
Engineering a Preprocessor for Symmetry
Detection
Markus Anders
TU Darmstadt, Germany

Pascal Schweitzer
TU Darmstadt, Germany

Julian Stieß
University of Koblenz-Landau, Germany

Abstract
State-of-the-art solvers for symmetry detection in combinatorial objects are becoming increasingly
sophisticated software libraries. Most of the solvers were initially designed with inputs from
combinatorics in mind (nauty, bliss, Traces, dejavu). They excel at dealing with a complicated
core of the input. Others focus on practical instances that exhibit sparsity. They excel at dealing
with comparatively easy but extremely large substructures of the input (saucy). In practice, these
differences manifest in significantly diverging performances on different types of graph classes.

We engineer a preprocessor for symmetry detection. The result is a tool designed to shrink
sparse, large substructures of the input graph. On most of the practical instances, the preprocessor
improves the overall running time significantly for many of the state-of-the-art solvers. At the same
time, our benchmarks show that the additional overhead is negligible.

Overall we obtain single algorithms with competitive performance across all benchmark graphs.
As such, the preprocessor bridges the disparity between solvers that focus on combinatorial graphs
and large practical graphs. In fact, on most of the practical instances the combined setup significantly
outperforms previous state-of-the-art.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases graph isomorphism, automorphism groups, symmetry detection, preprocessors

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.1

Supplementary Material Software (Source Code): https://github.com/markusa4/sassy
archived at swh:1:dir:ba57bf62762f6c5d0bd51ce07862a70df70c8468

Funding Supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (EngageS: grant No. 820148).

Acknowledgements We thank Marc E. Pfetsch and Christopher Hojny for giving us further insights
into the user-side of symmetry detection software, as well as providing us with the MIP2017 graphs.

1 Introduction

Exploitation of symmetries is an indispensable instrument in a vast number of algorithmic
application areas such as SAT [20, 5, 13], SMT [12], QBF [21], CSP [15], ILP [25, 27, 17]
and many more. However, in order to exploit symmetries, we have to compute them first.

Many types of objects can be modelled efficiently as graphs, so that the objects’ symmetries
correspond to the symmetries of the graph. This includes formulas, equation systems, finite
relational structures, and many more (see [29]). Hence, computing the symmetries of these
objects reduces to computing symmetries of graphs. We refer to the act of computing the
symmetries of a graph as symmetry detection.

© Markus Anders, Pascal Schweitzer, and Julian Stieß;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 1; pp. 1:1–1:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.SEA.2023.1
https://github.com/markusa4/sassy
https://archive.softwareheritage.org/swh:1:dir:ba57bf62762f6c5d0bd51ce07862a70df70c8468;origin=https://github.com/markusa4/sassy;visit=swh:1:snp:6329c2291caab6cc869b1d1a830c467f9da14855;anchor=swh:1:rev:1469cef6a3b675df9bab9779150c48f8fc1f0a6d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Engineering a Preprocessor for Symmetry Detection

State-of-the-art symmetry detection tools are nauty [26], saucy [11], bliss [19], Traces
[26], and dejavu [7]. Given as input a vertex-colored graph, they output all the symmetries
of the graph. All state-of-the-art tools are based around the so-called individualization-
refinement (IR) paradigm. Yet, they substantially differ in the applied search strategies,
pruning invariants, symmetry handling, and various other heuristics (see [26, 7]). This is
also reflected in diverging performances on different graph classes.

We want to highlight two examples where the diverging performance between the solvers
is notable, namely “practical graphs” and “combinatorial graphs”. For large practical graphs,
such as graphs arising in SAT, QBF, MIP, or road networks, the solver saucy outperforms
all other solvers significantly (see, e.g., the results in [5] or the benchmarks of this paper in
Section 9). Indeed, designed with satisfiability-checking in mind, saucy has been delicately
engineered specifically for these types of graphs. Intuitively, graphs arising from practical
applications tend to be large in size but comparatively simple in their structure. On the
other hand, on almost all graph classes that are difficult relative to their size (e.g., projective
planes, CFI graphs, and other regular combinatorial objects) Traces and dejavu readily
outperform other solvers due to their more sophisticated search strategies (see [7] and [26] for
a more nuanced discussion). In Figure 1, we demonstrate the large disparity between saucy
and dejavu on a difficult graph class from combinatorics and a class of practical graphs.

Only having solvers available that are geared towards specific types of graphs is of course
an undesirable situation. This for example means we have to choose a solver and thus
understand the type of input we are faced with. Also, we will struggle with inputs that are
combinations of the different kinds of graphs. Quite naturally, it is desirable instead to have
a single solver performing well on all graphs.

A commonly used paradigm to make solvers for computational problems more widely
applicable is to add a preprocessor. The use of preprocessors has indeed already led to
countless success stories, in particular in SAT, QBF or MaxSAT [14, 10, 24]. In these
applications, it is nowadays standard to apply a preprocessor to all inputs. In contrast to
this, to date, no preprocessor has been available for symmetry detection. In fact McKay and
Piperno [26] explicitly highlight that in their opinion “graphs of [particular types] ought to
be handled by preprocessing” before using their tools.

Beyond increasing performance, there are various other benefits to having a preprocessor.
Firstly, the problem of initially simplifying the graph can be tackled independently from the
design of the main solver. This is especially desirable since implementations of state-of-the-art
symmetry detection solvers are complex and detailed descriptions of the inner workings
largely unavailable. Secondly, in turn, a preprocessor could even reduce the complexity of
solver implementations if certain cases are reliably handled before running the solver. Lastly,
implementing strategies in a common preprocessor makes them available to all the solvers
simultaneously.

Given the lack of an existing preprocessor for symmetry detection, Traces, for example,
has complicated subroutines that simplify some low-degree vertices before (and sometimes
during) the computation (see the implementation [2]). Overall, the question is whether it is
possible to design a common preprocessor that can simplify inputs and is beneficial to all
state-of-the-art solvers.

Contribution. We implement the first preprocessor sassy for symmetry detection. It is
compatible by design with all state-of-the-art symmetry detection tools. Our benchmarks
(Section 9) corroborate that solver configurations using the preprocessor significantly outper-
form state-of-the-art on many practical graph classes. At the same time, the preprocessor
introduces only a negligible overhead.

M. Anders, P. Schweitzer, and J. Stieß 1:3

0 5 10 15 20

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

pp16

0 10 20 30 40 50

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

states

saucy dejavu sy+dejavu

Figure 1 Comparing solvers on difficult combinatorial graphs (pp16) and large practical graphs
(states). Timeout is 60s (red bar). sy+dejavu refers to dejavu with the preprocessor of this paper.

The preprocessor bridges the disparity that exists between solvers that focus on difficult
combinatorial graphs (Traces, dejavu, bliss, nauty) and those that focus on large
practical graphs (saucy). Through the use of the preprocessor, the former kind of solvers
now outperform saucy on most practical graphs.

Techniques. The preprocessor implements mainly techniques to handle graphs that are
sparse, both in the input and output (e.g., practical graphs). In particular, it is made up of
the following building blocks which we discuss throughout the paper:
1. A framework to capture reduction techniques for input graphs. In particular, it captures

the reconstruction of symmetries from the reduced graph back to the input graph, both
theoretically and practically (Section 4).

2. A technique to efficiently remove vertices of degree 0 and 1 (Section 5.1 and Section 5.2).
3. Partial removal of degree 2 vertices avoiding the introduction of colored or directed edges

(Section 5.3).
4. An individualization-refinement-based probing technique for “sparse automorphisms”

(Section 6).
5. Exploiting connected components and homogeneous connections using the concept of

quotient graphs (Section 7).
While sassy is the first universal preprocessor for symmetry detection, we want to remark
that a flavor of (2) is already implemented in Traces. All the techniques other than (2) are
novel contributions, however, we do want to mention that (4) and (5) draw some inspiration
from existing techniques of solvers. We explain this in detail in the respective sections.

2 Philosophy of the Preprocessor

When designing a preprocessor, one of the main challenges is to map out which techniques
and methods fall within the responsibility of the preprocessor and which task should be
resolved by the main algorithm. Another delicate matter are the preprocessor/main solver
and the user/preprocessor interfaces. In the design of our preprocessor we were guided by
conceptual principles as well as technical requirements.

Conceptual principles. On a conceptual level, our goal is to design efficient preprocessing
subroutines that simplify the task of computing symmetries. Naturally, a preprocessor should
only apply procedures that are comparatively fast in relation to the running time of the main
algorithm.

