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Abstract
Secure two-party computation is a cryptographic technique that enables two parties to compute a
function jointly while keeping each input secret. It is known that most functions cannot be realized
by information-theoretically secure two-party computation, but any function can be realized in the
correlated randomness (CR) model, where a trusted dealer distributes input-independent CR to the
parties beforehand. In the CR model, three kinds of complexities are mainly considered; the size of
CR, the number of rounds, and the communication complexity.

Ishai et al. (TCC 2013) showed that any function can be securely computed with optimal online
communication cost, i.e., the number of rounds is one round and the communication complexity
is the same as the input length, at the price of exponentially large CR. In this paper, we prove
that exponentially large CR is necessary to achieve perfect security and online optimality for a
general function and that the protocol by Ishai et al. is asymptotically optimal in terms of the size
of CR. Furthermore, we also prove that exponentially large CR is still necessary even when we allow
multiple rounds while keeping the optimality of communication complexity.
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1 Introduction

Secure multi-party computation (MPC) is a cryptographic technique that enables some
parties to compute a function jointly while keeping each input secret. Secure multi-party
computation has been extensively studied since Yao advocated it in the 1980s [25]. From a
theoretical point of view, Kushilevitz [18] gave a complete characterization of a function class
that can be realized by a two-party protocol perfectly secure against a semi-honest adversary,
and Chor and Kushilevitz [7] gave a complete characterization of a boolean function that
can be realized by a perfectly secure multi-party protocol in the dishonest-majority and
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semi-honest adversary setting. From their result, most functions (including even simple
functions such as the AND function) cannot be securely realized by a multi-party protocol in
the dishonest-majority setting. However, if we are allowed to use correlated randomness (CR,
in short), any function can be securely realized. Indeed, by using additive secret sharing and
Beaver Triple [2], we can securely compute any boolean circuits. For simplicity, we focus on
the two-party case and consider a semi-honest adversary in this paper.

The CR model, also known as a preprocessing model, is a model where we are allowed to
use CR, which is a randomness independent of an input of a function. In the CR model, a
protocol is divided into two phases: the offline phase and the online phase. In the offline
phase, CR is generated and distributed to the parties. In the online phase, the parties
securely compute a function with their input and the CR distributed in the offline phase.
In most cases, the online phase consists of lightweight computation and is fast enough, and
therefore many recent works (e.g., [1, 5, 6, 9, 17]) adopted the CR model. Some papers
(e.g., [1, 5, 6]) assume that a trusted dealer generates and distributes CR in the offline phase.
In the CR model, three kinds of complexities are mainly considered: the size of CR, the
number of rounds of the online phase, and the communication complexity of the online phase.
By using Beaver Triple, we can construct a secure protocol for a boolean circuit C with
O(s)-bit CR, O(depth(C)) rounds, and O(s)-bit communication complexity, where s is the
size of C and depth(C) is the depth of C. It is a major open problem whether it is possible
to make the communication complexity sublinear in the circuit size.

Ishai et al. [16] partially solved the above open problem by developing a one-time truth
table. In their protocol, the communication complexity is independent of the circuit size and
is linear in the input length. Furthermore, their protocol using a one-time truth table achieves
online optimality, i.e., the number of rounds is one round and the communication complexity
is the same as the input length. However, the size of CR of their protocol is exponential in
the input length.1 Indeed, their protocol needs O(N2)-bit CR where N is the cardinality
of their input domain (which is exponential in the input length). Beimel et al. [4], the full
version of [3], reduced the size of CR to O(N1/2) bits, at the price of increasing the number
of rounds to two rounds and the communication complexity to O(N1/2) bits. Although there
might have to be some trade-off among the three kinds of complexities mentioned above,
the quantitative property of such a trade-off has not been well investigated in the literature.
For example, focusing on Ishai et al.’s protocol, it is even not known whether the size of CR
can be reduced to o(N2) bits while keeping the single round and optimal communication
complexity.

1.1 Our Contributions
In this paper, we show some trade-offs by giving lower bounds of the size of CR in online-
restricted settings where online communication cost (i.e., the number of rounds and the
communication complexity) is restricted. Here we assume “shared-output” setting that the
outputs (y0, y1) by two parties satisfy that the function value is reconstructed by y0 + y1
where ‘+’ is some additive group operation. We discuss this setting in Section 1.2.

More concretely, we give (exponential) lower bounds of the size of CR in two types of online-
restricted settings: online-optimal setting and communication-optimal setting. As described
above, “online-optimal” means that the number of rounds is one round and the communication

1 It is still an open problem whether it is possible to make the communication complexity sublinear in
the circuit size in the setting that the time complexity (and therefore the size of CR) is polynomial in
the input length.
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complexity is the same as the input length. On the other hand, “communication-optimal”
means that we allow multiple rounds but the total size of messages sent by a party to the
other party during the multiple rounds is still equal to the size of the input of the party.

Our results are summarized as follows, where N is the cardinality of the domain X :
1. We prove that there exists a function f : X × X → {0, 1}2 such that any online-optimal

perfectly secure two-party protocol for f needs CR of at least (N − 1)2 = Ω(N2) bits.
2. We prove that there exists a function f : X × X → {0, 1}2 such that any communication-

optimal perfectly secure two-party protocol for f needs CR of at least N − 1 = Ω(N)
bits.

The first result implies that the one-time truth table [16], which is an online-optimal secure
two-party protocol with O(N2)-bit CR, is asymptotically optimal among online-optimal ones
for general functions in terms of the size of CR.

1.2 Shared-output vs. Plain-output

Some papers, including Ishai et al. [16] and Beimel et al. [4], considered the “plain-output”
setting, in which both parties output the function value itself, not the share of the function
value. The shared-output setting is more general in the sense that shared-output protocols
can be converted into plain-output protocols by adding a reconstruction step. The protocols
in both Ishai et al. [16] and Beimel et al. [4] contained shared-output protocols in the sense
that their protocols can be divided into two steps: Both protocols (Fig.1 in [16] and Theorem
D.1 in [4]) compute the share of the function value first, and then reconstruct the function
value by exchanging the shares.

Furthermore, the shared-output setting is suitable for the situation where the protocol is
used as a subprotocol in another MPC protocol since the shared output does not leak any
information about the function value itself. Due to this composability, many recent MPC
protocols (e.g., [1, 5, 6, 24]) adopt the shared-output setting.

1.3 Related Work

The prior work most relevant to our setting is a combination of [6] and [14]. In [6], Boyle et
al. showed that distributed point functions (DPF) can be constructed from an online-optimal
(shared-output) equality protocol. In more detail, they showed that given an online-optimal
shared-output equality protocol with r-bit CR, a DPF scheme with O(r)-bit key size can
be constructed2. On the other hand, as Gilboa et al. [14] mentioned, the key size of an
information-theoretic DPF scheme is at least 2Ω(log N) = NΩ(1) bits, where N corresponds to
the cardinality of the domain of point functions. Combining it with the reduction by Boyle
et al., it can be proved that the size of CR of an online-optimal protocol for the equality
function EQ : [N ]× [N ]→ {0, 1} is at least NΩ(1) bits. To the best of our knowledge, this is
the only prior result showing an exponential lower bound of the size of CR.

