
Slice Nondeterminism
Niels F. W. Voorneveld #

Tallinn University of Technology, Estonia

Abstract
This paper studies a technique for describing and formalising nondeterministic functions, using slice
categories. Results of a nondeterministic function are modelled by an object of the slice category
over the codomain of the function, which is an indexed family over the codomain. Two such families
denote the same set of results if slice morphisms exist between them in both directions. We formulate
the category of nondeterministic functions by expressing a set of possible results as an equivalence
class of objects. If we allow families to use any indexing set, this category will be equivalent to
the category of relations. When we limit ourselves to a smaller universe of indexing sets, we get a
subcategory which more closely resembles nondeterministic programs. We compare this category
with other representations of the category of relations, and see how many properties can be carried
over, such as its product, coproduct and other monoidal structures. We can describe inductive
nondeterministic structures by lifting free monads from the category of sets. Moreover, due to the
intensional nature of the slice representation, nondeterministic processes are easily represented, such
as interleaving concurrency and labelled transition systems. This paper has been formalised in Agda.
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1 Introduction

Nondeterminism slips into many facets of computation, be it a run-time optimiser making
decisions based on unknown facts, a machine learning algorithm which outputs preferences
from beyond a black box, or dependencies of a program on an ever-changing and chaotic
environment. If you want to verify correctness of programs, you may not be able to precisely
model every aspect, and will have to embrace the fact that to an extent, a program may
behave unpredictably.

In essence, nondeterminism is the potential for a program to produce different results in
different runs, even in situations when all known external conditions in both runs appear to
be the exact same. These multiple possible results are often gathered in a set, a subset of
all plausible results allowed by the program’s type. This can be seen as an element of the
powerset over plausible results.

{a ∈ A | P (a)} with P a predicate on A (1)

A subset of a set A is commonly described using a predicate on the set. Given a predicate
P on A, we can define the subset of all elements of A satisfying P . This is a fundamental
construction in set theory. However, it is not directly suited as a tool for gathering possible
results of a program from a constructive perspective. Given a program it is often difficult to
find a computable way to test for the fact that a certain result is produced. On the other
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hand, given a predicate, it is difficult to find a program which nondeterministically produces
the exact collection of results satisfying the predicate. The two concepts seem misaligned
computationally.

Instead, a program tends to behave nondeterministically based on some unknown cause,
unspecified state, or unpredictable decision procedure. It makes sense to describe this
unknown with some indexing set I which captures a set of circumstances, for instance
potential states, decisions, or transitions, and a function f : I → A which associates to each
circumstance the result a program will produce.

{f(i) | i ∈ I} with f a function I → A (2)

In other words, we define a family over A, which is an object in the slice category over A.
These families should be endowed with a notion of equivalence, as different objects in the
slice category could represent the same subset of A. The natural solution here lies in the
morphisms of the slice category over A; an object is a subset of another object if there is a
morphism between them, and they give the same subset if there are morphisms both ways.
The subset property can be shown by any morphism, not just the injective ones, since we do
not want to differentiate between families with different multiplicities of elements.

A nondeterministic function f : A → B is given by a map which associates to each
argument an indexing set and a function from the indexing set to the set of results. This
representation lands it firmly between two other representations of relations: extensional
relations and spans.

A → B → Set A → ΣI:Set (I → B) ΣI:Set (I → A × B) (3)

In case of A → B → Set, we see Set as a space of propositions, in which we will only
care about whether the set is inhabited or not. In the other two statements, we use Set as a
universe of indexing sets.

Each instance forms a bicategory [7], where a 2-morphism from one to another tells us
that the relation modelled by one is a subrelation of the relation modelled by the other.
We turn this into a setoid-enriched category [12], sometimes called a E-category [3, 13],
which is a category whose morphisms are endowed with an equivalence relation, and whose
categorical equations hold up to that equivalence relation. In each instance, the equivalence
on morphisms is given by the symmetrisation of the relation induced by the 2-morphisms;
they are equivalent if there is a 2-morphism in both directions. E.g., two relations modelled
by R, S : A → B → Set are equivalent if for each a ∈ A, and b ∈ B, R a b is inhabited if
and only if S a b is inhabited. Similarly, two spans are deemed equivalent1 if they point
out the same set of pairs of A and B. Taking the quotient over the equivalence relation
of morphisms in an E-category, we get a category. Each of the three categories gives an
equivalent representation of the category of relations Rel.

In this paper, we focus on the approach of the second category. Instead of using Set, we
specify a smaller inductive universe of indexing sets U, which is sufficient for modelling many
nondeterministic processes. The collection of families over A will form a set if we restrict
indexing sets to this universe U, and as such we get an endofunctor on Set. Relative to the
aforementioned equivalence relation on families, the endofunctor forms a monad, which acts
like the powerset monad. The Kleisli category over this monad is what we call the category
of slice nondeterministic functions SNFU, and can be put in the form of E-category.

1 Not equivalent in the category of spans, but in the sense that they model the same relation.
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The category SNFU forms a wide subcategory of Rel, since it is a substructure of the second
representation of relations given in (3). This category still retains many of the properties of
Rel, while deviating from it in ways more in-line with nondeterministic processes. In this
paper, we shall explore the properties of SNFU, see how it models a variety of nondeterministic
processes, and we shall briefly compare this approach with the other two approaches from
(3). In particular, the category SNFU is better at dealing with composition and iteration.

In programming theory, a prevalent way of representing nondeterministic computations is
in the form of algebraic effect [19]. There we consider nondeterministic choices as operations
in the programming language. These choices can be enumerated in the indexing set of the
family, encoding how the choices should be resolved. Each index gives us a way of handling
the algebraic operations in the sense of effect handlers [20].

The resulting denotation using slices is similar to historical models of nondeterminism in
domain theory [9, 2]. Domains are sets with an additional preorder which captures a notion
of computational approximation, and powerdomains [18] consider different nondeterministic
extensions to the domain. These form more usual models for nondeterministic processes, as
for instance done in guarded powerdomains [17]. Slice nondeterminism offers an alternative
light-weight formalisation approach, allowing us to model a lot of nondeterministic processes.

We use category theory in this work, in particular focussing on emulating properties of
the category of relations in our framework (see e.g. [16]). The contributions of this paper
can be split into three parts; the presentation of a novel model for nondeterministic functions
in terms of slices, an exploration of the properties of the associated category, and examples
of concepts and processes which it can capture with relative ease.

This paper is formalised in Agda: https://github.com/Voorn/Slice-Nondeterminism.
See in particular the ITP-paper.agda file for links to terms corresponding to the definitions
and results of this paper. Most of the code uses only the Agda standard library, though
there are some optional files linking the results to the Agda categories library.

