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Abstract
We conduct an experimental study on the range mode problem. In the exact version of the problem,
we preprocess an array A, such that given a query range [a, b], the most frequent element in A[a, b]
can be found efficiently. For this problem, our most important finding is that the strategy of using
succinct data structures to encode more precomputed information not only helped Chan et al.
(Linear-space data structures for range mode query in arrays, Theory of Computing Systems, 2013)
improve previous results in theory but also helps us achieve the best time/space tradeoff in practice;
we even go a step further to replace more components in their solution with succinct data structures
and improve the performance further.

In the approximate version of this problem, a (1 + ε)-approximate range mode query looks for an
element whose occurrences in A[a, b] is at least Fa,b/(1 + ε), where Fa,b is the frequency of the mode
in A[a, b]. We implement all previous solutions to this problems and find that, even when ε = 1

2 ,
the average approximation ratio of these solutions is close to 1 in practice, and they provide much
faster query time than the best exact solution. These solutions achieve different useful time-space
tradeoffs, and among them, El-Zein et al. (On Approximate Range Mode and Range Selection, 30th
International Symposium on Algorithms and Computation, 2019) provide us with one solution whose
space usage is only 35.6% to 93.8% of the cost of storing the input array of 32-bit integers (in most
cases, the space cost is closer to the lower end, and the average space cost is 20.2 bits per symbol
among all datasets). Its non-succinct version also stands out with query support at least several
times faster than other O( n

ε
)-word structures while using only slightly more space in practice.
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1 Introduction

The mode, or the most frequent element, in a dataset is a widely used descriptive statistic.
In the range mode query problem, we preprocess an array A of length n, such that, given a
query range [a, b], the mode in A[a, b] can be computed efficiently. Many problems in data
analytics and retrieval can be abstracted to range mode. For example, an online shopping
platform may be interested in the most popular item purchased by customers over a certain
period, which can be found by a range mode query over the sales records in its database.

Range mode is also connected to matrix multiplication; the product of two
√

n ×
√

n

Boolean matrices can be computed by answering n range mode queries in an array of
length O(n) [7]. This reduction provides a conditional lower bound showing that, with
current knowledge, the time required to preprocess an array and answer n range mode
queries must be Ω(nω/2), where ω < 2.3726 is the best exponent in matrix multiplication [2].
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Furthermore, since the best combinatorial algorithm for Boolean matrix multiplication is
only a polylogarithmic factor better than cubic [4], with current knowledge, we cannot use
pure combinatorial approaches to solve range mode in O(n3/2−δ) preprocessing time and
O(n1/2−δ) query time simultaneously for any constant δ ∈ (0, 1/2). To speed up queries,
researchers further define the (1 + ε)-approximate range mode query problem, where ε ∈ (0, 1).
Given a query range [a, b], let Fa,b denote the frequency of the mode in A[a, b]. A (1 + ε)-
approximate range mode query then asks for an element whose occurrences in A[a, b] is at
least Fa,b/(1 + ε).

Due to the importance in both theory and practice, range mode has been studied
extensively [22, 29, 7, 6, 18, 12, 13, 32, 31, 19]. Despite these efforts, we are not aware of any
experimental studies on them. Hence, to connect theory to practice, we conduct an empirical
study of exact and approximate range mode structures using large practical datasets.

Related Work. Krizanc et al. [22] first considered the exact range mode problem and
introduced an O(n + s2)-word solution with O((n/s) lg n) query time for any s ∈ [1, n], and
setting s =

√
n yields a linear space solution with O(

√
n lg n) query time. They also presented

another solution with constant query time and O(n2 lg lg n/ lg n) words of space cost. Later
Petersen et al. [29] proposed an O(n2 lg lg n/ lg2 n)-word structure with constant query time.
Chan et al. [7] further improved the time-space tradeoff of Krizanc et al. by designing an
O(n + s2/w)-word data structure with O(n/s) query time, where w is the number of bits in
a word. This result implies a linear space solution in words with O(

√
n/w) query time.

Regarding (1 + ε)-approximate range mode, Bose et al. [6] first used persistent search
trees to design an O(n

ε )-word solution with O(lg lg n + lg 1
ε ) query time. Greve et al. [18]

provided another structure with O(lg 1
ε ) query time and O(n

ε ) words of space, and they
used succinct data structures. More recently, El-Zein et al. [12] designed an encoding data
structure occupying only O(n

ε ) bits, and without accessing the original array, it can also
report the position of a (1 + ε)-approximate mode in the query range in O(lg 1

ε ) time.

Our Work. We first study linear-space exact range mode structures [22, 7]. Much of this
study focuses on these two data structures of Chan et al. [7]: a simple linear word structure
with O(

√
n) query time, and a linear word structure with O(

√
n/w) query time. They both

outperform other previous exact solutions, and the latter, which is their final structure,
essentially combines the former with succinct data structures to encode more precomputed
information. However, in practice, constant-time operations over succinct data structures
are usually slower than operations over their non-succinct counterparts when all solutions fit
in memory [15, 9, 27, 3]. To see whether the use of succinct data structures by Chan et al.
improves performance in practice, we compare different tradeoffs of both structures and find
that, when the same amount of space is used, the latter indeed provides much faster query
support than the former. This is because the query algorithm only performs a constant
number of succinct structure operations, and their execution time is dominated by other
steps. Encouraged by this observation, we further use succinct structures to swap out more
components, and our variant achieves even better time/space tradeoffs. These results are
exciting, as they confirm that, when the same space cost is incurred, careful use of succinct
data structures may potentially improve query efficiency in practice.

Regarding (1+ε)-approximate range mode, we focus on solutions by Bose et al. [6], Greve
et al. [18] and El-Zein et al. [13], as well as a non-succinct version of the O( n

ε )-bit encoding
structure of El-Zein et al. which stores the sequences they encode succinctly in plain arrays
instead. When setting ε = 1/2, all these data structures provide much faster query time than
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the best exact solution (which already answers a query in microseconds), and the average
approximation ratio is between 1.00001 and 1.02630. They also typically use less than 5n

words and are thus excellent solutions when high average quality of answers is sufficient.
When encoded using compressed bit vectors, the space cost of the succinct encoding structure
of El-Zein et al. [13] is only 35.6% to 93.8% of the input array of 32-bit integers (the average
space cost is 20.2 bits per symbol among all datasets). Its non-succinct version also stands
out with query support at least several times faster than other O( n

ε )-word structures while
using only slightly more space. When decreasing ε to improve worst-case approximation,
query times increase at a logarithmic rate, but space costs tend to be proportional to 1/ε.