There are several results on the randomness complexity not on the size of CR (e.g.,
[13, 15, 19, 20, 21, 22, 23]). We note that they consider MPC in the plain model (not
in the CR model) and with more than two parties. There are also several results on the
communication complexity in multi-party computation (e.g., [8, 10, 11, 12]).

2 Though they only considered the computational security, their reduction can be applied also in the
information-theoretic setting.

ITC 2023
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1.4 Organization
We provide the notations used in this paper and the definitions of online- or communication-
optimal secure two-party protocols in Section 2. We provide a technical overview in Section 3.
In Section 4, we prove the lower bound in the online-optimal setting. We prove the lower
bound in the communication-optimal setting in Section 5.

2 Preliminaries

2.1 Notations
For an integer N , let [N ] denote the set {0, 1, . . . , N − 1}. Let P0 and P1 be the parties
participating in a two-party protocol. We use ∆k×ℓ(i, j) to denote the k× ℓ matrix for which
the (i, j)-th element is 1 and the other elements are 0. We let G denote an Abelian group,
+ denote the operation on G, and 0 denote the identity element of G. For a boolean value
b ∈ {0, 1}, let b̄ be the negation of b. For a matrix M , M [x, y] denotes the (x, y)-th element
of M .

2.2 Online-Optimal Protocols
▶ Definition 1. An online-optimal secure two-party protocol for f : X0 × X1 → G with
correlated randomness CR ⊆ R0 × R1 consists of three algorithms (Gen, Msg, Eval) with
following syntax:

Gen: Gen outputs a correlated randomness (r0, r1) ∈ CR ⊆ R0 ×R1 without taking any
input.
Msg: Taking party id b ∈ {0, 1}, input x ∈ Xb, and randomness r ∈ Rb, Msg (determin-
istically) outputs a message m ∈Mb.
Eval: Taking party id b ∈ {0, 1}, input x ∈ Xb, randomness r ∈ Rb, and message m ∈Mb̄,
Eval (deterministically) outputs g ∈ G.

satisfying the following three requirements:
Optimality: For b ∈ {0, 1}, the size of Mb is equal to the size of Xb.
Correctness: For all (x0, x1) ∈ X0 ×X1,

Pr

g0 + g1 = f(x0, x1)

∣∣∣∣∣∣∣∣∣∣∣∣

(r0, r1)← Gen,

m0 ← Msg(0, x0, r0),
m1 ← Msg(1, x1, r1),

g0 ← Eval(0, x0, r0, m1),
g1 ← Eval(1, x1, r1, m0)

 = 1.

Security: For b ∈ {0, 1}, the distribution of {
(
rb, Msg(b̄, x, rb̄)

)
}(r0,r1)←Gen is independent

of x ∈ Xb̄.

Without loss of generality, we assume that the randomness space is not redundant. That is,
we assume that the probability Pr[(r0, r1)← Gen] is positive for all (r0, r1) ∈ CR and that for
all r0 ∈ R0 (r1 ∈ R1, resp.), there exists r1 ∈ R1 (r0 ∈ R0, resp.) such that (r0, r1) ∈ CR.

2.3 Communication-Optimal Protocols
▶ Definition 2. A (T -round) communication-optimal secure two-party protocol for f : X0 ×
X1 → G with correlated randomness CR ⊆ R0 ×R1 consists of algorithms (Gen, Msg, Eval)
with following syntax:
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Gen: Gen outputs a correlated randomness (r0, r1) ∈ CR ⊆ R0 ×R1 without taking any
input.
Msg: Taking (x0, r0) ∈ X0 ×R0 and (x1, r1) ∈ X1 ×R1, Msg (deterministically) outputs
messages (mes1, . . . , mesT ) ∈M1×· · ·×MT . Here mesi is a message sent to Pi mod 2 from
Pi+1 mod 2 which is determined by Pi+1 mod 2’s input xi+1 mod 2, Pi+1 mod 2’s randomness
ri+1 mod 2 and the messages (mes1, . . . , mesi−1) exchanged so far.
Eval: Taking party id b ∈ {0, 1}, input x ∈ Xb, randomness r ∈ Rb, and messages
(mes1, . . . , mesT ) exchanged so far, Eval (deterministically) outputs g ∈ G.

satisfying the following three requirements:
Optimality: For b ∈ {0, 1}, the size of the message space Mb is equal to that of the input
space Xb, where M0 = M1 ×M3 ×M5 × · · · and M1 = M2 ×M4 ×M6 × · · · .
Correctness: For all (x0, x1) ∈ X0 ×X1,

Pr

g0 + g1 = f(x0, x1)

∣∣∣∣∣∣∣
(r0, r1)← Gen,

(mes1, . . . , mesT )← Msg(x0, r0, x1, r1),
gb ← Eval(b, xb, rb, (mes1, . . . , mesT ))

 = 1.

Security: For b ∈ {0, 1}, the distribution of {(rb, Msg(x0, r0, x1, r1))}(r0,r1)←Gen is inde-
pendent of xb̄ ∈ Xb̄.

As an online-optimal secure two-party protocol, we assume that the randomness space is
not redundant. In our definition, P0 is the first party who sends a message. Note that a
two-party protocol where P1 is the first party who sends a message can be reduced to a
protocol where P0 is the first party who sends a message by letting the first message space
M1 be a singleton.

2.4 Non-Redundant Functions
Throughout this paper, we consider non-redundant functions in the following sense:

▶ Definition 3. We say that a function f : X0 × X1 → G is non-redundant for P0 if
f(x0, ·)− f(x′0, ·) : X1 → G is not constant for all x0 ̸= x′0 ∈ X0; a function f : X0 ×X1 → G
is non-redundant for P1 if f(·, x1)− f(·, x′1) : X0 → G is not constant for all x1 ̸= x′1 ∈ X1;
and a function f : X0 ×X1 → G is non-redundant if f is non-redundant for P0 and P1.

A two-party protocol for a redundant (i.e., not non-redundant) function f is reducible to
a two-party protocol for a non-redundant function f ′ without any overhead. See Appendix A
for more details.

3 Technical Overview

Similar research (e.g., [11, 12]) on the lower bounds for communication or randomness
complexity mainly focuses on information entropy, e.g. the Shannon entropy. However, in
such arguments, it is difficult to effectively handle the correctness requirement as a restraint
condition, and thus the obtained bounds may not be tight in general. We consider this
may be the main reason why strict bounds for our setting have not been obtained so far,
and to overcome this issue, in this work, we instead directly utilize the algebraic aspect
of the correctness requirement. This may require a more complicated argument than the
entropy-based approach, but it would allow the correctness requirement to be fully utilized
in the derivation of the tight lower bound. We provide a more detailed explanation of our
approach in the following subsections.

ITC 2023
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3.1 The Case of Online-Optimal Setting

We give the Ω(N2)-bit lower bound for some function f : [N ]× [N ]→ {0, 1}2 in two steps:
1. By the security, correctness and optimality requirements, we show that the following

equation (hereinafter referred to as the correctness equation) holds: For all (r0, r1) ∈ CR,

A0,r0 + A1,r1 = P T
0,r0

FP1,r1 , (1)

where Ab,rb
is an N ×N matrix determined by rb, Pb,rb

is an N ×N permutation matrix
determined by rb, and F is an N ×N matrix whose (i, j)-th element is equal to f(i, j).

