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Abstract
Relative Lempel-Ziv (RLZ) parsing is a dictionary compression method in which a string S is
compressed relative to a second string R (called the reference) by parsing S into a sequence of
substrings that occur in R. RLZ is particularly effective at compressing sets of strings that have a
high degree of similarity to the reference string, such as a set of genomes of individuals from the
same species. With the now cheap cost of DNA sequencing, such datasets have become extremely
abundant and are rapidly growing. In this paper, instead of using a single reference string for the
entire collection, we investigate the use of different reference strings for subsets of the collection,
with the aim of improving compression. In particular, we propose a new compression scheme
hierarchical relative Lempel-Ziv (HRLZ) which form a rooted tree (or hierarchy) on the strings and
then compress each string using RLZ with parent as reference, storing only the root of the tree in
plain text. To decompress, we traverse the tree in BFS order starting at the root, decompressing
children with respect to their parent. We show that this approach leads to a twofold improvement in
compression on bacterial genome datasets, with negligible effect on decompression time compared to
the standard single reference approach. We show that an effective hierarchy for a given set of strings
can be constructed by computing the optimal arborescence of a completed weighted digraph of the
strings, with weights as the number of phrases in the RLZ parsing of the source and destination
vertices. We further show that instead of computing the complete graph, a sparse graph derived
using locality-sensitive hashing can significantly reduce the cost of computing a good hierarchy,
without adversely effecting compression performance.
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1 Introduction

Given a collection of m strings S = {S1, S2, . . . , Sm} of total length n, the relative Lempel-Ziv
(RLZ) compression scheme parses each string Si, i > 1, into a sequence of substrings (called
phrases) of the string S1 (we give a precise definition below). If the strings in S are highly
similar, the number of phrases in the parsing is small relative to the total length of the
collection. In order to achieve compression, the string S1 is stored explicitly and the phrases
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18:2 Hierarchical Relative Lempel-Ziv Compression

of the other strings are encoded by their starting and ending positions in S1. To decompress,
we simply replace the encoding of each phrase by the corresponding substring in S1. Note that
we can even efficiently support sequence retrieval, that is, decompressing a single specified
string Si from S, by simply decompressing the phrases of the Si independently of the rest of
the collection.

RLZ is ideal for compressing and storing collections of highly similar strings while
supporting efficient sequence retrieval. In particular, RLZ is a natural choice for databases
of full genome sequences of individuals of the same species [18, 6, 5, 36, 24]. Since these
sequences are highly similar, RLZ is able to compress them well, while still supporting
efficient sequence retrieval needed by applications. Enormous reductions over the past two
decades in the cost of DNA sequencing has led to large and growing data bases containing
hundreds of thousands of full genome sequences of strains of many known bacteria and
viruses. These databases are key, for example, to the field of genomic epidemiology, to screen
patient samples (which are sequenced and compared against the genome database) for known
pathogenic strains to arrive at diagnosis and suitable treatments (see, e.g., [21]).

For a given bacterial species, a genome database may contain genome sequences of
thousands of different strains. While all these strains are relatively similar to each other,
some share a higher degree of similarity with genomes in a cluster of related strains than
they do with other sequences in the database. With this is mind, while RLZ may result in
good compression when a single arbitrary sequence is selected as the reference, intuitively
it would seem that even more effective compression of the database could be achieved by
selecting a different reference for each cluster of strains.

Our Contributions. In this paper we explore the use of more than one reference sequence in
the context of RLZ compression. We present a new compression scheme, called hierarchical
relative Lempel-Ziv (HRLZ) compression, that arranges the sequences in S into a rooted
tree H, with root r, such that each node v corresponds to a unique string S(v) from S.
To compress the collection we greedily parse S(v) wrt. S(parent(v)) using RLZ for each
non-root node v. The compressed representation then consists of S(r), the edges of H, and
the encoding of the m − 1 parsings of the non-root strings. Note that RLZ may be viewed as
the special case of HRLZ on a tree consisting of a root with m − 1 children.

A key challenge in HRLZ compression is finding a hierarchy for the collection that achieves
strong compression. We show how to adapt an approach from delta compression of string
collections [25] to our relative compression scenario. This leads to a number of interesting
algorithmic challenges:
1. To derive an effective hierarchical arrangement for a given set of strings, we compute the

optimal arborescence of a complete weighted digraph of the strings, with edge weights
assigned as the number of phrases in the RLZ parsing of the source and destination
vertices. We show that this scheme leads to a factor of 2 improvement to compression on
bacterial genomes, and up to a factor 10 on viral genomes, without adversely affecting
the speed of decompression.