2 Powerset via the Slice Category

The main idea is to use a family over A to represent a subset of A. Such a family consists of
an indexing set I together with a function h : I → A, and is used to represent the subset
{a ∈ A | ∃i ∈ I. h(i) = a}. It is useful to put a limit on what kind of set I can be. To this
end, we specify a universe of sets U.

2.1 A Universe for Indexing Sets
We could simply take U to be the universe of sets itself. There are some drawbacks to
this. The first being that the collection of families using any indexing set does not form a
set itself, and hence cannot be used as a basis for an endofunctor in the category of sets.
Secondly, the more indexing sets we allow the more cases we need to check when formalising
general properties about them. Thirdly, nondeterministic programs do not tend to have the
abilities that models using arbitrary sets have. For instance, a program cannot in general
nondeterministically produce any result from its codomain, nor can it decide to produce
results based on incomputable tests (like equality checking) on its argument.

Instead, we construct an inductive universe of sets which is a set itself, and is closed with
respect to a few chosen constructions we would like to use.

▶ Definition 1. The universe of sets U are defined inductively as:

⊥ : U ⊤ : U N : U
A, B : U

A → B : U
A, B : U

A ⊎ B : U
A, B : U

A × B : U
A : U f : A → U

Σa:A f(a) : U
A : U f : A → U

Πa:A f(a) : U
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Here ⊥ is the empty set, ⊤ the single element set, and N the natural numbers. A → B is
the function space, as specified by the ambient logic (e.g. Agda functions), A ⊎ B is disjoint
union, and A × B the Cartesian product on sets. Lastly, Σa:Af(a) is a sigma type whose
elements consists of pairs (a : A, b : f(a)), and Πa:Af a pi type whose elements are dependent
functions (a : A) → f(a). It should be noted that a large portion of the development up
to Section 5 works without function spaces. Hence the universe could be limited further,
effectively only using enumerable sets. For elements of product sets and sigma sets, we write
proj1 and proj2 for the projections into the first and second components respectively, and for
elements of sum sets, we write inj1 and inj2 for the first and second injections respectively.

Note that with the inclusion of Sigma types and Pi types in U, the property of whether a
set of U is inhabited is not decidable, since Sigma and Pi types function as existential and
universal quantifiers. So in the representation of nondeterministic function, it may not be
decidable whether the function outputs a result.

In formalisation, U is simply a collection of names which each is given a denotation
according to the above definitions. For simplicity, we shall write results in this paper directly
in terms of the indexing sets, using the closure properties of U specified above.

▶ Definition 2. The set of U-families over A, denoted SLU A is given by: ΣI:U (I → A).

Hence, a family S = (I, m) ∈ SLU A is given by an indexing set I : U together with a function
m : I → A. In other words, it specifies a domain which we may use for indexing elements of
A, and a function which associates to each index a result. For a family S, we denote SI and
Sm for the associated indexing set and map respectively.

In the conclusion we will also consider other universes of indexing sets C, and consider
families SLC using those. However, the main development focusses on using U. With this
universe, we know that SLU A is in fact also a set. Hence, the construction is entirely
contained within the universe of sets, and SLU can be made into an endofunctor on Set. As
a functor, it sends a function f : A → B to a function on families SLU(f) : SLU A → SLU B

sending (SI , Sm) to (SI , f ◦ Sm). In the next subsection, we shall define an equivalence
relation on SLU A telling us whether two families represent the same set.

2.2 Relations on Families
Though we work towards an alternative construction of relations for describing nondetermin-
istic functions, we still require the use of relations as they are more traditionally represented
for reasoning purposes. An endorelation R on X is a predicate R : X → X → P, where P is
a suitable space of propositions, e.g. Set as used in Agda. We write a R b to say R relates
a and b. For two relations R and S on X, we write R ⊂ S if a R b implies a S b. Given an
endorelation R on X, we write R for the symmetrisation of R, which relates a and b if both
a R b and b R a.

We use the theory of relators [15, 21] to guide us in building relations on families. We
limit ourselves to relators on endorelations, which is a common adaptation.

▶ Definition 3. Given a relation R on X, we define a relation ΓU(R) on SLU X by relating
(I, a) and (J, b) if there is a function h : I → J such that ∀i ∈ I. a(i) R b(h(i)).

This construction has the following properties:
If R is reflexive, then ΓU(R) is reflexive.
If R is transitive, then ΓU(R) is transitive.
If R ⊂ S, then ΓU(R) ⊂ ΓU(S).
If ∀x, y.(x R y) =⇒ (f(x) S g(y)), then a ΓU(R) b =⇒ SLU(f)(a) ΓU(S) SLU(g)(b).
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As a consequence, if R is an equivalence relation, then ΓU(R) is an equivalence relation.
Our notion of equality on families SLU X shall be given by taking the appropriate notion
of equality = on X and lifting it to an equivalence relation on SLU X given by ΓU(=). In
formalisation, the = will be instantiated by propositional equality ≡. We will first observe
some more general properties.

2.3 A Monad on Setoids
We can see SLU as an endofunctor on setoids, as well as an endofunctor on sets. A setoid is a
pair (X, R) consisting of a set X and an equivalence relation R on X. A morphism between
setoids (X, R) and (Y, S) is a relation preserving function between X and Y . We have the
slice function F on setoids sending (X, R) to (SLU X, ΓU(R)).

Given a set X, we define a set function ⟨−⟩X : X → SLU X as given by sending
x to (⊤, λ ∗ . x). This forms a natural transformation in Set; given f : X → Y , then
⟨−⟩Y ◦ f = λx.(⊤, λ ∗ . f(x)) = SLU(f) ◦ ⟨−⟩X . Moreover, given a relation R on X, then
a R b implies ⟨a⟩ ΓU ⟨b⟩, hence this forms a natural transformation on setoids as well.

We have a set function
⊔

X : SLU(SLU(X)) → SLU(X) which does the following. Given
a family (I, a) ∈ SLU(SLU(X)), then for each i ∈ I we write (Ji, bi) = a(i) ∈ SLU(X).

⊔
X

sends (I, a) to (K, c) where: K = Σi:I Ji, meaning a pair (i, j) such that i ∈ I and j ∈ Ji,
and c(i, j) = bi(j). Similar to ⟨−⟩, this forms a natural transformation in both set and setoid:

Given f : X → Y ,
⊔

Y ◦SLU(SLU(f)) = SLU(f) ◦
⊔

X .
Given a relation R on X, u ΓU(ΓU(R)) v implies

⊔
X(u) ΓU(R)

⊔
Y (v).

Importantly, we get the following result.

▶ Proposition 4. (SLU, ⟨−⟩,
⊔

) forms a monad in the category of setoids.

Together with the results of Subsection 2.5, we see that the monad actually satisfies the
axioms of a powertheory on setoids [18], and as such is a candidate for powersetoid.