2. For some r0 ∈ R0, we prove that the size of the set {A0,r0 − A0,r′
0
}r′

0∈R0 is at least
2(N−1)2 . This implies that log |R0| ≥ (N − 1)2 and proves the Ω(N2)-bit lower bound.

Roughly speaking, each element of Ab,rb
corresponds to an output of Eval and Pb,rb

is a
permutation matrix corresponding to Msg.

3.1.1 The First Step

The correctness equation Eq.(1) is deduced from the correctness requirement and the fact
that Msg(b, ·, rb) : Xb →Mb is bijective for all b ∈ {0, 1} and rb ∈ Rb (Lemma 6). First, we
give an informal proof of the fact that Msg is bijective. Since the size of the domain Xb and
the range Mb are the same, it is enough to prove that the function is injective. Without
loss of generality, we set b = 0. Suppose on the contrary that there exist x0 ̸= x′0 ∈ X0 such
that Msg(0, x0, r0) = Msg(0, x′0, r0) = m0. This assumption implies that for any input x1
of P1, P1’s output of Eval for the case of P0’s input being x0 is the same as that for the
case of x′0. Therefore, from the correctness requirement, f(x0, x1) − f(x′0, x1) is equal to
Eval(0, x0, r0, m1)−Eval(0, x′0, r0, m1) where m1 is P1’s message with some r1 ∈ R1 satisfying
(r0, r1) ∈ CR. The former depends on x1 by the non-redundancy of f , while the latter can
be computed solely by P0, contradicting the security requirement that P0 should not obtain
any information on x1.

Since Msg(b, ·, rb) is bijective, the input of Pb can be determined by the correlated
randomness rb and the message mb sent from Pb. Therefore, Pb’s output of Eval can be
computed from the messages (m0, m1) and the randomness rb. Let Ab,rb

be an N × N

matrix whose (m0, m1)-th element is equal to Pb’s output of Eval when the messages and
the randomness are (m0, m1) and rb, respectively. From the correctness requirement, for
all (m0, m1), A0,r0 [m0, m1] + A1,r1 [m0, m1] is equal to the entry of the matrix F at the
π−1

0,r0
(m0)-th row and the π−1

1,r1
(m1)-th column, where πb,rb

denotes the bijection Msg(b, ·, rb).
This implies the correctness equation Eq.(1), where P0,r0 and P1,r1 are permutation matrices
corresponding to π−1

0,r0
and π−1

1,r1
, respectively.

3.1.2 The Second Step

For simplicity, let F be ∆N×N (0, 0), G be {0, 1} and the operation on G be XOR. Then, the
right term of the correctness equation Eq.(1) is equal to ∆N×N (Msg(0, 0, r0), Msg(1, 0, r1)).
The notable point is that, given r0 ∈ R0, we can choose the value of Msg(1, 0, r1) arbitrarily
(Lemma 7). That is, for all m1 ∈ M1, there exists r1 ∈ R1 such that (r0, r1) ∈ CR and
Msg(1, 0, r1) = m1 (otherwise, the fact that P0 receives P1’s message m1 would tell P0 that
P1’s input is not 0, contradicting the security).
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Let r0 ∈ R0 satisfy Msg(0, 0, r0) = 0. From the property described above, for all
m0 ∈ M0\{0} and m1 ∈ M1\{0}, there exist r′0, r′′0 ∈ R0 and r1, r′1 ∈ R1 such that
(r0, r1), (r′0, r1), (r′0, r′1), (r′′0 , r′1) ∈ CR, Msg(1, 0, r′1) = m1, Msg(0, 0, r′0) = m0, Msg(1, 0, r′1) =
0, and Msg(0, 0, r′′0 ) = 0. Taking the sum of both sides of the four correctness equations, we
have

A0,r0 + A0,r′′
0

= ∆N×N (0, m1) + ∆N×N (m0, m1) + ∆N×N (m0, 0) + ∆N×N (0, 0).

Note that A+A = 0 since the operation is XOR. This implies that the bottom right corner of
A0,r0 +A0,r′′

0
is equal to ∆(N−1)×(N−1)(m0−1, m1−1) (Theorem 9). Taking the sum of these

equations with various values of m0 and m1, it follows that for all M ∈ {0, 1}(N−1)×(N−1),
there exists r′0 ∈ R0 such that Msg(0, 0, r′0) = 0 and the bottom right corner of A0,r0 + A0,r′

0

is equal to M (Corollary 10). This implies that the size of {A0,r0 + A0,r′
0
}r′

0∈R0 is at least
the size of {0, 1}(N−1)×(N−1), i.e., 2(N−1)2 and this proves the Ω(N2)-bit lower bound.

3.2 The Case of Communication-Optimal Setting
The basic approach to proving the Ω(N)-bit lower bound is the same as in the online-optimal
setting. The main difference is that the message sent from one party at the second or later
round may depend on the other party’s input or randomness. Nevertheless, the situation is
still similar due to the following facts:
1. The map Tr0,r1 : X0 ×X1 →M0 ×M1, which maps the pair of inputs to the transcript

when the correlated randomness is (r0, r1), is bijective. (Lemma 13)
2. The input of Pb can be determined by the correlated randomness rb and the transcript

(m0, m1), and therefore, Pb’s output of Eval can be computed from the transcript (m0, m1)
and the randomness rb. (Lemma 15)

From these facts, even in the present setting, the correctness equation (with a slight modific-
ation on the right side) holds: A0,r0 + A1,r1 = Tr0,r1 ◦ F , where Tr0,r1 ◦ F is an M0 ×M1
matrix whose (m0, m1)-th element is equal to the T−1

r0,r1
(m0, m1)-th element of F .

Let F be ∆N×N (0, 0). Unlike the online-optimal setting, now the right side of the
correctness equation is equal to ∆N×N (Tr0,r1(0, 0)). A notable point is that each of the row
and column entries of Tr0,r1(0, 0) depends on both r0 and r1, in contrast to the online-optimal
setting where the row entry Msg(0, 0, r0) (resp. the column entry Msg(1, 0, r1)) depends only
on r0 (resp. r1). However, we can still somehow control the value of Tr0,r1(0, 0) (Lemma 12
and Lemma 14), and we can set the (N − 1) × 1 submatrix at the bottom left corner of
A0,r0 + A0,r′

0
arbitrarily by varying r′0. This proves the Ω(N)-bit lower bound.

4 The Case of Online-Optimal Setting

In this section, we prove the optimality of Ishai et al.’s protocol [16] among online-optimal
two-party protocols in terms of the size of CR for the “worst” function. In Section 4.1, we
give a matrix representation of the three requirements for an online-optimal secure two-party
protocol given in Section 2 (Theorem 8). In Section 4.2, we give a function whose domain is
[N ]× [N ] such that any online-optimal two-party protocol for f needs Ω(N2)-bit CR.

4.1 Matrix Representation
Throughout this subsection, we let (Gen, Msg, Eval) denote an online-optimal secure two-party
protocol for f : X0 × X1 → G with correlated randomness CR ⊆ R0 ×R1. For b ∈ {0, 1},
x ∈ Xb, and m ∈Mb, let Rb,x,m = {r ∈ Rb | Msg(b, x, r) = m}.