SEA 2023

1:4 Engineering a Preprocessor for Symmetry Detection

preprocessor

graph
reduction

symmetry
lift

symmetries of
G

graph
G

symmetries of
G main

solver

symmetries of
G′

reduced graph
G′

Figure 2 Our proposed preprocessor/main solver and user/preprocessor interfaces. The prepro-
cessor may already determine some (or all) symmetries of G during graph reduction. The reduced
instance is then passed on to the main solver.

The design of our preprocessor is centered around the so-called color refinement algorithm.
Color refinement is a powerful heuristic for symmetry detection. It is continuously and
repeatedly applied in all state-of-the-art solvers. Thus, procedures that run within or close
to color-refinement-time are safe to apply.

The general idea of the preprocessor is to remove substructures of the graph that are
already “basically resolved” by an application of color refinement. The main difficulty lies
in detecting and exploiting these substructures as efficiently as possible. Essentially, any
part that can be handled efficiently ought to be carefully handled using precisely the right
technique.

Overall, we need to balance efficiency, effectiveness, and generality for our subroutines.

Technical requirements. On a technical level, we want our preprocessor to be compatible
with all state-of-the-art solvers. Hence, we need to use an interface that is universal for all
the existing tools. All tools read vertex-colored graphs and output symmetries. Hence, this
is the interface that the preprocessor uses as well.

The preprocessor reads a vertex-colored graph and outputs a reduced vertex-colored
graph passed to a main solver. Moreover, the preprocessor may already determine some
or all of the symmetries, and immediately outputs these to the user. There is one more
technicality: symmetries of the reduced graph which are computed by the main solver are, by
definition, not symmetries of the original graph. To rectify this, the preprocessor employs a
backward-translation (i.e., a form of postprocessing) to lift symmetries that were discovered
by the main solver back to being symmetries of the original input graph.

Our design is illustrated in Figure 2.

3 Preliminaries

A graph G is a finite, simple, undirected graph, unless stated otherwise. The neighborhood
of a vertex v is denoted N(v), its degree is deg(v) := |N(v)|. For a set of vertices V ′ ⊆ V (G)
the neighborhood is the set N [V ′] := (

⋃
v∈V ′ N(v)) \ V ′.

A coloring of a graph G is a map π : V (G) → C from the vertices to some set of colors.
A (color) class C is a set π−1(c) of vertices of the same color. A coloring π is referred to
as discrete whenever π is injective. In other words, in a discrete coloring each vertex has
its own unique color. Unless stated otherwise, we work with colored graphs G = (V,E, π)
which consist of vertex set V , edge set E, and a coloring π. Slightly abusing notation the

M. Anders, P. Schweitzer, and J. Stieß 1:5

pair (G, π) for an uncolored graph G = (V,E) is identified with (V,E, π). For a subset
of the vertices V ′ ⊆ V the induced subgraph of G = (V,E, π) is G[V ′] = (V ′, E′, π|V ′)
where E′ = {e ∈ E | e ⊆ V ′ × V ′}.

A bijection φ : V 7→ V is called an automorphism (symmetry) whenever (φ(V), φ(E)) =
(V,E) (applying φ element-wise to the vertices in the edges of E). If G is colored, φ also
has to respect colors (i.e., satisfy π(φ(v)) = π(v)). The number of automorphisms can be
exponential in the size of the graph. The symmetries form a permutation group under the
composition operation. The automorphism group containing all automorphisms of a (colored)
graph G is Aut(G). The support of an automorphism φ ∈ Aut(G) is supp(φ) := {φ(x) ̸=
x | x ∈ V (G)}, i.e., vertices not fixed by the automorphism. A subset of automorphisms
S ⊆ Aut(G) is a generating set of Aut(G), whenever exhaustively composing permutations of
S leads to all elements of Aut(G). We write ⟨S⟩ = Aut(G). This enables a concise encoding
of Aut(G). Solvers generally only output a generating set of Aut(G).

3.1 Color Refinement
The color refinement algorithm is a well-studied procedure [8, 9, 26]. For a colored graph it
splits apart colors in a specific way to produce a “finer” coloring. Crucially, this process does
not change the symmetries of the graph.

Formally, a coloring π of a graph is equitable if for all pairs of (not necessarily distinct) color
classes C1, C2, all vertices in C1 have the same number of neighbors in C2 (i.e., |N(v) ∩C2| =
|N(v′) ∩ C2| for all v, v′ ∈ C1.) Given a coloring π, color refinement computes an equitable
refinement π′ (i.e., an equitable coloring π′ for which π′(v) = π′(v′) implies π(v) = π(v′)). In
fact, it computes the coarsest equitable refinement. Crucially, automorphisms of G = (V,E, π)
are also automorphisms of G = (V,E, π′) (and vice versa). It is thus beneficial and routine
to work with π′ instead of π. Color refinement can be implemented in such a way that it
admits a worst case running time of Θ((n+m)(logn)) (see [9]). From an implementation
perspective it is the most crucial subroutine and therefore highly engineered.

3.2 Quotient Graph
For an equitable coloring π of an (otherwise uncolored) graph G, the quotient graph Q(G, π)
captures information regarding the number of neighbors that vertices in one color class have
in another color class. A quotient graph is a complete directed graph in which every vertex
has a self-loop. The vertex set of Q(G, π) is V (Q(G, π)) := π(V (G)), i.e., the set of colors
of vertices under π. The vertices of Q(G, π) are colored with the color they represent in G.
We color the edge (c1, c2) with the number of neighbors a vertex color c1 has of color c2
(possibly c1 = c2). Recall that, since π is equitable, all vertices of c1 have the same number
of neighbors in c2. Two graphs are indistinguishable by color refinement if and only if their
quotient graphs with respect to the coarsest equitable coloring are equal (see e.g. [8]).

4 A Toolbox for Reducing Graphs

We now embark on our journey of describing techniques that simplify a graph for symmetry
detection. The goal is always to efficiently reduce the number of vertices and edges of the
graph. However, whenever we alter the graph, we need to make sure that either no symmetries
are lost, or that we output the symmetries that would be lost immediately. Furthermore,
we have to ensure that after preprocessing is done symmetries of the reduced graph can be

SEA 2023

1:6 Engineering a Preprocessor for Symmetry Detection

mapped back to symmetries of the original graph. After all, we are interested in symmetries
of the original graph. In order to ease this process, we first lay out some general techniques
that we use throughout the paper.

The first type of technique we describe modifies an input graph G on vertex set V to
another graph G′ with vertex set V ′ ⊆ V so that
1. Aut(G)|V ′ ⊆ Aut(G′) (symmetry preservation) and
2. Aut(G)|V ′ ⊇ Aut(G′) (symmetry lifting) hold.
Here by Aut(G)|V ′ we mean the set of maps obtained by restricting the domain of each
φ ∈ Aut(G) to V ′ (and the range to φ(V ′)). If conditions (1) and (2) hold, V ′ must also be
invariant under Aut(G).

Under these conditions the restriction to V ′ is a natural homomorphism p : Aut(G) →
Aut(G′). The orbit-stabilizer theorem (see [18, Theorem 2.16]) implies then that if S′ ⊆
Aut(G) is a set of lifts of a generating set S of Aut(G′), i.e. p(S′) = S, then Aut(G) =
⟨S′, ker(p)⟩ (where ⟨Γ⟩ denotes the group generated by Γ, see [30]). Here ker(p) = {φ ∈
Aut(G) | p(φ) ̸= 1} is the kernel of p and 1 denotes the identity.

Overall this enables us to separate the computation of Aut(G) into computing auto-
morphisms of the removed parts of the graph and the automorphisms of the reduced graph.
Crucial for the techniques is now that G′ and a generating set of ker(p) can be efficiently
computed from G, and that the set of lifts S′ can be efficiently computed from a generating
set of Aut(G′). In particular, we require an efficient postprocessing technique for lifting of
automorphisms to parts that were reduced, which is described in the following.

Canonical Representation Strings. During preprocessing, the parts we remove from the
original graph might be symmetrical to (i.e., in the same orbit as) other parts of the graph.
So, after symmetries of the reduced graph have been computed, we need to lift symmetries of
the reduced graph to symmetries of the original graph. In particular, the lifted symmetries
must map all the removed parts correctly. To simplify the lifting of symmetries we introduce
representation strings associated with the remaining vertices. These encode the nature (i.e.,
the “isomorphism type”) of the vertices that were removed. The encoding is stored in the
color of a suitable vertex that remains. If a remaining vertex is then mapped to another
vertex, the corresponding subgraphs represented by the strings are then mapped to each
other in a canonical way.

