
FREIGHT: Fast Streaming Hypergraph Partitioning
Kamal Eyubov #

Universität Heidelberg, Germany

Marcelo Fonseca Faraj #

Universität Heidelberg, Germany

Christian Schulz #

Universität Heidelberg, Germany

Abstract
Partitioning the vertices of a (hyper)graph into k roughly balanced blocks such that few (hyper)edges
run between blocks is a key problem for large-scale distributed processing. A current trend for
partitioning huge (hyper)graphs using low computational resources are streaming algorithms. In this
work, we propose FREIGHT: a Fast stREamInG Hypergraph parTitioning algorithm which is an
adaptation of the widely-known graph-based algorithm Fennel. By using an efficient data structure,
we make the overall running of FREIGHT linearly dependent on the pin-count of the hypergraph
and the memory consumption linearly dependent on the numbers of nets and blocks. The results
of our extensive experimentation showcase the promising performance of FREIGHT as a highly
efficient and effective solution for streaming hypergraph partitioning. Our algorithm demonstrates
competitive running time with the Hashing algorithm, with a difference of a maximum factor of
four observed on three fourths of the instances. Significantly, our findings highlight the superiority
of FREIGHT over all existing (buffered) streaming algorithms and even the in-memory algorithm
HYPE, with respect to both cut-net and connectivity measures. This indicates that our proposed
algorithm is a promising hypergraph partitioning tool to tackle the challenge posed by large-scale
and dynamic data processing.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Hypergraph partitioning, graph partitioning, edge partitioning, streaming

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.15

Related Version Full Version: https://arxiv.org/pdf/2302.06259.pdf

Funding We acknowledge support by DFG grant SCHU 2567/5-1.

1 Introduction

Graphs are ubiquitous in nature and can be used to represent a wide variety of phenomena
such as road networks, dependencies in databases, communications in distributed algorithms,
interactions in social networks, and so forth. Nevertheless, phenomena where interactions
between entities are not necessarily pairwise are more adequately modeled by hypergraphs,
which can capture higher-order interactions [23]. With the massive proliferation of data, pro-
cessing large-scale (hyper)graphs on distributed systems and databases becomes a necessity for
a wide range of applications. When processing a (hyper)graph in parallel, k processors operate
on distinct portions of the (hyper)graph while communicating to one another through message-
passing. To make the parallel processing efficient, an important preprocessing step consists of
partitioning the vertices of the (hyper)graph into k roughly balanced blocks such that few (hy-
per)edges run between blocks. (Hyper)graph partitioning is NP-hard [16] and there can be no
approximation algorithm with a constant ratio for general (hyper)graphs [8]. Thus, heuristics
are used in practice. A current trend for partitioning huge (hyper)graphs quickly and using
low computational resources are streaming algorithms [36, 5, 20, 13, 14, 25, 19, 3, 35].

© Kamal Eyubov, Marcelo Fonseca Faraj, and Christian Schulz;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kamal.eyubov@stud.uni-heidelberg.de
https://orcid.org/0009-0005-8573-7523
mailto:marcelofaraj@informatik.uni-heidelberg.de
https://orcid.org/0000-0001-7100-236X
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
https://doi.org/10.4230/LIPIcs.SEA.2023.15
https://arxiv.org/pdf/2302.06259.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 FREIGHT: Fast Streaming Hypergraph Partitioning

The most popular streaming approach in literature is the one-pass model [1], where
vertices arrive one at a time including their (hyper)edges and then have to be permanently
assigned to blocks. In the domain of graphs, most algorithms are either very fast but
do not care for solution quality at all (such as Hashing [34]), or are still fast, but much
slower and capable of computing significantly better solutions than just random assignments
(such as such Fennel [36]). Recently, the gap between these groups of algorithms has been
closed by a streaming multi-section algorithm [14] which is up to two orders of magnitude
faster than Fennel while cutting only 5% more edges than it on average. In the domain
of hypergraphs, there is a similar gap that has not yet been closed. In particular, there
is the same trivial Hashing -based algorithm on one side, and more sophisticated and
expensive algorithms [3, 35] on the other side.

In this work, we propose FREIGHT: a Fast stREamInG Hypergraph parTitioning al-
gorithm that can optimize for the cut-net as well as the connectivity metric. By using
an efficient data structure, we make the overall running time of FREIGHT linearly depend-
ent on the pin-count of the hypergraph and the memory consumption linearly dependent
on the numbers of nets and blocks. Our proposed algorithm demonstrates remarkable
efficiency, with a running time comparable to the Hashing algorithm and a maximum dis-
crepancy of only four in three quarters of the instances. Importantly, our study establishes
the superiority of FREIGHT over all current (buffered) streaming algorithms and even the
in-memory algorithm HYPE, in both cut-net and connectivity measures. This shows the
potential of our algorithm as a valuable tool for partitioning hypergraphs in the context of
large and constantly changing data processing environments.

2 Preliminaries

2.1 Basic Concepts
Hypergraphs and Graphs. Let H = (V = {0, . . . , n− 1}, E) be an undirected hypergraph
with no multiple or self hyperedges, with n = |V | vertices and m = |E| hyperedges (or nets).
A net is defined as a subset of V . The vertices that compose a net are called pins. A vertex
v ∈ V is incident to a net e ∈ E if v ∈ e. Let c : V → R≥0 be a vertex-weight function,
and let ω : E → R>0 be a net-weight function. We generalize c and ω functions to sets,
such that c(V ′) =

∑
v∈V ′ c(v) and ω(E′) =

∑
e∈E′ ω(e). Let I(v) be the set of incident nets

of v, let d(v) := |I(v)| be the degree of v, let dw(v) := w(I(v)) be the weighted degree of
v, and let ∆ be the maximum degree of H. We generalize the notations d(.) and dw(.) to
sets, such that d(V ′) =

∑
v∈V ′ d(v) and dw(V ′) =

∑
v∈V ′ dw(v). Two vertices are adjacent if

both are incident to the same net. Let the number of pins |e| in a net e be the size of e, let
ξ = maxe∈E{|e|} be the maximum size of a net in H.

Let G = (V = {0, . . . , n− 1}, E) be an undirected graph with no multiple or self edges,
such that n = |V |, m = |E|. Let c : V → R≥0 be a vertex-weight function, and let
ω : E → R>0 be an edge-weight function. We generalize c and ω functions to sets, such
that c(V ′) =

∑
v∈V ′ c(v) and ω(E′) =

∑
e∈E′ ω(e). Let N(v) = {u : {v, u} ∈ E} denote the

neighbors of v. A graph S = (V ′, E′) is said to be a subgraph of G = (V, E) if V ′ ⊆ V and
E′ ⊆ E ∩ (V ′ × V ′). When E′ = E ∩ (V ′ × V ′), S is an induced subgraph. Let d(v) be the
degree of vertex v and ∆ be the maximum degree of G.