2. While the optimal arborescence leads to pleasing compression improvements, it adds signi-
ficantly to compression time. We show that by sparsifying the graph via locality-sensitive
hashing, compression time can be kept reasonable, while not sacrificing compression gains.

3. Along the way, we describe an efficient implementation of the optimal arborescence
algorithm of Tarjan [32] that uses a two-level heap engineered for efficient meld operations,
which may be of independent interest.
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Our resulting HRLZ compression scheme achieves improved tradeoffs for genome databases.
While the time to compress the database with HRLZ is slower than RLZ, HRLZ always
improves the compression ratio (measured by the number of phrases) in some cases enormously
– by a factor of up to 19 times in our experiments. HRLZ also matches or even slightly
improves whole database decompression time and achieves very similar single sequence
retrieval times (the time taken to extract a single requested genome from the database) as
RLZ does. Thus, in practical scenarios where space and sequence retrieval time are the main
bottlenecks (such as a genomic database) HRLZ provides an attractive alternative to RLZ.

We also compared HRLZ to the classic Lempel-Ziv 77 (LZ77) compression scheme. LZ77
provides a natural lower on the number of phrases we can hope to achieve with RLZ and
HRLZ and thus provides a baseline for the compression ratio achieved by those schemes.
Our experiments show that while HRLZ is larger than LZ77 (by a factor of 2 to 16) on small
collections, HRLZ is able to scale to collections with sizes well beyond those LZ77 is able to
process, and is also orders of magnitude faster for sequence retrieval compared to LZ77 on
the all datasets we tested.

Related Work. The idea of constructing a hierarchy of compressed sequences from collections
was proposed in the context of delta-compression [25]. To the best of our knowledge, this
idea has not been explored for RLZ compression. A related notion is mentioned cryptically
in Storer and Szymanski [31], but appears never to have been implemented. The closest
work we could find in the literature is due to Deorowicz and Grabowski [6], who describe an
RLZ-based scheme for genome compression in which a sequence is compressed relative to
multiple reference sequences, with each phrase storing which reference sequence it is from
(see also [5]). Another more recent hierarchical compression scenario is the persistent strings
model [3]. Both of these are quite different to the hierarchical arrangement of sequences we
describe here.

Beyond genomics applications, RLZ has also found wider use as a compressor for large text
corpora in contexts where random-access support for individual documents is needed [14, 34,
35, 26, 20, 2] and as a general data compressor [17, 16]. In those contexts, S1 is usually first
constructed using substrings sampled from other strings in the collection in a preprocessing
phase (Hoobin et al. [14] show that random sampling of substrings works well). The structure
of the RLZ parsing reveals a great deal about the repetitive structure of the string collection
and several authors have shown that this can be exploited to design efficient compressed
indexes for pattern matching [13, 8, 23]. More recently, the practical utility of RLZ as a
more general tool for compressed data structuring has also been demonstrated, compressing
suffix arrays [27, 29], document arrays [28] and various components of suffix trees [9].

Outline. In Section 2 we set down notation and basic concepts used throughout. In Section 3
we formally define hierarchical relative Lempel-Ziv compression, and then go onto describe
efficient methods for computing it in Section 4 and Section 5. Section 6 describes our
engineering of the arborescence algorithm of Tarjan [32]. Our experimental results on three
genomic datasets are presented in Section 7, before conclusions and reflections are offered.

2 Basics

Throughout we will consider a string S = S[1..n] = S[1]S[2] . . . S[n] on an integer alphabet
Σ of σ symbols. The substring of S that starts at position i and ends at position j, j ≥ i,
denoted S[i..j], is the string S[i]S[i + 1] . . . S[j]. If i > j, then S[i..j] is the empty string
ε. A suffix of S is a substring with ending position j = n, and a prefix is a substring with
starting position i = 1.

SEA 2023



18:4 Hierarchical Relative Lempel-Ziv Compression

Parsings. A parsing of a string S wrt. a reference string R is a sequence of substrings
of R – called phrases – R[i1, i1 + l1 − 1], R[i2, i2 + l2 − 1], . . . , R[iz, iz + lz − 1] such that
S = R[i1, i1 + l1 − 1] · R[i2, i2 + l2 − 1] · · · R[iz, iz + lz − 1]. The encoding of a parsing consists
of the sequence of starting indices and lengths of the phrases (i1, l1), (i2, l2), . . . , (iz, lz).

The greedy parsing of S wrt. R is the parsing obtained by processing S from left to right
and choosing the longest possible phrase at each step. For example, let R = actccta and
S = ctctcc. The greedy parsing of S wrt. R gives the phrases R[2, 4] = ctc, R[3, 5] = tcc and
the encoding (2, 3), (3, 3). We can construct the parsing in O(|R| + |S|) time using a suffix
tree.