2 Data Structure for Range Mode

We review the data structures that we will implement. When describing them, we adopt the
word RAM model with word size w bits and assume that the input is an array A[1..n] of
integers from {1, 2, . . . , ∆}, where ∆ ≤ n. Some solutions use succinct bit vectors as building
blocks. These operations are defined over a bit vector B[1..n]: rankb(i), which returns the
frequency of bit b ∈ {0, 1} in B[1..i], and selectb(i), which returns the index of the i-th
occurrence b ∈ {0, 1} in B. Pǎtraşcu [28] showed how to represent B in lg

(
n
t

)
+ O( n

lgc n ) ≤
n + O( n

lgc n ) bits, where t is the number of 1s in B and c is an arbitrary positive constant,
to support rank and select in O(1) time. A folklore approach encodes a monotonically
increasing sequence of n nonnegative integers upper bounded by u by encoding the difference
between consecutive elements in unary and performs rank and select operations over the
concatenated bit vector to compute any entry. This lemma summarizes its bounds.

▶ Lemma 1 (folklore). A monotonically increasing sequence of n nonnegative integers upper
bounded by u can be represented in lg

((n+u)
n

)
+ O( n+u

lgc(n+u) ) ≤ n + u + O( n+u
lgc(n+u) ) bits for

any positive constant c such that any entry in the sequence can be computed in O(1) time.

2.1 Exact Range Mode in Linear Space and O(
√

n lg n) Time
To design a solution, Krizanc et al. [22] divide A into s blocks each of size ⌈ n

s ⌉ for an integer
parameter s ∈ [1, n] and precompute an s × s table S. For any integers i, j ∈ [1, s], S[i, j]
stores the mode of the subarray consisting of blocks i, i + 1, . . . , j. They also construct, for
each integer α ∈ {1, 2, . . . , ∆}, a sorted array Qα of the positions of the occurrences of α in
array A. All these structures occupy O(n + s2) words and can be built in O(ns) time. With
them, the mode in A[a, b] can be computed by decomposing [a, b] into up to three subranges:
the span consists of all the blocks that are entirely contained in [a, b], while the prefix and
the suffix are the two subranges of [a, b] before and after the span, respectively. The mode,
c, of the span can be retrieved from S in O(1) time. The answer to the query is either c,
or an element in the prefix or the suffix. We call each of these up to 2⌈ n

s ⌉ − 1 elements a
candidate, and the frequency of each candidate A[x] in the query range is computed by a
binary search in QA[x]. Then the total query time is O((n/s) lg n). Hence, setting s = ⌈

√
n⌉

yields a linear-word structure with O(
√

n lg n) query time and O(n3/2) preprocessing time.

2.2 Exact Range Mode in Linear Space and O(
√

n) Time
Chan et al. [7] improved the solution of Krizanc et al. [22] by constructing two additional
data structures: A rank array A′ in which A′[i] is the index of the entry of QA[i] that stores
i, and an additional s × s table S′ in which S′[i, j] stores the frequency of the mode in blocks
i, i + 1, . . . , j. With the addition of A′, we can determine, in constant time, whether A[i]
occurs at least q times in A[i..j] for any given i, j and q, by checking if QA[i][A′[i]+q −1] ≤ j.

SEA 2023



19:4 Exact and Approximate Range Mode Query Data Structures in Practice

The query algorithm again decomposes the query range [a, b] into the span, the prefix
and the suffix. Using S and S′, we can find the mode, c, of the span and its frequency, fc, in
the span in O(1) time. This is one candidate of the mode in A[a, b]. We then look for the
elements in the prefix or the suffix whose frequencies in A[a, b] are greater than fc: We scan
the prefix, and for each element A[x] in it, we find out whether we have seen it before by
checking whether QA[x](A′[x] − 1) is at least a. If not, we determine whether A[x] occurs
more than fc times in A[x, b] in O(1) time by the approach discussed before. If it does, then
A[x] is a candidate, and we compute its frequency in A[a, b] by skipping the next fc − 1
occurrences in QA[x] and then continuing the scan of QA[x] to find its remaining occurrences
in A[a, b]. Since the number of times that A[x] occurs in the span is at most fc, the number
of scanned entries of QA[x] is at most the number of occurrences of A[x] in the prefix and
the suffix. Therefore, the frequencies of all candidates can be computed in time linear in the
lengths of the prefix and the suffix, which is O(n/s). We scan the suffix in a similar manner,
and the candidate with the highest frequency in A[a, b] is the answer. This way the query
time is improved to O(n/s), implying a linear-word tradeoff with O(

√
n) query time.

2.3 Exact Range Mode in Linear Space and O(
√

n/w) Time

The final solution of Chan et al. [7] divides the input array A into two subsequences B1 and
B2 as follows: We scan A. If the current element appears at most s times in A, we append it
to B1. Otherwise, it is appended to B2. Additionally, we define two 2 × n tables Iβ [i] and
Jβ [i], in which, for every β ∈ [1, 2] and each i ∈ [1, n], Iβ [i] (or Jβ [i]) stores the index in Bβ

of the closest element in A to the left (or right) of A[i] that lies in Bβ . Then a range mode
query in A can be answered by querying both B1 and B2.

A compact version of the structure in Section 2.2 is built over B1 which consists of Qα

for each α and a compact encoding of S′ in O(s2) bits, or O(s2/w) words. The latter uses
Lemma 1 to encode each row of S′ in O(s) bits, as it contains at most s positive integers
upper bounded by s. Furthermore, Chan et al. use this structure to infer any entry of S

in O(n/s) time without storing S. This decreases storage to O(n + s2/w) words and can
answer range mode over B1 in O(n/s) time. As for B2, since each element occurs more than
s times, the number of distinct elements, ∆′, is at most n/s. They mark every ∆′ positions
in B2 and use n words to encode the number of occurrences of each distinct element from
the start of B2 to each marked position, so that the frequency of any element between two
marked positions can be computed in O(1) time. Together with a walk from each endpoint
of the query range [a, b] to the nearest marked position inside [a, b], we can compute the
frequencies of all ∆′ distinct elements in [a, b] in O(∆′) time, thus answering range mode over
B2. Combing the structures for B1 and B2, we have an O(n + s2/w)-word structure with
O(n/s) query time and O(ns + n lg(n/s)) preprocessing time. Setting s = ⌈

√
nw⌉ yields a

linear word structure with O(
√

n/w) query time and O(n3/2√
w) preprocessing time.

Remarks. We can further decrease the space overhead by replacing Iβ and Jβ , where
β ∈ {1, 2}, with a bit vector F , in which F [i] = 0 if A[i] is stored in B1 and F [i] = 1
otherwise. Then, the elements in a query range [a, b] are in B1[rank0(a − 1) + 1, rank0(b)]
and B2[rank1(a − 1) + 1, rank1(b)]. This decreases the space cost to n + o(n) + O(s2/w)
words. We will study both the original approach and our variant experimentally.
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2.4 (1 + ε)-Approximation in O(n
ε
) Words and O(lg lg n + lg 1

ε
) Time

To design approximate solutions, Bose et al. [6] first presented a simple approach: For each
i ∈ {1, 2, . . . , n}, build a table Ti in which Ti[r] stores the smallest index j ≥ i such that A[j]
occurs ⌈(1 + ε)r⌉ times in A[i, j]. Given a query range [a, b], they perform a binary search in
Ta to find the entry Ta[k] with Ta[k] ≤ b < Ta[k + 1], and A[Ta[k]] is a (1 + ε)-approximate
answer. This algorithm uses O(lg lg n + lg 1

ε ) time, and the space cost is O( n lg n
ε ) words.