ITC 2023
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First, we give four lemmas for the matrix representation:

▶ Lemma 4. For all b ∈ {0, 1} and x ∈ Xb, the following hold:
Rb,x,m ∩Rb,x,m′ = ∅ for all m ̸= m′ ∈Mb.

∪m∈Mb
Rb,x,m = Rb.

Proof. These two statements are deduced from the fact that r is in Rb,x,m if and only if m

is equal to Msg(b, x, r). ◀

▶ Lemma 5. For all b ∈ {0, 1} and m ∈Mb, the following hold:
Rb,x,m ∩Rb,x′,m = ∅ for all x ̸= x′ ∈ Xb.
∪x∈Xb

Rb,x,m = Rb.

Proof. We fix b = 0 in this proof. In the case of b = 1, the statement can be proved similarly.
First, we prove the first statement. Suppose on the contrary that an r ∈ R0,x,m ∩R0,x′,m

exists. By the non-redundancy of the randomness space, there is an r′ ∈ R1 such that (r, r′) ∈
CR. Now it suffices to show that there exist y, y′ ∈ X1 such that y ̸= y′ and Msg(1, y′, r′′) ̸=
Msg(1, y, r′) for any r′′ ∈ R1 with (r, r′′) ∈ CR; indeed, this implies that (r, Msg(1, y, r′))
belongs to {(r∗, Msg(1, y, r∗∗))}(r∗,r∗∗)∈CR but not to {(r∗, Msg(1, y′, r∗∗))}(r∗,r∗∗)∈CR, which
contradicts the security requirement. To show the claim, suppose on the contrary that for
any y, y′ ∈ X1 with y ̸= y′, there is an r′′ ∈ R1 such that (r, r′′) ∈ CR and Msg(1, y′, r′′) =
Msg(1, y, r′). From the correctness requirement, we have

Eval(0, x, r, Msg(1, y, r′)) + Eval(1, y, r′, Msg(0, x, r)) = f(x, y),
Eval(0, x′, r, Msg(1, y, r′)) + Eval(1, y, r′, Msg(0, x, r)) = f(x′, y)

(note that now Msg(0, x′, r) = m = Msg(0, x, r) by the choice of r), and therefore

Eval(0, x, r, Msg(1, y, r′))− Eval(0, x′, r, Msg(1, y, r′)) = f(x, y)− f(x′, y). (2)

By the same argument for (y′, r′′) instead of (y, r′), we also have

Eval(0, x, r, Msg(1, y′, r′′))− Eval(0, x′, r, Msg(1, y′, r′′)) = f(x, y′)− f(x′, y′). (3)

By the choice of r′′, the left-hand sides of Equations (2) and (3) are equal, therefore we have
f(x, y) − f(x′, y) = f(x, y′) − f(x′, y′). Since y ̸= y′ were arbitrary, this implies that the
function f(x, ·)− f(x′, ·) on X1 is constant, contradicting the non-redundancy of f . Hence,
we have R0,x,m ∩R0,x′,m = ∅.

Next, we prove the second statement. Suppose that ∪x∈X0R0,x,m ⊊ R0. Then, we have∑
m∈M0

∑
x∈X0

|R0,x,m| =
∑

m∈M0

| ∪x∈X0 R0,x,m| (∵ the first statement)

<
∑

m∈M0

|R0| = |M0| · |R0|.

From Lemma 4, we have∑
x∈X0

∑
m∈M0

|R0,x,m| =
∑

x∈X0

|R0| = |X0| · |R0|.

This means that |X0| · |R0| < |M0| · |R0| and contradicts the optimality requirement. Hence,
we have ∪x∈X0R0,x,m = R0. ◀

▶ Lemma 6. For all b ∈ {0, 1} and r ∈ Rb, Msg(b, ·, r) : Xb →Mb is a bijection.
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Proof. From Lemma 5, Msg(b, ·, r) is an injection. Since |Xb| = |Mb| from the optimality
requirement, the injective function Msg(b, ·, r) is a bijection. ◀

▶ Lemma 7. For all b ∈ {0, 1}, rb̄ ∈ Rb̄, and (xb, mb) ∈ Xb ×Mb, there exists rb ∈ Rb such
that (r0, r1) ∈ CR and Msg(b, xb, rb) = mb.

Proof. We fix b = 0 in this proof. In the case of b = 1, the statement can be proved similarly.
Let r1 ∈ R1 and (x0, m0) ∈ X0 × M0. By the non-redundancy of the randomness

space, there is an r∗ ∈ R0 with (r∗, r1) ∈ CR. By Lemma 6, there exists an x′ ∈ X0
such that Msg(0, x′, r∗) = m0 and therefore (r1, m0) ∈ {(r′, Msg(0, x′, r))}(r,r′)∈CR. Since
this set is independent of x′ from the security requirement, we also have (r1, m0) ∈
{(r′, Msg(0, x0, r))}(r,r′)∈CR, therefore there is an r0 ∈ R0 such that (r0, r1) ∈ CR and
Msg(0, x0, r0) = m0. This proves the statement. ◀

Then, we give a matrix representation of the three requirements for an online-optimal
secure two-party protocol:

▶ Theorem 8. Given an online-optimal secure two-party protocol (Gen, Msg, Eval) for f : X0×
X1 → G with correlated randomness CR ⊆ R0 × R1, let F be an X0 × X1 matrix whose
(x0, x1)-th element is f(x0, x1). Then, for any b ∈ {0, 1} and r ∈ Rb, there exist anM0×M1
matrix Ab,r and an Xb ×Mb permutation matrix Pb,r such that

for all (r0, r1) ∈ CR, A0,r0 + A1,r1 = P T
0,r0

FP1,r1 holds;
for all rb̄ ∈ Rb̄ and (xb, mb) ∈ Xb ×Mb, there exists rb ∈ Rb such that (r0, r1) ∈ CR and
Pb,rb

[xb, mb] = 1.

Note that, roughly speaking, the optimality requirement corresponds to Pb,r being a
permutation matrix, and the correctness and security requirements correspond to the first
and the second conditions of the theorem, respectively.

Proof. For b ∈ {0, 1}, let Eb,rb
for rb ∈ Rrb

be an Xb×Mb̄ matrix whose (xb, mb̄)-th element
is equal to Eval(b, xb, rb, mb̄). For b ∈ {0, 1}, let Pb,rb

for rb ∈ Rrb
be an Xb ×Mb matrix

whose (xb, Msg(b, xb, rb))-th element is 1 and other elements are 0. Since the (xb, xb̄)-th
element of Eb,rb

P T
b̄,rb̄

is equal to Eval(b, xb, rb, Msg(b̄, xb̄, rb̄)), the correctness requirement can
be expressed by the following:

E0,r0P T
1,r1

+
(
E1,r1P T

0,r0

)T = F (4)

for all (r0, r1) ∈ CR. From Lemma 6, Pb,rb
is a permutation matrix and therefore P T

b,rb
is

its inverse. By multiplying P T
0,r0

from the left (P1,r1 from the right, resp.) to both sides of
Equation (4), we have

P T
0,r0

E0,r0 + ET
1,r1

P1,r1 = P T
0,r0

FP1,r1 . (5)

Therefore, (A0,r0 , A1,r1) = (P T
0,r0

E0,r0 , ET
1,r1

P1,r1) satisfies the first condition of the statement.
The second condition of the statement is deduced from Lemma 7. ◀

4.2 Lower Bound
We prove the Ω(N2)-bit lower bound for the function f : [N ]× [N ] → {0, 1}2 defined as

follows:

f(x0, x1) =


11 (x0 = x1 = 0)
01 (x0 = x1 ̸= 0)
00 (otherwise).
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That is, we prove that any online-optimal secure two-party protocol for f needs Ω(N2)-bit
CR. Note that the operation ‘+’ on {0, 1}2 is bitwise XOR here and that f is non-redundant.