Partitioning. The (hyper)graph partitioning problem consists of assigning each vertex of a
(hyper)graph to exactly one of k distinct blocks respecting a balancing constraint in order
to minimize the weight of the (hyper)edges running between the blocks, i.e., the edge-cut

K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:3

already streamed vertices. . . u future vertices . . .

load vertex

evaluate a function

permanently assign vertex to block

already streamed vertices. . . v future vertices . . .

nets incident with u
block assignments

Figure 1 Typical layout of streaming algorithm for hypergraph partitioning.

(resp. cut-net). More precisely, it partitions V into k blocks V1,. . . ,Vk (i.e., V1 ∪ · · · ∪ Vk = V

and Vi ∩ Vj = ∅ for i ̸= j), which is called a k-partition of the (hyper)graph. The edge-cut
(resp. cut-net) of a k-partition consists of the total weight of the cut edges (resp. cut nets),
i.e., edges (resp. nets) crossing blocks. More formally, let the edge-cut (resp. cut-net) be∑

i<j ω(E′), in which E′ :=
{

e ∈ E,∃ {u, v} ⊆ e : u ∈ Vi, v ∈ Vj , i ̸= j
}

is the cut-set
(i.e., the set of all cut nets). The balancing constraint demands that the sum of vertex weights
in each block does not exceed a threshold associated with some allowed imbalance ϵ. More
specifically, ∀i ∈ {1, . . . , k} : c(Vi) ≤ Lmax :=

⌈
(1 + ϵ) c(V)

k

⌉
. For each net e of a hypergraph,

Λ(e) := {Vi | Vi ∩ e ̸= ∅} denotes the connectivity set of e. The connectivity λ(e) of a net e is
the cardinality of its connectivity set, i.e., λ(e) := |Λ(e)|. The so-called connectivity metric
(λ-1) is computed as

∑
e∈E′(λ(e)− 1) ω(e), where E′ is the cut-set.

Streaming. Streaming algorithms usually follow an iterative load-compute-store logic. Our
focus and the most used streaming model is the one-pass model. In this model, vertices
of a (hyper)graph are loaded one at a time alongside with their (hyper)edges, then some
logic is applied to permanently assign them to blocks, as illustrated in Figure 1. A similar
sequence of operations is used to partition a stream of edges of a graph on the fly. In this
case, edges of a graph are loaded one at a time alongside with their end-points, then some
logic is applied to permanently assign them to blocks. This logic can be as simple as a
Hashing function or as complex as scoring all blocks based on some objective and then
assigning the vertex to the block with highest score. There are other, more sophisticated,
streaming models such as the sliding window [27] and the buffered streaming [20, 13], but
are beyond the scope of this work.

2.2 Related Work
There is a huge body of research on (hyper)graph partitioning. The most prominent tools to
partition (hyper)graphs in memory include PaToH [10], Metis [21], hMetis [22], Scotch [28],
HYPE [24], KaHIP [30], KaMinPar [18], KaHyPar [31], Mt-KaHyPar [17], and mt-KaHIP [2]. The
readers are referred to [11, 9, 33] for extensive material and references. Here, we focus on
the results specifically related to the scope of this paper. In particular, we provide a detailed
review for the following problems based on the one-pass streaming model: hypergraph
partitioning and graph vertex partitioning.

Streaming Hypergraph Partitioning. Alistarh et al. [3] propose Min-Max, a one-pass
streaming algorithm to assign the vertices of a hypergraph to blocks. For each block, this
algorithm keeps track of nets which contain pins in it. This implies a memory consumption

SEA 2023

15:4 FREIGHT: Fast Streaming Hypergraph Partitioning

of O(mk). When a vertex is loaded, Min-Max allocates it to the block containing the largest
intersection with its nets while respecting a hard constraint for load balance. The authors
theoretically prove that their algorithm is able to recover a hidden co-clustering with high
probability, where a co-clustering is defined as a simultaneous clustering of vertices and
hyperedges. In the experimental evaluation, Min-Max outperforms five intuitive streaming
approaches with respect to load imbalance, while producing solutions up to five times more
imbalanced than internal-memory algorithms such as hMetis.

Taşyaran et al. [35] propose improved versions of the algorithm Min-Max [3]. The authors
present Min-Max-N2P, a modified version of Min-Max that stores blocks containing each
net’s pins instead of storing nets per block, as done in Min-Max. In their experiments,
Min-Max-N2P is three orders of magnitude faster than Min-Max while keeping the same
cut-net. The authors also introduce three algorithms with reduced memory usage compared
to Min-Max: Min-Max-Lℓ, a modification of Min-Max-N2P that employs an upper-bound ℓ to
limit memory consumption per net, Min-Max-BF which utilizes Bloom filters for membership
queries, and Min-Max-MH that uses hashing functions to replace the connectivity information
between blocks and nets. In their experiments, their three algorithms reduce the running
time in comparison to Min-Max, especially Min-Max-Lℓ and Min-Max-MH, which are up to
four orders of magnitude faster. On the other hand, the three algorithms generate solutions
with worse cut-net than Min-Max, especially Min-Max-MH, which increases the cut-net by
up to an order of magnitude. Moreover, the authors propose a technique to improve the
partitioning decision in the streaming setting by including a buffer to store some vertices and
their net sets. This approach operates similarly to Min-Max-N2P, but with the added ability
to revisit buffered vertices and adjust their partition assignment based on the connectivity
metric. The authors propose three algorithms using this buffered approach: REF that buffers
every incoming vertex but only reassigns those that may improve connectivity, REF_RLX that
buffers all vertices and reassigns all vertices in the buffer, and REF_RLX_SV that only buffers
vertices with small net sets and reassigns all vertices in the buffer. Their experimental results
show that the use of buffered approaches leads to a 5-20% improvement in partitioning
quality compared to non-buffered approaches, but with a trade-off of increased runtime.

Streaming Graph Vertex Partitioning. Stanton and Kliot [34] introduced graph partitioning
in the streaming model and proposed some heuristics to solve it. Their most prominent
heuristic include the one-pass methods Hashing and linear deterministic greedy (LDG). In
their experiments, LDG had the best overall edge-cut. In this algorithm, vertex assignments
prioritize blocks containing more neighbors and use a penalty multiplier to control imbalance.
Particularly, a vertex v is assigned to the block Vi that maximizes |Vi ∩N(v)| ∗ λ(i) with λ(i)
being a multiplicative penalty defined as (1− |Vi|

Lmax
). The intuition is that the penalty avoids

to overload blocks that are already very heavy. In case of ties on the objective function, LDG
assigns the vertex to the block with fewer vertices. Overall, LDG partitions a graph in O(m+nk)
time. On the other hand, Hashing has running time O(n) but produces a poor edge-cut.

