f0 : A0 → A0).
Inj(i) ∧ (∀a1.∃a2. f0(i(a1)) = i(a2)) =⇒

∃!f : A → A. ∀a ∈ A. i(f(a)) = f0(i(a))

The constructed N then can be shown to satisfy the standard induction principle.

F [mem(N)](0) ∧ (∀n ∈ N. F [mem(N)](n) =⇒ F [mem(N)](SUC(n))) =⇒
∀n ∈ N. F [mem(N)](n)

By instantiating the formula variable F with concrete properties, we apply the above to
perform inductive proofs for ordering and natural number arithmetic. We later use such
theorems together with quotient lemmas to construct the set of integers.

Also inductively, we define the predicate isFinite on members of some set X’s power set.
The empty subset Empty(X) is finite, and if s ∈ Pow(X) is finite, then the set Ins(x, s), which
inserts x into s, is finite for any x ∈ X. Similar to the counterpart of natural numbers, the
principle of induction on the finiteness of a set is proved as:

F [mem(Pow(X))](Empty(X)) ∧
(∀x (xs0 ∈ Pow(X)). F [mem(Pow(X))](xs0) =⇒ F [mem(Pow(X))](Ins(x, xs0))) =⇒

∀xs ∈ Pow(X). isFinite(xs) =⇒ F [mem(Pow(X))](xs)

We define a relation Pow(X) ↬ N relating a subset of X to its cardinality. By induction
on finiteness, we prove each subset is related to a unique natural number, which gives us
a function Pow(X) → N that sends a finite subset to its cardinality and sends any infinite
subset to 0. The output of the function applied on s ∈ Pow(X) is denoted as Card(s). To
build lists over a set X as an “inductive type”, we firstly define the subset of Pow(N ×X)
which encodes a list, such sets are finite sets of the form {(0, x1), · · · , (n, xn)}. The base
case of the induction is the empty subset of Pow(N ×X), and the step case inserts the set s
started with by the pair (Card(s), x). Using the same approach we constructed N, we form
List(X). It is then straightforward to prove the list induction principle and define the usual
list operations like taking the head, tail, n-th element of the list, and map, etc.

7.2 Co-lists
Following the HOL approach, we construct co-lists over sets X, by using maps N → X + 1
as representatives. The codomain is regarded as X option, whose members either have the
form SOME(x) for x ∈ X, or NONE(X). First, by dualising the argument we used to define
inductive predicates, we define a coinductive predicate on members (f ∈ (X+1)N) expressing
that such a member captures a co-list, and collect the subset where this predicate holds,
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defining listc(X), just as we did for constructing inductive types. Every term of listc(X) has
a representative: it is either the constant function mapping to NONE(X), corresponding to
the empty co-list Nilc(X), or it is the function obtained by attaching an element x ∈ X to an
existing function encoding a co-list. Almost all the HOL4 definitions can be readily translated
into SEAR. The only exception is we cannot write expressions such as THE(Hdc(l)). Here
Hdc is the function that returns SOME(x) when l is a co-list with element x at its front. If l is
the empty co-list, then Hdc(l) = NONE. In HOL4, THE is the left-inverse of SOME; in SEAR,
our (set) parameter X may be empty, and so there is no general value (even if unspecified)
for the head of the co-list. So far, this has not been an obstacle in any of our proofs. The
HOL proof of the key co-list principle, which states that two co-lists l1, l2 ∈ listc(X) are
equal if and only if they are connected by a bisimulation relation R, translates into SEAR,
yielding:

l1 = l2 ⇔
∃R : listc(X) ↬ listc(X).

Holds(R, l1, l2) ∧
∀l3 l4 ∈ listc(X). Holds(R, l3, l4) =⇒

(l3 = Nilc(X) ∧ l4 = Nilc(X)) ∨
∃(h ∈ X) t1 t2. Holds(R, t1, t2) ∧ l3 = Consc(h, t1) ∧ l4 = Consc(h, t2)

where Nilc(X) is the empty co-list over X, and Consc(h, t) is the co-list built by putting
element h ∈ X in front of co-list t. We can perform coinductive proofs on co-lists by the
theorem above. For instance, the above helps to prove that Mapc function, with the usual
definition, is functorial.

8 Modal Model Theory

In recent work, we developed a mechanisation of some basic modal logic theory [20]. While
defining the notion of being preserved under simulation, we observed that if a property of a
modal formula is defined in terms of the behaviour of the formula on all models, then such a
property cannot be faithfully captured by HOL. Such an issue can be resolved by choosing a
dependent sorted foundation and doing the proof in our logic. We demonstrate this here by
mechanising the proof that characterises formulas preserved under simulation as those are
equivalent to a positive existential formula in SEAR.