We define this process formally through a representation mapping R(v) : V 7→ V ∗ from
the vertices to sequences of vertices as follows. Assume we have a graph G := (V,E, π) which
is reduced to G′ := (V ′, E′, π′) with V ′ ⊆ V and E′ ⊆ E. We require the following:
1. It holds that R(v) := vS with S ∈ V ∗ for all v ∈ V ′, i.e., each remaining vertex must

represent itself first.
2. It holds that R(v) := ϵ for all v ∈ V ∖ V ′, i.e., a removed vertex does not represent any

vertex.
3. For each deleted vertex v ∈ V ∖ V ′ there is at most one v′ ∈ V ′ and at most one i ∈ N

such that v := R(v′)i, i.e., each deleted vertex is represented by at most one remaining
vertex, once.

For each automorphism of the remaining graph φ ∈ Aut(G′) we now define its lifted bijection
φR(v) ∈ Sym(V) (the symmetric group on V). First, we require that φ(v) = v′ =⇒
|R(v)| = |R(v′)| holds, otherwise we can not construct a lifted bijection. We define φR(v) :=

φ(v) if v ∈ V ′

R(φ(v′))i if v = R(v′)i for v′ ∈ V ′, i ∈ N
v if v ̸= R(v′)i for all v′ ∈ V ′, i ∈ N.

We call R a canonical representation mapping if φR ∈ Aut(G) for all φ ∈ Aut(G′).

M. Anders, P. Schweitzer, and J. Stieß 1:7

We note by definition, canonical representation mappings can be chained, i.e., if we
reduce a graph G multiple times, we can simply apply the respective canonical representation
mappings in reverse until we reach an automorphism of G. We can even rewrite chained
canonical representation mappings into a single map by essentially composing the functions.
(More accurately we have to interpret strings of strings as simple strings using concatenation.)

Sparse Automorphisms and Restoration. A concept that we implicitly use throughout the
following sections is sparse encodings of automorphisms. A conventional way to do this is the
cycle notation of permutations, i.e., store only for each non-fixed element its image [18]. The
precise encoding used is of no importance, however. Crucially, automorphisms ought to be
encoded using space that is proportional to the size of their support, i.e., in O(| supp(φ)|).

Using a canonical representation mapping R and sparse automorphism encodings, auto-
morphisms of a reduced graph G′ can be efficiently lifted to automorphisms of the original
graph G. Indeed, lifts can be computed in time (and in space) linear in the size of the
support of the lift, by replacing vertices by their represented strings.

▶ Fact 1. Given φ ∈ Aut(G′), the lift φR ∈ Aut(G) can be computed in time O(| supp(φR)|).

Let us remark that often canonical representations in fact ensure that lifted supports are
as small as possible. We say that a representation mapping R respects kernel orbits if it has
the property that v1 ∈ R(v) ⇔ v2 ∈ R(v) whenever v1 and v2 are in the same orbit of ker(p).
All representations we describe subsequently respect kernel orbits.

▶ Fact 2. If R respects kernel orbits then p(ψ) = φ implies that | supp(φR)| ≤ | supp(ψ)|.

We should remark that none of the state-of-the-art solvers except for saucy feature an
interface for sparse automorphisms, i.e., an interface that enables access to an automorphism
in time O(| supp(φ)|). Instead, access is only possible in Ω(|V |). If a user-application uses
the interface for sparse automorphisms correctly, this can yield substantial running time
benefits on graphs that contain a large number of sparse automorphisms (which is the
case for many practical graphs). Most solvers internally incur a cost of Ω(|V |) to handle
automorphisms anyway, in turn making the sparse interface unnecessary. Since this is not
true for our preprocessor and to ensure potential running time benefits to user-applications,
automorphisms found by the preprocessor are of course accessible in a sparse manner.

5 Removing low degree vertices

The first class of efficient reduction techniques we describe removes vertices of low degree.
We propose strategies for vertices of degree 0, 1 and 2. Techniques for preprocessing vertices
of degree 0 and 1 can also be found in the implementation of Traces [2]. The Traces
implementation for degree 0, 1 differs from our proposed strategy in that it does not compute
color refinement before removing degree 0 and 1 vertices.

5.1 Degree 0 Vertices
Preprocessing vertices of degree 0 (and analogously n− 1) is simple. The algorithm detects
color classes consisting of vertices of degree 0. We let V ′ be the set of vertices of degree
larger than 0. By simply removing vertices of degree 0 and not representing them in R at
all, R indeed defines a canonical representation mapping.

The kernel ker(p) of the restriction p onto V ′ is computed as follows. For each color class
of degree 0 vertices in G we output generators for the symmetric group on the class.

SEA 2023

1:8 Engineering a Preprocessor for Symmetry Detection

Y

C2

C1

X

(a) Unique endpoints.

Y

C ′
1

C1

X

(b) Obfuscated matching.

Y

C2

C1

X

(c) Obfuscated edge flip.

Figure 3 Reducible degree 2 patterns.

5.2 Degree 1 Vertices

Exhaustively removing all vertices of degree 1 (and analogously n− 2) essentially removes all
tree-like appendages from graphs. It is well-known that applying color refinement produces
the orbit partitioning on these tree-like appendages – with the notable exception of not
determining whether the roots of these appendages are in the same orbit or not.

We can remove degree 1 vertices recursively. Let G be a graph that contains degree 1
vertices. We describe G′ and R where we remove a color class of degree 1 vertices.

Let C denote such a color class of degree 1 vertices. Since the coloring is equitable, all
neighbors of vertices of C are in the same color class P . In case P = C we have connected
components of size 2. This case can be handled similar to the reduction of degree 0 vertices,
so we assume P ̸= C. We partition C into classes C1, . . . , Cm where c ∈ Ci is adjacent to
pi ∈ P . For the representation mapping, we set R(pi) := piCi (where Ci may appear in
arbitrary order). We set G′ := G∖ {C}. The coloring π remains unchanged. Note that π is
still an equitable coloring for G′. The kernel ker(p) is the direct product of the symmetric
group Sym(Ci) for each i ∈ {1, . . . ,m} (and points outside C are fixed). The process can
then be repeated until all vertices of degree 1 are removed.

By construction, the reduction is symmetry preserving and symmetry lifting, thus it
holds that Aut(G) = ⟨S′, ker(p)⟩. As before, S is a generating set for Aut(G′) and S′ a
corresponding set of lifts.

5.3 Degree 2 Vertices

If we were to allow graphs produced by our preprocessor to contain directed, colored edges,
there is a simple reduction that removes all vertices of degree 2: we may encode the multiset
of paths between two vertices v1 and v2 with deg(vi) ≥ 3 whose internal vertices all have
degree 2 as one directed, colored edge between v1 and v2 (see also [22, Proof of Lemma 15]).

There are, however, drawbacks to this approach: most solvers do not implement directed
and colored edges. Since we want our preprocessor to be compatible with all modern solvers,
this immediately disallows the use of directed, colored edges. Even when they do, using
directed and colored edges comes at the price of additional overhead [28]. Intuitively, while
removing all degree 2 vertices can cause a significant size-reduction, some of the complexity
of the removed path is only shifted into the color encoding of the edges. In turn, we require
refinements to take into account edge colors. This complicates color refinement, the central
subroutine.

For these reasons, if possible, we prefer to remove degree 2 vertices in a way that does
not require the introduction of directed or colored edges.

M. Anders, P. Schweitzer, and J. Stieß 1:9

Non-branching paths with unique endpoint. We describe a heuristic which we found to
be often applicable in practical data sets. It encodes paths with internal vertices of degree
2 that run between two color classes by a set of edges connecting the endpoints directly.
However, it only does so if the set of paths can be reconstructed unambiguously from the set
of edges. In particular, the inserted edges may not interfere with existing edges.