In a more advanced solution, Bose et al. define two number series, flow and fhigh by the
recurrence flow1 = fhigh1 = 1, flowr+1 = fhighr

+ 1 and fhighr+1 = ⌊(1 + ε)flowr
⌋ + 1. They

then construct a table Ti for each i = 1, 2, . . . , n as follows. In T1, an entry T1[r] stores the
smallest index j ≥ i such that A[j] occurs fhighr

times in A[1, j]. To compute an entry Ti[r]
for any i ≥ 2, we first determine whether Ti−1[r] occurs at least flowr times in A[i, Ti−1[r]].
If it does, then we set Ti[r] = Ti−1[r]. Otherwise, Ti[r] stores the smallest index j ≥ i such
that A[j] occurs fhighr times in A[i, j]. To answer a query, observe that, the frequency
of the mode of any query range [a, b] with Ta[r] ≤ b < Ta[r + 1] is at most fhighr+1 − 1.
Since A[Ta[r]] occurs at least flowr

times in A[a, Ta[r]] ⊆ A[a, b], the ratio of its frequency in
A[a, b] to Fa,b is at least flowr

/(fhighr+1 − 1) = flowr
/⌊(1 + ε)flowr

⌋ ≤ 1/(1 + ε). 1 Therefore,
A[Ta[r]] is a (1 + ε)-approximate answer.

Each table has at most 2⌈lg1+ε n⌉ entries. To reduce storage costs, Bose et al. view
T1, T2, . . . , Tn as n different versions of the same table T , and, to obtain Ti from Ti−1, an
update is needed for each r with Ti[r] ̸= Ti−1[r]. They proved that the total number of updates
over all versions is O(n/ε), so these tables can be stored in a persistent binary search tree [11] in
O(n/ε) words while supporting the search in any table in O(lg(2⌈lg1+ε n⌉)) = O(lg lg n+lg 1

ε )
time. They also maintain frequency counters [10] to achieve O( n lg n

ε ) preprocessing time.

2.5 (1 + ε)-Approximation in O(n
ε
) Words and O(lg 1

ε
) Time

Let ε′ =
√

(1 + ε) − 1. The structures of Greve et al. [18] consist of the following two parts.

Low Frequency. For each i = 1, 2, . . . , n, we precompute a table Qi of length ⌈ 1
ε′ ⌉, in which

Qi[r] stores the rightmost index j such that Fi,j = r. Given a query range [a, b], we perform
a binary search to look for the index, s, of the successor of b in Qa. If s does not exist, then
Fa,b > ⌈ 1

ε′ ⌉, and we use the structures for high frequencies to compute an answer. Otherwise,
Fi,j = s, and, as observed by El-Zein et al. [12], A[Qa[s − 1] + 1] is the answer. 2

High Frequency. For each i = 1, 2, . . . , n, we precompute a table Ti of length at most
⌈lg1+ε′(ε′n)⌉: For each r ∈ [1, ⌈lg1+ε′(ε′n)⌉, if i > 1 and Fi,Ti−1[r] ≥ ⌈ 1

ε′ (1 + ε′)k⌉ + 1, we set
Ti[r] = Ti−1[r]. Otherwise, Ti[r] stores the rightmost index j with Fi,j ⩽ ⌈ 1

ε′ (1 + ε′)k+1⌉ − 1.
We also build a table Li for each i; Li[r] stores A[i + j − 1] where j is the smallest positive
integer such that Ti+j [r] ̸= Ti[r]. Then, Li[r] occurs at least ⌈ 1

ε′ (1+ε′)k⌉+1 times in A[i, Ti[r]].
With these tables, given a query range [a, b] with Fa,b > ⌈ 1

ε′ ⌉, the query algorithm finds the
successor, Ta[s], of b in Ta. Then Fa,b ≤ Fa,Ta[s] ⩽ ⌈ 1

ε′ (1 + ε′)s+1⌉ − 1 and the frequency of
La[s − 1] in A[a, b] is at least ⌈ 1

ε′ (1 + ε′)s−1⌉ + 1, so La[s − 1] is a (1 + ε)-approximate mode.

1 Bose et al. [6] originally defined fhighr+1 = ⌈(1 + ε)flowr
⌉ + 1. However, with their definition, the ratio

of the frequency of A[Ta[r]] in A[a, b] to Fa,b is at least flowr
/⌈(1 + ε)flowr

⌉ which is not guaranteed to
be at least 1/(1 + ε). Therefore, we fix this issue by defining fhighr+1 = ⌊(1 + ε)flowr

⌋ + 1 instead.
2 To return the mode, Greve et al. augments the low frequency structure by storing the mode in A[i, Qi[k]]

with each Qi[k]. This approach does not break asymptotic bounds, but, when implementing this data
structure, we do not store these mode elements and use the observation in [12] to save space.

SEA 2023
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Hence, the total query time is O(lg lg n + lg 1
ε ). To speed it up to O(lg 1

ε ), Greve et al.
design a 3-approximate structure to narrow down the initial range of binary search over high
frequency structures. This structure performs constant-time lowest common ancestor (LCA)
queries over a tree of a small O(lg lg n) height. Unfortunately, experiments [5] show that, for
trees with small heights, structures with constant LCA queries in theory are outperformed
by naive approaches. Hence, we implement their solution without this speedup.

Regarding space, the bottleneck is the high frequency structures. Greve et al. view the
Ti tables as n version of the same table T as in [6] and bound the total number of updates
to T by O(n

ε ). A similar argument apples to Li’s. It is possible to store Ti’s and Li’s in a
persistent search tree, but this does not allow the speedup. Instead, Greve et al. design an
O(n/ε)-word scheme which samples some table entries and encodes updates between them
compactly. It supports the retrieval of an arbitrary entry in constant time. Here we sketch
the scheme of storing Ti’s; the entries of Li’s can be paired with those of Ti’s and stored as
additional fields in the same structures. In this scheme, we explicitly store Tl in an array
Sl if l mod t = 1, i.e., we sample and store one out of every t versions of T . Let r be an
arbitrary integer in [1, ⌈lg1+ε′(ε′n)⌉. Between two consecutive sampled versions, Tl[r] and
Tl+t[r], of T [r], there may be updates to T [r]. If r ≥ 1 + ⌈log1+ε′ t⌉, then there can only be
at most one update to T [r] between versions l and l + t. In this case, we store with each
sampled entry Tl[r] the next update to T [r]. If r ≤ ⌈log1+ε′ t⌉, then, for each sampled entry
Tl[r], construct a bit vector of length t with constant-time support for rank which uses one
bit for each of the next t versions to encode whether an update to T [r] is performed. We
also store the (distinct) values used to update T [r] in an array.

Preprocessing. As Greve et al. did not provide information on preprocessing, we also also
design an algorithm to construct their data structure in O((n lg n)/ε) time.