Using roughly the general method introduced at the end of Harrison [3], we first construct
the “type” (actually a set in SEAR) of modal formulas over variables drawn from the set
V . We then denote the set of modal formulas over V as form(V ). A Kripke model on a set
W of such formulas is an element of Pow(W ×W ) × Pow(V )W (written as model(W,V ) in
the following paragraphs). The first component encodes the model’s reachability relation,
while the second encodes the variable valuation. Satisfaction of modal formulas can then be
defined in the standard way, and if ϕ is satisfied at w in the model M , we write M,w ⊩ ϕ.

The two key definitions of this proof are that of simulation, and of being preserved under
simulation (written as PUS below). The former is identical to its counterpart in HOL, and
we write Sim(R,M1,M2) to indicate that R is a simulation from M1 to M2. The latter is
more interesting. Unlike in HOL, where we can only express a formula being preserved under
simulation between models of certain HOL types, forcing the definition to take an extra type
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parameter, the definition in SEAR is purely a predicate on formulas:

∀V (ϕ ∈ form(V )).
PUS(ϕ) ⇔
∀W1 W2 (R : W1 ↬W2) (w1 ∈ W1) (w2 ∈ W2)
(M1 ∈ model(W1, A)) (M2 ∈ model(W2, A)).
Sim(R,M1,M2) ∧ Holds(R,w1, w2) ∧ M1, w1 ⊩ ϕ =⇒ M2, w2 ⊩ ϕ

This convenience is brought about by the fact that our logic allows for quantification over sets,
whereas HOL does not allow for quantification over types. Thus, the notion of equivalence of
modal formulas only takes two modal formulas as arguments and requires no extra “type
parameter”. Under these definitions, the proofs of both directions of theorem 2.78 in [1] can
be faithfully translated, yielding the two formal statements:

∀V (ϕ ∈ form(V )) (ϕ0 ∈ form(V )). PE(ϕ0) ∧ ϕ ∼ ϕ0 =⇒ PUS(ϕ)

∀V (ϕ ∈ form(V )). PUS(ϕ) =⇒ ∃ϕ0 ∈ form(V ). PE(ϕ0) ∧ ϕ ∼ ϕ0

Clearly, the two directions can be put together into an if-and-only-if, hence giving the full
form of the characterisation theorem, which cannot even be stated in HOL.

∀V (ϕ ∈ form(V )). PUS(ϕ) ⇔ ∃f0 ∈ form(V ). PE(ϕ0) ∧ ϕ ∼ ϕ0)

9 Existence of Large Sets

Whereas iterating the procedure of taking the power set by infinite times is impossible in
HOL due to foundational issues, the collection axiom schema in SEAR makes it possible.
The statement of the SEAR collection axiom is formalised as:

∃B Y (p : B → A) (M : B ↬ Y ).
(∀S (i : S → Y ) (b ∈ B).

isset(i, {y | Holds(M, b, y)}) =⇒ F [mem(A), set](p(b), S))∧
(∀(a ∈ A) X. F [mem(A), set](a,X) =⇒ ∃b. p(b) = a)

with F [mem(A), set] a formula variable, to be instantiated to be a predicate on an element
of A and a set.

Using this axiom, we will prove:

∀A. ∃P. ∀n ∈ N. ∃i : Pown(A) → P. Inj(i)

Here the Pown(A) is “the” n-th power set of A. Note that the induction principle on natural
numbers does not allow us to take a set as an argument, and does not allow the output to be
a set as well. To create this function symbol, we start by defining a predicate nPow(n,A,B),
which means B is an n-th power set of A. We then prove such B is unique up to bijection,
hence the specification rule applies. In the following, we write P(s) ∈ Pow(Pow(A)) for the
set of subsets of s ∈ Pow(A). For s1 ∈ Pow(A) and s2 ∈ Pow(B), we write |s1| = |s2| for s1
and s2 have the same cardinality. We write Whole(A) ∈ Pow(A) as the subset of A consisting
of all members of A.

We define nPow(n,A,B) if there exists a set X and a function f : X → N
such that |f−1(0)| = |Whole(A)|, |f−1(n)| = |Whole(B)|, and for each n0 < n,
|f−1(n+

0 )| = |P(f−1(n0))|. Such a function f records a sequence of power set relation,
in this case, we write nPowf(n,A,B, f). By induction on n0, nPow(n,A,B, f), implies
nPow(n0, A,m2s(f−1(n0)), f) for each n0 ≤ n.
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If nPow(n,A,B1) and nPow(n,A,B2), we can infer B1 and B2 have the same cardinality
by induction on n. The base case is trivial. Assume f1 : X1 → N witnesses nPow(n+, A,C1)
and f2 : X2 → N witnesses nPow(n+, A,C2), as n < n+, we have f1, f2 witness that their
preimage at n is an n-th powerset of A, and hence by inductive hypothesis has the same
cardinality. Therefore, the cardinality of C1 and C2 are equal as power sets of sets with the
same cardinality.