It is difficult to formalise things in the category of setoids, since one needs to prove many
coherences and use higher-order rewrite techniques. As such, the previous proposition is as
far as we go in this direction. We can however use the result to make similar claims about
the category of sets in the next subsection.

2.4 A Kleisli Triple on Sets
As discussed before, we can define an equivalence relation ≡U

X on SLU(X) as ΓU(=). Consider
the endofunctor SL≡

U which sends a set X to the quotient SLU(X)/ ≡U
X .

Proposition 4 implies that SLU(−)/ ≡U forms a monad in Set. The associated multi-
plication operation for X is defined on domain SLU(SLU(X)/ ≡U)/ ≡U. A morphism whose
domain is given by a quotient is defined as a morphism invariant under the equivalence
relation of the quotient. In formalisation, this means the morphism would need to be
equipped with a proof that they are well defined. In the spirit of getting flexibility in defining
nondeterministic function, we bypass this necessity by avoiding the use of quotients in the
domain of morphisms. Instead, we look at the Kleisli triple corresponding to the monad
structure, which is as follows:

The unit ⟨−⟩X : X → SLU(X) is as given before.
The Kleisli lifting (−)∗ : (X → SLU(Y )) → (SLU(X) → SLU(Y )) sends f to

⊔
Y ◦SLU(f).

We see that this satisfies the appropriate properties:
For f, f ′ : X → SLU(Y ), such that ∀x. f(x) ≡U

X f ′(x), then ∀a, a′ ∈ SLU(X). a ≡U
X a′ =⇒

f∗(a) ≡U
Y f ′∗(a′).

ITP 2023
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For all a ∈ SLU(X), a ≡U
X ⟨−⟩∗(a).

For f : X → SLU(Y ) and x ∈ X, f∗(⟨x⟩) ≡U
Y f(x).

For f : X → SLU(Y ), g : Y → SLU(Z) and a ∈ SLU(X), g∗(f∗(a)) ≡U
Z (g∗ ◦ f)∗(a).

2.5 Semilattice Structure
Before we continue to defining nondeterministic functions, we look at one last useful structure.
We have an order ⊑U on families over X given by applying ΓU to the equality relation on
X. This is a preorder which implements the subset relation discussed before, and whose
symmetrisation gives the equivalence relation ≡U on families telling us that the two families
model the same subset. Specifically, (I, u) ⊑U (J, v) if for any i ∈ I there is a j ∈ J such
that u(i) = v(j). In other words, the images are subsets, u(I) ⊆ v(J).

Alternatively, we may define a relation ∈U between X and SLU(X), which models
inhabitance by relating x to S if there is an i ∈ SI such that Sm(i) = x. This gives rise
to an external subset endorelation ⊆U on SLU(X) which relates S and Z if for any x ∈ X,
x ∈U S =⇒ x ∈U Z. It turns out that the relations ⊆U and ⊑U are equivalent.

Like for powersets, ⊑U comes equipped with a join semi-lattice structure [9]. As such, we
can see it as a model of angelic nondeterminism, or lower powertheory [10].

▶ Proposition 5. For sets A and I, where I is from U, and f : I → SLU(A), there is an
element

∨
f ∈ SLU(A) giving the supremum of f(I) under the order ⊑U. In other words,

∀i ∈ I. f(i) ⊑U ∨
f , and for S ∈ SLU(A), if ∀i ∈ I. f(i) ⊑U S then

∨
f ⊑U S.

Proof. We define
∨

f as (
∨

f)I = Σi:If(i)I and (
∨

f)m(i, j) = f(i)m(j).
Then for any i ∈ I, f(i) ⊑U ∨

f since for any j ∈ f(i)I , there is an index k = (i, j) ∈
(
∨

f)I such that f(i)m(j) = (
∨

f)I(k).
Let (K, u) ∈ SLU(A) such that ∀i ∈ I. f(i) ⊑U (K, u). Then for any (i, j) ∈ (

∨
f)I ,

since i ∈ I there is a k ∈ J such that f(i)m(j) = u(k), hence there is a k ∈ J such that
(
∨

f)m((i, j)) = f(i)m(j) = u(k). So
∨

f ⊑U S. ◀

We distinguish three special kinds of joins.

Let !A = λ() : ∅ → A be the unique function from the empty set to A. We define the
empty join ⊘A ∈ SLU(A) as ⊘A = (∅, !A). This is the smallest element of SLU(A), and it
holds that ⊘A ≡A

∨
!SLU(A).

For U, V ∈ SLU(A), we define the binary join U ∨ V as
(UI ⊎ VI , λ{inj1(i) 7→ Um(i), inj2(j) 7→ Vm(i)}). This is equivalent to

∨
f where f :

{0, 1} → SLU(A) with f(0) = U and f(1) = V .
For f : N → SLU(A) we can take the countable join

∨
f .

Lastly, note that for f : I → J → SLU(A),
∨

(λi.
∨

f(i)) ≡
∨

(λ(i, j). f(i)(j)). Due to the
limitations of our universe of indexing sets, we do not have a complementing meet semilattice
structure, which would require us to check for equality of results within indexing sets.

3 Nondeterministic Functions

To model nondeterministic functions, we use the Kleisli category associated to the Kleisli
triple defined in Subsection 2.4. Since this is a Kleisli triple relative to an equivalence relation,
what we end up constructing is a Setoid-enriched category, sometimes called an E-category.
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3.1 E-categories
In an E-category, we use setoids to describe collections of morphisms. A common interpreta-
tion of this is to see the setoid relation as a 2-morphism between these morphisms, creating
a bicategory whose spaces of 2-morphisms have at most one element. We lay out precisely
the conditions of such a structure.

▶ Definition 6. An E-category C is given by:
A set of objects O.
For any two objects X, Y ∈ O, a set of morphisms M(X, Y ) equipped with an equivalence
relation ≡.
For each X ∈ O an identity morphism idX ∈ M(X, X).
For X, Y, Z ∈ O, f ∈ M(X, Y ), g ∈ M(Y, Z) a morphism f g ∈ M(X, Z).

such that:
For any X, Y ∈ O, f ∈ M(X, Y ), idX f ≡ f ≡ f idY .
∀X, Y, Z, W ∈ O, f ∈ M(X, Y ), g ∈ M(Y, Z), h ∈ M(Z, W ), (f g) h ≡ f (g h).
∀X, Y, Z ∈ O, f, f ′ ∈ M(X, Y ), g, g′ ∈ M(Y, Z), if f ≡ f ′ and g ≡ g′ then f g ≡ f ′ g′.