The low frequency structure can be constructed in O(n/ε) time using frequency coun-
ters [10] as was done by Bose et al. [6] to compute similar tables. For the high fre-
quency structure, if we have already computed the content of Ti’s and Li’s, we can en-
code them in time linear in the total number of entries in Ti’s and Li’s, and there are
O(n⌈lg1+ε′(ε′n)⌉) = O((n lg n)/ε) entries.

What remains is to compute the entries of Ti’s and Li’s, and for this we scan A

⌈lg1+ε′(ε′n)⌉ times. In the r-th scan, we compute Ti[r] and Li[r] for all i ∈ [1, n] in
increasing order of i as follows. We maintain an array C[1..∆] of counters; initially all entries
of C are 0s. We use an integer m to keep track of the number of entries of C that are greater
than or equal to ⌈ 1

ε′ (1 + ε′)k⌉ + 1; m can be updated each time an entry of C is updated.
During the scan, we maintain the following invariant: immediately after computing Ti[r],
each counter C[j] stores the number of occurrences of j in A[i, Ti[r]]. To compute T1[r], we
retrieve A[k] for k = 1, 2, ..., and for each k, we increment C[A[k]]. We repeat until C[A[k]] is
the first counter in C that reaches ⌈ 1

ε′ (1+ε′)k+1⌉. This means A[1..k −1] is the longest prefix
of A whose mode has frequency ⌈ 1

ε′ (1 + ε′)k+1⌉ − 1 in it. Therefore, we set T1[r] = k − 1.
Then we put the entry A[k] back to the unscanned portion of A by decrementing C[A[k]]
and then k. To compute Ti[r] for any i > 1, we first decrement C[A[i − 1]] and then check
whether m is still greater than 0. If it is, then there is at least one element whose frequency in
A[i, Ti−1[r]] is ⌈ 1

ε′ (1+ε′)k⌉+1, and we set Ti[r] = Ti−1[r]. Otherwise, we resume the scanning
of A to compute Ti[r] using the approach used to compute T1[r]. We also store A[i − 1]
in Lr[u], Lr[u + 1], . . . , Lr[r − 1], where u is the smallest integer such that Tu[r] = Tr−1[r].
With this implementation, we need to scan the input array A O(⌈lg1+ε′(ε′n)⌉) times, and
hence the total preprocessing time is O(n⌈lg1+ε′(ε′n)⌉) = O((n lg n)/ε).
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2.6 (1 + ε)-Approximation in O(n
ε
) Bits and O(lg 1

ε
) Time

The encoding data structure of El-Zein et al. [12] also consists of two parts: The low frequency
structure contains, for each integer k ∈ [1, ⌈ 1

ε ⌉], a table Qk of length n, in which Qk[i] stores
the rightmost index j such that Fi,j = k. Qk can be encoded by Lemma 1 in 2n + o(n)
bits, so all tables use O(n

ε ) bits. Then, for a range [a, b], we perform a binary search in
Q1[a], Q2[a], . . . , Q⌈ 1

ε ⌉[a] to check whether Fa,b ≤ ⌈ 1
ε ⌉ and compute the index of a mode if so.

The high frequency structure contains, for each integer k ∈ [1, ⌊log1+ε(εn)⌋], a data
structure that can find in O(1) time one of these inequalities that holds for query range [a, b]:
1) Fa,b < (1 + ε)k/ε, 2) Fa,b > (1 + ε)k/ε, or 3) (1 + ε)k−1/2/ε < Fa,b < (1 + ε)k+1/2/ε. It
finds in case 2 an element that occurs more than (1 + ε)k/ε times in A[a, b], and, in case 3,
an element that occurs more than (1 + ε)k−1/2/ε times in A[a, b].

Let ε′ =
√

1 + ε − 1 and fj = (ε′/ε) × (1 + ε′)j . This structure is designed based on
four sequences s, s′, r and r′: For each integer i ∈ [0, n/⌈f2k−1⌉], si, the i-the element in
s, is i⌈f2k−1⌉ + 1, and ri is the smallest index such that Fsi,ri

⩾ (1 + ε′)2k/ε. similarly, for
each integer i ∈ [0, n/⌈f2k⌉], define s′

j = i⌈f2k⌉ + 1, and r′
j is the smallest index such that

Fs′
j
,r′

j
⩾ (1 + ε′)2k+1/ε. Then, given a query range [a, b], El-Zein et al. determine which case

applies by comparing b to the entries of r and r′ that correspond to the predecessors of a in
s and s′. The high frequency structure can be encoded in O( n

ε ) bits by Lemma 1.
To use this trichotomy to answer queries in the high frequency case, perform a binary

search in O(lg lg n + lg 1
ε ) time to compute a k such that either case 3 applies for the query

range, or case 2 applies for k and case 1 applies for k + 1. The element found by either case
3 or case 2 is a (1 + ε)-approximate mode. Finally, to speed up the query time to O(lg 1

ε ),
El-Zein et al. designed an O(n)-bit structure that answers 4-approximate range mode queries
in constant time, and used it to narrow down the initial range of binary search.

Remarks. The O(n)-bit 4-approximate structure contains a network of fusion trees [16] and
is not practical. Hence, our implementation does not include this speedup. El-Zein et al. did
not discuss preprocessing, but we can build their structures using frequency counters [10]
in O(n lg n/ε) time. Finally, storing all structures in integer arrays without using Lemma 1
would yield a simple O(n/ε)-word solution, which we also conduct experimental studies on.

3 Experimental Results

3.1 Experimental Setup
Table 1 gives an outline of the data structures we implemented. Among them, the first naive
approach, nv1, sorts the elements in the given range to answer a query, while the second
one, nv2, scans the elements in the range and uses an array of length ∆ to count element
frequencies. Four data structures, subsr1, subsr2, sample and succ, use succinct bit vectors,
for which we use the implementation in the succinct data structures library, sdsl-lite, of
Gog et al. [17]. Two types of bit vectors are used: a plain bit vector, sdsl::bit_vector and
a compressed bit vector [30], sdsl::rrr_vector. To distinguish them, we combine subsr1,
subsr2, sample or succ with superscripts p or c, e.g., succp and succc, to respectively
indicate whether plain or compressed bit vectors are used. Note that, even though subsrc

2
uses compressed bit vectors to encode the table S′, a plain bit vector is still used to represent
F : we found that, due to the small space cost of F (n bits), compressing it would achieve
negligible space savings at the cost of increasing query times by 4.5% to 25%. Finally, for a
fair comparison, we modified the implementation of persistent search trees by Jansens [21]
to remove the space overhead for generic programming and used it to implement pst.
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Table 1 The data structures we implemented. The first half of the table present exact solutions,
while the second half are (1 + ε)-approximate structures with O(lg lg n + lg 1

ε
) query time.

abbr. description

nv1,nv2 two naive solutions in Section 3.1
supsr O(n)-word, O(

√
n lg n) query time structure for exact range mode in Section 2.1

sqrt O(n)-word, O(
√

n) query time structure for exact range mode in Section 2.2
subsr1 O(n)-word, O(

√
n/w) query time structure for exact range mode in Section 2.3

subsr2 modifying subsr1 with more succinct data structures; see the remarks in Section 2.3
simple simple O( n lg n