Tsourakakis et al. [36] proposed Fennel, a one-pass partitioning heuristic based on the
widely-known clustering objective modularity [7]. Fennel assigns a vertex v to a block
Vi, respecting a balancing threshold, in order to maximize an expression of type |Vi ∩
N(v)| − f(|Vi|), i.e., with an additive penalty. This expression is an interpolation of two
properties: attraction to blocks with many neighbors and repulsion from blocks with many
non-neighbors. When f(|Vi|) is a constant, the expression coincides with the first property.
If f(|Vi|) = |Vi|, the expression coincides with the second property. In particular, the authors

K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:5

defined the Fennel objective with f(|Vi|) = α ∗ γ ∗ |Vi|γ−1, in which γ is a free parameter
and α = m kγ−1

nγ . After a parameter tuning made by the authors, Fennel uses γ = 3
2 , which

provides α =
√

k m
n3/2 . As LDG, Fennel partitions a graph in O(m + nk) time.

Faraj and Schulz [14] propose a shared-memory streaming algorithm for vertex partitioning
which performs recursive multi-sections on the fly. As a preliminary phase, their algorithm
decomposes a k-way partitioning problem into a hierarchy containing ⌈logb k⌉ layers of b-way
partitioning subproblems. This hierarchy can either reflect the topology of a high performance
system to solve a process mapping [15, 29] or be computed for an arbitrary k to solve a
regular vertex partitioning. Then, an adapted version of Fennel is used to solve each of
the subproblems in such a way that the whole k-partition is computed on the fly during
a single pass over the graph. While producing an edge-cut around 5% lower than Fennel,
their algorithm has theoretical complexity O((m + nb) logb k) and experimentally ran up to
two orders of magnitude faster than Fennel.

Besides the one-pass model, other streaming models have also been used to solve vertex par-
titioning. Restreaming graph partitioning has been introduced by Nishimura and Ugander [26].
In this model, multiple passes through the entire input are allowed, which enables iterative
improvements. The authors proposed easily implementable restreaming versions of LDG
and Fennel: ReLDG and ReFennel, respectively. Awadelkarim and Ugander [5] studied the
effect of vertex ordering for streaming graph partitioning. The authors introduced the
notion of prioritized streaming, in which (re)streamed vertices are statically or dynamically
reordered based on some priority. The authors proposed a prioritized version of ReLDG
Patwary et al. [27] proposed WStream, a greedy stream algorithm that keeps a sliding stream
window. Jafari et al. [20] proposed a shared-memory multilevel algorithm based on a buffered
streaming model. Their algorithm uses the one-pass algorithm LDG as the coarsening, initial
partitioning, and the local search steps of their multilevel scheme. Faraj and Schulz [13]
proposed HeiStream, a multilevel algorithm also based on a buffered streaming model. Their
algorithm loads a chunk of vertices, builds a model, and then partitions this model with a
traditional multilevel algorithm coupled with an extended version of the Fennel objective.

3 FREIGHT: Fast Streaming Hypergraph Partitioning

In this section, we provide a detailed explanation of our algorithmic contribution. First, we
define our algorithm named FREIGHT. Next, we present the advantages and disadvantages of
using two different formats for streaming hypergraphs and partitioning them using FREIGHT.
Additionally, we explain how we have removed the dependency on k from the complexity of
FREIGHT by implementing an efficient data structure for block sorting.

3.1 Mathematical Definition
In this section, we provide a mathematical definition for FREIGHT by expanding the idea
of Fennel to the domain of hypergraphs. Recall that, assuming the vertices of a graph
being streamed one-by-one, the Fennel algorithm assigns an incoming vertex v to a block Vd

where d is computed as follows:

d = argmax
i, |Vi|<Lmax

{
|Vi ∩N(v)| − α ∗ γ ∗ |Vi|γ−1}

(1)

The term −α ∗ γ ∗ |Vi|γ−1, which penalizes block imbalance in Fennel, is directly used
in FREIGHT without modification and with the same meaning. The term |Vi ∩N(v)|, which
minimizes edge-cut in Fennel, needs to be adapted in FREIGHT to minimize the intended

SEA 2023

15:6 FREIGHT: Fast Streaming Hypergraph Partitioning

metric, i.e., either cut-net or connectivity. Before explaining how this is adapted, recall
that, in contrast to graph partitioning, in hypergraph partitioning the incident nets I(v)
of an incoming vertex v might contain nets that are already cut, i.e., with pins assigned
to multiple blocks. The version of FREIGHT designed to optimize for connectivity accounts
for already cut nets by keeping track of the block de to which the most recently streamed
pin of each net e has been assigned. More formally, the connectivity version of FREIGHT
assigns an incoming vertex v of a hypergraph to a block Vd with d given by Equation (2),
where Ii

obj(v) = Ii
con(v) = {e ∈ I(v) : de = i}. On the other hand, the version of FREIGHT

designed to optimize for cut-net ignores already cut nets, since their contribution to the
overall cut-net of the hypergraph k-partition is fixed and cannot be changed anymore. More
formally, the cut-net version of FREIGHT assigns an incoming vertex v of a hypergraph to a
block Vd with d given by Equation (2), where Ii

obj(v) = Ii
cut(v) = Ii

con(v) \ E′ and E′ is the
set of already cut nets.

d = argmax
i, |Vi|<Lmax

{
|Ii

obj(v)| − α ∗ γ ∗ |Vi|γ−1}
(2)

Both configurations of FREIGHT interpolate two objectives: favoring blocks with many
incident (uncut) nets and penalizing blocks with large cardinality. We briefly highlight
that FREIGHT can be adapted for weighted hypergraphs. In particular, when dealing with
weighted nets, the term |Ii

obj(v)| is substituted by ω(Ii
obj(v)). Likewise when dealing with

weighted vertices, the term −α ∗ γ ∗ |Vi|γ−1 is substituted by −c(v) ∗ α ∗ γ ∗ c(Vi)γ−1, where
the weight c(v) of v is used as a multiplicative factor in the penalty term.

3.2 Streaming Hypergraphs
In this section, we present and discuss the streaming model used by FREIGHT. Recall in the
streaming model for graphs vertices are loaded one at a time alongside with their adjacency
lists. Thus, just streaming the graph (without doing additional compuations, implies a time
cost O(m + n). In our model, the vertices of a hypergraph are loaded one at a time alongside
with their incident nets, as illustrated in Figure 1. Our streaming model implies a time cost
O(

∑
e∈E |e| + n) just to stream the hypergraph, where O(

∑
e∈E |e|) is the cost to stream

each net e exactly |e| times. FREIGHT uses O(m + k) memory, with O(m) being used to keep
track, for each net e, of its cut/uncut status as well as the block de to which its most recently
streamed pin was assigned. This net-tracking information, which substitutes the need to
keep track of vertex assignments, is necessary for executing FREIGHT. Although FREIGHT
consumes more memory than required by graph-based streaming algorithms which often
use O(n + k) memory, it is still far better than the O(mk) worst-case memory required
by the state-of-the-art algorithms for streaming hypergraph partitioning [3, 35], all of
which are also based on a computational model that implies a time cost O(

∑
e∈E |e|+ n)

just to stream the hypergraph.

3.3 Efficient Implementation
In this section, we describe an efficient implementation for FREIGHT. Recall that, for every
vertex v that is loaded, FREIGHT uses Equation (2) to find the block with the highest score
among up to k options. A simple method to accomplish this task consists of explicitly
evaluating the score for each block and identifying the one with the highest score. This
results in a total of O(nk) evaluations, leading to an overall complexity of O(

∑
e∈E |e|+ nk).