The E-category method matches the approach of the Agda categories library. There,
categories are formalised using equivalence relations on morphisms. By taking the quotient
over the equivalence relations on the homsets, we get a category. Hence, we may see any
E-category as a category as well, and properties on the E-category directly translate to
properties on the resulting category. For instance, a functor between E-categories forms a
functor between their corresponding categories.

The focus of this paper is the following setoid-enriched category.

▶ Definition 7. The E-category of slice nondeterministic functions, denoted ESNFU, is the
category consisting of:

Objects are sets.
The set of morphisms between set A and B, denoted A ⊸ B, are functions A → SLU(B).
Two morphisms f, g : A ⊸ B are equivalent, denoted as f ∼ g, if ∀a ∈ A. f(a) ≡U

B g(a).
For a set A, the identity morphism is given by ⟨−⟩A : A ⊸ A.
For two morphisms f : A ⊸ B and g : B ⊸ C, the composition is given by f ; g := f g∗.

We write SNFU for the associated quotient category to the E-category ESNFU.
The appropriate properties are satisfied as observed in the previous chapter. For f : A ⊸

B, remember we may write f(a)I for the indexing set associated to f(a), and for i ∈ f(a)I ,
f(a)m(i) the element of B associated to i via f(a).

3.2 Functors and Variations
Let us look at some variations on models of nondeterministic functions. First we revisit the
category of relations Rel, which can be cast into the form of an E-category as well.

▶ Definition 8. The E-category of relations, denoted ERel is given by:
Objects are sets.
Morphisms between A and B are predicates R : A → B → P,
with equivalence relation: R ≡ S if ∀a ∈ A, b ∈ B. a R b ⇐⇒ a S b.
The identity relation is the equality predicate.
Composition is given by: a RS c if ∃b. a R b ∧ b S c.

ITP 2023
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Note that the type of propositions P needs to be flexible enough to contain both equality
on sets and existential quantification. In Agda, this is instantiated by Set, with the double
implication ⇐⇒ describing the existence of a function in both directions.

There exists a functor J−K from ESNFU to ERel, which preserves objects and sends a
morphism f : A ⊸ B to JfK with the following property:

For a ∈ A, b ∈ B, a JfK b holds if and only if there is an i ∈ f(a)I such that f(a)m(i) = b.

There is no functor going from Rel to SNFU, since our universe of indexing sets U is not
large enough to capture the two things that are necessary to formulate such a thing; it would
need Sigma types over any set, and equality types on arbitrary sets. If however our universe
U of indexing sets was taken to be Set itself, then Rel and SNFSet are equivalent.

In Subsection 3.3 we shall do a qualitative comparison between the two approaches of
formalising nondeterministic functions. There we will see that when composing nondetermin-
istic functions, it is easier to verify that the composite gives a certain result when it is
formalised in SNFU than when it is formalised in Rel or the category of spans.

We look at four properties a slice nondeterministic function f : A ⊸ B could satisfy.
f is total if for any a ∈ A the indexing set f(a)I is inhabited.
This is synonymous to saying that ∀a ∈ A. ∃b ∈ B. a JfK b.
f is deterministic (single-valued) if for any a ∈ A and i, j ∈ f(a)I , f(a)m(i) = f(a)m(j).
This is synonymous to saying that ∀a ∈ A, b, b′ ∈ B, a JfK b ∧ a JfK b′ =⇒ b = b′.
f is surjective if for any b ∈ B, there are a ∈ A and i ∈ f(a)I such that f(a)m(i) = b.
This is synonymous to saying that ∀b ∈ B. ∃a ∈ A. a JfK b.
f is injective (sometimes called modest) if ∀a, a′ ∈ A. i ∈ f(a)I , and j ∈ f(a′)I , if
f(a)m(i) = f(a′)m(j) then a = a′.
This is synonymous to saying that ∀a, a′ ∈ A, b ∈ B, a JfK b ∧ a′ JfK b =⇒ a = a′.

All four properties are satisfied by the identity morphism of SNFU, are preserved by
composition and invariant under equivalence of morphisms. Hence, any subset of properties
specifies a wide subcategory of SNFU.

If a morphism is surjective and deterministic, it is an epimorphism. If a morphism is total
and injective, it is a monomorphism. Lastly, the wide subcategory of total and deterministic
morphisms is equivalent to the category Set of sets.

3.3 Method Comparison
We can compare the method of formalising nondeterministic processes using SNFU with
other representations of the category of relations. We do this with code from the Agda proof
assistant. Let us consider a particular example. Suppose we toss five coins, and want to
prove that it is possible to get three heads. So, starting with zero, if we nondeterministically
add zero heads or one head a total of five times, it should be possible to get three heads.
We compare extensional relations, spans and slice nondeterminism, and we first define a
nondeterministic function on N representing a coin toss.

Erel-N-toss : N → N → Set
Erel-N-toss n m = (n ≡ m) ⊎ (suc n ≡ m)

Span-N-toss : Σ Set λ I → I → N × N
Span-N-toss = (N × Bool) , λ {(n , false) → n , n ;

(n , true) → n , (suc n)}

Slic-N-toss : N → Σ Set λ I → (I → N)
Slic-N-toss n = Bool , (λ { false → n ; true → suc n})
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Note that though we use Set in the slice example, the indexing set is from U. In each
case, we construct a multi-toss operation inductively, by composing the identity relation with
a number of toss operations specified by the argument. We look at the examples, and prove
that 5 tosses may get 3 heads, using a sequence of two tails and three heads.

Erel-N-example : Erel-N-test (Erel-N-multi-toss 5) 0 3
Erel-N-example = 0 , (inj1 refl , 0 , (inj1 refl) , 1 , (inj2 refl) ,
2 , (inj2 refl) , 3 , (inj2 refl) , refl)

Span-N-example : Span-N-test (Span-N-multi-toss 5) 0 3
Span-N-example = (((0 , false) , ((0 , false) , ((0 , true) , ((1 , true) ,
((2 , true) , 3) , refl) , refl) , refl) , refl) , refl) , refl

Slic-N-example : Slic-N-test (Slic-N-multi-toss 5) 0 3
Slic-N-example = (false , false , true , true , true , tt) , refl

In the first method, since composition is defined using existential quantification on the
intermediate argument, we need to specify all the intermediate results in the sequence. So,
after one toss we can keep 0, given that we choose a tail signified by the inj1. Then still
0 after another tail, followed by 1, 2 and 3, each with a heads result signified by inj2. For
spans, a similar proof is necessary, though we specify transitions using both the input state
and a truth value denoting the result of the coin toss. Though in a slightly different way,
both endorelations and spans need the same information in their proof.

Only in the slice nondeterministic proof do we neither need to specify intermediate states,
nor have to check for equality at each step. The proof there is simply a sequence of choices
with a single final verification that it gives the right result. This example illustrates the
relative ease of using slice nondeterminism in these situations.