We detect paths of length t between distinct color classes X and Y whose internal vertices
have degree 2. In each vertex of X exactly one such path should start (see Figure 3a). More
formally, suppose X = C0, C1, . . . , Ct, Ct+1 = Y are colors so that (1) vertices in X do not
have neighbors in Y , (2) for i ∈ {1, . . . , t} vertices in Ci have degree 2, (3) for i ∈ {1, . . . , t}
vertices in Ci have a neighbor in Ci−1 and Ci+1, and (4) every node in X has exactly one
neighbor in C1. Then we defineG′ = (V ′, E′) via V ′ := V−(C1∪· · ·∪Ct) and E′ := E(G[V ′])∪
E′′, where E′′ consists of pairs (x, y) for which there is a path (x, c1, . . . , ct, y) with ci ∈ Ci.
The corresponding representation map is R(x) = xc1c2 · · · ct, where (x, c1, . . . , ct, y) is the
unique path from x to some vertex y ∈ Y with ci ∈ Ci.

Note that the newly introduced edges E′′ form a biregular bipartite graph between X

and Y in which vertices of X have degree 1. It is not difficult to check that this yields a
canonical representation map that respects kernel orbits.

Obfuscated Matchings. The preprocessor has special fast code for the particular case in
which |X| = |Y |. In this case E′′ encodes a perfect matching between X and Y .

A slight extension of the technique checks for other choices of Ci whether they also satisfy
the required properties and yield exactly the same matching E′′. In fact, if there is another
matching via color classes C ′

1, . . . , C
′
t′ between X and Y which encodes E′′ , we also delete

vertices in the C ′
i (see Figure 3b). The special purpose code uses arrays and can efficiently

check whether matchings coincide.
We should mention that in the implementation, we only perform the check for paths of

length t = 1 for obfuscated matchings. It turns out that the special case of t = 1 and in fact
multiple such paths encoding the same matching is very common in particular on the MIP
and SAT benchmarks.

Obfuscated Edge Flip. A case that also can be handled efficiently and is not covered by
previous techniques is where X and Y are connected by |X||Y | equally-colored, unique paths.
In this case, each vertex x ∈ X is connected to all y ∈ Y by a path (see Figure 3c). It is
easy to see that deleting all such paths is both symmetry preserving and symmetry lifting
(this is related to the edge flip described in Section 7.1).

Formally, suppose X = C0, C1, . . . , Ct, Ct+1 = Y are colors so that (1) for i ∈ {1, . . . , t}
vertices in Ci have degree 2, (2) for i ∈ {1, . . . , t} vertices in Ci have a neighbor in Ci−1
and Ci+1, and (3) every node in X has exactly |Y | neighbors in C1, where the corresponding
paths end in all y ∈ Y . The technique in turn removes all C0, C1, . . . , Ct from the graph.

Let us now consider computing the lift of this reduction. Unfortunately, canonical
representation strings are not sufficient to express the lift: we need to determine how
C0, C1, . . . , Ct are mapped, and this depends on both the vertices of X and Y . We can not
simply attach C0, C1, . . . , Ct to the canonical representation strings of one of the color classes.
However, if we know how both X and Y are mapped, it is trivial to reconstruct the original
symmetry: assume a symmetry maps x ∈ X to x′ and y ∈ Y to y′. This just means that in
the lift, we need to map the path connecting x to y to the path connecting x′ to y′. Hence,
the lift can still be computed very easily and efficiently.

SEA 2023

1:10 Engineering a Preprocessor for Symmetry Detection

In the implementation, we do write vertices of C0, C1, . . . , Ct into both the representation
strings of X and Y , breaking the formal requirement of not having double entries. We
use an encoding trick to denote the double entries, which triggers special code during the
reconstruction of the symmetries.

Again, these types of degree 2 vertices can often be found in graphs stemming from SAT.

6 Probing for Sparse Automorphisms

We propose a strategy for probing for sparse automorphisms. If successful and automorphisms
are discovered, we “divide them out”, breaking the symmetry by individualization, i.e., giving
a vertex a unique color. We give a brief, high-level description. The full description can be
found in Appendix A.

Our strategy is inspired by a heuristic of saucy: for two colorings π1, π2 we may
check whether interchanging vertices in color classes of size 1 (i.e., singleton vertices) of
corresponding singleton colors and fixing all other vertices yields an automorphism of the
graph. More formally, we define the permutation φπ1,π2(v) :={

v if |π−1
1 (π1(v))| ≠ 1 ∨ |π−1

2 (π2(v))| ≠ 1
π−1

2 (π1(v)) otherwise.

Then, we may simply check whether φπ1,π2 is indeed an automorphism of G. Indeed, this
check can be computed in time O(Σv∈supp(φπ1,π2)1 + deg(v)).

saucy performs the check for local automorphisms during its depth-first search of its
backtracking tree. It can then store the information about the automorphism and internally
exploit its existence. For preprocessing purposes, however, we want to make the graph
simpler or smaller.

Our probing strategy chooses a color class C of the graph and then concurrently performs
two arbitrary root-to-leaf walks on the backtracking tree (individualization-refinement tree)
that is also used by main solvers. Through the design of the backtracking procedure, each walk
has a natural corresponding coloring (e.g., π1 and π2). We then continuously check whether
the two walks already imply an automorphism (using φπ1,π2). If, using this strategy, we find
enough automorphisms to determine that C is equivalent to an orbit, we can individualize a
vertex of C, thus simplifying the graph.

7 Exploiting the Quotient Graph

We now introduce another set of techniques which make use of the quotient graph Q(G, π).

7.1 Edge Flip and Removal of Trivial Components
First, we describe how to efficiently flip edges between color classes. Let C1, C2 be two
distinct color classes of π. Assume they are connected by m edges. The maximum number of
edges between C1 and C2 is |C1||C2|. If m > |C1||C2|/2, we can flip every edge to a non-edge,
and every non-edge to an edge, reducing the total number of edges in the graph. Since this
operation is isomorphism-invariant and reversible, the automorphism group of the graph
does not change.

When applying edge flips repeatedly and exhaustively, singleton vertices become vertices
of degree 0. In fact, instead of performing edge flips in which singletons are involved, we can
remove singletons directly without changing the automorphism group.

M. Anders, P. Schweitzer, and J. Stieß 1:11

We want to remark that in the implementation, we use one canonical representation
mapping to keep track of all removed vertices. This also includes removed singletons. Hence,
we use string representations throughout all the techniques described in the paper. In
addition to acting as a global canonical representation mapping, we also allow a renaming
of vertices, which enables us to map all remaining vertices into the interval {1, 2, . . . , n},
whenever n vertices remain.

7.2 Connected Components
A strategy more general than removing singletons is to exploit connected components of the
quotient graph.

Consider the quotient graph Q = Q(G, π) of a graph G with respect to a vertex coloring π.
The (weakly) connected components of Q partition the vertex set of G into parts that are
homogeneously connected. This allows us to treat components independently:

▶ Lemma 1. If D1, . . . , Dt are the connected components of the quotient graph Q(G, π)
then Aut(G, π) = Πt

i=1 Aut((G, π)[Di]).

By flipping edges between two color classes we can only ever shrink the components of Q(G, π).
It is therefore beneficial to first exhaustively flip edges and then consider connected compon-
ents (see also [23]).

These types of components have previously been employed for isomorphism and auto-
morphism testing [16, 19]. (In these contexts flips are not employed but rather edges in the
quotient graph are characterized by non-homogeneous connections, which is equivalent.)

Regarding the implementation, we compute the connected components of the quotient
graph without explicitly computing the quotient graph. We first perform edge flips for all fully
connected color classes, i.e., whenever the number of edges between C1, C2 equals |C1||C2|.
Then, we modify a basic algorithm for computing connected components as follows: usually,
the algorithm determines for a vertex v its neighborhood N(v) and adds this neighborhood
to the connected component of v. Our modification simply also adds π−1π(v) in addition to
N(v) (i.e., it adds entire color classes). In turn, the algorithm gives us a partition of the
vertices into the components of the quotient graph.

We use this to perform the probing strategy of Section 6 for each component of the
quotient graph separately. We want to mention that after preprocessing is done, we could,
theoretically, also use the components of the quotient graph to make independent calls to the
main solver on the subgraphs induced by the components. These would, in turn, be smaller,
and their handling could be parallelized. However, in our testing, after preprocessing is done,
usually only one component is left, or there is one very large component and several smaller
ones. We thus, at least so far, did not find it beneficial to use independent solver calls.

8 Scheduling of Techniques

We now describe when and how the preprocessor combines the techniques described in the
previous sections.