We propose an implementation that is significantly more efficient than this approach.

K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:7

all blocks
(a)

S1

S2
(b)

S2
(c) (d)

Figure 2 Illustration of the process to solve Equation (2) for an incoming vertex u with
k = 512 blocks. (a) The k blocks are decomposed into S1 and S2, with |S1| = O(|I(u)|).
(b) Equation (3) is explicitly solved at cost O(|I(u)|). (c) Equation (4) is implicitly solved
at cost O(1). (d) Both solutions are then evaluated using their FREIGHT scores to determine
the final solution for Equation (2).

For each loaded vertex v, our implementation separates the blocks Vi for which |Vi| < Lmax
into two disjoint sets, S1 and S2. In particular, the set S1 comprises blocks Vi where
|Ii

obj(v)| > 0, while the set S2 comprises the remaining blocks, i.e., blocks Vi for which
|Ii

obj(v)| = 0. Using the sets provided, we break down Equation (2) into Equation (3) and
Equation (4), which are solved separately. The resulting solutions are compared based on
their FREIGHT scores to ultimately find the solution for Equation (2). The overall process is
illustrated in Figure 2.

d = argmax
i∈S1

{
|Ii

obj(v)| − α ∗ γ ∗ |Vi|γ−1}
(3)

d = argmax
i∈S2

{
|Ii

obj(v)| − α ∗ γ ∗ |Vi|γ−1}
= argmin

i∈S2

|Vi| (4)

Now we explain how we solve Equation (3) and Equation (4). To solve Equation (3), we
use the theoretical complexity outlined in Theorem 1 and solve it explicitly. In contrast,
Equation (4) is implicitly solved by identifying the block with minimal cardinality. We use
an efficient data structure to keep all blocks sorted by cardinality throughout the entire
execution, which enables us to solve Equation (4) in constant time.

▶ Theorem 1. Equation (3) can be solved in time O(|I(v)|).

Proof. The terms |Ii
obj(v)| in Equation (3) can be computed by iterating through the nets

of v at a cost of O(|I(v)|) and determining their status as cut, unassigned, or assigned to a
block. The calculation of the factors −α ∗ γ ∗ |Vi|γ−1 in Equation (3) can be done in time
O(|S1|) = O(|I(v)|), thus completing the proof. ◀

Now we explain our data structure to keep the blocks sorted by cardinality during the
whole algorithm execution. The data structure is implemented with two arrays A and B,
both with k elements, and a list L. The array A stores all k blocks always in ascending order.
The array B maps the index i of a block Vi to its position in A. Each element in the list L

represents a bucket. Each bucket is associated with a unique block cardinality and contains
the leftmost and the rightmost positions ℓ and r of the range of blocks in A which currently

SEA 2023

15:8 FREIGHT: Fast Streaming Hypergraph Partitioning

1

2

3

5

6

1

2

3

4

5

6

1

2

3

5

6

1

2

3

5

6

1

2

3

5

6

7

1

2

3

5

6

8

Figure 3 Illustration of our data structure used to keep the blocks sorted by cardinality throughout
the execution of FREIGHT. The array A is represented as a vertical rectangle. Each region of A

is covered by a unique bucket, which is represented by a unique color filling the corresponding
region in A. The cardinality associated with each bucket is written in the middle of the region
of A covered by it. Here we represent the behavior of the data structure when assigning vertices
to the block surrounded by a dotted rectangle five times consecutively.

have this cardinality. Reciprocally, each block in A has a pointer to the unique bucket in L

corresponding to its cardinality. To begin the algorithm, L is set up with a single bucket
for cardinality 0 which covers the k positions of A, i.e., its paramenters ℓ and r are 1 and k,
respectively. The blocks in A are sorted in any order initially, however, as each block starts
with a cardinality of 0, they will be ordered by their cardinalities.

When a vertex is assigned to a block Vd, we update our data structure as detailed in
Algorithm 1 and exemplified in Figure 3. We describe Algorithm 1 in detail now. In line 1, we
find the position p of Vd in A and find the bucket C associated with it. In line 2, we exchange
the content of two positions in A: the position where Vd is located and the position identified
by the variable r in C, which marks the rightmost block in A covered by C. This variable r

is afterwards decremented in line 3 since Vd is now not covered anymore by the bucket C. In
lines 4 and 5, we check if the new (increased) cardinality of Vd matches the cardinality of the
block located right after it in A. If so, we associate Vd to the same bucket as it and decrement
this bucket’s leftmost position ℓ in line 6; Otherwise, we push a new bucket to L and match
it to Vd adequately in lines 8 and 9. Finally, in line 10, we delete C in case its range [ℓ, r] is
empty. Figure 3 shows our data structure through five consecutive executions of Algorithm 1.
Theorem 2 proves the correctness of our data structure. Theorem 3 shows that, using our
proposed data structure, we need time O(1) to either solve Equation (4) or prove that the
solution for Equation (3) solves Equation (2). Note that our data structure can only handle
unweighted vertices. In case of weighted vertices, a bucket queue can be used instead of our
data structure, resulting in the same overall complexity and requiring O(k + Lmax) memory,
while our data structure only requires O(k) memory. The overall complexity of FREIGHT,
which directly follows from Theorem 1 and Theorem 3, is expressed in Corollary 4.

▶ Theorem 2. Our proposed data structure keeps the blocks within array A consistently
sorted in ascending order of cardinality.

Proof. We inductively prove two claims at the same time: (a) the variables ℓ and r contained
in each bucket from L respectively store the leftmost and the rightmost positions of the
unique range of blocks in A which currently have this cardinality; (b) the array A contains

K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:9

Algorithm 1 Increment cardinality of block Vd in the proposed data structure.

1: p← Bd; C ← Ap.bucket;
2: q ← C.r; c← Aq.id; Swap(Ap, Aq); Swap(Bc, Bd);
3: C.r ← C.r − 1;
4: C ′ ← Aq+1.bucket;
5: if C.cardinality + 1 = C ′.cardinality then
6: Aq.bucket← C ′; C ′.ℓ← C ′.ℓ− 1;
7: else
8: C ′′ ← NewBucket(); Aq.bucket← C ′′; L← L ∪ {C ′′};
9: C ′′.cardinality ← C.cardinality + 1; C ′′.ℓ← q; C ′′.r ← q;

10: if C.r = C.ℓ then L← L \ {C};

the blocks sorted in ascending order of cardinality. Both claims are trivially true at the
beginning, since all blocks have cardinality 0 and L is initialized with a single bucket with
ℓ = 1 and r = k. Now assuming that (a) and (b) are true at some point, we show that they
keep being true after Algorithm 1 is executed. Note that line 2 performs the only position
exchange in A throughout the whole algorithm. As (a) is assumed, it is the case that Vd

swaps positions with the rightmost block in A containing the same cardinality of Vd. Since
the cardinality of Vd will be incremented by one and all blocks have integer cardinalities, this
concludes the proof of (b). To prove that (a) remains true, note that the only buckets in L

that are modified are C (line 3), C ′ (line 6), and C ′′ (line 9). Claim (a) remains true for C

because Vd, whose cardinality will be incremented, is the only block removed from its range.
Claim (a) remains true for C ′ because line 6 is only executed if the new cardinality of Vd

equals the cardinality of C ′, whose current range starts right after the new position of Vd

in A. Bucket C ′′ is only created if the new cardinality of Vd is respectively larger and smaller
than the cardinalities of C and C ′. Since (b) is true, then this condition only happens if there
is no block in A with the same cardinality as the new cardinality of Vd. Hence, claim (a)
remains true for C ′′, which is created covering only the position of Vd in A. ◀

▶ Theorem 3. By utilizing our proposed data structure, solving Equation (4) or demon-
strating that any solution for Equation (3) is also a solution for Equation (2) can be accom-
plished in O(1) time.