In the rest of this section, we write [N ] instead of Xb andMb. Without loss of generality,
we consider the lower bound for the size of P0’s CR (i.e., log |R0|).

We use the notation Ab,rb
and Pb,rb

for representing N × N matrices whose existence
is guaranteed by Theorem 8. Since the operation on {0, 1}2 is bitwise XOR, Equation (5)
holds even if we focus on the first bit of each element of Ab,rb

and F . Therefore, we focus on
the first bit and use the same notation Ab,rb

and F . Then we have F = ∆N×N (0, 0) in the
current setting.

First, we prove the following theorem:

▶ Theorem 9. Suppose that r0 ∈ R0 satisfies Msg(0, 0, r0) = 0. Then, for all i, j ∈ [N − 1],
there exists an r′0 ∈ R0 such that

Msg(0, 0, r′0) = 0,
the (N − 1)× (N − 1) submatrix in the bottom right corner of A0,r0 + A0,r′

0
is equal to

∆(N−1)×(N−1)(i, j).

Proof. From the definition of Pb,rb
(see the proof of Theorem 8), the right term of Equation (5)

is equal to ∆N×N (Msg(0, 0, r0), Msg(1, 0, r1)). From Theorem 8, there exists an r1 ∈ R1 such
that (r0, r1) ∈ CR and Msg(1, 0, r1) = j +1, and there exists r′′0 ∈ R0 such that (r′′0 , r1) ∈ CR
and Msg(0, 0, r′′0 ) = i + 1. From the property mentioned at the beginning, we have

A0,r0 + A1,r1 = ∆N×N (0, j + 1) and A0,r′′
0

+ A1,r1 = ∆N×N (i + 1, j + 1),

and therefore

A0,r0 + A0,r′′
0

= (A0,r0 + A1,r1) + (A0,r′′
0

+ A1,r1)
= ∆N×N (0, j + 1) + ∆N×N (i + 1, j + 1).

Similarly, there exist an r′1 ∈ R1 and an r′0 ∈ R0 such that (r′′0 , r′1) ∈ CR, Msg(1, 0, r′1) = 0,
(r′0, r′1) ∈ CR, and Msg(0, 0, r′0) = 0. Then, we have

A0,r′′
0

+ A1,r′
1

= ∆N×N (i + 1, 0) and A0,r′
0

+ A1,r′
1

= ∆N×N (0, 0),

and

A0,r′′
0

+ A0,r′
0

= (A0,r′′
0

+ A1,r′
1
) + (A0,r′

0
+ A1,r′

1
) = ∆N×N (i + 1, 0) + ∆N×N (0, 0).

Hence, we have

A0,r0 + A0,r′
0

= ∆N×N (0, j + 1) + ∆N×N (i + 1, j + 1) + ∆N×N (i + 1, 0) + ∆N×N (0, 0).

Especially, the (N − 1)× (N − 1) submatrix in the bottom right corner of A0,r0 + A0,r′
0

is
equal to ∆(N−1)×(N−1)(i, j). Therefore, r′0 satisfies the condition of the statement. ◀

Using Theorem 9 sequentially, we have the following corollary:

▶ Corollary 10. Suppose that r0 ∈ R0 satisfies Msg(0, 0, r0) = 0. Then, for all M ∈
{0, 1}(N−1)×(N−1), there exists an r′0 ∈ R0 such that

Msg(0, 0, r′0) = 0,
the (N − 1)× (N − 1) submatrix in the bottom right corner of A0,r0 + A0,r′

0
is equal to M .
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Proof. For r ∈ R0, we use the notation A′0,r for the (N − 1) × (N − 1) submatrix in the
bottom right corner of A0,r. Let I be the set of indices where the element of M is equal
to 1, i.e., I = {(i, j) ∈ [N − 1]× [N − 1] |M [i, j] = 1}. Let Mk = ∆(N−1)×(N−1)(ik, jk) for
k ≥ 0, where (ik, jk) is the k-th element of I (in some ordering). We define the sequence
r0,0, r0,1, . . . , r0,|I| as follows:

r0,0 = r0.
For k ≥ 1, r0,k is an element of R0 such that A′0,r0,k−1

+ A′0,r0,k
is equal to Mk−1 and

Msg(0, 0, r0,k) is equal to 0. The existence of such r0,k is guaranteed by Theorem 9.
We have

A′0,r0,0
+ A′0,r0,|I|

=
|I|∑

k=1
(A′0,r0,k−1

+ A′0,r0,k
) =

|I|∑
k=1

Mk−1 = M,

and therefore r′0 = r0,|I| satisfies the condition of the statement. ◀

The lower bound of the size of P0’s CR is derived from Corollary 10:

▶ Corollary 11. The size of CR delivered to P0 is Ω(N2) bits. More concretely, it is greater
than or equal to (N − 1)2 bits.

Proof. Let r0 ∈ R0 satisfy Msg(0, 0, r0) = 0. (The existence of such r0 is guaranteed by
Lemma 7.) From Corollary 10, the following inequality holds:∣∣{A0,r0 + A0,r′

0
}r′

0∈R0

∣∣ ≥ ∣∣∣{0, 1}(N−1)×(N−1)
∣∣∣ .

Since the left term of the above inequality is upper-bounded by |R0|, we have

|R0| ≥
∣∣∣{0, 1}(N−1)×(N−1)

∣∣∣ = 2(N−1)2
.

Therefore, the size of P0’s CR is greater than or equal to (N − 1)2 bits. ◀

5 The Case of Communication-Optimal Setting

In this section, we prove the Ω(N)-bit lower bound for the size of CR of a communication-
optimal two-party protocol for the concrete function f given in Section 4.2.

We give a matrix representation of the three requirements for a communication-optimal
secure two-party protocol in Section 5.1 (Theorem 16). In Section 5.2, we prove that any
communication-optimal two-party protocol for f given in Section 4.2 needs Ω(N)-bit CR.