Relative Lempel-Ziv Compression. Throughout the rest of the paper let S =
{S1, S2, . . . , Sm} be a collection of m strings of total length n =

∑m
i=1 |Si|. The relat-

ive Lempel-Ziv (RLZ) compression of S greedily parses each string Si, i > 1, wrt. S1. The
RLZ compressed representation of S then consists of S1 and the encoding of the parsings
of each of the strings S2, . . . , Sm. For each string, we also save the number of phrases. In
total, compression takes O(n) time. Let zi be the number of phrases in the parsing of Si

and let zR =
∑m

i=2 zi denote the total number of phrases. The size of the RLZ compression
is thus O(|S1| + zR). Note that the size depends on the choice of the reference string (i.e.
S1) among the strings in S. To decompress, we decode the phrases of each string using the
explicitly stored reference string. This uses O(

∑m
i=1 |Si|) = O(n) time.

Throughout this paper, we use the number of phrases as the measure of compression. In
a real compressor, the phrase positions and lengths undergo further processing in order to
reduce the total number of bits used by the encoding (see, e.g., [11]). We remark that our
hierarchical RLZ methods can be trivially adapted to use different encoding costs.

Graphs. Let G be a weighted directed strongly connected graph G. A spanning arborescence
A of G with root r is a subgraph of G that is a directed rooted tree where all nodes are
reachable from r. The weight of an arborescence S is the sum of the weight of the edges
in A. A minimum weight spanning arborescence (MWSA) A is a spanning arborescence of
minimum weight. Note that the root is not fixed in our definition and can thus be any node.
For simplicity, we have assumed that G is strongly connected in our definition of MWSA
since this is always the case in our scenario. Finally, for a node v in a tree, the parent of a
node is denoted parent(v).

3 Hierarchical Relative Lempel-Ziv Compression

Let S = {S1, S2, . . . , Sm} be a collection of strings of total size n as above. We construct a
rooted tree H, with root r, such that each node v represents a unique string S(v) from S.
The hierarchical relative Lempel-Ziv (HRLZ) compression of S wrt. H greedily parses
S(v) wrt. S(parent(v)) for each non-root node v. In total, compression takes O(n) time.
The HRLZ compressed representation consists of S(r), the edges of H, and the encoding
of the m − 1 parsings of the non-root strings. Let zH =

∑
v∈H\{r} zv, where zv is the

number of phrases in the parsing of S(v). Thus the size of the HRLZ compression is
O(|H| + |S(r)| + zH) = O(|S(r)| + zH). Note that the size depends on the choice of tree and
assignment of strings from S to the nodes.

To decompress, we traverse the tree in breadth first search (BFS) order from the root.
We decode the string at each node using the string of the parent node by decoding each
phrase. As the string of the parent node is always decoded before or explicitly stored as the
root node, this uses O(

∑m
i=1 |Si|) = O(n) time. Note that the output order of the sequences

can differ from their input order since they are recovered in BFS order of the hierarchy.
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4 Constructing an Optimal Tree

We first give a simple and inefficient algorithm to construct an optimal tree for the HRLZ
compression. The algorithm forms the basis of our efficient algorithm in the following section.
Recall that the collection S = {S1, S2, . . . , Sm} consists of m strings of total size n. The
algorithm proceeds as follows:

Step 1: Construct Cost Graph. We first construct a complete weighted directed graph G

with m nodes numbered {1, . . . , m} called the cost graph of S. Node i corresponds to the
string Si in S and the weight of edge (i, j) is the number of phrases in the greedy parsing of
Sj wrt. Si.

We have that G contains m nodes and m2 edges. Computing the weight of edge (i, j)
takes O(|Sj |) time. Thus in total we use O((m − 1)

∑
j |Sj |) = O(nm) time. The space is

O(m2).

Step 2: Construct Minimum Weight Spanning Arborescence. We then construct a
MWSA A of the cost graph G using the algorithm by Tarjan [32, 4]. This uses O(e log m) =
O(m2 log m) time. Here e denotes the number of edges in the graph.

Step 3: Construct Compressed Representation. Finally, we construct the HRLZ compres-
sion from the MWSA A. This uses O(n) time.

In total the algorithm uses O(mn) time and O(m2) space. Note that the algorithm
constructs an optimal tree but not necessarily the optimal HRLZ compression since the
HRLZ compression also needs to explicitly encode the string of the root of the tree. It is
straightforward to include the cost of encoding the root string in the algorithm, by adding
an additional virtual root s and adding edges (s, i) to every other node i, 1 ≤ i ≤ m, with
weight |Si|. The MWSA of the new graph G′ will be rooted in s and the unique edge out
of s determines the optimal root string for HRLZ compression. While G′ is not strongly
connected, the MWSA is still well-defined and the MWSA algorithm produces the correct
result in the same complexity. In practice, our datasets consist of very similar length strings
and hence we have chosen not to implement this extension.