ε
)-word approximate solution in Section 2.4

pst O( n
ε

)-word approximate solution with persistent search trees in Section 2.4
sample O( n

ε
)-word approximate solution with sampling in Section 2.5

tri O( n
ε

)-word approximate solution with the trichotomy in Section 2.6
succ O( n

ε
)-bit approximate solution with the trichotomy in Section 2.6

Table 2 The data sets used in our experiments, each stored as an array of n integers in [1, ∆].

data n ∆ lg ∆ H0

reviews 10,000,000 1,367,909 20.38 18.46 books of the first 108 book reviews by
Amazon customers in 2018 [25]

IPs 8,571,089 135,542 17.04 7.96 source IP addresses of DDoS attacks [14]
words 6,715,122 127,886 16.96 12.74 words in a text string containing the 100

most frequently downloaded Project Guten-
berg [1] e-books in July 2021, with stop
words removed

library 10,000,000 314,358 18.26 15.75 first 108 call numbers in the 2016/17 Seattle
Public Library checkout records [23]

tickets 10,000,000 79,027 16.27 11.10 street names of the first 108 parking tickets
issued in New York in 2017 [26]

Five publicly available datasets are used; see Table 2. This table also shows the zeroth-
order empirical entropy, H0, of each dataset. Due to page limit, sometimes we only show
figures and tables created for typical datasets, and a full set of tables/figures for all datasets
is available in the second author’s thesis [24]. To convert raw data into an integer array, we
encode each element as an integer in [1, ∆]. To generate a query range [a, b], we adopt the
method in [8, 20]: we pick an integer from [1, n] uniformly at random (u.a.r.) and assign it to
a, and b is chosen u.a.r. from [a, a + ⌈ n−a

K ⌉] for a parameter K. We generate three categories
of queries, large, medium and small, by setting K = 1, 10 and 100, respectively. To justify
that this approach of generating queries is appropriate, Appendix C shows additional studies,
including those performed over query ranges even smaller than small queries.

Our platform is a server with an Intel(R) Xeon(R) Gold 6234 CPU and 128GB of RAM,
running Ubuntu 18.04.2. We complied programs using g++ 7.4.0 with -O2 flags.

3.2 An Initial Performance Study on Exact Mode
For exact range mode, we initially set s =

√
n for supsr and sqrt and set s =

√
nw for

subsr1 and subsr2 to achieve linear space as in [22, 7]. Tables 3 and 4 present the query
time, space usage and construction time of exact query structures. We measure space costs
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Table 3 Average time to answer an exact range mode query, measured in micro seconds. Queries
are categorized into small, medium and large, and each category has 106 queries.

Query nv1 nv2 supsr sqrt subsrp
1 subsrc

1 subsrp
2 subsrc

2

re
vi

ew
s small 1134 442 338.93 51.70 10.74 11.56 10.74 11.56

medium 13262 870 366.90 51.00 9.94 10.82 9.94 10.82
large 144642 5686 363.42 50.85 9.39 10.20 9.39 10.20

IP
s small 532 51 218.75 15.58 3.93 4.40 3.94 4.48

medium 5938 186 240.03 15.19 3.86 4.37 3.91 4.46
large 66121 1531 239.35 14.48 3.53 4.01 3.60 4.07

wo
rd

s small 678 45 298.83 31.49 8.01 8.75 8.14 9.06
medium 7094 149 334.53 31.27 7.60 8.41 7.82 8.63
large 73401 1235 349.22 28.28 6.53 7.24 6.67 7.38

li
br

ar
y small 1160 125 384.07 49.54 11.90 13.14 12.13 13.37

medium 12960 408 422.32 47.11 10.66 11.87 10.71 11.98
large 132605 3407 444.30 43.68 9.32 10.42 9.40 10.53

ti
ck

et
s small 990 37 362.47 43.16 9.99 10.67 10.19 10.99

medium 9931 187 414.76 42.39 9.92 10.65 10.15 10.97
large 101281 1756 436.93 37.44 8.56 9.35 8.80 9.60

Table 4 Space (bits per symbol) and construction time (minutes) of exact range mode structures.

Dataset supsr sqrt subsrp
1 subsrc

1 subsrp
2 subsrc

2

sp
ac

e

reviews 109.1 173.2 174.3 144.1 174.3 144.1
IPs 97.5 161.5 332.6 255.9 205.8 129.0

words 97.8 161.9 329.1 284.1 202.2 157.2
library 99.0 163.0 315.2 294.5 188.3 167.6
tickets 96.7 160.8 311.0 289.9 184.1 163.0

co
ns

tr
uc

t
tim

e reviews 0.911 0.911 7.205 7.460 7.205 7.460
IPs 0.695 0.695 1.865 1.867 1.890 1.892

words 0.438 0.438 2.755 2.760 2.762 2.765
library 0.806 0.806 5.923 5.933 5.971 5.974
tickets 0.720 0.720 4.251 4.275 4.756 4.809

in bits per symbol (bps), which is the space usage in bits divided by the length of the input
array. Furthermore, the cost of the input array A (32 bps) is included in the space usage of
supsr and sqrt but excluded for subsr1 and subsr2, because supsr and sqrt scan A when
answering a query but subsr1 and subsr2 do not. Nevertheless, the space cost of A is not
significant enough to affect our conclusions. These tables show that most data structures
have much faster query time than both naive approaches, and supsr is the only exception
in some cases. Between two naive approaches, nv2 is faster because the number of distinct
elements is relatively small compared to input array length.

Before comparing the performance of data structure solutions, we discuss how the
distributions of the datasets affect subsr1 and subsr2, for which the array entries are stored
in two subsequences B1 and B2 (see Section 2.3). Since B2 stores elements of higher frequency,
the lower the entropy of a dataset is, the larger the ratio of the length of B2 to n tends to
be. Indeed, for reviews, words and library, the ratios are 0, 0.037 and 0.010, respectively,
while for IPs and tickets, the ratios are 0.58 and 0.14, respectively, which are higher. These
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ratios are consistent with the values of H0 in Table 2. This immediately explains why, for
reviews, there is no difference in costs between subsr1 and subsr2: These two solutions
differ in the components used to map the query range to ranges in B1 and B2. Since |B2| = 0
for reviews, no mapping is needed.

With this in mind, we now compare data structure solutions. We first find that the
query time of sqrt is 6.0% to 15.3% of that of supsr, which is consistent with theoretical
bounds. Then we observe that, by using a succinct bit vector to replace multiple arrays,
subsr2 saves much space compared to subsr1 over all datasets except reviews (which does
not require these components as discussed before). At the same time, there is almost no
sacrifice in query performance. This is because we only perform rank over this bit vector
a constant number of times to map query ranges to ranges in B1 and B2, and this cost is
dominated by subsequent steps which use O(

√
n/w) time. The use of compressed bit vectors

in subsrc
1 and subsrc

2 saves more space, albeit at the cost of a small increase in query time.
Theoretical analysis indicates that, when we double s, the query time halves but tables S

and S′ use four times as much space. Hence, we predict that subsrp
2 and subsrc

2 achieve the
best query-space tradeoffs, and more experiments will be run in Section 3.3 to confirm this.