5.1 Matrix Representation
Throughout this subsection, we let (Gen, Msg, Eval) denote a communication-optimal secure
two-party protocol for f : X0 × X1 → G with correlated randomness CR ⊆ R0 × R1. For
(r0, r1) ∈ R0 ×R1, let Tr0,r1 : X0 ×X1 →M0 ×M1 be a function such that Tr0,r1(x0, x1) =
(m0, m1), where mb is a message which Pb sends to Pb̄ in the online phase whose input (CR,
resp.) is (x0, x1) ((r0, r1), resp.). That is, m0 is equal to (mes1, mes3, . . . ) and m1 is equal to
(mes2, mes4, . . . ), where (mes1, mes2, . . . ) = Msg(x0, r0, x1, r1). Note that the message mb

which Pb sends to Pb̄ is uniquely determined by (xb, rb, mb̄), where xb is Pb’s input, rb is Pb’s
CR, and mb̄ is a message sent to Pb by Pb̄. We define a function gb

xb,rb
: Mb̄ →Mb based on

the above correspondence. Let S0
x0,r0

be the set {(g0
x0,r0

(m1), m1)}m1∈M1 ⊆M0 ×M1 and
let S1

x1,r1
be the set {(m0, g1

x1,r1
(m0))}m0∈M0 ⊆M0 ×M1.

First, we give four lemmas for the matrix representation:
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18:12 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

▶ Lemma 12. S0
x0,r0

∩ S1
x1,r1

= {Tr0,r1(x0, x1)} holds for all (r0, r1) ∈ CR and (x0, x1) ∈
X0 ×X1.

Proof. Let (m0, m1) := Tr0,r1(x0, x1). By the definition, g0
x0,r0

(m1) = m0 and g1
x1,r1

(m0) =
m1, and therefore (m0, m1) ∈ S0

x0,r0
∩ S1

x1,r1
. Suppose on the contrary that there exists

(m′0, m′1) ∈ S0
x0,r0

∩ S1
x1,r1

such that (m′0, m′1) ̸= (m0, m1). Let t be the first round where the
two transcripts determined by (m0, m1) and (m′0, m′1) differ and let Pb be the party who
sends a message at t-th round. Since gb

xb,rb
(mb̄) = mb and gb

xb,rb
(m′

b̄
) = m′b, the t-th messages

msgt and msg′t in the transcripts (m0, m1) and (m′0, m′1) are determined by (xb, rb) and the
(t− 1)-th or earlier messages in the transcripts (m0, m1) and (m′0, m′1), respectively. Since
the latter messages are equal by the minimality of t, we have msgt = msg′t, contradicting the
choice of t. Therefore, there is no (m′0, m′1) ∈ S0

x0,r0
∩ S1

x1,r1
such that (m′0, m′1) ̸= (m0, m1),

and the statement holds. ◀

▶ Lemma 13. For all (r0, r1) ∈ CR, Tr0,r1 is bijective.

Proof. Since |X0 ×X1| = |M0 ×M1| from the optimality requirement, it is enough to prove
that Tr0,r1 is injective. Suppose on the contrary that there exist (x0, x1) ̸= (x′0, x′1) ∈ X0×X1
such that Tr0,r1(x0, x1) = Tr0,r1(x′0, x′1) =: (m0, m1). We assume that x0 ̸= x′0 in the proof;
the other case x1 ̸= x′1 is similar.

For any x′′1 ∈ X1, there exists an r′′1 ∈ R1 such that (r0, r′′1 ) ∈ CR and Tr0,r′′
1
(x0, x′′1) =

(m0, m1), since we have {(r∗, Tr∗,r∗∗(x0, x1))}(r∗,r∗∗)∈CR = {(r∗, Tr∗,r∗∗(x0, x′′1))}(r∗,r∗∗)∈CR
by the security requirement and the left-hand side contains (r0, (m0, m1)). By
Lemma 12, (m0, m1) belongs to all of S0

x0,r0
, S0

x′
0,r0

, and S1
x′′

1 ,r′′
1
, therefore Tr0,r′′

1
(x0, x′′1) =

Tr0,r′′
1

(x′0, x′′1) = (m0, m1) by Lemma 12 again. Then, from the correctness requirement, we
have

Eval(0, x0, r0, (m0, m1)) + Eval(1, x′′1 , r′′1 , (m0, m1)) = f(x0, x′′1),
Eval(0, x′0, r0, (m0, m1)) + Eval(1, x′′1 , r′′1 , (m0, m1)) = f(x′0, x′′1),

and therefore

Eval(0, x0, r0, (m0, m1))− Eval(0, x′0, r0, (m0, m1)) = f(x0, x′′1)− f(x′0, x′′1). (6)

Since x′′1 was arbitrary, it follows that the function f(x0, ·) − f(x′0, ·) is constant on X1,
contradicting the non-redundancy of f . Hence the statement holds. ◀

▶ Lemma 14. For all b ∈ {0, 1}, rb ∈ Rb, xb̄ ∈ Xb̄, and (m0, m1) ∈M0 ×M1, there exists
rb̄ ∈ Rb̄ such that (r0, r1) ∈ CR and (m0, m1) ∈ S b̄

xb̄,rb̄
.

Proof. We prove the statement for the case of b = 0; the other case b = 1 is similar. By
the non-redundancy of the randomness space, there is an r′1 ∈ R1 such that (r0, r′1) ∈ CR.
By Lemma 13, there is (x′0, x′1) ∈ X0 × X1 such that (m0, m1) = Tr0,r′

1
(x′0, x′1). There-

fore we have (r0, (m0, m1)) ∈ {(r∗, Tr∗,r∗∗(x′0, x′1))}(r∗,r∗∗)∈CR, while this set is equal to
{(r∗, Tr∗,r∗∗(x′0, x1))}(r∗,r∗∗)∈CR by the security requirement. This implies that there is an
r1 ∈ R1 such that (r0, r1) ∈ CR and Tr0,r1(x′0, x1) = (m0, m1), therefore (m0, m1) ∈ S1

x1,r1

by Lemma 12. Hence the statement holds. ◀

▶ Lemma 15. For all (m0, m1) ∈M0 ×M1, b ∈ {0, 1}, and rb ∈ Rb, there exists a unique
xb ∈ Xb such that gb

xb,rb
(mb̄) = mb.
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Proof. We prove the statement for the case of b = 0; the other case b = 1 is similar. First,
we prove the existence. By definition, g0

x0,r0
(m1) = m0 holds if and only if (m0, m1) ∈ S0

x0,r0
.

Let r1 ∈ R1 satisfy (r0, r1) ∈ CR. From Lemma 13, there exists (x0, x1) ∈ X0×X1 such that
Tr0,r1(x0, x1) = (m0, m1). From Lemma 12, S0

x0,r0
contains Tr0,r1(x0, x1) and this proves the

existence.
Then, we prove the uniqueness. Suppose on the contrary that there exist x0 ̸= x′0 ∈ X0

such that g0
x0,r0

(m1) = g0
x′

0,r0
(m1) = m0 and therefore S0

x0,r0
and S0

x′
0,r0

contain (m0, m1).
From Lemma 14, for all x1 ∈ X1, there exists r1 ∈ R1 such that (r0, r1) ∈ CR and
(m0, m1) ∈ S1

x1,r1
. Since (m0, m1) ∈ S0

x0,r0
∩ S1

x1,r1
and (m0, m1) ∈ S0

x′
0,r0
∩ S1

x1,r1
, we have

Tr0,r1(x0, x1) = Tr0,r1(x′0, x1) = (m0, m1) from Lemma 12. This contradicts the fact that
Tr0,r1 is bijective (Lemma 13). This proves the uniqueness. ◀

Then, we give a matrix representation of the three requirements for a communication-
optimal secure two-party protocol:

▶ Theorem 16. Given a communication-optimal secure two-party protocol (Gen, Msg, Eval)
for f : X0×X1 → G with correlated randomness CR ⊆ R0×R1, let F be an X0×X1 matrix
whose (x0, x1)-th element is f(x0, x1). Then, for b ∈ {0, 1} and rb ∈ Rb, there exist an
M0 ×M1 matrix Ab,rb

and a bijection Tr0,r1 : X0 ×X1 →M0 ×M1 such that
for all (r0, r1) ∈ CR, A0,r0 + A1,r1 = Tr0,r1 ◦ F holds;
for all b ∈ {0, 1}, rb ∈ Rb, xb̄ ∈ Xb̄ and (m0, m1) ∈M0 ×M1, there exists rb̄ ∈ Rb̄ such
that (r0, r1) ∈ CR and (m0, m1) ∈ S b̄

xb̄,rb̄
.