Proof. Algorithm 1 contains no loops and each command in it has a complexity of O(1),
thus the total cost of the algorithm is O(1). Our data structure executes Algorithm 1 once
for each assigned vertex, hence it costs O(1) per vertex. Say we are evaluating an incoming
vertex v. According to Theorem 2, the block Vd with minimum cardinality is stored in the
first position of the array A, hence it can be accessed in time O(1). In case Vd ∈ S2, then d

is a solution for Equation (4). On the other hand, if Vd is in S1, the FREIGHT score of Vd will
be larger than the FREIGHT score of the solution for Equation (4) by at least |Id(v)| > 0. In
this case, it follows that any solution for Equation (3) solves Equation (2). ◀

▶ Corollary 4. The overall complexity of FREIGHT is O
(∑

e∈E |e|+ n
)
.

4 Experimental Evaluation

Setup. We performed our implementations in C++ and compiled them using gcc 11.2 with
full optimization turned on (-O3 flag). Unless mentioned otherwise, all experiments are
performed on a single core of a machine consisting of a sixteen-core Intel Xeon Silver 4216

SEA 2023

15:10 FREIGHT: Fast Streaming Hypergraph Partitioning

processor running at 2.1 GHz, 100 GB of main memory, 16 MB of L2-Cache, and 22 MB of
L3-Cache running Ubuntu 20.04.1. The machine can handle 32 threads with hyperthreading.
Unless otherwise mentioned we stream (hyper)graphs directly from the internal memory to
obtain clear running time comparisons. However, note that FREIGHT as well as most of the
other used algorithms can also be run streaming the hypergraphs from hard disk.

Baselines. We compare FREIGHT against various state-of-the-art algorithms. In this section
we will list these algorithms and explain our criteria for algorithm selection. We have
implemented Hashing in C++, since it is a simple algorithm. It basically consists of hashing
the IDs of incoming vertices into {1, . . . , k}. The remaining algorithms were obtained either
from official repositories or privately from the authors, with the exception of Min-Max, for
which there is no official implementation available. Here, we use the Min-Max implementations
by Taşyaran et al. [35]. All algorithms were compiled with gcc 11.2.

We run Hashing, Min-Max [3] and all its improved versions proposed by Taşyaran et al. [35]:
Min-Max-BF, Min-Max-N2P, Min-Max-Lℓ, Min-Max-MH, REF, REF_RLX, and REF_RLX_SV. (see
Section 2.2 for details on the different Min-Max versions), HYPE [24], and PaToH v3.3 [10].
Hashing is relevant because it is the simplest and fastest streaming algorithm, which gives
us a lower bound for partitioning time. Min-Max is a current state-of-the-art for streaming
hypergraph partitioning in terms of cut-net and connectivity. The improved and buffered
versions of Min-Max proposed in [35] are relevant because some of them are orders of
magnitude faster than Min-Max while others produce improved partitions in comparison to it.
HYPE and PaToH are in-memory algorithms for hypergraph partitioning, hence they are not
suitable for the streaming setting. However, we compare against them because HYPE is among
the fastest in-memory algorithms while PaToH is very fast and also computes partitions with
very good cut-net and connectivity. Note that KaHyPar [31] is the leading tool with respect
to solution quality, however it is also much slower than PaToH.

Instances. We selected hypergraphs from various sources to test our algorithm. The con-
sidered hypergraphs were used for benchmark in previous works on hypergraph partitioning.
Prior to each experiment, we converted all hypergraphs to the appropriate streaming formats
required by each algorithm. We removed parallel and empty hyperedges and self loops, and
assigned unitary weight to all vertices and hyperedges. In all experiments with streaming
algorithms, we stream the hypergraphs with the natural given order of the vertices. We use
a number of blocks k ∈ {512, 1024, 1536, 2048, 2560} unless mentioned otherwise. We allow a
fixed imbalance of 3% for all experiments (and all algorithms) since this is a frequently used
value in the partitioning literature. All algorithms always generated balanced partitions, ex-
cept for HYPE which generated highly unbalanced partitions in around 5% of its experiments.

We use the same benchmark as in [31]. This consists of 310 hypergraphs from three bench-
mark sets: 18 hypergraphs from the ISPD98 Circuit Benchmark Suite [4], 192 hypergraphs
based on the University of Florida Sparse Matrix Collection [12], and 100 instances from the
international SAT Competition 2014 [6]. The SAT instances were converted into hypergraphs
by mapping each boolean variable and its complement to a vertex and each clause to a net.
From the Sparse Matrix Collection, one matrix was selected for each application area that
had between 10 000 and 10 000 000 columns. The matrices were converted into hypergraphs
using the row-net model, in which each row is treated as a net and each column as a vertex.

Methodology. Depending on the focus of the experiment, we measure running time,
cut-net, and-or connectivity. We perform 5 repetitions per algorithm and instance us-
ing random seeds for non-deterministic algorithms, and calculate the arithmetic average

K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:11

of the computed objective function and running time per instance. When further aver-
aging over multiple instances, we use the geometric mean in order to give every instance
the same influence on the final score.

Given a result of an algorithm A, we express its value σA (which can be objective or
running time) as improvement over an algorithm B, computed as

(
σB

σA
− 1

)
∗ 100%; We also

use performance profiles to represent results. They relate the running time (quality) of a
group of algorithms to the fastest (best) one on a per-instance basis (rather than grouped by
k). The x-axis shows a factor τ while the y-axis shows the percentage of instances for which
A has up to τ times the running time (quality) of the fastest (best) algorithm. Bar charts
and boxplots are also employed to represent our findings. We use bar charts to visualize the
average value of an objective function in relation to k, where each algorithm is represented
by vertical bars of a given color with origin on the x-axis. The bars for every value of k

have a common origin and are arranged in terms of their height, allowing all heights to be
visible. We use boxplots to give a clear picture of the dataset distribution by displaying the
minimum, maximum, median, first and third quartiles, while disregarding outliers.