5 Sparsifying the Cost Graph via Locality-Sensitive Hashing

The main bottleneck in the simple algorithm from Section 4 is the construction of the
complete cost graph in Step 1. In this section, we show how to efficiently sparsify the graph
using locality-sensitive hashing.

We first construct a sparse subgraph G of the complete cost graph. We do this in rounds
keeping an auxiliary set of strings R as follows. Initially, we set G to be the graph with m

nodes and no edges, and R = S. We repeat the following steps until G is strongly connected.

Step 1: Generate fingerprints. We first generate fingerprints for each string in R using
locality-sensitive hashing. Our locality-sensitive hashing scheme is based on k-mers (a
substring of length k) combined with min-hashing. More precisely, given parameters k and
q we pick q hash functions h1, . . . , hq and hash each k-mer of each string S in R. The
fingerprint of S is the sequence min1, . . . , minq where mini is a minimum value hash obtained
with hi. For fast hashing we use the simple multiply-shift hashing scheme [7].

SEA 2023



18:6 Hierarchical Relative Lempel-Ziv Compression

Step 2: Generate edges. Let C be a group of strings in R with the same fingerprint. If
|C| ≤ T for a threshold T ≥ 2 then for each ordered pair (i, j) of strings in C we add (i, j)
to G.

Step 3: Pruning R. After every c-th round for some tuneable parameter c we prune the
set R as follows.

For every connected component in G pick the string s that has had the most collisions
until now (the total number of collisions of a string s is equal to the sum of the size of the
buckets it has been in). We then continue with R being the set of representatives. If |R| ≤ T

then for each ordered pair (i, j) of strings in R we add (i, j) to G.
Finally, we compute the weight of the edges of the strongly connected graph G, i.e., for

each edge (i, j) we compute the number of phrases in the greedy parsing of Sj wrt. Si.
The computed cost graph is likely to be sparse and thus step 1 and step 2 of the

algorithm from Section 4 will be much faster, leading to a much faster solution. Note that
the constructed tree is no longer guaranteed to be optimal. We show experimentally in
Section 7 that the size of the compression in nearly all cases is within 5% of optimal.

6 Speeding Up the Minimum Weight Spanning Arborescence
Algorithm

We now show how to efficiently implement Step 2 of the algorithm from Section 4 on the
sparse cost graph computed in Section 5.

Let G be the sparse cost graph with m nodes and e edges computed in Section 5. The
MWSA algorithm by Tarjan [32, 4] uses m priority queues Q1, Q2, . . . , Qm, one for each
node, where Qi consists of all edges going into node vi. The queues support the following
operations:

init(L): Constructs a queue Q containing all the elements in the list L.
extract-min(Qi): Returns and removes the minimum element in the queue Qi.
add(Qi, c): Adds a constant c to the value of all elements in the queue Qi.
meld(Qi, Qj): Adds the elements from queue Qj to the queue Qi.

The MWSA algorithm uses a pairing heap [12] to support init in O(|L|) time and the other
operations in O(log m) time. The algorithm uses O(m) meld and init operations, O(e) add
and extract-min operations, and the total length of the lists for the init operations is O(e).
Thus, the total run time of the queue operations in the MWSA algorithm is O(e log m), and
this is also the total runtime of the MWSA algorithm.

We present a simple and practical alternative to the pairing heap that we call a two-level
heap. Our two-level heap leads to a slightly worse theoretical bound of O(e log m + m log2 m)
time for the MWSA algorithm. However, we have found that our implementation significantly
outperforms the pairing heap in practice. We note that Larkin, Sen, and Tarjan include a
similarly modified pairing heap as one of the variants in their empirical study of priority
queues [19]. That study, however, neglects the meld operation, which is essential to our
implementation of the minimum weight spanning aborescense algorithm described above.
We therefore now describe our two-level heap implementation in full.