The first step of the preprocessor is to apply color refinement to produce an equitable
coloring. The coloring remains equitable throughout the entire algorithm, by reapplying
color refinement whenever necessary (i.e., for the probing techniques). We also continuously
remove singletons. Beyond this, our implementation allows the user to freely specify a
schedule for the various techniques.

SEA 2023

1:12 Engineering a Preprocessor for Symmetry Detection

The schedule used to produce the benchmarks is as follows. We remove vertices of degree
0 and 1, and apply the heuristics described for vertices of degree 2. Next, we flip edges and
apply probing for sparse automorphisms while making use of quotient graph components.
Lastly, we repeat the schedule as long as the graph still contains vertices of degree 0 or 1 and
the number of vertices of the graph shrunk by at least 25%. Note that this ensures that the
schedule is only repeated at most a logarithmic number of times in the original graph size.

The implementation is called sassy. It is implemented in C++ and uses the color
refinement of dejavu (which is itself an amalgam of color refinement implementations in
Traces and saucy). The implementation is open source and freely available at [3].

9 Benchmarks

We split the benchmark section into three parts: first, we check whether applying the
preprocessor speeds up state-of-the-art solvers on graph classes where the preprocessing
techniques are supposedly effective. At the same time we check whether we introduced
excessive overhead on graphs where the techniques are not effective. Secondly, we compare
the performance of solver configurations using the preprocessor to state-of-the-art saucy
and Traces on a wide range of practical data sets. Thirdly, we analyze the separate impact
of each of the different techniques used in the preprocessor (see Appendix D).

Whenever we apply the preprocessor followed by an execution of a main solver, we
write sy+solver. The reported running time for a configuration sy+solver is always the
time used for preprocessing and solving the graph. All benchmarks were run on a machine
featuring an Intel Core i7 9700K, 64GB of RAM on Ubuntu 20.04. We used nauty/Traces
2.6, saucy 3.0, bliss 0.73 and dejavu 1.2 (1% error bound and 4 threads for dejavu, all
other tools are only able to run single-threaded). We ran all benchmarks 3 consecutive times
in order to check whether running times are stable. We report the average and standard
deviation.

Conventionally, the way to test symmetry detection solvers is to first randomly permute
all given benchmark graphs [26, 7]. However, we feel that for many of the practical graphs,
it is not clear whether this is the right way to test the tools: the initial order is often not
arbitrary and may indeed encode information. For example in SAT, usually “literal” vertices
and “clause” vertices are never mixed but appear as contiguous blocks of vertices. While this
does not immediately help the symmetry detection process, aspects such as cache-efficiency
might be affected. Therefore, we ran all benchmarks both ways: in the conventional manner
of randomly permuting the instances (denoted with (p)), as well as using unaltered instances.
Benchmarks for permuted graphs are in this section, while results for non-permuted graphs
are in Appendix B. Overall, the results for both agree.

9.1 Preprocessed versus Unprocessed
We prepared two collections of graphs to test the impact of applying the preprocessor for
each solver. pract contains practical graphs with a lot of exploitable structure for the
preprocessor. On the other hand, the set comb contains combinatorial graphs where there is
no or very little exploitable structure. In the following, we describe how we composed both
sets.

Set “pract”. The goal of this set is to measure whether preprocessing is worthwhile for a
given solver on graphs where there is a lot of exploitable structure. Thus, this set contains
practical graphs. Note that we test practical graphs much more thoroughly in the next

M. Anders, P. Schweitzer, and J. Stieß 1:13

100 101 102 103

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

bliss

10−1 100 101 102 103 104

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

nauty

10−1 100 101 102 103

10−1

100

101

102

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

Traces

10−1 101 103

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

dejavu

10−1 101 103 105

10−1

101

103

105

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

saucy

10−1 101 103 105

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

bliss

10−1 101 103 105

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

nauty

10−1 101 103 105

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

Traces

10−1 101 103 105

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

dejavu

10−1 101 103

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

saucy

Figure 4 Solvers with sassy vs. solvers without sassy on comb (p) (top) and pract (p)
(bottom). Timeout is 60s. The green bar shows instances that timed out without the preprocessor.

state-of-the-art this paper
set saucy Traces sy+dejavu sy+Traces sy+bliss sy+saucy sy+nauty
dac (p) 0.51 ± 0.057 2.49 ± 0.072 0.38 ± 0.006 0.91 ± 0.016 0.5 ± 0.002 0.41 ± 0.058 0.46 ± 0.005
states (p) 7.32 ± 0.031 12.55 ± 0.281 6.79 ± 0.075 6.8 ± 0.069 6.8 ± 0.062 6.83 ± 0.085 6.8 ± 0.074
internet (p) 0.19 ± 0.005 2.47 ± 0.379 0.14 ± 0.003 0.15 ± 0.004 0.14 ± 0.002 0.14 ± 0.004 0.14 ± 0.003
ispd (p) 7.12 ± 0.069 7.04 ± 0.085 5.48 ± 0.046 5.43 ± 0.023 5.46 ± 0.005 5.45 ± 0.025 5.45 ± 0.008
MIP2017 (p) 22.3 ± 0.22 803.63 ± 10.469 14.07 ± 0.171 92.76 ± 2.796 28.59 ± 0.234 15.52 ± 0.324 26.54 ± 0.128
SAT2021 (p) 2217.61 ± 0.627 3645.33 ± 11.963 1701.62 ± 10.411 1856.39 ± 10.138 1939.54 ± 4.926 1786.68 ± 6.005 1763.12 ± 6.214
SAT2021-up (p) 1886.87 ± 4.472 2948.5 ± 25.254 1439.5 ± 2.972 1538.71 ± 8.639 1650.68 ± 3.577 1508.91 ± 2.327 1481.28 ± 3.556

Figure 5 Benchmark results on various sets of large, practical graphs (randomly permuted),
timeout is 60s. The benchmarks compare solver configurations using the preprocessor (“sy+”) to
state of the art saucy and Traces. Shown values are the sum over all instances in the set in
seconds. The average and standard deviation of 3 consecutive runs is used. Bold entries indicates
the fastest running time for the given set.

section. To make up pract, we picked the 5 largest instances (if available) of all the saucy
benchmark sets, and for the sets arising from computational tasks (MIP and SAT) we picked
5 instances uniformly at random.

Set “comb”. The goal of this set is to measure the overhead of applying the preprocessor
on graphs where there is no or very little exploitable structure (i.e., where the preprocessor
is expected to have no effect). For this purpose, we chose a large variety of graphs from
combinatorics, on which solvers are routinely evaluated [26]. The subset we chose contains a
graph from almost every graph class of the benchmark library from [2] (cfi, grid, grid-sw,
had, had-sw, hypercubes, kef, latin, latin-sw, lattice, mz, paley, pp, ran10, ransq, sts, sts-sw,
ranreg, tran, triang and shrunken multipedes). Whenever applicable, we chose a graph
of around 1000 vertices: note that here, we apply a size restriction, since combinatorial
graphs are generally difficult for their size. We choose an even smaller graph or left out sets
entirely whenever a solver had trouble finishing the instance quickly. Note that, since we
want to measure the preprocessing overhead, only instances for which the solvers finish in a
reasonable amount of time are of interest. If solvers take a long time solving an instance to
begin with, the overhead of the preprocessor is always negligible. Note that these restrictions
only apply to comb: all the other sets tested in this paper have no restriction on the size
of instances and instances were not chosen manually.

Results. The results are summarized in Figure 4. We conclude for bliss, nauty and
dejavu that the preprocessor increases performance dramatically on most instances, while
the overhead of the preprocessor is negligible. For Traces, performance also improves, in
particular there are fewer timeouts. However, the improvement is not as dramatic.