4.1 Results
In this section, we show experiments in which we compare FREIGHT against the current
state-of-the-art of streaming hypergraph partitioning. As already mentioned, we also use
two internal-memory algorithms [24, 10] as more general baselines for comparison. We
focus our experimental evaluation on the comparison of solution quality and running time.
Observe that PaToH and FREIGHT have distinct versions designed to optimize for each quality
metric (i.e., connectivity and cut-net). For a meaningful comparison, we only take into
account the relevant version when dealing with each quality metric, however, both versions
are still considered for running time comparisons. To differentiate between the versions,
suffixes -con and -cut are added to represent the connectivity-optimized and cut-net versions
respectively. For clarity, we refrain from discussing state-of-the-art streaming algorithms
that are dominated by another algorithm. We define a dominated algorithm as one that
has worse running time compared to another without offering a superior solution quality
in return, or vice-versa. In particular, we leave out Min-Max and Min-Max-BF since they
are dominated by Min-Max-N2P, which is referred to as MM-N2P hereafter. Similarly, we
omit Min-Max-MH because it is dominated by Hashing. We use a buffer size of 15% for
testing the buffered algorithms REF, REF_RLX, and REF_RLX_SV, following the best results
outlined in [35]. We omit the first two of them since they are dominated by the latter one,
which is referred to as RRS(0.15) from now on. Since Min-Max-Lℓ is not dominated by any
other algorithm, we exhibit its results with ℓ = 5, as seen in the best results in [35], and
we refer to it as MM-L5 from this point.

Connectivity. We start by looking at the connectivity metric. In Figure 4a, we plot the
average connectivity improvement over Hashing for each value of k. PaToH-con produces
the best connectivity on average, yielding an average improvement of 443% when compared
to Hashing. This is in line with previous works in the area of (hyper)graph partitioning, i.e.
streaming algorithms typically compute worse solutions than internal memory algorithms,
which have access to the whole graph. FREIGHT-con is found to be the second best algorithm
in terms of connectivity, outperforming both the internal memory algorithm HYPE and
the buffered streaming algorithm RRS(0.15). On average, these three algorithms improve
194%, 171%, and 136% over Hashing, respectively. Finally, MM-N2P and MM-L5 compute
solutions which improve 111% and 96% over Hashing on average, respectively. In direct

SEA 2023

15:12 FREIGHT: Fast Streaming Hypergraph Partitioning

 0

 100

 200

 300

 400

 500

 600

 700

512 1024 1536 2048 2560

%
 i

m
p
ro

v
em

en
t

in
 c

o
n
n
ec

ti
v
it

y

k

PaToH-con
FREIGHT-con

HYPE
RRS(0.15)
MM-N2P

MM-L5

(a) Connectivity improvement plot over Hashing.

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

 1 2 4 8 1 6%
in

st
an

ce
s

≤
 τ

 b
es

t
co

nn
ec

ti
vi
ty

τ

H as hi n g
F R EI G H T- c o n

M M- L 5
M M- N 2 P

R R S(0. 1 5)
H Y P E

P a T o H- c o n

(b) Connectivity performance profile.

 0

 20

 40

 60

 80

 100

 120

 140

 160

512 1024 1536 2048 2560

%
 i

m
p
ro

v
em

en
t

in
 c

u
t

k

PaToH-cut
FREIGHT-cut

HYPE
RRS(0.15)
MM-N2P

MM-L5

(c) Cut-net improvement plot over Hashing.

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

 1 2 4 8

%
in

st
an

ce
s

≤
 τ

 b
es

t
cu

t

τ

H as hi n g
F R EI G H T- c ut

M M- L 5
M M- N 2 P

R R S(0. 1 5)
H Y P E

P a T o H- c ut

(d) Cut-net performance profile.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ti
m

e
p
er

 p
in

 (
n
s)

algorithm

Hashing
FREIGHT-cut
FREIGHT-con

MM-L5
MM-N2P

RRS(0.15)
HYPE

PaToH-cut
PaToH-con

(e) Running time boxplots.

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

 1 4 1 6 6 4 2 5 6 1 0 2 4 4 0 9 6

%
in

st
an

ce
s

≤
 τ

 f
as

te
st

τ

H as hi n g
F R EI G H T- c ut
F R EI G H T- c o n

M M- L 5
M M- N 2 P

R R S(0. 1 5)
H Y P E

P a T o H- c ut
P a T o H- c o n

(f) Running time performance profile.

Figure 4 Comparison against the state-of-the-art streaming algorithms for hypergraph par-
titioning. We show performance profiles, improvement plots over Hashing, and boxplots.
Note that PaToH-con, PaToH-cut, and Hashing align almost perfectly with the y-axis in Fig-
ures 4b, 4d, and 4f, respectively. Also the curves and bars of MM-N2P and MM-L5 roughly overlap
with one another in Figure 4d and Figure 4c.

K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:13

comparison, FREIGHT-con shows average connectivity improvements of 8%, 24%, 39%, and
50% over HYPE, RRS(0.15), MM-N2P, and MM-L5, respectively. Note that each algorithm
retains its relative ranking in terms of average connectivity over all values of k.

In Figure 4b, we plot connectivity performance profiles across all experiments. PaToH-con
produces the best overall connectivity for 96.4% of the instances, while FREIGHT-con pro-
duces the best connectivity for 3.1% of the instances and no other algorithm computes
the best connectivity for more than 0.35% of the instances. The connectivity produced by
FREIGHT-con, HYPE, RRS(0.15), MM-N2P, MM-L5, and Hashing are within a factor 2 of the
best found connectivity for 67%, 61%, 47%, 41%, 34%, and 9% of the instances, respect-
ively. In summary, FREIGHT-con produces the best connectivity among (buffered) streaming
competitors, outperforming even in-memory algorithm HYPE.

Cut-Net. Next we examine at the cut-net metric. In Figure 4c, we plot the cut-net im-
provement over Hashing. PaToH-cut produces the best overall cut-net, with an average
improvement of 100% compared to Hashing. FREIGHT-cut is found to be the second best
algorithm with respect to cut-net, superior to internal-memory algorithm HYPE and buffered
streaming algorithm RRS(0.15). These three algorithms improve connectivity over Hashing
by 37%, 30%, and 17% respectively. Finally, both MM-N2P and MM-L5 improve connectivity by
13% on average over Hashing. In direct comparison, FREIGHT-cut shows average connectivity
improvements of 6%, 18%, 22%, and 22% over HYPE, RRS(0.15), MM-N2P, and MM-L5, respect-
ively. Each algorithm preserves its relative ranking in average cut-net across all values of k.

In Figure 4d, we plot cut-net performance profiles across all experiments. In the
plot, PaToH-cut produces the best overall connectivity for 98.0% of the instances, while
FREIGHT-cut and HYPE produce the best cut-net for 6.8% and 5.2% of the instances and
all other streaming algorithms (RRS(0.15), MM-N2P, MM-L5, and Hashing) produce the best
cut-net for 4.8% of the instances. The cut-net results produced by FREIGHT-cut, HYPE,
RRS(0.15), MM-N2P, MM-L5, and Hashing are within a factor 2 of the best found cut-net
for 83%, 79%, 69%, 66%, 66%, and 58% of the instances, respectively. This shows that
FREIGHT-cut produces the best cut-net among all (buffered) streaming competitors and
even beats the in-memory algorithm HYPE.