The two-level heap consists of a top heap t and a list of q bottom heaps B = {b1, b2, . . . bq}.
All heaps are implemented using standard binary heaps [37]. Each heap h has an associated
offset oh, such that any stored element x in h represents that actual value x + oh. The top
heap t consists of the minimum element in each bottom heap b ∈ B. For each element in the
top heap we also store which botton heap it is from. We implement each of the operations
as follows.
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init(L). We construct a two-level heap consisting of a single bottom heap B = {b} containing
the elements of L and a top heap t containing the minimum element of b. We set the offsets
ob and ot of b and t, respectively, to be 0. This uses O(|L|) time and hence the total time for
init in the MWSA algorithm is O(e).

extract-min(Qi). We extract the minimum element x from the top heap t and return x+ot.
Let b be the bottom heap that stored x. We extract x from b, find the new minimum element
y in b, and copy y into the top heap with offset ob. This uses O(log m) time and hence the
total time for extract-min in the MWSA algorithm is O(e log m).

add(Qi, c). We add c to the offset of the top heap t, i.e., we set ot = ot + c. This takes
constant time and hence the total time for add in the MWSA algorithm is O(e).

meld(Qi, Qj). Let Qi = (ti, Bi) and Qj = (tj , Bj) be the two-level heaps that we want to
meld. Let |Bi| and |Bj | be the number of bottom heaps associated with two-level heap Qi

and Qj , respectively, and assume wlog. that |Bi| ≥ |Bj |. We move each bottom heap b ∈ Bj

into Bi, insert the minimum element of b into ti with offset ob + otj − oti , and update the
offset associated with b to ob = ob + otj

− oti
.

Each time an element in a bottom heap b is moved, we must insert the minimum element
of b into a top heap using O(log m) time. We only move the bottom heaps of the two-level
heap with the fewest bottom heaps and hence the number of times a bottom heap can be
moved is O(log m). It follows that total time for meld in the MWSA algorithm is O(m log2 m).

In total the MSWA algorithm implemented with the two-level heap uses O(e log m +
m log2 m) time.

7 Experimental Results

We implemented the methods for building hierarchical references described in the previous
sections and measured their performance on real biological data.

7.1 Setup
Experiments were run on Nixos 21.11 kernel version 5.10.115. The compiler was g++
version 11.3.0 with -Wall -Wextra -pedantic -O3 -funroll-loops -DNDEBUG -fopenmp
-std=gnu++20 options. OpenMP version 4.5 was used to compute the string fingerprints in
parallel and compute the edge weights on the cost graph. The CPU was an AMD Ryzen
3900X 12 Core CPU clocked at 4.1 GHz with L1, L2 caches of size 64KiB, 512KiB, per core
respectively and a shared L3 cache of size 64MiB. The system had 32GiB of DDR4 3600
MHz memory. We recorded the CPU wall time using GNU time and C++ chrono library.
Source code is available on request.

7.2 Datasets
We evaluated our method using 1,000 copies of human chromosome 19 from the 1000 Genomes
Project [33]; 219 E. coli genomes taken from the GenomeTrakr project [30], and 400,000
SARS-CoV2 genomes from EBI’s COVID-19 data portal [1]. See Table 1 for a brief summary
of the datasets.

We also ran our tests on prefixes of various sizes of these datasets.

SEA 2023



18:8 Hierarchical Relative Lempel-Ziv Compression

Table 1 Datasets used in experimentation. Columns labelled σ, n, and m, give the alphabet size,
total collection size, and number of sequences, respectively. The final column shows the average
sequence length, for convenience.

Name Description σ n m n/m

E.coli E.coli genomes 4 1, 130, 374, 882 219 5, 161, 529
SARS-CoV2 Covid-19 genomes 5 11, 949, 531, 820 400, 000 29, 873
chr19 Human chromosome 19 assemblies 5 59, 125, 151, 874 1, 000 59, 125, 151

7.3 Methods Tested
We included the following methods in our experimental evaluation.

RLZ. This corresponds to standard, single reference RLZ. Because the choice of reference
can affect overall compression, we report results across a number of reference selections. Spe-
cifically, we randomly sampled roughly 0.5% of the sequences of each dataset, corresponding
to 2, 2000, and 5 different reference sequences from E. coli, SARS-CoV2, and the chr19
dataset respectively as our reference in RLZ.

Optimal HRLZ. This is the method described in Section 4, i.e., optimal hierarchical RLZ
making use of full weight information.

Approximate HRLZ. The LSH variant of hierarchical RLZ as described in Section 5.
Specifically, we used k-mers of 256 characters in size and choose the number of hash functions
to q = 4. We pruned the set R every c = 10 rounds. We used T = 2 ·

√
m as our threshold.

LZ. As a compression baseline, we also compute the full LZ77 parsing of our datasets using
the KKP-SE external memory algorithm and software of [15]1. Because it allows phrases to
have their source at any previous position in the collection, computing the LZ77 parsing is
more computationally demanding than RLZ parsing, and so we compute it only for some
prefixes of the collections. For similar reasons, although in principle the above RLZ-based
methods could attain parsings as small as the LZ77 parsing, we expect them not to.