SEA 2023

1:14 Engineering a Preprocessor for Symmetry Detection

0 5 10 15 20 25

100

101

102

instance

co
m
p
u
ta
ti
o
n
ti
m
e

dac (p)

0 10 20 30 40 50

100

101

102

103

instance

co
m
p
u
ta
ti
o
n
ti
m
e

states (p)

0 0.5 1 1.5 2

102

103

instance

co
m
p
u
ta
ti
o
n
ti
m
e

internet (p)

0 2 4 6
102

103

instance

co
m
p
u
ta
ti
o
n
ti
m
e

ispd (p)

0 50 100 150 200 250

10−2

10−1

100

101

102

103

104

105

instance

co
m
p
u
ta
ti
o
n
ti
m
e

MIP2017 (p)

210 215 220 225 230 235 240

102

103

104

105

instance

co
m
p
u
ta
ti
on

ti
m
e

MIP2017 (p), zoomed

0 100 200 300 400

10−1

100

101

102

103

104

105

instance

co
m
p
u
ta
ti
on

ti
m
e

SAT2021 (p)

350 360 370 380 390 400

104

105

instance

co
m
p
u
ta
ti
o
n
ti
m
e

SAT2021 (p), zoomed

0 100 200 300 400

10−1

100

101

102

103

104

105

instance

co
m
p
u
ta
ti
o
n
ti
m
e

SAT2021-up (p)

saucy Traces sy+dejavu sy+Traces sy+bliss sy+saucy sy+nauty

Figure 6 Detailed plots for the various sets of Figure 5. The red bar illustrates timeouts. Instances
are sorted according to running time.

There are however two eye-catching instances: first, there is an instance with very high
standard deviation for dejavu. The instance is a Kronecker eye flip graph, which dejavu
is known to struggle with [6]. Secondly, there is a particular expensive outlier for Traces.
We analyze and discuss the instance in detail in Appendix C. There, we conclude that the
outlier is caused through an undesired interaction with a heuristic of Traces.

9.2 Comparison to state-of-the-art
The state-of-the-art solver on large practical graphs is saucy. Furthermore, Traces also
contains low-degree techniques. Thus, we compare all the solvers with the preprocessor to
saucy and Traces. The timeout used is 60s (also if a solver runs out of memory).

We test all sets of the saucy distribution. We also test 3 contemporary sets of practical
graphs: the MIP2017 set contains graphs stemming from the mixed integer programming
library (see [1]). The SAT2021 library contains graphs stemming from SAT instances from
the SAT competition 2021 [4]. In the SAT2021-up set, SAT instances were first preprocessed
using the unit and pure literal rule (see [5]). We want to remark that the SAT sets contain
the largest graphs out of all the tested sets, with up to tens of millions of vertices.

M. Anders, P. Schweitzer, and J. Stieß 1:15

The results are summarized in Figure 5, Figure 6, and Appendix B. We observe that the
previous state-of-the-art (saucy) is outperformed on all but one set by several solvers using
the preprocessor. This demonstrates that the approach of using our universal preprocessor
in conjunction with different solvers can outperform state-of-the-art. Moreover, both saucy
and Traces also visibly speed up by applying the preprocessor on all but one set.

On a few of the very large graphs in the SAT sets, dejavu and Traces run out of
memory. Hence, depending on how this is weighed into the evaluation, other solvers may be
preferable. In all cases where dejavu runs out of memory, all other solvers time out. In any
case, on all these sets, sy+nauty and sy+saucy also outperform saucy.

10 Conclusion and Future Development

We introduced the new sassy preprocessor for symmetry detection. We demonstrated that
sassy indeed speeds up state-of-the-art solvers on large, practical graphs. Future additions
to the preprocessor could include more heuristics for degree 2 removal, stronger invariants
or even more efficient implementations and tuning of the existing heuristics. Since we have
observed a high sensitivity of state-of-the-art solvers to their choice of cell selectors, a more
extensive study into the topic would be of interest.

References
1 MIPLIB 2017 - The Mixed Integer Programming Library. https://https://miplib.zib.de/.
2 nauty and Traces. http://pallini.di.uniroma1.it.
3 sassy. https://github.com/markusa4/sassy.
4 SAT Competition 2021. https://satcompetition.github.io/2021/.
5 Markus Anders. SAT preprocessors and symmetry. In Kuldeep S. Meel and Ofer Strichman,

editors, 25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 1:1–1:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.1.

6 Markus Anders and Pascal Schweitzer. Engineering a fast probabilistic isomorphism test.
In Martin Farach-Colton and Sabine Storandt, editors, Proceedings of the Symposium on
Algorithm Engineering and Experiments, ALENEX 2021, Virtual Conference, January 10-11,
2021, pages 73–84. SIAM, 2021. doi:10.1137/1.9781611976472.6.

7 Markus Anders and Pascal Schweitzer. Parallel computation of combinatorial symmetries. In
Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium
on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume
204 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ESA.2021.6.

8 Markus Anders, Pascal Schweitzer, and Florian Wetzels. Comparative design-choice analysis
of color refinement algorithms beyond the worst case. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume
198 of LIPIcs, pages 15:1–15:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.15.

9 Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper bounds for
the complexity of canonical colour refinement. Theory Comput. Syst., 60(4):581–614, 2017.
doi:10.1007/s00224-016-9686-0.

10 Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for QBF. In
Nikolaj S. Bjørner and Viorica Sofronie-Stokkermans, editors, Automated Deduction – CADE-
23 – 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 –
August 5, 2011. Proceedings, volume 6803 of Lecture Notes in Computer Science, pages 101–115.
Springer, 2011. doi:10.1007/978-3-642-22438-6_10.

SEA 2023

https://https://miplib.zib.de/
http://pallini.di.uniroma1.it
https://github.com/markusa4/sassy
https://satcompetition.github.io/2021/
https://doi.org/10.4230/LIPIcs.SAT.2022.1
https://doi.org/10.1137/1.9781611976472.6
https://doi.org/10.4230/LIPIcs.ESA.2021.6
https://doi.org/10.4230/LIPIcs.ICALP.2021.15
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/978-3-642-22438-6_10

1:16 Engineering a Preprocessor for Symmetry Detection

11 Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting structure
in symmetry detection for CNF. In Sharad Malik, Limor Fix, and Andrew B. Kahng, editors,
Proceedings of the 41th Design Automation Conference, DAC 2004, San Diego, CA, USA,
June 7-11, 2004, pages 530–534. ACM, 2004. doi:10.1145/996566.996712.

12 David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo. Exploiting
symmetry in SMT problems. In Nikolaj S. Bjørner and Viorica Sofronie-Stokkermans, editors,
Automated Deduction – CADE-23 – 23rd International Conference on Automated Deduction,
Wroclaw, Poland, July 31 – August 5, 2011. Proceedings, volume 6803 of Lecture Notes in
Computer Science, pages 222–236. Springer, 2011. doi:10.1007/978-3-642-22438-6_18.

13 Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning: Effect-
ive dynamic symmetry handling for SAT. In Serge Gaspers and Toby Walsh, editors, Theory and
Applications of Satisfiability Testing – SAT 2017 – 20th International Conference, Melbourne,
VIC, Australia, August 28 – September 1, 2017, Proceedings, volume 10491 of Lecture Notes in
Computer Science, pages 83–100. Springer, 2017. doi:10.1007/978-3-319-66263-3_6.

14 Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications of Satis-
fiability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005,
Proceedings, volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.
doi:10.1007/11499107_5.

15 Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint programming.
In Francesca Rossi, Peter van Beek, and Toby Walsh, editors, Handbook of Constraint Pro-
gramming, volume 2 of Foundations of Artificial Intelligence, pages 329–376. Elsevier, 2006.
doi:10.1016/S1574-6526(06)80014-3.

16 Mark K. Goldberg. A nonfactorial algorithm for testing isomorphism of two graphs. Discret.
Appl. Math., 6(3):229–236, 1983. doi:10.1016/0166-218X(83)90078-1.

17 Christopher Hojny and Marc E. Pfetsch. Symmetry handling via symmetry breaking polytopes.
In Ekrem Duman and Ali Fuat Alkaya, editors, 13th Cologne Twente Workshop on Graphs
and Combinatorial Optimization, Istanbul, Turkey, May 26-28, 2015, pages 63–66, 2015.

18 Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of Computational Group
Theory. Discrete Mathematics and Its Applications. Chapman and Hall/CRC, 2005.

19 Tommi A. Junttila and Petteri Kaski. Conflict propagation and component recursion for
canonical labeling. In Alberto Marchetti-Spaccamela and Michael Segal, editors, Theory and
Practice of Algorithms in (Computer) Systems – First International ICST Conference, TAPAS
2011, Rome, Italy, April 18-20, 2011. Proceedings, volume 6595 of Lecture Notes in Computer
Science, pages 151–162. Springer, 2011. doi:10.1007/978-3-642-19754-3_16.

20 Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Symmetry and satisfiability: An update.
In Ofer Strichman and Stefan Szeider, editors, Theory and Applications of Satisfiability Testing
– SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, volume 6175 of Lecture Notes in Computer Science, pages 113–127. Springer,
2010. doi:10.1007/978-3-642-14186-7_11.