Here, Tr0,r1 ◦F is an M0×M1 matrix whose (m0, m1)-th element is equal to T−1
r0,r1

(m0, m1)-th
element of F .

Note that, roughly speaking, the optimality requirement corresponds to Tr0,r1 being a
bijection,the correctness requirement corresponds to the first condition of the theorem, and
the security requirement corresponds to the second condition of the theorem.

Proof. Eval(b, xb, rb, (m0, m1)) is determined by (m0, m1, rb) since xb is uniquely determined
by (m0, m1, rb) from Lemma 15. Let Ab,rb

be anM0×M1 matrix whose (m0, m1)-th element
is equal to Eval(b, xb, rb, (m0, m1)). Note that Tr0,r1 is bijective from Lemma 13.

The first condition is deduced from the correctness requirement and the definition of
Ab,rb

and Tr0,r1 . The second condition is the same as Lemma 14. ◀

5.2 Lower Bound
We prove the Ω(N)-bit lower bound for the function f : [N ] × [N ] → {0, 1}2 defined in
Section 4.2. That is, we prove that any communication-optimal secure two-party protocol
for f needs Ω(N)-bit CR.

In the rest of this section, we write [N ] instead of Xb and Mb. We consider the lower
bound for the size of P0’s CR (i.e., log |R0|); the lower bound for the size of P1’s CR is similar.
We use the notation Ab,rb

for representing N ×N matrices whose existence is guaranteed by
Theorem 16, and as in Section 4.2, we focus on the first bit and use the same notation Ab,rb

and F . Then we have F = ∆N×N (0, 0) in the current setting.
First, we prove the following theorem:

▶ Theorem 17. Suppose that r0 ∈ R0 satisfies (0, 0) ∈ S0
0,r0

. Then, for all i ∈ [N − 1], there
exists r′0 ∈ R0 such that

(0, 0) ∈ S0
0,r′

0
.

The (N−1)×1 submatrix at the bottom left corner of A0,r0 +A0,r′
0

is equal to ∆(N−1)×1(i, 0).

ITC 2023



18:14 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

Proof. Let Bb,rb
be the (N − 1)× 1 submatrix at the bottom left corner of Ab,rb

. From the
definition of the operation ◦, Tr0,r1◦F is equal to ∆N×N (Tr0,r1(0, 0)). From Theorem 16, there
exists r1 ∈ R1 such that (r0, r1) ∈ CR and (i + 1, 0) ∈ S1

0,r1
, and there exists r′′0 ∈ R0 such

that (r′′0 , r1) ∈ CR and (i + 1, 0) ∈ S0
0,r′′

0
. Let M := ([N ]× [N ])\{(m, 0) | m = 1, . . . , N − 1}.

From the definition of S0
0,r0

and the assumption that (0, 0) belongs to S0
0,r0

, g0
0,r0

(0) = 0
and S0

0,r0
is equal to {(0, 0)}∪{(g0

0,r0
(m), m)}m=1,...,N−1 ⊆M . Therefore, from Lemma 12, we

have Tr0,r1(0, 0) ∈ S0
0,r0
∩S1

1,r1
⊆M and B0,r0 + B1,r1 is the zero matrix. Also, Tr′′

0 ,r1(0, 0) =
(i + 1, 0) since (i + 1, 0) ∈ S0

0,r′′
0
∩ S1

0,r1
. Therefore, B0,r′′

0
+ B1,r1 is equal to ∆(N−1)×1(i, 0)

and we have

B0,r0 + B0,r′′
0

= (B0,r0 + B1,r1) + (B0,r′′
0

+ B1,r1) = ∆(N−1)×1(i, 0).

Let (m′0, m′1) ∈ S0
0,r′′

0
\{(i, 0)}. Note that (m′0, m′1) ∈ M since S0

0,r′′
0
\{(i, 0)} is equal

to {(g0
0,r′′

0
(m), m)}m=1,...,N−1 ⊆ M . From Theorem 16, there exists r′1 ∈ R1 such that

(r′′0 , r′1) ∈ CR and (m′0, m′1) ∈ S1
0,r′

1
, and there exists r′0 ∈ R0 such that (r′0, r′1) ∈ CR

and (0, 0) ∈ S0
0,r′

0
. From Lemma 12 and the fact that (m′0, m′1) ∈ S0

0,r′′
0
∩ S1

0,r′
1
, we have

Tr′′
0 ,r′

1
(0, 0) = (m′0, m′1) ∈M and B0,r′′

0
+B1,r′

1
is the zero matrix. Also, from the definition of

S0
0,r′

0
and the fact that (0, 0) ∈ S0

0,r′
0
, S0

0,r′
0

is equal to {(0, 0)} ∪ {(g0
0,r′

0
(m), m)}m=1,...,N−1 ⊆

M . From Lemma 12, we have Tr′
0,r′

1
(0, 0) ∈ S0

0,r′
0
∩ S1

0,r′
1
⊆M and B0,r′

0
+ B1,r′

1
is the zero

matrix. Therefore, B0,r′′
0

+ B0,r′
0

= (B0,r′′
0

+ B1,r′
1
) + (B0,r′

0
+ B1,r′

1
) is the zero matrix.

Hence, B0,r0 + B0,r′
0

= (B0,r0 + B0,r′′
0

) + (B0,r′′
0

+ B0,r′
0
) is equal to ∆(N−1)×1(i, 0), and

therefore r′0 satisfies the conditions of the statement. ◀

Using Theorem 17 sequentially, we have the following corollary:

▶ Corollary 18. Suppose that r0 ∈ R0 satisfies (0, 0) ∈ S0
0,r0

. Then, for all M ∈
{0, 1}[N−1]×[1], there exists r′0 ∈ R0 such that

(0, 0) ∈ S0
0,r′

0
.

The (N − 1)× 1 submatrix at the bottom left corner of A0,r0 + A0,r′
0

is equal to M .

Proof. We can prove this corollary similarly to Corollary 10. ◀

The lower bound of the size of P0’s CR is derived from Corollary 18:

▶ Corollary 19. The size of CR delivered to P0 is Ω(N) bits. More concretely, it is greater
than or equal to N − 1 bits.

Proof. We can prove this corollary similarly to Corollary 11. ◀

References
1 Nuttapong Attrapadung, Goichiro Hanaoaka, Takahiro Matsuda, Hiraku Morita, Kazuma

Ohara, Jacob C. N. Schuldt, Tadanori Teruya, and Kazunari Tozawa. Oblivious linear group
actions and applications. In CCS’21, pages 630–650. ACM, 2021. doi:10.1145/3460120.
3484584.