Many nondeterministic processes are results of compositions of many subprocesses.
Therefore, slice nondeterministic functions are particularly well suited to capture such
processes. In the rest of the paper, we will see that it moreover still retains a lot of the useful
structures and properties that the category of relations exhibits.

4 Categorical Structures

We look at some of the structures that can be found in SNFU. Most of these reflect similar
structures from the category of relations, though not all can be replicated. In most cases
though, this inability to express some structures is more faithful to the limitations of
nondeterministic programs compared to relations.

Some of the structures we look at are lifted from the category of sets using the unit ⟨−⟩
of SLU. Explicitly, we have a functor | − | : Set → SNFU which keeps objects as is, and sends
morphisms f : A → B to |f | = λx.⟨f(x)⟩B : A ⊸ B.

4.1 Morphisms with Daggers

Given a relation R between A and B, there is a relation R† between B and A, called the
dagger of R, such that a R b ⇐⇒ b R†a. Such a reversing of morphisms does not exist
for SNFU. Though unfortunate, it is arguably not an unreasonable problem to have when
thinking of nondeterministic functions as programs.
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For a nondeterministic program P of type σ → τ , there is in general not another program
of type τ → σ which for input V : τ can nondeterministically give any term W of σ such
that P (W ) may produce V . This is due to two general concerns:

Equality in τ may not be checkable by a program, hence there may not be a way of
verifying whether P (W ) can produce V .
Programs may not have access to enumerations over terms of σ.

Both these restrictions align closely to the limitations of our universe U.
We can however distinguish those slice nondeterministic functions that have a dagger.

▶ Definition 9. f : A⊸B and g : B⊸A are each others dagger, denoted f † g, if JfK† = JgK.

If a morphism has a dagger, we call it daggerable. This property of having a dagger is
preserved under composition and the equivalence relation on morphisms. Moreover, the
identity morphism is a dagger of itself. We conclude that the daggerable morphisms form a
wide subcategory of SNFU.

Note that being daggerable does not mean that the daggered program is an inverse. We
can say the following; let f g be eachother’s dagger, then:

f is total if and only if g is surjective.
f is deterministic if and only if g is injective.
If f is total and injective, then f g is the identity morphism. In other words, g is a post
inverse of f .
If f is deterministic and surjective, then g f is the identity morphism. In other words, g

is a pre-inverse of f .

There is a slight difference between the notion of daggerability and the notion of revers-
ibility. A nondeterministic function is normally called reversible if it is injective (see e.g.
[11]). If we were to match this definition, the appropriate category to consider for reversible
nondeterministic functions is the category of daggerable injective (maybe total) morphisms.

4.2 Products and Coproducts
Similar to the category of relations, the category of slice nondeterministic functions is
both Cartesian and Cocartesian, with both structures mirroring each other exactly as in a
semi-additive category.

Firstly, the initial and terminal object of the category is given by the empty set.

▶ Lemma 10. For a set A, any two morphisms ∅ ⊸ A are similar, and any two morphisms
A ⊸ ∅ are similar.

Consider the bifunctor for disjoint union ⊎ on sets, with injections inj1 : A → A ⊎ B and
inj2 : B → A ⊎ B. We can lift ⊎ to the category of nondeterministic functions, where for
f : A ⊸ B and g : C ⊸ D, f ⊎ g : A ⊎ B ⊸ C ⊎ D sends inj1(a) to (f(a)I , λi.inj1(f(a)m(i)))
and inj2(b) to (g(b)I , λi.inj2(g(b)m(i))). Consider the following natural transformations.

π
1 := |inj1| : A ⊸ A ⊎ B and π

2 := |inj2| : B ⊸ A ⊎ B.
Given f : A ⊸ C and g : B ⊸ C, we define (fπg) : A ⊎ B ⊸ C as given by
(fπg)(inj1(a)) = f(a) and (fπg)(inj2(b)) = g(b).

The following proposition establishes that (⊎, π
1, π

2) forms a coproduct in SNFU.

▶ Proposition 11. Let f : A ⊸ C, g : B ⊸ C, and h : A ⊎ B ⊸ C such that π
1; h ∼ f and

π
2; h ∼ g, then h ∼ (fπg).



N. F. W. Voorneveld 31:11

Proof. Let a ∈ A, then (fπg)(inj1(a)) = f(a) and h(inj1(a)) = h∗(⟨inj1(a)⟩) = h∗(π1(a)) =
(π1; h)(a). Since π

1; h ∼ f , f(a) ≡U h(inj1(a)). Similarly, for b ∈ B, (fπg)(inj2(b)) = g(b) ≡U

(π2; h)(b) = h(inj2(b)), so h ∼ (fπg). ◀

We define mergeA = (idA
πidA) : A ⊎ A → A, so it holds that (f ⊎ g); mergeC = (fπg).

Remember that for each set A, we have a special kind of family called the empty family
⊘A ∈ SLU(A) given by: ⊘ = (∅, λ()).

π
1 has a dagger π1 : A ⊎ B ⊸ A defined as: π1(inj1(a)) = ⟨a⟩ and π1(inj2(b)) = ⊘A.

Dually, π
2 has a dagger π2 : A⊎B ⊸ B defined as: π2(inj1(a)) = ⊘B and π2(inj2(b)) = ⟨b⟩.

Given f : A ⊸ B and g : A ⊸ C, there is a function (fπg) : A ⊸ B ⊎ C given by:
(fπg)(a) = (f(a)I ⊎ g(b)I , λ{inj1(i) 7→ inj1(f(a)m(i)), inj2(j) 7→ inj2(g(b)m(j))}).

Note that π
1; π1 ∼ idA and π

2; π2 ∼ idB . Moreover, if f† and g† are daggers of f and g

respectively, then (f†πg†) is a dagger of (fπg). Now, (⊎, π1, π2) forms a product in SNFU:

▶ Proposition 12. Let f : A ⊸ B, g : A ⊸ C, and h : A ⊸ B ⊎ C such that h; π1 ∼ f and
h; π2 ∼ g, then h ∼ (fπg).

We can define shareA : A ⊸ A ⊎ A as (idAπidA), so shareA; (f ⊎ g) = (fπg).

4.3 Semilattice Enriched
As explored in Subsection 2.5, each family SLU(A) comes equipped with a join semilattice
structure. This can be used to define a join semilattice structure on the spaces of morphisms
as well, creating a semilattice enriched category [12].

Firstly, we define an order ≺ on morphisms A ⊸ B, given by f ≺ g ⇐⇒ ∀a ∈ A. f(a) ⊑U

g(a). This is a preorder, and by definition f ≺ g ∧ g ≺ f implies f ∼ g. Hence, in SNFU
as a category (the quotient over the E-category), ≺ is antisymmetric. Similar to how ∼ is
preserved over composition and products, ≺ is preserved over the same constructions in the
E-category ESNFU and the associated category SNFU.