The sizes of query ranges affect query times greatly for the naive approaches since they
either sort or scan the elements in the range. On the other hand, these sizes only affect
the query times of supsr, sqrt, subsr1 and subsr2 slightly. For sqrt, subsr1 and subsr2,
larger queries even tend to take less time to answer. This is because the query algorithm of
sqrt (which is also performed over B2 in subsr1 and subsr2) keeps updating a candidate
by a new candidate with higher frequency in the query range, until the mode of the range is
found. The initial candidate is the mode of the span of the query. When the query range
is larger, the span is also longer, and hence its mode tends to be a better candidate, thus
decreasing the query time.

Regarding construction time, observe that the processing times of supsr and sqrt are
about same. For reviews, words, library and tickets, the preprocessing time of supsr
and sqrt is 12.2% to 16.9% of that of subsr1 and subsr2. This is because, with the choices
of parameters, it takes O(n3/2√

w) time to build subsr1 and subsr2, but the preprocessing
time of supsr and sqrt is O(n3/2). However, the difference is much smaller for IPs. This is
because, when constructing subsr1 and subsr2 for this dataset, 58% of array entries are in
B2, whose query structure can be built in linear time.

3.3 Different Parameter Values
We now choose different values of s to compare these structures thoroughly. First, we compare
subsrp

2 and subsrc
2. The experimental results over reviews and IPs are shown in Figure 1,

while the results over words, library and tickets are shown in Figure 4 in Appendix A. To
draw the subfigure for either dataset, we initially set s to be 0.5

√
nw to construct subsrp

2 or
subsrc

2, and each time we increase s by 0.5
√

nw until the space usage exceeds 640 bps. Each
point in the figure represents a tradeoff achieved between space and the average query time
of a category (small, medium or large) of queries. We then connect the points for the same
data structure and query category into a polyline. Hence, over either dataset, we show how
the query time changes when more space is used for either data structure using three plotted
polylines, one for each query category. In Figure 1 (a), for the same category of queries, the
polyline plotted for subsrp

2 is always above that for subsrc
2. This means, with the same space

cost, subsrc
2 uses less time to answer a query on average. Hence, subsrc

2 outperforms subsrp
2

over reviews. It is however the opposite for IPs, and there is no discernible differences over
the three other datasets.
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Figure 1 Time-space tradeoffs of subsrp
2 and subsrc

2 over reviews and IPs.

To discuss why they compare differently for different datasets, observe that whether to
use plain or compressed bit vectors to encode S′ in subsr2 affects the structures built over
B1 only. Furthermore, when s increases, the block size decreases, and more adjacent entries
of S′ tend to store the same values, making S′ more compressible. The dataset reviews
has the largest entropy, which means the table S′ constructed over it is less compressible
than that over any other dataset for small s, so the increase of s makes it more compressible
rapidly. All arrays entries of reviews are also stored in B1 for all the values of s that we
have used, making the compression more sensitive to the choice of the value of s. Hence,
for reviews, the increase of s improves the compression ratio of subsrc

2 at a faster rate
than what it does for any other dataset. This allows S′ to store much more precomputed
information for subsrc

2, speeding up the queries despite the increased operation time over
compressed bit vectors. Other datasets perform differently when s changes, due to their
smaller entropy which also affects the number of array entries distributed into B1. In the
extreme case of IPs, subsrp

2 performs better, while for the rest, compression does not make
a significant or consistent difference. Since it takes less time to construct plain bit vectors,
we decide that subsrp

2 is also a better solution for words, library and tickets.
We further conducted similar experiments to compare subsrp

1 and subsrc
1 and made the

same observations. See Figure 5 in Appendix A for details. Hence, in the rest of this paper,
when the context is clear, subsr1 and subsr2 respectively represent subsrc

1 and subsrc
2 for

reviews, while they represent subsrp
1 and subsrp

2 for all other datasets.
After deciding on bit vector implementations, we compare sqrt, subsr1 and subsr2. We

continue with the same parameters for subsr1 and subsr2, while for sqrt, the initial value
of s is 0.5

√
n, and each time we increase s by 0.5

√
n until the space usage exceeds 640 bps.

Figure 2 shows the results over library and tickets, and the results are similar for the other
three data sets (see Figure 6 in Appendix A), except that for reviews, subsr1 and subsr2

have the same performance because no structures are used to map query ranges as discussed
before. Our results show that subsr1 and subsr2 have much better query performance than
sqrt when the same storage costs are incurred. This matches the discussions and prediction in
Section 3.2. Between subsr1 and subsr2, for IPs, words, library and tickets, our results
show that subsr2 achieves better time-space tradeoffs than subsr1 does. The difference
is significant for smaller values of s, but as s grows much larger, the plotted lines start to
converge. This is because, for large enough s, the space savings by replacing four integer
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Figure 2 Time-space tradeoffs of sqrt, subsr1 and subsr2 over library and tickets.

arrays with a bit vector is dominated by the O(s2)-bit cost of S′. Nevertheless, when we
require a reasonable space cost for data structures in practice, subsr2 still improves subsr1

significantly. Finally, we conducted similar experiments to confirm that sqrt outperforms
supsr significantly; see Appendix A. Therefore, we conclude that subsr2 preforms the best
among all exact solutions.

3.4 Performance of Approximate Range Mode

Tables 5 and 6 present the query time, space usage and construction time of approximate
range mode structures when ε = 1/2. Space costs do not include the cost of array A, since
these structures can compute the indexes of approximate range modes without accessing A.

To measure accuracy, we compute the approximation ratio of each answer as the frequency
of the actual mode in the query range divided by the frequency of the reported approximate
mode in the range. Then, for each solution, we compute the average and the maximum of the
approximation ratios of the answers for each query category over each dataset. We find that
the average ratios range between 1.00001 and 1.02630, and the maximum ratios are closer to
1.5. To see why the average quality of the answers is high, recall that the approximate mode
computed is the actual mode of a range having a significant overlap with the query range,
so the probability of it being the mode of the query range is high. Since these results are
consistent across datasets and query categories, we use Table 7 in Section 3.5 to provide a
summary by reporting, for each data structure, the average and maximum ratios over all
queries, together with results for some subsequent experiments. Since these structures have
slower query support and higher space usage for smaller ε, setting ε = 1/2 is attractive to
applications for which a high average approximation ratio is sufficient.

Another phenomenon is that larger queries tend to be faster with approximate solutions.
This is because all query algorithms are essentially based on binary searches in lists of possible
candidates, and in each list, the farther it is away from the list head, the larger the gaps
between the indexes (in A) of two consecutive candidates are, benefiting larger query ranges.

We also observe that the space cost of pst can vary greatly among datasets, with the
space cost of library being about 3.6% of that of IPs. Recall that in this solution, we view
n different tables as versions of the same table T to store them in a persistent search tree, and
each tree node corresponds to an update to the table (the initial version of the table is not
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Table 5 Average time to answer an approximate query for ε = 1/2, measured in microseconds.
Queries are categorized into small, medium and large, and each category has 108 queries.