7.4 Compression Performance
In this section, we compare the compression size as measured by the number of phrases
generated by single reference RLZ to Optimal HRLZ and Approximate HRLZ on the datasets
with LZ as a baseline. We also compare the compression time of the algorithms.

The results of our compression experiments are shown in Figure 1. Some of the results
for the compression size of RLZ on the SARS-CoV2 dataset have been left out of the figure
because they were orders of magnitude larger than the other algorithms. Furthermore, we
were unable to get data points for LZ on the 1000 sequences of the chr19 dataset and the
Optimal HRLZ on the SARS-CoV2 for anything more than 125000 sequences on our test
machine. The specific values behind Figure 1 (including the leftout results for RLZ) can be
read in Tables 2–7 in the appendix.

1 Code available at https://www.cs.helsinki.fi/group/pads/em_lz77.html.

https://www.cs.helsinki.fi/group/pads/em_lz77.html
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We observe that, as expected LZ consistently produces the best compression size, but
was infeasible to run on the full chr19 dataset – which is the largest dataset measured in the
number of symbols – on our test machine due to space consumption.

While RLZ outperforms all other algorithms in regard to compression speed it also
consistently produces the worst compression size. Results on the SARS-CoV2 dataset show
just how bad the compression size can deteriorate if an ill-fitting reference is chosen as the
reference used by RLZ. We observe that both versions of HRLZ obtain a better compression
that RLZ in all cases. Measured in the number of phrases approximate HRLZ improves the
compression ratio by a factor 1.8 on the E. coli dataset and 19.3 on the SARS-CoV2 dataset.

For the Optimal HRLZ we see that the compression time is the worst of all the algorithms
and grows quadratically with the number of sequences and quickly becomes infeasible on
the SARS-CoV2 dataset. It does however consistently produce a smaller compression size
than RLZ, as we would expect given that HRLZ could produce a star graph with a single
sequence as the reference for all other sequences and thus yielding the same result as RLZ.
The compression time for Approximate HRLZ is significantly less than Optimal HRLZ
and is consistently within a factor 2 of LZ – even outperforming LZ on some of the larger
experiments of the chr19 dataset. Furthermore, we note that the compression size of the
Approximate HRLZ is no more than 15% greater than the compression size of Optimal HRLZ
and always better than that of RLZ.

LZ RLZ Optimal HRLZ Approximate HRLZ
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Figure 1 Compression time (top) and compression size (bottom) measured in the number of
phrases as a function of the number of sequences in the in the E. coli (left), SARS-CoV2 (center)
and chr19 (right) dataset. RLZ compression sizes were left out from the SARS-CoV2 (center) plot
because it is orders of magnitude larger than the rest of the compression sizes. We were unable to get
data points for LZ on the 1000 sequences of the chr19 dataset and Optimal HRLZ on the SARS-CoV2
for anything more than 12500 sequences on our test machine due to memory consumption.

7.5 Decompression Performance
In this section, we compare the decompression time of the algorithms. The experiment
measured the time to decompress the generated compressed dataset from our compression
experiments and write the result to disk. This kind of streaming decompression use case is typ-
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ical for, e.g., multi-pass index construction, machine learning, and data mining processes [10].
All methods have to write the same amount of data to storage when decompressing. Our
HRLZ variants decompress sequences in BFS order according to hierarchy imposed on the
sequences. This may require sequences that have previously written to disk being read back
into memory (at most once) when they are needed as a reference in the decompression of
other sequences.

We also compared the time it takes to decompress a single sequence for both variants of
HRLZ and RLZ. We call this sequence retrieval time. For RLZ we took the best compressed
sample for each experiment and used this for the test. We did not implement an equivalent
solution for LZ since LZ is not built to easily decompress a single sequence. For each
experiment we found the average and standard deviation of the sequence retrieval time over
all sequences for that specific experiment.

The results of our decompression and sequence retrieval experiments are shown in Figure 2.
We do not have data points for the experiments that we where unable to perform compression
on. The specific values behind Figure 2 can be read in Tables 8–13 in the appendix. For
Optimal HRLZ and Approximate HRLZ we also recorded the average and maximum node
depth of the nodes in the arborescence. This can be viewed in table 3 in the appendix.

We observe that RLZ and the HRLZ variants have similar decompression performance
characteristics, while LZ performs significantly worse. Interestingly, both versions of HRLZ
outperformed RLZ in decompression time on most of the experiments. We believe this is
because the longer phrases produced by the HRLZ variants result in fewer cache misses; that
is, for every access to the reference made by HRLZ, more symbols are sequentially copied,
improving cache performance and overall runtime. We believe that this also explains why
both variants of HRLZ perform within a factor of 5 with respect to RLZ in sequence retrieval
time, even though the average node depth in the minimum spanning arborescence on the
largest SARS-CoV2 dataset experiment is 100.