We can recover the join operation from Subsection 2.5.

▶ Corollary 13. For A, B and I sets, with I from U, and F : I → (A ⊸ B), there is a
supremum

∨
F : A ⊸ B of F (I).

This can be simply proven by taking (
∨

F )(a) = (Σi:IF (i, a)I , λ(i, j). F (i, a)m(j)).
Given F : I → (A ⊸ B) and G : J → (B ⊸ C), where I and J from U, then

(
∨

F ); (
∨

G) ∼ (
∨

(λ(i, j) : I × J. F (i); G(j))). Note that for I = J , (
∨

F ); (
∨

G) is not
necessarily similar to

∨
(λi. F (i); G(i)). To get such a property, we look at ω-chains.

▶ Definition 14. An ω-chain of morphisms is an enumeration of morphisms F : N → (A ⊸
B) such that for any n ∈ N, F (n) ≺ F (n + 1).

Omega chains are helpful as they allow us to more uniformly use preservation of join over
constructions like composition and products. Consider the following results, for example.

For F : N → (A ⊸ B) and G : N → (B ⊸ C) two ω-chains, then H = λn.F (n); G(n) :
N → (A ⊸ C) is an ω-chain and

∨
H = (

∨
F ); (

∨
G).

For F : N → (A ⊸ B) and G : N → (C ⊸ D) two ω-chains, then H = λn.F (n) ⊎ G(n) :
N → (A ⊎ C ⊸ B ⊎ D) is an ω-chain and

∨
H = (

∨
F ) ⊎ (

∨
G).

As before, we can have a specific binary join operation which takes f, g : A ⊸ B and
produces f ∨ g : A ⊸ B. It holds that (f ∨ g) ∼ (shareA; (f ⊎ g); mergeB).
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4.4 Monoidal
The Cartesian structure on Rel and SNFU is different from the Cartesian structure on Set.
Set uses the bifunctor × which collects pairs of elements, with projections proj1 : A × B → A

and proj2 : A × B → B. We can lift this to the monoidal structure (×, |proj1|, |proj2|) on
SNFU using the functor | − | : Set → SNFU. Similarly, we can lift the comonoid structure on
× in Set as well:

The unique map uA : A → {∗} is lifted to |uA| : A ⊸ {∗}.
The map ca : A → A × A which duplicates the argument is lifted to |cA| : A ⊸ A × A.

For any morphism f : A ⊸ B, f ; |uB | ≺ |uA| and f ; |cb| ≺ |ca|; (f × f). If f is total, then
f ; |uB | ∼ |uA|, and if f is deterministic, then f ; |cb| ∼ |ca|; (f × f).

We cannot equip × with a monoidal closed structure. The best approximation would be to
take (A ⇒ B) = (A ⊸ B), in which case we can do the following: For F : A ⊸ (B ⇒ C), let
F ′ : (A×B) ⊸ C be the map F ′(a, b) = (Σi:F (a)I

F (a)m(i, b)I , λ(i, j). F (a)m(i, b)m(j)). Only
in this direction is the similarity relation preserved. We cannot go into the other direction,
since in (B ⇒ C) we distinguish between similar but syntactically different families.

5 Inductive Nondeterministic Structures

One of the main applications of the formalisation via slice functions is the relative ease
in which it can be used to give a specification for a variety of inductive nondeterministic
structures. Suppose in particular we have some inductive structure generated over some
signature, for instance generated by algebraic effect operations [19] or a container [1]. Such a
signature forms a free monad in the category of sets, which we can lift to SNFU.

A U-container C is an element of the sigma type ΣO:Set(O → U). It consists of a set of
operations O, and a function ar : O → U which associates to every operation and arity.

▶ Definition 15. Given a U-container C = (O, ar), the free monad over C in Set, is a
monad which sends each set A to the set FSA defined inductively:

For each a ∈ A, there is an element leaf(a) ∈ FSA.
For each σ ∈ O and c : ar(σ) → FSA, there is an element nodeσ(c) ∈ FSA.

It sends a function f : X → Y to a function FS(f) : FS(X) → FS(Y ) replacing the values at
the leaves. The monad unit is given by ηC

A : A → FCA sending a to leaf(a), and the monad
multiplication µC

A : FSFSA → FSA is defined inductively as:
µC

A(leaf(t)) = t.
µC

A(nodeσ(c)) = nodeσ(λi.µC
A(c(i))).

We will show that this monad can be lifted to SNFU in the next subsection.

5.1 Distributivity
In Set, the free monad distributes over the powerset monad, in the sense that there is a
distributivity law between monads [6]. This can be adapted to show that the free monad
distributes over the monad SLU using a natural transformation FS(SLUA) → SLU(FSA). We
construct this by specifying a set of leaf-positions for each element of FSA, following ideas
from the theory of containers [1, 4]. An element t ∈ FS(SLUA) has at each of its positions a
leaf which contains a set of values (a family). If we make a choice of element for each of the
leaves of t, we can construct an element of FS(A). Such a combination of choices is given by
associating to each position a choice, which we can do with a dependent map.
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We use this idea to lift the Set-endofunctor FS to an SNFU-endofunctor. We need a way
to transform a morphism f : A → SLUB to FSA → SLU(FSB), which accepts a term t as
input and replaces each leaf leaf(a) with some choice value from f(a). We specify a set of
indices which collects all possible combinations of choices that can be made.

▶ Definition 16. Given a set A and a function f : A → Set assigning a set of choices to
each element a ∈ A, we inductively define a function Pos(f) : FSA → Set assigning to an
element t ∈ FSA a set of combinations of choices:

Pos(f)(leaf(a)) = f(a).
Pos(f)(nodeσ(c)) = (Πi:ar(σ) Pos(f)(c(i))).

With this function, we can specify our endofunctor on SNFU, which we call TC . On
objects, TCA is given by FCA.

▶ Definition 17. Given a function f : A ⊸ B, we define TCf : TCA ⊸ TCB, with indexing
set TCf(t)I = Pos(λa.f(a)I)(t) and indexing map where:

TCf(leaf(a))m = λi : f(a)I . leaf(f(a)m(i)).
TCf(nodeσ(c))m = λh : ((i : ar(σ)) → TCf(c(i))I). nodeσ(λi. TCf(c(i))m(h(i))).

With this definition, TC forms an endofunctor in SNFU.
Let us consider whether the above recipe gives us what we want. We independently

specify a relation which tells us whether a term is a result of making nondeterministic choices
at the leaves. This is akin to how one would lift the free monad to the category of relations.
Then, we can check soundness and completeness; meaning the result of our endofunctor
contains precisely the choices specified by the relation.