21 Manuel Kauers and Martina Seidl. Symmetries of quantified boolean formulas. In Olaf
Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications of Satis-
fiability Testing – SAT 2018 – 21st International Conference, SAT 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceed-
ings, volume 10929 of Lecture Notes in Computer Science, pages 199–216. Springer, 2018.
doi:10.1007/978-3-319-94144-8_13.

22 Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The weisfeiler-leman dimension of
planar graphs is at most 3. J. ACM, 66(6):44:1–44:31, 2019. doi:10.1145/3333003.

23 Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting.
ACM Trans. Comput. Log., 23(1):1:1–1:31, 2022. doi:10.1145/3417515.

https://doi.org/10.1145/996566.996712
https://doi.org/10.1007/978-3-642-22438-6_18
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/11499107_5
https://doi.org/10.1016/S1574-6526(06)80014-3
https://doi.org/10.1016/0166-218X(83)90078-1
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.1007/978-3-642-14186-7_11
https://doi.org/10.1007/978-3-319-94144-8_13
https://doi.org/10.1145/3333003
https://doi.org/10.1145/3417515

M. Anders, P. Schweitzer, and J. Stieß 1:17

24 Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo. Maxpre: An extended
maxsat preprocessor. In Serge Gaspers and Toby Walsh, editors, Theory and Applications of
Satisfiability Testing – SAT 2017 – 20th International Conference, Melbourne, VIC, Australia,
August 28 – September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer
Science, pages 449–456. Springer, 2017. doi:10.1007/978-3-319-66263-3_28.

25 François Margot. Symmetry in integer linear programming. In Michael Jünger, Thomas M.
Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt,
Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer Programming 1958-
2008 – From the Early Years to the State-of-the-Art, pages 647–686. Springer, 2010. doi:
10.1007/978-3-540-68279-0_17.

26 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

27 Marc E. Pfetsch and Thomas Rehn. A computational comparison of symmetry handling
methods for mixed integer programs. Math. Program. Comput., 11(1):37–93, 2019. doi:
10.1007/s12532-018-0140-y.

28 Adolfo Piperno. Isomorphism test for digraphs with weighted edges. In Gianlorenzo D’Angelo,
editor, 17th International Symposium on Experimental Algorithms, SEA 2018, June 27-29,
2018, L’Aquila, Italy, volume 103 of LIPIcs, pages 30:1–30:13. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.SEA.2018.30.

29 Pascal Schweitzer and Daniel Wiebking. A unifying method for the design of algorithms
canonizing combinatorial objects. In Moses Charikar and Edith Cohen, editors, Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, pages 1247–1258. ACM, 2019. doi:10.1145/3313276.3316338.

30 Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003. doi:10.1017/CBO9780511546549.

A Probing for Sparse Automorphisms

A.1 The Individualization Refinement Framework
The individualization-refinement framework is a general framework for algorithms computing
isomorphisms, automorphisms and canonical labellings (see [26]). These algorithms generally
work on a special tree, the so-called IR tree. We give a brief description of how IR trees
are constructed. For a more extensive description, in particular for the numerous strategies
needed to perform the search more efficiently, see [26, 7].

Each node x of the tree has a corresponding equitable coloring πx of the input graph.
The leaves correspond to discrete colorings. The most important property of IR trees is that
they are isomorphism-invariant, meaning that on G and φ(G) (where φ is an isomorphism)
we obtain isomorphic IR trees.

Let (G, π) be the input graph. Let π′ be the coarsest equitable refinement of π. We let
the root of the IR tree correspond to π′. In each node x of an IR tree, a non-trivial color
class from the corresponding coloring πx is chosen (i.e., a C = π−1

x (c) with |C| > 1, C must
be chosen isomorphism-invariantly). If there is no non-trivial color class, then x is a leaf and
its corresponding coloring is discrete. Otherwise, for each v ∈ C, we define xv as a child of x
in the IR tree. Let πxv

denote the coloring corresponding to xv. We may obtain πxv
from

πx as follows. Starting from πx, we first artificially single out v (i.e., individualize v). This
means we set πxv (v) := c′ where c′ /∈ π(V (G)) (again, c′ is chosen isomorphism-invariantly).
Then, we refine the coloring using color refinement, obtaining the equitable coloring πxv

.
We can derive automorphisms from IR trees. If π1, π2 are leaves of the tree, i.e., discrete

colorings, then φ := π−1
1 ◦ π2 defines a permutation on V (G). While φ is not guaranteed to

be an automorphism, we can efficiently test whether it is (by checking whether φ(G) = G).

SEA 2023

https://doi.org/10.1007/978-3-319-66263-3_28
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.4230/LIPIcs.SEA.2018.30
https://doi.org/10.1145/3313276.3316338
https://doi.org/10.1017/CBO9780511546549

1:18 Engineering a Preprocessor for Symmetry Detection

With this method all of Aut(G) can be computed. This follows essentially from the fact that
comparing all pairs of leaves in this way will give us all automorphisms of G (or rather a
generating set of Aut(G) when automorphism pruning is applied; see [26]).

A.2 The Probing Algorithm
Our probing strategy only searches for automorphisms which can be used directly to reduce
the graph. The idea is as follows. For a color class that we want to reduce, we attempt
to collect automorphisms that transitively permute all the vertices in the entire color class.
This certifies that the color class is an orbit. We can then individualize an arbitrary vertex
of the color class. In contrast, if we only have some automorphisms that together do not
act transitively on the color class, it is not clear how to manipulate the graph favorably. In
particular, since some of the vertices may not be in the same orbit, we do not know which
vertex to individualize. We now describe the bounded IR probing algorithm.

(Description of Algorithm 1.) (See Algorithm 1 for the pseudocode.) The algorithm
expects as input a colored graph G = (V,E, π), a color class Cprobe = π−1(c) as well as a
length bound L. It outputs a set of automorphisms Φ and a coloring π′ refining π. If the
probing was unsuccessful then Φ = {} and π′ = π. Otherwise ⟨Φ⟩ acts transitively on Cprobe

and π′ is obtained from π by individualizing a vertex and refining.
We compute arbitrary IR paths (i.e., a rooted path in the IR tree) starting with an

individualization of a vertex in Cprobe. The path is only computed up to a length of L.
Initially, the algorithm examines two of these paths concurrently, starting in two different

vertices v1, v2 ∈ Cprobe. It checks after each individualization whether the automorph-
ism φπ1,π2 (defined, as above, mapping corresponding singletons) is an automorphism. If
this happens to be the case after having performed, say, L′ individualizations, we bound all
subsequent paths by L′.

Afterwards for each vertex w ∈ Cprobe \ {v1, v2} we compute an IR path starting with the
individualization of w. We hope to find an automorphism mapping v1 to w. If we discover
an automorphism for each w, we return the set of automorphisms Φ, individualize v1 in π,
refine to obtain π′ and return Φ and π′.

(Correctness of Algorithm 1.) Correctness of the algorithm follows simply from the fact
that we certify all automorphisms. That is, every map claimed to be an automorphism
is indeed an automorphism. Since this certification is done for each automorphism, this
certifies the fact that Cprobe is an orbit of Aut(G, π). Since we return all automorphisms
required to construct the orbit (i.e., we return Φ), we have ⟨Φ ∪ Aut(G, π′)⟩ = Aut(G, π) by
the orbit-stabilizer theorem (see [18]).

(Implementation of Algorithm 1.) We want to make some further remarks on the
implementation of the algorithm. In fact, even though it can be implemented very efficiently,
it generally has to be used sparingly. Overall we need to decide when and how often to employ
the probing strategy and also which depth bound L to use. The preprocessor essentially uses
three strategies: 1-IR probing, ∞-IR probing with class size 2 and ∞-IR probing up to class
size 8 (in order of descending frequency).

B Non-permuted Benchmarks

Figure 7, Figure 8 and Figure 9 show benchmark results for non-permuted graphs. While
overall times are faster across all graph classes and solvers than on the randomly permuted
graphs, the interpretation of results given in Section 9 also applies to these benchmarks.
Hence, our results agree on both randomly permuted and non-permuted graphs.

M. Anders, P. Schweitzer, and J. Stieß 1:19

Algorithm 1 Bounded IR probing in a color class Cprobe up to a path of length L.