Query simple pst samplep samplec tri succp succc
re

vi
ew

s small 0.098 0.861 0.869 1.016 0.191 1.122 2.970
medium 0.095 0.714 0.598 0.610 0.135 1.009 3.178
large 0.089 0.556 0.440 0.453 0.116 0.864 3.703

IP
s small 0.110 1.561 0.545 0.796 0.138 1.003 4.003

medium 0.113 1.343 0.358 0.430 0.105 0.696 3.198
large 0.120 1.120 0.285 0.304 0.091 0.581 3.030

wo
rd

s small 0.102 0.986 0.809 1.166 0.168 1.126 3.642
medium 0.098 0.780 0.486 0.585 0.127 0.967 3.754
large 0.105 0.546 0.281 0.309 0.095 0.595 2.547

li
br

ar
y small 0.099 0.760 1.017 1.164 0.200 1.230 3.508

medium 0.099 0.581 0.603 0.629 0.144 1.152 3.809
large 0.106 0.434 0.360 0.370 0.112 0.766 3.023

ti
ck

et
s small 0.112 1.072 0.773 1.108 0.172 1.281 3.861

medium 0.109 0.817 0.460 0.585 0.129 0.997 3.371
large 0.119 0.580 0.300 0.327 0.105 0.634 2.669

Table 6 Space (bits per symbol) and construction time (minutes) of approximate structures
when ε = 1/2.

Dataset simple pst samplep samplec tri succp succc

sp
ac

e

reviews 680.0 100.6 225.4 204.7 291.2 56.9 11.4
IPs 1038.6 1051.5 327.9 311.3 291.5 82.9 30.0

words 787.8 146.3 240.7 220.5 291.4 67.1 21.5
library 769.6 37.6 231.6 210.8 291.3 65.6 13.9
tickets 896.6 115.8 248.2 228.1 291.5 74.2 24.2

co
ns

tr
uc

t
tim

e reviews 0.084 0.142 0.655 0.668 0.050 0.082 0.085
IPs 0.075 0.172 0.564 0.568 0.031 0.063 0.067

words 0.050 0.082 0.412 0.418 0.018 0.038 0.040
library 0.084 0.136 0.663 0.673 0.042 0.065 0.067
tickets 0.081 0.122 0.648 0.649 0.027 0.068 0.070

stored explicitly since T [i] = i for all i ∈ [1, n]). Thus, we recorded the number of updates
to T for each dataset, and it is 1, 380, 391 for reviews, 10, 773, 911 for IPs, 1, 232, 046 for
words, 485, 498 for library and 1, 386, 886 for tickets. The difference in the numbers of
updates is consistent with the difference in space costs. To see why there is such a difference
in updates, recall that an update to T happens when the frequency of a candidate within a
certain range A[i, j] drops below a threshold when we increment i. This happens more often
when the entropy of the dataset is lower or when the locality of reference is higher, since
a lower entropy or higher locality of references means we are more likely to decrease the
frequency of this candidate each time we increment i. Indeed, IPs has the lowest entropy by
Table 2, and since the same subset of IPs occur frequently in a DDoS attack event, it has
high locality of reference. This explains the high space cost of pst over IPs. On the other
hand, library has the second highest entropy, and unlike reviews whose entropy is higher,
due to the limited number of copies that a library has for each book, the borrowing records
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tend to be less affected by trends such as “best sellers of the month” than Amazon reviews
are. This explains the low space usage for library. The space cost of sample also fluctuates
among datasets for similar reasons, but due to sampling, the difference is small.

We now compare approximate structures. Among them, simple has the fastest query
time due to its simplicity, but its space cost is high. Among more sophisticated, O(n/ε)-word
solutions which are not succinct, tri stands out as its query time is comparable to that of
simple (it even beats simple in some cases), but its space cost is only 28.1% to 42.8% of
that of simple. Compared to pst and sample, it has the smallest worst-case space cost;
it is not based on persistence and is thus not sensitive to entropy or locality of reference.
On the other hand, for most datasets, pst and sample provide useful tradeoffs with lower
space usage but slower query time, with pst especially attractive for datasets of high entropy
but low locality of reference such as library. Finally, succp and succc provide compact
solutions; succp uses 0.89n to 1.30n words, with query slightly slower than pst and sample
in most cases, while succc is highly compact, with space costs only 35.6% to 93.8% of the
array of 32-bit integers (in most cases, the space cost is closer to the lower end, and the
average is 20.2 bps over all datasets), while the query time is 265% to 522% of that of succp.
Regarding preprocessing, we observed that the construction of tri is the fastest while that
of sample is the slowest.

3.5 Different Values of ε and Comparisons to Exact Queries Structures
We further conduct experiments by setting ε to 1/4, 1/8 and 1/16. Table 7 shows that
average approximation ratios decrease when ε decreases, though they are already close to 1
for ε = 1/2. Maximum approximation ratios are close to 1 + ε.

Table 7 Average and max approximation ratios for different ε.

ε
Average Maximum

simple pst sample tri/succ simple pst sample tri/succ
1/2 1.00644 1.00464 1.00644 1.00192 1.49977 1.5 1.48879 1.47826
1/4 1.00218 1.00164 1.00188 1.00085 1.24952 1.25 1.24701 1.25
1/8 1.00075 1.00068 1.00055 1.00019 1.12474 1.125 1.12148 1.11765
1/16 1.00020 1.00017 1.00016 1.00006 1.06240 1.0625 1.06107 1.05882

We also measure the performance of each solution for different ε. Tables 8 and 9 present
the performance and accuracy of approximate query structures for different values of ε over
the words dataset. We observe that query times increase slowly as ε decreases, fitting the
growth of the function of lg 1

ε + lg lg n. The space costs, however, grows at a much faster rate,
proportional to 1/ε. For different values of ε, how different solutions compare to each other
is similar to the case where ε = 1/2. The main notable difference is that, due to persistence
or compression, the space costs of pst, sample, and succc grow more slowly than other data
structures.

Finally, for ε = 1/2, we plotted figures to compare approximate structures to the best exact
structure, subsr2. Due to its high space costs, simple is not included. To better compare
approximate solutions, we plot a subfigure without subsr2, before plotting another one with
subsr2. As a typical example, Figure 3 shows the tradeoffs achieved for medium queries
over words, while Figure 8 in Appendix B shows the tradeoffs for all three types of queries
over reviews. From them, we can tell approximate structures outperform exact structures
greatly, making them suitable for applications that require good average approximations.
They still achieve better time/space tradeoffs over subsr2 for ε = 1/4, but may lose the
appeals when we keep decreasing ε due to the increase in space costs.
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Table 8 Average time to answer an approximate query over the words datasets for ε = 1
2 , 1

4 , 1
8

and 1
16 , measured in microseconds. Queries are categorized into small, medium and large, and each

category has 108 queries.