Given f : A → SLUB, the f -choice relation is a relation between TCA and TCB inductively
defined as follows:

It relates leaf(a) to leaf(b) if b is a result of f(a).
It relates nodeσ(c) to nodeσ(d) if for every i ∈ ar(σ), it relates c(i) to d(i).

We can show that our endofunctor TC is complete over the choice relation.

▶ Theorem 18. Given f : A → SLUB, t ∈ TCA and r ∈ TCB, then:
∃i ∈ TCf(t)I . TCf(t)m = r if and only if t is related to r by the f -choice relation.

5.2 Monad and Comonad Structure
The free functor forms a monad in the category of relations. The appropriate natural
transformations are constructed by lifting the unit and multiplication map of the free monad
from Set to SNFU by composing it with the unit transformation ⟨−⟩ for families. Unit and
multiplication are given by T η

C = |ηC
A | : A ⊸ TCA and T µ

C = |µC
A| : TC(TCA) ⊸ TCA.

▶ Proposition 19. For each U-container C, (TC , T η
C , T µ

C) is a monad in SNFU.

It is possible to reverse the structure of this monad, and construct a comonad.

Let T ε
C : TCA ⊸ A be the morphism sending leaf(a) to ⟨a⟩, and nodeσ(c) to ⊘A, then

T η
C † T ε

C .
Let T δ

C : TCA ⊸ TC(TCA) be the morphism sending leaf(a) to ⟨leaf(leaf(a))⟩, and nodeσ(c)
to ⟨leaf(nodeσ(c))⟩ ∨ N , where N = (NI , Nm) is given by NI = Πi:ar(σ) T δ

C(c(i))I and
Nm = λ(i, j). nodeσ(T δ

C(c(i))m(j)). Then T µ
C † T δ

C .
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Hence (TC , T ε, T δ) is a comonad. Suppose for instance TCA describes a set of computa-
tional processes, with η creating a process that immediately terminates and gives a result,
and µ merges a two-staged process into a single process. Then ε extracts from a process any
result that is immediately produced, and δ nondeterministically splits a process into two
stages. The monad and comonad structure interacts in interesting ways.

T η
C ; T ε

C ∼ id; we can extract a result from a process that immediately terminates.
T δ

C ; T µ
C ∼ id; when we split a process into two stages, and merge the stages, we get the

original process back.
T µ

C ; T ε
C ∼ T ε

C ; T ε
C ; extracting results from a process is like extracting from its stages.

T η
C ; T δ

C ∼ T η
C ; T η

C ; splitting a terminating process gives two terminating stages.

6 Example Processes

We look at some examples of nondeterministic processes we can represent with slice non-
deterministic functions.

6.1 Interleaving Concurrency
Let us first look at interleaving concurrency, which can be modelled by the interleaving
operation on actions. Consider lists X∗ over X inductively defined as [] ∈ A∗ and for x ∈ X

and l ∈ X∗, x :: l ∈ X∗.

▶ Definition 20. The interleaving operations on lists ∥, ∥l, ∥r: X∗ ×X∗ ⊸ X∗ are inductively
defined as:

(a ∥ b) = (a ∥l b) ∨ (a ∥r b).
([] ∥l a) = ⟨a⟩ = (a ∥r []).
(x :: a ∥l b) = SLU(λc.x :: c)(a ∥ b) = (a ∥r x :: a).

The definition of parallel operation is split into three clauses in order to satisfy Agda’s
termination checker. In the axioms of process algebra (see e.g. [8]), the parallel operation
was already split into two clauses corresponding to our ∥ and ∥l, in order for the induction
principle to apply. Here, we separately define ∥r, since without it, a non-trivial order on
arguments need to be established in order to prove termination of the function.

The parallel operation satisfies some interesting properties, which can be summarised in
the following proposition.

▶ Proposition 21. (∥: X∗ × X∗ ⊸ X∗, e : ⊤ ⊸ X∗) where e(∗) = ⟨[]⟩ forms a commutative
monoid in SNFU

▶ Remark. The approach of using slices for modelling nondeterminism was used at first
in order to prove properties like associativity of the parallel operation. Earlier efforts to
model interleaving concurrency used the representation of the finite powerset monad as
a free idempotent commutative monoid. Proving equations of the interleaving operation
required precise rewriting of terms using associativity and commutativity of the monoid.
Nondeterminism via slices on the other hand uses a case analysis on the elements of the
indexing set, which in this case represents the exact nondeterministic choices made by the
parallel operation. Though the proof of associativity is still not simple, the technique of
using slice nondeterminism greatly reduces the level of bureaucracy necessary.
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It can be verified that this model satisfies the equations of process algebra as for instance
specified in [8]. The development in Agda also contains a formalisation of previous work
from the author [24] which considers a categorical model for interleaving algebraic effects
using SNFSet.

6.2 Iterated Processes

As our second example, we study a simple state automata which is given by a state space,
and a nondeterministic transition function into the set of states and outputs. We can iterate
over chains of transitions using a natural number, and then take the supremum over this
natural number to get a single collection of all possible outputs.

We define the iteration function IterA,B : (A ⊸ B ⊎ A) → N → (A ⊸ B), which takes a
morphism H : A ⊸ B ⊎ A and a natural number n ∈ N, and iterates H n-times, gathering
all results from B it produces. Defined inductively on n ∈ N, it does the following:

IterA,B(H, 0) = λa.⊘B .
IterA,B(H, n + 1) = H; (idB

π IterA,B(H, n)).
IterA,B(H, n + 1)(a) looks at H(a), which is a collection of elements of B ⊎ A. It keeps all
results from B and joins them with elements of IterA,B(H, n)(a′) for any result a′ from A.
The function IterA,B(H, −) forms an ω-chain.

We define IterωA,B : (A ⊸ B ⊎ A) → (A ⊸ B) by taking the countable join of IterA,B.
We have the following results:

Both IterA,B and IterωA,B preserve the similarity relation ∼ on morphisms, and hence
are well defined as functions on morphisms in SNFU.
For f : A ⊸ B, H : B ⊸ C ⊎ A, and n ∈ N, IterA,B(f ; H, n) ∼ f ; (IterA,B(H; (idC ⊎
f), n)), hence IterωA,B(f ; H) ∼ f ; (IterωA,B(H; (idC ⊎ f))).
For f : B ⊸ C, H : A ⊸ B ⊎ A, and n ∈ N, IterA,B(H; (f ⊎ idA), n) ∼ IterA,B(H, n); f ,
and hence IterωA,B(H; (f ⊎ idA), n) ∼ IterωA,B(H, n); f .
For H : A ⊸ B ⊎ A, IterωA,B(H) ∼ H; (idB

π IterωA,B(H, n)).
For H : A ⊸ B ⊎ A and K : B ⊸ C ⊎ B, IterωA,B(H); IterωB,C(K) =∨

(λn. IterA,B(H, n); IterB,C(K, n)).
IterωA,A(inj1) ∼ ⟨−⟩A.