On larger datasets, which approach the size of RAM on the test machine, RLZ and HRLZ
have similar decompression times, with RLZ being occasionally faster (on the largest of the
SARS-CoV2 datasets, for example). This can be explained by the above mentioned need for
the HRLZ variants to read previously written sequences back into memory (when they are
needed as reference sequences).

8 Concluding Remarks

We have shown that, from a space point of view, traditional single-reference RLZ compression
can be significantly outperformed by imposing a hierarchy on the sequences to be compressed
using a sequence’s parent in the hierarchy as its reference sequence. Moreover, we have
described efficient methods by which hierarchies can be efficiently obtained. Our experiments
show that the time to subsequently decompress the set of sequences are at worst negligibly
slower, and many times even faster than the single reference baseline.

There are many directions future work could take. Apart from compression, another
feature of RLZ that makes it attractive in a genomic context is its ready support for efficient
random access to individual sequences (and indeed substrings): having a compact, easily
accessible representation of the genome sequences compliments popular indexing methods
that do not readily support random access themselves (e.g., [22]). Supporting random access
at a substring level for HRLZ compressed data (as opposed to sequence-level access we
currently support) is an interesting avenue for future work.
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Figure 2 Decompression time (top) and sequence retrieval time (bottom) as a function of the
number of sequences in the E. coli (left), SARS-CoV2 (center) and chr19 (right) dataset. Note that
the missing samples are due to no compressed result being available.

As noted in the introduction, several recent works have demonstrated the practical utility
of using RLZ as a tool for compressed data structuring [9, 27, 29, 28]. In that context, an
artificial reference sequence is constructed from repeated pieces (e.g., subarrays, or subtrees)
of the data structure to be compressed. It would be interesting to see if our methods could
be adapted to construct better artificial reference sequences for use in those scenarios.

Finally, in this work we have used purely algorithmic methods to derive hierarchies for
datasets: no biological characteristics of the sequences have been used. However, the field of
phylogenetics has developed many techniques for imposing a hierarchy on a set of individuals
based on biologically meaningful features in their genomic content. It may be interesting
to examine any similarities between phylogenetic trees and our RLZ-based hierarchies, and
whether phylogenetic trees may serve as good hierarchies in the context of compression.
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A Additional Figures

This appendix contains additional plots as well as data used to generate plots in the main
document.
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Figure 3 The average node depth and maximum node depth for the generated rooted tree for
HRLZ as a function of the number of sequences in the E. coli (left), SARS-CoV2 (center) and
human chromosome 19 (right) dataset.

Table 2 Number of phrases generated for each algorithm as a function of the number of sequences
on the E. coli dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
50 1379061 11562810.5 19485.7 7119429 8136762
100 1556541 24551113.5 1575921.1 13284440 14736830
150 1681574 35311948.5 820511.9 19369695 21180548
200 1787317 47030288.0 281705.7 25087136 27401597
219 1815168 53757548.5 1759746.2 27307037 29425274
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Table 3 Compression time in seconds for each algorithm as a function of the number of sequences
on the E. coli dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
50 27.4 7.2 0.1 73.4 52.5
100 55.7 15.1 0.6 259.9 98.7
150 86.8 23.0 0.6 562.3 156.3
200 123.4 29.5 0.0 976.3 214.4
219 140.0 32.9 0.8 1169.2 246.9

Table 4 Number of phrases generated for each algorithm as a function of the number of sequences
on the SARS-CoV2 dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
12500 133149 3339721.0 2948529.2 227037 308499
50000 408189 14958546.9 13657427.6 nan 1061000
100000 714174 29867903.0 27657360.9 nan 1919686
200000 1262731 62437789.1 63333546.4 nan 3483747
400000 2235801 120997669.9 112955869.2 nan 6260161

Table 5 Compression time in seconds for each algorithm as a function of the number of sequences
on the SARS-CoV2 dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
12500 40.1 0.5 0.3 759.6 49.0
50000 209.5 2.3 1.6 nan 226.8
100000 462.5 4.5 3.3 nan 482.5
200000 1050.5 9.5 8.0 nan 1099.8
400000 2281.7 18.5 13.9 nan 2800.4

Table 6 Number of phrases generated for each algorithm as a function of the number of sequences
on the human chromosome 19 dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
125 5024871 14364972.4 1550636.6 12196621 12470163
250 5526491 28489855.6 2453053.5 24174861 24688193
500 6263992 56926699.6 4927584.0 47547689 48888371
1000 nan 111021292.4 5760037.6 94684015 98637301

Table 7 Compression time in seconds for each algorithm as a function of the number of sequences
on the human chromosome 19 dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
125 1215.0 24.8 1.8 694.7 941.9
250 2591.2 46.3 3.3 2238.0 2366.1
500 6463.0 89.1 5.9 7765.9 3641.0
1000 nan 187.4 6.8 28886.1 9546.1
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Table 8 Decompression time in seconds as a function of the number of sequences in the E. coli
dataset.