2 Donald Beaver. Efficient multiparty protocols using circuit randomization. In 11th CRYPTO,
volume 576 of LNCS, pages 420–432. Springer, 1991. doi:10.1007/3-540-46766-1_34.

3 Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic
complexity of the worst functions. In 11th TCC, volume 8349 of LNCS, pages 317–342.
Springer, 2014. doi:10.1007/978-3-642-54242-8_14.

4 Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic
complexity of the worst functions (full version of [3]). https://people.csail.mit.edu/
ranjit/papers/BIKK.pdf, 2014.

https://doi.org/10.1145/3460120.3484584
https://doi.org/10.1145/3460120.3484584
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-54242-8_14
https://people.csail.mit.edu/ranjit/papers/BIKK.pdf
https://people.csail.mit.edu/ranjit/papers/BIKK.pdf


K. Hiwatashi and K. Nuida 18:15

5 Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant Kumar, and
Mayank Rathee. Function secret sharing for mixed-mode and fixed-point secure computation.
In 40th EUROCRYPT, volume 12697 of LNCS, pages 871–900. Springer, 2021. doi:10.1007/
978-3-030-77886-6_30.

6 Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing via
function secret sharing. In 17th TCC, volume 11891 of LNCS, pages 341–371. Springer, 2019.
doi:10.1007/978-3-030-36030-6_14.

7 Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. In 21st STOC, pages
62–72. ACM, 1989. doi:10.1145/73007.73013.

8 Geoffroy Couteau. A note on the communication complexity of multiparty computation in the
correlated randomness model. In 38th EUROCRYPT, volume 11477 of LNCS, pages 473–503.
Springer, 2019. doi:10.1007/978-3-030-17656-3_17.

9 Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The tinytable
protocol for 2-party secure computation, or: Gate-scrambling revisited. In 37th CRYPTO,
volume 10401 of LNCS, pages 167–187. Springer, 2017. doi:10.1007/978-3-319-63688-7_6.

10 Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael Raskin. On the
communication required for unconditionally secure multiplication. In 36th CRYPTO, volume
9815 of LNCS, pages 459–488. Springer, 2016. doi:10.1007/978-3-662-53008-5_16.

11 Ivan Bjerre Damgård, Boyang Li, and Nikolaj Ignatieff Schwartzbach. More communication
lower bounds for information-theoretic mpc. In 2nd ITC, volume 199 of LIPIcs, pages 2:1–2:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITC.2021.2.

12 Deepesh Data, Manoj M. Prabhakaran, and Vinod M. Prabhakaran. On the communication
complexity of secure computation. In 34th CRYPTO, volume 8617 of LNCS, pages 199–216.
Springer, 2014. doi:10.1007/978-3-662-44381-1_12.

13 Anna Gál and Adi Rosén. Lower bounds on the amount of randomness in private computation.
In 35th STOC, pages 659–666. ACM, 2003. doi:10.1145/780542.780638.

14 Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In
33rd EUROCRYPT, volume 8441 of LNCS, pages 640–658. Springer, 2014. doi:10.1007/
978-3-642-55220-5_35.

15 Vipul Goyal, Yuval Ishai, and Yifan Song. Tight bounds on the randomness complexity of
secure multiparty computation. In 42nd CRYPTO, volume 13510 of LNCS, pages 483–513.
Springer, 2022. doi:10.1007/978-3-031-15985-5_17.

16 Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In 10th TCC,
volume 7785 of LNCS, pages 600–620. Springer, 2013. doi:10.1007/978-3-642-36594-2_34.

17 Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious arithmetic
secure computation with oblivious transfer. In CCS’16, pages 830–842. ACM, 2016. doi:
10.1145/2976749.2978357.

18 Eyal Kushilevitz. Privacy and communication complexity. In 30th FOCS, pages 416–421.
IEEE Computer Society, 1989. doi:10.1109/sfcs.1989.63512.

19 Eyal Kushilevitz and Yishay Mansour. Randomness in private computations. In 15th PODC,
pages 181–190. ACM Press, 1996. doi:10.1145/248052.248089.

20 Eyal Kushilevitz, Rafail Ostrovsky, Emmanuel Prouff, Adi Rosén, Adrian Thillard, and
Damien Vergnaud. Lower and upper bounds on the randomness complexity of private
computations of and. In 17th TCC, volume 11892 of LNCS, pages 386–406. Springer, 2019.
doi:10.1007/978-3-030-36033-7_15.

21 Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Characterizing linear size circuits in terms
of privacy. In 28th STOC. ACM, 1996. doi:10.1145/237814.238002.

22 Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Amortizing randomness in private
multiparty computations. In 17th PODC, pages 81–90. ACM, 1998. doi:10.1145/277697.
277710.

ITC 2023

https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1145/73007.73013
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.4230/LIPIcs.ITC.2021.2
https://doi.org/10.1007/978-3-662-44381-1_12
https://doi.org/10.1145/780542.780638
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-031-15985-5_17
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1109/sfcs.1989.63512
https://doi.org/10.1145/248052.248089
https://doi.org/10.1007/978-3-030-36033-7_15
https://doi.org/10.1145/237814.238002
https://doi.org/10.1145/277697.277710
https://doi.org/10.1145/277697.277710


18:16 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

23 Eyal Kushilevitz and Adi Rosén. A randomness-rounds tradeoff in private computation. In 14th
CRYPTO, volume 839 of LNCS, pages 397–410. Springer, 1994. doi:10.1007/3-540-48658-5_
36.

24 Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. ABY2.0: improved mixed-
protocol secure two-party computation. In 30th USENIX Security Symposium, pages 2165–2182.
USENIX Association, 2021. URL: https://www.usenix.org/conference/usenixsecurity21/
presentation/patra.

25 Andrew C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS,
pages 162–167. IEEE Computer Society, 1986. doi:10.1109/SFCS.1986.25.

A Reduction to Protocol for Non-Redundant Function

In this section, we reduce a protocol for f : X0 ×X1 → G to a protocol for a non-redundant
function f ′. We define the binary relations ‘∼’ on X0 as follows: x0 ∼ x′0 if and only if
f(x0, ·)− f(x′0, ·) : X1 → G is constant. Note that is an equivalence relation. Let X ′0 ⊆ X0
be a complete system of representatives, and let ϕ0 be the natural sujection X0 → X ′0. By
the definition, f(x, ·)− f(ϕ(x), ·) : X1 → G is constant and we denote h0(x) as the constant.
Similarly, we define X ′1, ϕ1, and h1(x).

Let f ′ : X ′0 ×X ′1 → G be a restriction of f . Note that f ′ is non-redundant. Then, we can
construct a two-party protocol Π for f from a two-party protocol Π′ for f ′ with the same
CR size, the number of rounds, and the communication complexity: Π(x0, x1) computes
(g0, g1)← Π′(ϕ0(x0), ϕ(x1)) and outputs (g0 + h0(x0), g1 + h1(x1)). CR size, the number of
rounds, and the communication complexity of Π is the same as Π′ and the security, and Π is
secure when Π′ is secure.
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