The Iterω operation can be used as a basis for a traced monoidal [5] operation for SNFU,
and can moreover be used to model recursive processes using ω-chains. As such, it could
form a basis for domain theoretic denotations using streams as in previous work from the
author [23]. There, such streams were used to define denotational equivalence of recursive
effectful programs.

6.3 Labelled transition systems

We consider a common nondeterministic process called the labelled transition system. Here
each possible transition is given a corresponding label designating some input, and a decidable
predicate on states specifying final states. We leave the choice of initial state as a parameter.

▶ Definition 22. A labelled transition system (lts) over a set of labels A : U is specified by a
triple (S, t, e) consisting of a set of states S, a transition map t : S × A ⊸ S and a function
checking for ending states e : S → B.
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We denote the set of labelled transition systems over A as LTS(A). We are often interested
in checking which series of labels would lead to a final state. A list of labels l is accepted by an
lts (S, t, e) on some initial state s ∈ S if there is a path of labelled transitions corresponding
to the labels of l, from s to some final state from e−1(true). There are two ways to specify
which lists of labels are accepted. We can either directly enumerate them using accepted
paths, or we can inductively check whether a list is accepted.

We can generate a collection of paths which will lead to termination inductively as a
dependent function LTSCol(A) : ((S, t, r) : LTS(A)) → N → (S ⊸ SLU(A∗)), which for a
natural number n ∈ N collects all accepted lists of length n.

LTSCol(A)(S, t, e)(0)(s) =
{

⟨[]⟩ if (e(s) = true)
⊘A∗ if (e(s) = false)

LTSCol(A)(S, t, e)(n + 1)(s) = (I, h) where I is a set of triples consisting of a ∈ A,
i ∈ t(a, s)I and j ∈ LTSCol(A)(S, t, e)(n)(t(s, a)m(i))I , and
h(a, i, j) = a :: LTSCol(A)(S, t, e)(n)(t(s, a)m(i))m(j).

We then define LTSColω as the supremum over N of LTSCol.
Alternatively, we can define a predicate which checks whether a certain list is accepted.

LTSaccept(A) : ((S, t, e) : LTS(A)) → S → A∗ → Set where:
[] is accepted on initial state s if e(s) = true.
a :: l is accepted on initial state s if there is a state z in the collection t(s, a) such that l

is accepted on initial state z.

▶ Proposition 23. The collection of lists generated by LTSColω consists exactly of the lists
accepted according to LTSaccept.

7 Conclusions

We have looked at a formalism for constructively representing denotations of nondeterministic
processes. These models are inherently intensional as they send inputs to outputs dependent
on concrete nondeterministic choices, as opposed to giving an external predicate for checking
whether an output is possible. The model is moreover directional, as only a subset of
well-behaved morphisms have daggers. As such, the model stays closer to natural occurrences
of computational nondeterministic processes. Nondeterminism is often guided by a source
of unpredictability, like sampling spaces in probability theory. In terms of this model, the
nondeterministic sampling space takes the form of an indexing set of a family. Potential
extensions to probabilistic models could be considered in the future.

We focused mainly on a specific universe of indexing sets U. Earlier versions of the work
used the collection of sets as a universe. Other possible universes may be explored in the
future too. Varying the universe allows us to model different categories, for instance:

Taking the universe {⊤}, we effectively retrieve the category of sets Set.
Taking the universe {⊥, ⊤}, we model the category of partial functions Par.
Taking finite sets as a universe, we get finite nondeterministic functions.
Excluding functions and Π constructions from U, we get countably nondeterministic
functions, e.g. programs which can sample natural numbers nondeterministically.

If there is an inclusion of universes, there is a functor between their respective categories.
There are more variations to consider, since we can restrict our sets of morphisms to those
satisfying a chosen subset of properties; total, deterministic, surjective, injective, daggerable.
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Note that in the above formulation of partial functions, it is decidable whether a function
gives a result or not. If you want to capture undecidability, you should instead use the sub-
category of deterministic slice functions, where inhabitance of an indexing set is undecidable.
This does however require you to show that all possible results are equal.

The slice nondeterminism framework is in some aspects much easier to work with then
algebraic representations of nondeterminism. For instance, equations like idempotency, asso-
ciativity and commutativity of nondeterministic choice (implemented by the join operation)
are easily proven using case distinctions on the indexing set. Moreover, proofs that normally
need such equations can be easily shown without needing to explicitly call these equations,
avoiding the need to specify a concrete sequence of rewrites. In particular, the formalisation
of properties for interleaving concurrency was hampered by the need of intensive equational
reasoning when working with a monoidal representation of the finite powerset monad. But
switching over to slices, many of these former difficulties were easily avoided.

7.1 Agda Categories Library
The formalisation of this paper is grounded in the framework of setoid enriched categories (E-
categories), like the development of the Agda Categories library. The core of the formalisation
only uses Agda’s standard library, for ease of adaptability. In separate files, some of the
results are linked up with the Agda Categories library, and concrete properties are shown.
These properties are as follows.

We have shown the following things concerning SNFU.
SNFU is a category.
SNFU is symmetric monoidal with respect to the product and disjoint union bifunctor.
SNFU is Cartesian and Cocartesian

Secondly, we have shown that the endofunctor SLU can be used to form a monad in the
category of setoids. This is the perfect candidate for a powerset monad over setoids, which
could be called the powersetoid monad, since it is a model of the powertheory. Formalisation
in terms of setoids specifically may be a future avenue for research.

Lastly, consider the slice category with indexing sets ranging over Set instead of U, then:

▶ Theorem 24. The category SNFSet is equivalent to the category of relations.

7.2 Denotational Semantics
Some examples were considered in Section 6, regarding finite automata and process algebra.
An example for the future is to formalise functional nondeterministic languages as studied by
Lassen [14]. Given the fact that families are closed under taking limits (see iterated processes
in Section 6), it should be possible to create a denotational model for nondeterministic
functional languages, like the one employed in previous work using streams [23]. A simple
example has been worked out, providing a denotational semantics for an untyped call-by-value
lambda calculus with added nondeterminism.

More generally, using a specification by nondeterministic runner [22, 24], we can model
a variety of stateful and nondeterministic effects. When described in this framework, we
use an indexing set to enumerate all possible handlers [20] for the effect, which can then be
used to extract a set of possible results of the computation. Part of the theory surrounding
this is formalised in the current development, and studying such algebraic models using the
formalisation presented in this paper is subject to future research.

ITP 2023
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