Size lz rlz opt-hrlz approx-hrlz
50 4.4 0.576 0.466 0.497
100 7.7 1.193 0.902 0.942
150 13.5 1.771 1.479 1.407
200 17.1 2.257 1.719 1.782
219 18.3 2.642 1.913 1.988

Table 9 Decompression time in seconds as a function of the number of sequences in the SARS-
CoV2 dataset.

Size lz rlz opt-hrlz approx-hrlz
12500 6.6 0.680 0.522 0.483
50000 26.0 2.360 nan 1.900
100000 49.7 4.492 nan 4.366
200000 87.9 13.252 nan 7.852
400000 201.6 26.827 nan 32.835

Table 10 Decompression time in seconds as a function of the number of sequences in the human
chromosome 19 dataset.

Size lz rlz opt-hrlz approx-hrlz
125 110.0 11.071 11.186 8.759
250 249.6 25.200 19.592 21.600
500 471.5 51.297 49.011 50.697
1000 nan 120.984 113.942 120.307

Table 11 Sequence retrieval time in microseconds as a function of the number of sequences in
the E. coli dataset.

Size rlz avg. rlz stdev. opt-hrlz avg. opt-hrlz stdev. approx-hrlz avg. approx-hrlz stdev.
50 13236.5 1755.6 37178.5 14394.6 42121.3 16156.5
100 13821.5 1620.0 45319.2 16403.6 47117.6 16014.0
150 13676.9 1570.5 70350.0 28741.0 54822.1 19014.8
200 13793.4 1494.6 59070.6 19208.5 50908.6 18783.8
219 14224.6 1889.1 66639.9 25731.6 52970.7 19047.7

Table 12 Sequence retrieval time in microseconds as a function of the number of sequences in
the SARS-CoV2 dataset.

Size rlz avg. rlz stdev. opt-hrlz avg. opt-hrlz stdev. approx-hrlz avg. approx-hrlz stdev.
12500 95.5 23.7 265.7 45.7 228.5 156.8
50000 95.5 42.7 nan nan 259.0 54.3
100000 96.2 121.4 nan nan 423.4 125.8
200000 95.8 220.0 nan nan 442.3 326.5
400000 97.2 375.0 nan nan 404.3 351.8
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Table 13 Sequence retrieval time in microseconds as a function of the number of sequences in
the human chromosome 19 dataset.

Size rlz avg. rlz stdev. opt-hrlz avg. opt-hrlz stdev. approx-hrlz avg. approx-hrlz stdev.
125 115321.9 35591.1 200032.1 40195.9 272391.0 69385.1
250 114071.5 28891.4 225877.9 57460.7 232411.1 63591.6
500 102449.2 24080.0 235679.4 64040.3 306264.9 83814.0
1000 146999.9 96793.4 325701.5 95408.6 287200.1 75598.3

Table 14 The average node depth and maximum node depth for the generated rooted tree for
HRLZ as a function of the number of sequences in the E. coli dataset.

Size opt-hrlz avg. opt-hrlz max approx-hrlz avg. approx-hrlz max
50 7.6 14 5.3 10
100 10.1 19 8.5 17
150 17.2 35 10.7 21
200 14.4 26 10.9 19
219 16.9 34 16.7 37

Table 15 The average node depth and maximum node depth for the generated rooted tree for
HRLZ as a function of the number of sequences in the SARS-CoV2 dataset.

Size opt-hrlz avg. opt-hrlz max approx-hrlz avg. approx-hrlz max
12500 16.4 36 61.0 125
50000 nan nan 46.5 92
100000 nan nan 95.8 181
200000 nan nan 103.8 176
400000 nan nan 100.2 206

Table 16 The average node depth and maximum node depth for the generated rooted tree for
HRLZ as a function of the number of sequences in the human chromosome 19 dataset.

Size opt-hrlz avg. opt-hrlz max approx-hrlz avg. approx-hrlz max
125 9.1 15 17.4 26
250 12.3 20 12.6 26
500 13.8 25 20.2 35
1000 22.1 42 17.9 31
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