1 function BoundedProbeIR(G, π, Cprobe, L)
Input : graph G = (V,E, π) where π is equitable, color class Cprobe of π, length

bound L

Output : (equitable) coloring π′, set of automorphisms Φ
2 Φ := {} ; // set of automorphisms
3 Pick vertices v1, v2 ∈ π−1(Cprobe);
4 for i ∈ {1, 2} do
5 πi := π;
6 individualize vi in πi;
7 ColorRefinement(G, πi);
8 LC := [Cprobe] ; // list of color classes
9 while |LC | < L do

10 if φπ1,π2(G, π) = (G, π) then
11 break; // automorphism found
12 C := non-trivial color class of π1;
13 LC += [C] ; // append C to LC

14 individualize some v ∈ π−1
1 (C) in π1;

15 ColorRefinement(G, π1);
16 individualize some v ∈ π−1

2 (C) in π2;
17 ColorRefinement(G, π2);
18 if φπ1,π2(G, π) ̸= (G, π) then
19 return π, ∅; // probing failed
20 else
21 Φ := Φ ∪ {φ};
22 for w ∈ Cprobe ∖ {v1, v2} do
23 reset π2 to π ; // essentially π2 := π

24 individualize w in π2;
25 ColorRefinement(G, π2);
26 for C ∈ LC do
27 individualize some v ∈ π−1

2 (C) in π2;
28 ColorRefinement(G, π2);
29 if φπ1,π2(G, π) ̸= (G, π) then
30 return π, ∅; // probing failed
31 else
32 Φ := Φ ∪ {φ};
33 individualize v1 in π ; // success; individualize v1 in (G, π)
34 return ColorRefinement(G, π), Φ;

C The Outlier in Combinatorial Graphs

There is one particular outlier in the evaluation of Traces comparing preprocessed vs.
unprocessed instances. The instance is a shrunken multipede on 408 vertices. Without
preprocessing, it is solved in 0.75s, while with preprocessing it is solved in 6.3s. This is at
first glance confusing: the preprocessor finishes within less than 0.5ms, while not changing
the graph other than coloring it with its coarsest equitable coloring. This is however almost
the same coloring Traces would also compute for the graph.

SEA 2023

1:20 Engineering a Preprocessor for Symmetry Detection

100 101 102 103

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

bliss

10−1 100 101 102 103 104

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

nauty

10−1 100 101 102 103

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

Traces

10−1 100 101 102 103

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

dejavu

10−1 100 101 102 103 104

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

saucy

10−1 101 103 105

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

bliss

10−1 101 103 105

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

nauty

10−1 101 103 105

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

Traces

10−1 101 103 105

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

dejavu

10−1 100 101 102 103

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

saucy

Figure 7 Solvers with sassy vs. solvers without sassy on comb (top) and pract (bottom), not
permuted. Timeout is 60s. The green bar shows instances that timed out without the preprocessor.

state-of-the-art this paper
set saucy Traces sy+dejavu sy+Traces sy+bliss sy+saucy sy+nauty
dac 0.35 ± 0.008 2.47 ± 0.005 0.28 ± 0.001 0.81 ± 0.002 0.37 ± 0.002 0.27 ± 0.002 0.34 ± 0.001
states 2.89 ± 0.054 7.58 ± 0.158 3.85 ± 0.048 3.85 ± 0.04 3.85 ± 0.041 3.85 ± 0.038 3.85 ± 0.043
internet 0.15 ± 0.002 2.23 ± 0.022 0.13 ± 0.000 0.13 ± 0.001 0.13 ± 0.001 0.13 ± 0.000 0.13 ± 0.000
ispd 3.83 ± 0.028 4.84 ± 0.059 3.7 ± 0.057 3.7 ± 0.061 3.7 ± 0.057 3.7 ± 0.054 3.68 ± 0.039
MIP2017 10.96 ± 0.158 774.09 ± 0.578 9.12 ± 0.165 84.42 ± 0.201 21.46 ± 0.331 10.66 ± 0.109 21.04 ± 0.163
SAT2021 1292.76 ± 1.641 2855.57 ± 10.636 881.69 ± 0.982 1058.97 ± 3.283 1149.04 ± 3.73 990.96 ± 3.323 988.15 ± 2.662
SAT2021-up 1144.06 ± 3.648 2393.85 ± 4.799 780.02 ± 6.009 903.93 ± 2.517 1027.61 ± 3.815 876.77 ± 2.535 865.38 ± 2.578

Figure 8 Benchmark results on various sets of large, practical graphs (not permuted), timeout is
60s. Running out of memory also counts as a timeout. The benchmarks compare solver configurations
using the preprocessor (“sy+”) to state of the art saucy and Traces. Shown values are the sum
over all instances in the set in seconds. The average and standard deviation of 3 consecutive runs is
used. Bold entries indicates the fastest running time for the given set.

The only difference is that Traces might name the colors differently internally, e.g.,
color 3 might be named color 6 instead. While this does not structurally make the graph
harder or easier, heuristics internally might always, for example, choose the “first largest
color” (this is similar to, e.g., variable ordering in SAT solvers). Thus, renaming the colors
might influence the decisions made by the solver. Using the “first” color is however usually
not a deliberate decision. In fact, if we simply reverse the order of colors, the graph is indeed
solved in 0.12s. In [7], it is also argued that cell selector choice has a significant impact
on the set of shrunken multipedes. We believe that the solution to this issue is to make
structurally better choices, and has indeed little to do with the role of the preprocessor.

D Ablation study

In Figure 10 we evaluate for dejavu on the MIP2017 set the effect of each of the preprocessing
techniques separately. We do so by running the configuration SY+dejavu, but performing
a separate run for each technique, deactivating the respective technique. For example,
sy+dejavu-deg2 runs SY+dejavu without the degree 2 removal techniques. The data
shows that each of the techniques has a beneficial impact on running time. By far the most
impactful technique is the removal of degree 0 and 1, followed by the removal of vertices of
degree 2, and lastly probing.

M. Anders, P. Schweitzer, and J. Stieß 1:21

0 5 10 15 20 25

100

101

102

instance

co
m

pu
ta

tio
n

tim
e

dac

0 10 20 30 40 50

100

101

102

103

instance

co
m

pu
ta

tio
n

tim
e

states

0 0.5 1 1.5 2

102

103

instance

co
m

pu
ta

tio
n

tim
e

internet

0 2 4 6

102

103

instance

co
m

pu
ta

tio
n

tim
e

ispd

0 50 100 150 200 250

10−2

10−1

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

MIP2017

210 215 220 225 230 235 240

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

MIP2017, zoomed

0 100 200 300 400

10−1

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

SAT2021

350 360 370 380 390 400

104

105

instance

co
m

pu
ta

tio
n

tim
e

SAT2021, zoomed

0 100 200 300 400

10−1

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

SAT2021-up

saucy Traces sy+dejavu sy+Traces sy+bliss sy+saucy sy+nauty

Figure 9 Detailed plots for the various sets of Figure 8. The red bar illustrates timeouts. Instances
are sorted according to running time.

0 50 100 150 200 250
10−2

10−1

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

MIP2017 (ablation)

sy+dejavu
sy+dejavu-deg2
sy+dejavu-deg01
sy+dejavu-probe

210 215 220 225 230 235 240

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

MIP2017 (ablation, zoomed)

sy+dejavu
sy+dejavu-deg2
sy+dejavu-deg01
sy+dejavu-probe

Figure 10 Ablation study for sy+dejavu on the MIP2017 graphs (times: 9.15s, 17.87s, 234.47s,
10.65s), timeout is 60s.

SEA 2023

	1 Introduction
	2 Philosophy of the Preprocessor
	3 Preliminaries
	3.1 Color Refinement
	3.2 Quotient Graph

	4 A Toolbox for Reducing Graphs
	5 Removing low degree vertices
	5.1 Degree 0 Vertices
	5.2 Degree 1 Vertices
	5.3 Degree 2 Vertices

	6 Probing for Sparse Automorphisms
	7 Exploiting the Quotient Graph
	7.1 Edge Flip and Removal of Trivial Components
	7.2 Connected Components

	8 Scheduling of Techniques
	9 Benchmarks
	9.1 Preprocessed versus Unprocessed
	9.2 Comparison to state-of-the-art

	10 Conclusion and Future Development
	A Probing for Sparse Automorphisms
	A.1 The Individualization Refinement Framework
	A.2 The Probing Algorithm

	B Non-permuted Benchmarks
	C The Outlier in Combinatorial Graphs
	D Ablation study