Running Time. Now we compare the algorithms’ runtime. Boxes and whiskers in Figure 4e
display the distribution of the running time per pin, measured in nanoseconds, for all instances.
Hashing, FREIGHT-cut, and FREIGHT-con are the three fastest algorithms, with median
runtimes per pin of 15ns, 38ns, and 41ns, respectively. MM-L5, MM-N2P, HYPE, and RRS(0.15)
follow with median runtimes per pin of 130ns, 437ns, 792ns, and 833ns, respectively. Lastly,
the algorithms with the highest median runtime per pin are PaToH-cut and PaToH-con, with
2 516ns and 3 333ns respectively. The measured runtime per pin for both HYPE and PaToH
align with values reported in prior research [32].

In Figure 4f, we show running time performance profiles. Hashing is the fastest algorithm
for 98.3% of the instances, while FREIGHT-cut is the fastest one for 1.2% of the instances
and no other algorithm is the fastest one for more than 0.4% of the instances. The running
time of FREIGHT-cut and FREIGHT-con is within a factor 4 of that of Hashing for 82% and
72% of instances, respectively. In contrast, for only 16% of instances does this occur for
MM-L5, and for less than 0.4% of instances for all other algorithms. The close running times
of FREIGHT to Hashing are surprising given FREIGHT’s superior solution quality compared to
Hashing and all other streaming algorithms and even HYPE.

SEA 2023

15:14 FREIGHT: Fast Streaming Hypergraph Partitioning

Further Comparisons. For graph vertex partitioning FREIGHT and Fennel are mathematic-
ally equivalent. However, FREIGHT exhibits a lower computational complexity of O(m + n)
compared to the standard implementation of Fennel, which has a complexity of O(m + nk)
due to evaluating all blocks for each node. To optimize its performance for this use case,
we have implemented an optimized version of FREIGHT with a memory consumption of
O(n + k), matching that of Fennel. In our experiments, we utilized the same graphs as
in [14] and tested with k ∈ {512, 1024, 1536, 2048, 2560}. On average, FREIGHT proves to be
109 times faster than the standard implementation of Fennel. Moreover, the performance
gap is found to increase as the value of k grow, with FREIGHT reaching up to 261 times
faster than Fennel in some instances.

5 Conclusion

In this work, we introduce FREIGHT, a highly efficient and effective streaming algorithm
for hypergraph partitioning. Our algorithm leverages an optimized data structure, res-
ulting in linear running time with respect to pin-count and linear memory consumption
in relation to the numbers of nets and blocks. The results of our extensive experiment-
ation demonstrate that the running time of FREIGHT is competitive with the Hashing
algorithm, with a maximum difference of a factor of four observed in three fourths of the
instances. Importantly, our findings indicate that FREIGHT consistently outperforms all
existing (buffered) streaming algorithms and even the in-memory algorithm HYPE, with
regards to both cut-net and connectivity measures. This underscores the significance of our
proposed algorithm as a highly efficient and effective solution for hypergraph partitioning
in the context of large-scale and dynamic data processing.

References
1 Zainab Abbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. Streaming graph

partitioning: An experimental study. Proc. VLDB Endow., 11(11):1590–1603, 2018. doi:
10.14778/3236187.3236208.

2 Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. High-quality shared-memory
graph partitioning. In Marco Aldinucci, Luca Padovani, and Massimo Torquati, editors, Euro-
Par 2018: Parallel Processing - 24th International Conference on Parallel and Distributed
Computing, Turin, Italy, August 27-31, 2018, Proceedings, volume 11014 of Lecture Notes in
Computer Science, pages 659–671. Springer, 2018. doi:10.1007/978-3-319-96983-1_47.

3 Dan Alistarh, Jennifer Iglesias, and Milan Vojnovic. Streaming min-max hypergraph par-
titioning. In Advances in Neural Information Processing Systems, pages 1900–1908, 2015.
doi:10.5555/2969442.2969452.

4 Charles J. Alpert. The ISPD98 circuit benchmark suite. In Majid Sarrafzadeh, editor,
Proceedings of the 1998 International Symposium on Physical Design, ISPD 1998, Monterey,
CA, USA, April 6-8, 1998, pages 80–85. ACM, 1998. doi:10.1145/274535.274546.

5 Amel Awadelkarim and Johan Ugander. Prioritized restreaming algorithms for balanced graph
partitioning. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash, editors, KDD ’20:
The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
CA, USA, August 23-27, 2020, pages 1877–1887. ACM, 2020. doi:10.1145/3394486.3403239.

6 Anton Belov, Daiel Diepold, Marijn Heule, and Matti Järvisalo. The sat competition 2014.
http://www.satcompetition.org/2014/, 2014.

7 Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. On modularity clustering. IEEE transactions on knowledge and data
engineering, 20(2):172–188, 2007. doi:10.1109/TKDE.2007.190689.

https://doi.org/10.14778/3236187.3236208
https://doi.org/10.14778/3236187.3236208
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.5555/2969442.2969452
https://doi.org/10.1145/274535.274546
https://doi.org/10.1145/3394486.3403239
http://www.satcompetition.org/2014/
https://doi.org/10.1109/TKDE.2007.190689

K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:15

8 Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge partitions is
np-hard. Inf. Process. Lett., 42(3):153–159, 1992. doi:10.1016/0020-0190(92)90140-Q.

9 Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
Advances in Graph Partitioning, pages 117–158. Springer International Publishing, Cham,
2016. doi:10.1007/978-3-319-49487-6_4.

10 Ümit V. Çatalyürek and Cevdet Aykanat. Patoh (partitioning tool for hypergraphs). In
David A. Padua, editor, Encyclopedia of Parallel Computing, pages 1479–1487. Springer, 2011.
doi:10.1007/978-0-387-09766-4_93.

11 Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, Tobias Heuer,
Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel Seemaier,
and Dorothea Wagner. More recent advances in (hyper)graph partitioning. ACM Computing
Surveys, 2023. doi:doi.org/10.1145/3571808.

12 Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, 2011. doi:10.1145/2049662.2049663.

13 Marcelo Fonseca Faraj and Christian Schulz. Buffered streaming graph partitioning. ACM J.
Exp. Algorithmics, 27, October 2022. doi:10.1145/3546911.

14 Marcelo Fonseca Faraj and Christian Schulz. Recursive multi-section on the fly: Shared-
memory streaming algorithms for hierarchical graph partitioning and process mapping. In
2022 IEEE International Conference on Cluster Computing (CLUSTER), pages 473–483, 2022.
doi:10.1109/CLUSTER51413.2022.00057.

15 Marcelo Fonseca Faraj, Alexander van der Grinten, Henning Meyerhenke, Jesper Larsson
Träff, and Christian Schulz. High-quality hierarchical process mapping. In 18th International
Symposium on Experimental Algorithms, SEA, volume 160 of LIPIcs, pages 4:1–4:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SEA.2020.4.