Now we prove the existence of these iterated power sets. Suppose we have
nPowf(n,A,B, f0 : X → N), we construct f ′ : Pow(X + 1) → N such that
nPowf(n+, A,Pow(B), f ′). Define f : X → N such that as if f0(x) ≤ n then f(x) = f0(x),
else f(x) = n++, then we have nPowf(n,A,B, f : X → N), and n+ is not in the range of f .
According to the definition of nPow, there exists an injection B → X, and thus an injection
i : Pow(B) → Pow(X). We define the function f ′ : Pow(X + 1) → N as:

f ′(s) =


f(x) if s = {SOME(x)}
n+ if ∃xs ∈ Pow(X). i(xs) = s0 ∧ s = {NONE(X)} ∪ s0

n++ else

It follows that |f ′−1(n0)| = |f−1(n0)| for n0 ≤ n, and the preimage of n+ is a copy of Pow(B),
so f ′ witnesses Pow(B) is the n+-th power set of A.

To prove the existence of the large set. By specialising the axiom of collection, we obtain
a set B, a function p : B → N, a set Y and a relation M : B ↬ Y satisfying:

(∀S (i : S → Y ) (b ∈ B). isset(i, {y | Holds(M, b, y)}) =⇒ nPow(p(b), A, S)) ∧
(∀n ∈ N X. nPow(n,A,X)) =⇒ ∃b ∈ B. p(b) = n)

The set Y is the large set we want to construct. For any n ∈ N, we have nPow(n,A,Pown(A)),
and thus there exists a b ∈ B with p(b) = n. For this b, Let H(b) denotes the set of
elements y such that Holds(M, b, y), then minc(H(b)) gives an injection m2s(H(b)) → Y . As
nPow(n,A,m2s(H(b))) and also nPow(n,A,Pown(A)), by uniqueness proved above, there
exists a bijection j : Pown(A) → m2s(H(b)). The composition minc(H(b)) ◦ j is the desired
injection.

10 Conclusion

Our work aims to enable the direct encoding of first-order mathematical foundations based
on axioms, while keeping the underlying logic as simple as possible.

We have already seen that it is useful to explore various mathematical foundations:
by experimenting with SEAR, we overcome two well-known shortcomings of HOL. Firstly,
because it allows us to quantify over types, SEAR enables us to prove the full version of our
previous theorem in modal model theory. Secondly, using the collection axiom of SEAR, we
overcome the cardinality shortcoming of types in HOL. We are unaware of any other work
addressing this issue.

10.1 Related Work
Quantification of types in HOL has been addressed in work by Melham [10] and Homeier [4].
Both pieces of work propose to extend the HOL logic, but neither goes so far as to introduce
dependencies linking terms to types or sorts.

There is much existing work on logical systems with dependent sorts. All of them are
designed with an aim different from ours. For instance, FOLDS (Makkai [7]) is designed to
only be able to capture mathematical theories where truth is invariant under a certain notion
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of isomorphism, and hence its expressive power is meant to be more restrictive. In particular,
in its standard presentation, FOLDS works only with predicate symbols but not function
symbols. DFOL (Rabe [15]) does not support expressing axiom schemata at the object level,
and is constructed within LF’s dependently typed environment. Compared with both, our
work is customized for directly embedding axiomatic systems. Our system is simple, and can
be easily implemented, not relying on an ambient implementation of dependent types.

When investigating a particular mathematical foundation, one approach is to implement
the logic in a domain-specific manner. For instance, Cáccamo and Winskel [2], and New
and Licata [12], both present logics addressing formalisation of proofs in category theory
by designing particular type theories. In contrast, our system is a generic theorem-prover,
making it easier to compare multiple systems, and to reuse proofs.

Isabelle (Paulson [13]) was famously designed as a generic theorem-proving system,
and one of the sample object logics distributed with it is MLTT (Martin-Löf Type Theory).
Nonetheless, as the ambient types of the Isabelle meta-level are those of simple type theory,
working with dependent types in Isabelle requires the interesting type structures and typing
judgements to appear at the level of terms. Once this compromise has been made, handling
equalities, for example, becomes quite tedious; our system’s restrictive handling of equality
gains us a great deal of pragmatic power: simple rewriting, and a straightforward notion of
matching.

10.2 Future Work

In future work, we will publish our formalisation of McLarty’s CCAF [8] and our mechanisation
of the proof theory of the system.

The existence of large sets is a consequence of the SEAR collection axiom, and is already
stronger than what is possible in HOL, but there is still more that is possible in SEAR. In
particular, from its collection axiom, we can follow Shulman [16] to derive the replacement
schema, and get a minimal set from amongst these large sets. This would enable more
transfinite constructions, such as that of Beth cardinals, which we plan to work on next.
Moreover, we are interested in implementing a uniform approach of applying an axiomatic
foundation as a metatheory, and hence developing the “two-layered” workspace discussed by
McLarty and Rodin [9]. We are also looking forward to mechanising some of the theorems
in the list “Formalising 100 Theorems” [19] in either SEAR or ETCS. Finally, it would be
interesting to support the usage of different ambient logics, so people might, in particular,
choose to do intuitionistic proofs as well.
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