ε Query simple pst samplep samplec tri succp succc

1/2
small 0.102 0.986 0.809 1.166 0.168 1.126 3.642
medium 0.098 0.780 0.486 0.585 0.127 0.967 3.754
large 0.105 0.546 0.281 0.309 0.095 0.595 2.547

1/4
small 0.122 1.178 1.069 1.486 0.248 1.568 4.537
medium 0.119 0.924 0.738 0.841 0.184 1.371 4.597
large 0.119 0.639 0.357 0.386 0.142 0.906 3.512

1/8
small 0.148 1.637 1.277 1.809 0.349 2.231 5.778
medium 0.138 1.586 1.253 1.280 0.269 2.128 5.940
large 0.133 1.090 0.543 0.563 0.194 1.402 4.598

1/16
small 0.178 1.704 1.439 2.061 0.468 2.993 6.849
medium 0.170 1.479 1.459 1.690 0.383 3.104 7.230
large 0.161 0.935 1.025 1.077 0.261 2.095 5.894

Table 9 Space (bits per symbol) and construction time (minutes) when answering approximate
queries over the words datasets for ε = 1

2 , 1
4 , 1

8 and 1
16 .

ε simple pst samplep samplec tri succp succc

sp
ac

e

1/2 787.8 146.3 240.7 220.5 291.4 67.1 21.5
1/4 1418.9 264.7 393.0 352.4 547.8 117.4 35.9
1/8 2677.9 657.9 704.3 619.5 1063.9 212.2 62.6
1/16 5185.2 753.6 1337.7 1157.9 2074.5 389.5 111.7

co
ns

tr
uc

-t
io

n

1/2 0.050 0.082 0.412 0.418 0.018 0.038 0.040
1/4 0.091 0.166 0.744 0.746 0.032 0.066 0.077
1/8 0.171 0.318 1.610 1.636 0.058 0.148 0.150
1/16 0.335 0.554 3.224 3.247 0.108 0.229 0.238
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Figure 3 Time-space tradeoffs of different data structures for medium queries over words.
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A Details Omitted from Section 3.3

Figures 4, 5 and 6 are omitted figures from Section 3.3.
We also compare the time-space tradeoffs that can be achieved by supsr and sqrt with

different parameters. Figure 7 shows our experimental results over reviews and IPs, in
which a subfigure is used for either dataset. The results for other datasets are similar. To
draw each subfigure, we construct supsr (and similarly sqrt) over each dataset for different
values of s. The initial value of s is 0.5

√
n, and each time we increase s by 0.5

√
n until the

space usage of the data structure exceeds 640 bits per symbol. In Figure 7, our experimental
study shows that sqrt use less query time than supsr when these data structures use the
same space. Therefore, sqrt outperforms supsr.
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Figure 4 Time-space tradeoffs achieved by subsrp
2 and subsrc

2 over words, library and tickets.
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Figure 5 Time-space tradeoffs achieved by subsrp
1 and subsrc

1 over reviews and IPs



M. He and Z. Liu 19:19

200 400 600 800
0

50

100

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) sqrt − small

sqrt − medium
sqrt − large
subsr − small
subsr − medium
subsr − large

(a) reviews.

200 400 600 800 1,000

10

20

Bits per Symbol

sqrt − small
sqrt − medium
sqrt − large

subsr1 − small
subsr1 − medium
subsr1 − large
subsr2 − small
subsr2 − medium
subsr2 − large

(b) IPs.

200 400 600 800
0

20

40

60

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) sqrt − small

sqrt − medium
sqrt − large

subsr1 − small
subsr1 − medium
subsr1 − large
subsr2 − small
subsr2 − medium
subsr2 − large

(c) words.

Figure 6 Time-space tradeoffs achieved by sqrt, subsr1 and subsr2 over reviews, IPs and
words.
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Figure 7 Time-space tradeoffs achieved by supsr and sqrt over reviews and IPs.
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B Comparing exact range mode and approximate range mode data
structures on reviews

Figure 8 compares tradeoffs achieved by exact and approximate range mode structures over
reviews. Due to its high space costs, the figures do not show simple. We also omit some
tradeoffs with low space cost that can be achieved using subsr2, because their query times
are so large that, with them, it would not be possible to tell how other tradeoffs compare to
each other in the same figure.

C Even Smaller Queries Ranges

In the experimental studies reported in Section 3, we adopt the method in [8, 20] to generate
small, medium and large queries. To confirm whether this is appropriate for our experimental
studies, we further perform additional studies using query ranges of sizes 101, 102, 103, 104

and 105, most of which are even smaller than the average size of our small queries, to see
whether exact and approximate solutions still compare similarly for these query ranges. To
run these experiments, for each i ∈ {1, 2, 3, 4, 5}, we generate 106 query ranges of size 10i by
choosing the starting positions of the ranges uniformly at random.

Exact query structures can achieve different time-space tradeoffs when setting the para-
meter s to different values. For a fair comparison, we binary search on s to make space costs
as close to 300bps as possible. For example, for words, we set s to 4613, 16792 and 29748
for sqrt, subsr1 and subsr2 to achieve space costs of 300.7bps, 300.3bps and 300.3bps,
respectively. For library, we set s to 5614, 22853 and 38859 for sqrt, subsr1 and subsr2

to achieve space costs of 300.7bps, 297.3bps and 300.0bps, respectively. We also include nv1

to find out when data structure solutions outperform this naive solution. The other naive
solution, nv2, is not included; since it uses an array of size ∆, smaller query sizes will make
it compare more poorly to others. Figure 9 presents our experimental results on words and
library, and the results on other datasets are similar. These figures show that, for small
query sizes under 100, the query times of all solutions including nv1 are close, but after query
sizes exceed 100 or so, data structure solutions start to outperform nv1 significantly, and
they compare to each other similarly as they did during the studies in Section 3.3. We also
observe that, when query sizes increase, all data structure query times first increase due
to the scan of more entries of A. Later, when query ranges are big enough (starting from
somewhere between 103 and 104) to include multiple blocks of A, the table S is used, so the
query algorithms need not scan more array entries. Instead, the query times decrease slowly
when query sizes increase due to the reasons discussed in Section 3.2.

Figure 10 shows the results for approximate range mode structures over words and
library, and the results on other datasets are similar. It again shows that the conclusions in
Section 3.4 apply to these query sizes. A new observation is that the query times of sample
and succ decrease rapidly when query sizes drops below 103 and 102, respectively. This is
because each of these solutions consists of a low frequency structure and a high frequency
structure, and when query sizes are smaller, it is more likely that only the former is used
which has much faster query time than the latter.

These experiments show that, when query sizes are big enough to justify the use of data
structures (instead of merely using a naive solution), the same conclusions in Section 3 apply
here. Hence, we conclude that it is appropriate to generate small, medium and large queries
and use them throughout our studies.
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Figure 8 Time-space tradeoffs achieved by subsr2, pst, samplep, samplec, tri, succp, and succc

on reviews.
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Figure 9 Query time of exact range mode query, for query ranges of sizes from 101 to 105.
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Figure 10 Query time of approximate range mode, for query ranges of sizes from 101 to 105.
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