16 Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified np-complete
problems. In Proceedings of the 6th Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1974, Seattle, Washington, USA, pages 47–63. ACM, 1974. doi:10.1145/800119.
803884.

17 Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scalable Shared-Memory
Hypergraph Partitioning. In Proceedings of the Symposium on Algorithm Engineering and
Experiments ALENEX, pages 16–30, 2021. doi:10.1137/1.9781611976472.2.

18 Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel Seemaier. Deep
multilevel graph partitioning. In 29th Annual European Symposium on Algorithms, ESA,
volume 204 of LIPIcs, pages 48:1–48:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ESA.2021.48.

19 Loc Hoang, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. Cusp: A customizable
streaming edge partitioner for distributed graph analytics. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 439–450. IEEE, 2019. doi:
10.1109/IPDPS.2019.00054.

20 Nazanin Jafari, Oguz Selvitopi, and Cevdet Aykanat. Fast shared-memory streaming multilevel
graph partitioning. Journal of Parallel and Distributed Computing, 147:140–151, 2021. doi:
10.1016/j.jpdc.2020.09.004.

21 George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning scheme for irregular
graphs. In Proceedings of the ACM/IEEE Conference on Supercomputing, page 35. IEEE
Computer Society, 1996. doi:10.1109/SC.1996.32.

22 George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. In Mary Jane
Irwin, editor, Proceedings of the 36th Conference on Design Automation, pages 343–348. ACM
Press, 1999. doi:10.1145/309847.309954.

23 Renaud Lambiotte, Martin Rosvall, and Ingo Scholtes. From networks to optimal higher-
order models of complex systems. Nature physics, 15(4):313–320, 2019. doi:10.1038/
s41567-019-0459-y.

SEA 2023

https://doi.org/10.1016/0020-0190(92)90140-Q
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-0-387-09766-4_93
https://doi.org/doi.org/10.1145/3571808
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3546911
https://doi.org/10.1109/CLUSTER51413.2022.00057
https://doi.org/10.4230/LIPIcs.SEA.2020.4
https://doi.org/10.1145/800119.803884
https://doi.org/10.1145/800119.803884
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.1109/IPDPS.2019.00054
https://doi.org/10.1109/IPDPS.2019.00054
https://doi.org/10.1016/j.jpdc.2020.09.004
https://doi.org/10.1016/j.jpdc.2020.09.004
https://doi.org/10.1109/SC.1996.32
https://doi.org/10.1145/309847.309954
https://doi.org/10.1038/s41567-019-0459-y
https://doi.org/10.1038/s41567-019-0459-y

15:16 FREIGHT: Fast Streaming Hypergraph Partitioning

24 Christian Mayer, Ruben Mayer, Sukanya Bhowmik, Lukas Epple, and Kurt Rothermel.
HYPE: massive hypergraph partitioning with neighborhood expansion. In IEEE International
Conference on Big Data (IEEE BigData), pages 458–467. IEEE, 2018. doi:10.1109/BigData.
2018.8621968.

25 Christian Mayer, Ruben Mayer, Muhammad Adnan Tariq, Heiko Geppert, Larissa Laich, Lukas
Rieger, and Kurt Rothermel. Adwise: Adaptive window-based streaming edge partitioning
for high-speed graph processing. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pages 685–695. IEEE, 2018. doi:10.1109/ICDCS.2018.00072.

26 Joel Nishimura and Johan Ugander. Restreaming graph partitioning: simple versat-
ile algorithms for advanced balancing. In Proceedings of the 19th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 1106–1114, 2013.
doi:10.1145/2487575.2487696.

27 Md Anwarul Kaium Patwary, Saurabh Kumar Garg, and Byeong Kang. Window-based
streaming graph partitioning algorithm. In Proceedings of the Australasian Computer Science
Week Multiconference, ACSW, pages 51:1–51:10. ACM, 2019. doi:10.1145/3290688.3290711.

28 François Pellegrini and Jean Roman. Experimental analysis of the dual recurs-
ive bipartitioning algorithm for static mapping. Technical report, TR 1038-96,
LaBRI, 1996. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&
doi=94b913363b57e019b8a32529b076a8d4181587ac.

29 Maria Predari, Charilaos Tzovas, Christian Schulz, and Henning Meyerhenke. An mpi-based
algorithm for mapping complex networks onto hierarchical architectures. In Euro-Par 2021:
Parallel Processing - 27th International Conference on Parallel and Distributed Computing,
volume 12820 of LNCS, pages 167–182. Springer, 2021. doi:10.1007/978-3-030-85665-6_11.

30 Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced graph
partitioning. In Experimental Algorithms, 12th International Symposium, SEA, volume 7933
of LNCS, pages 164–175. Springer, 2013. doi:10.1007/978-3-642-38527-8_16.

31 Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders, and
Christian Schulz. k-way hypergraph partitioning via n-level recursive bisection. In Proceedings
of the Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX, pages
53–67. SIAM, 2016. doi:10.1137/1.9781611974317.5.

32 Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremtsev, Christian Schulz,
and Peter Sanders. High-quality hypergraph partitioning. ACM Journal of Experimental
Algorithms (JEA), 2022. doi:10.1145/3529090.

33 Christian Schulz and Darren Strash. Graph partitioning: Formulations and applications
to big data. In Encyclopedia of Big Data Technologies. Springer, 2019. doi:10.1007/
978-3-319-63962-8_312-2.

34 Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1222–1230, 2012. doi:10.1145/2339530.2339722.

35 Fatih Taşyaran, Berkay Demireller, Kamer Kaya, and Bora Uçar. Streaming Hypergraph
Partitioning Algorithms on Limited Memory Environments. In HPCS 2020 - International
Conference on High Performance Computing & Simulation, pages 1–8. IEEE, 2021. URL:
https://hal.archives-ouvertes.fr/hal-03182122.

36 Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic.
Fennel: Streaming graph partitioning for massive scale graphs. In Proceedings of the 7th
ACM international conference on Web search and data mining, pages 333–342, 2014. doi:
10.1145/2556195.2556213.

https://doi.org/10.1109/BigData.2018.8621968
https://doi.org/10.1109/BigData.2018.8621968
https://doi.org/10.1109/ICDCS.2018.00072
https://doi.org/10.1145/2487575.2487696
https://doi.org/10.1145/3290688.3290711
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=94b913363b57e019b8a32529b076a8d4181587ac
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=94b913363b57e019b8a32529b076a8d4181587ac
https://doi.org/10.1007/978-3-030-85665-6_11
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1145/3529090
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.1145/2339530.2339722
https://hal.archives-ouvertes.fr/hal-03182122
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1145/2556195.2556213

	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Related Work

	3 FREIGHT: Fast Streaming Hypergraph Partitioning
	3.1 Mathematical Definition
	3.2 Streaming Hypergraphs
	3.3 Efficient Implementation

	4 Experimental Evaluation
	4.1 Results

	5 Conclusion

