Locally Covert Learning

Justin Holmgren 24

NTT Research, Sunnyvale, CA, USA

Ruta Jawale =&

University of Illinois at Urbana-Champaign, 1L, USA

——— Abstract

The goal of a covert learning algorithm is to learn a function f by querying it, while ensuring that
an adversary, who sees all queries and their responses, is unable to (efficiently) learn any more about
f than they could learn from random input-output pairs. We focus on a relaxation that we call local
covertness, in which queries are distributed across k servers and we only limit what is learnable by
k — 1 colluding servers.

For any constant k, we give a locally covert algorithm for efficiently learning any Fourier-sparse
function (technically, our notion of learning is improper, agnostic, and with respect to the uniform
distribution). Our result holds unconditionally and for computationally unbounded adversaries.
Prior to our work, such an algorithm was known only for the special case of O(logn)-juntas, and
only with k = 2 servers [9].

Our main technical observation is that the original Goldreich-Levin algorithm only utilizes
i.i.d. pairs of correlated queries, where each half of every pair is uniformly random. We give a
simple generalization of this algorithm in which pairs are replaced by k-tuples in which any k — 1
components are jointly uniform. The cost of this generalization is that the number of queries needed
grows exponentially with k.

2012 ACM Subject Classification Security and privacy — Information-theoretic techniques; Theory
of computation — Machine learning theory

Keywords and phrases learning theory, adversarial machine learning, zero knowledge, Fourier
analysis of boolean functions, Goldreich-Levin algorithm, Kushilevitz-Mansour algorithm

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.14

1 Introduction

In CRYPTO 2019, [9] formulated a new learning task whose utility is illustrated by the
following scenario. Company A wishes to outsource experiments to company B while deterring
employees of B from selling the outcomes of these experiments to a competitor C. Motivated
by this scenario and others like it, they asked the following question (parameterized by a
function family F):

Can one learn' a function f € F with oracle queries such that an adversary, who sees
all queries x along with the corresponding values f(x), is unable to learn f?

When might this be possible? The adversary necessarily learns some non-trivial inform-
ation about f, namely pairs of the form (x, f(a:)), called examples of f. We need it to be
computationally intractable to use this information to “learn” f, e.g. output a circuit that
agrees with f on all but a small fraction of inputs. There are simple function families for
which learning from (uniformly) random examples is believed to be intractable. Such families
include noisy linear functions over finite fields (see the learning parity with noise (LPN) [3]

1 We are deliberately vague for now about the precise meaning of “learn”; we defer to Section 2 a detailed
specification of the learning model used in our results.

© Justin Holmgren and Ruta Jawale;

oY licensed under Creative Commons License CC-BY 4.0
4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 14; pp. 14:1-14:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:justin.holmgren@ntt-research.com
https://justinholmgren.com/
mailto:jawale2@illinois.edu
https://rutajawale.github.io/
https://doi.org/10.4230/LIPIcs.ITC.2023.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2

Locally Covert Learning

and learning with errors (LWE) [13] assumptions), O(logn)-juntas [2], and more generally?
polynomial-size decision trees, DNFs, CNFs, and Fourier-sparse functions. In each of these
cases, we emphasize that the complexity of learning f depends on the joint distribution of
the examples, and is only conjectured to be difficult for examples that are independent and
uniformly random.

On the other hand, the learner has the power to choose the values of x for which it sees
f(z). This power, known in the learning theory literature as the ability to make membership
queries, enables learning all of the aforementioned function families in polynomial time.
However, this power is a double-edged sword in our setting; if not wielded carefully, it
provides exactly the same benefits to the adversary! In fact, a learning algorithm must
incorporate at least a one-way function in order to have any advantage over the adversary: if
the learner’s queries are not a (distributional) one-way function [8] of the learner’s randomness,
then the adversary could emulate the learner with arbitrary inverse polynomial accuracy.
This also shows that we can only hope for security against a computationally bounded
adversary.

Following Canetti and Karchmer [4], we focus on preserving any advantage of membership
queries over random examples. They defined a learning algorithm to be covert if its transcript?
with the membership query oracle is simulatable from random examples. As with all simulation
definitions of security, there are variants (e.g. with computational, statistical, and perfect
security) corresponding to analogous degrees of indistinguishability of the simulator’s output
from reality.

Previous Covert Learning Algorithms

There are two main previous results on covert learning, which we now quickly summarize.

1. Prior to [4], Ishai, Kushilevitz, Ostrovsky, and Sahai [9] gave a simple algorithm for
learning O(logn)-juntas with a relaxed notion of covertness that we retroactively call
1-out-of-2 covertness. In this relaxation, the learning algorithm’s membership queries are
distributed across two oracles, and we only require that the transcript with any one of
the oracles is simulatable given random examples.
The [9] algorithm is non-trivial in the sense that O(logn)-juntas are not known to be
learnable in polynomial time from random examples. However, this non-triviality is
quantitatively rather weak: r-juntas are learnable in time O(n").
The notion of “l-out-of-2 covertness” naturally generalizes to “t-out-of-k covertness” for
any t < k. The single-oracle setting considered by Canetti and Karchmer is the special
case obtained by setting ¢t = k = 1. We call this case globally covert learning, and we call
the ¢t < k case locally covert learning.
The motivating scenario with which we began this introduction is nearly as relevant to
locally covert learning as it is to globally covert learning. Only a small modification
is required: the company A now outsources its experiments to multiple companies
By,..., By, and aims to deter employees from ¢ of these companies from colluding and
selling their (combined) experiment outcomes to a competitor C.

2. Canetti and Karchmer [4] devised a globally covert algorithm for learning (polynomial-size)
decision trees. In fact, their algorithm achieves stronger guarantees known as agnostic
learning — even if the target function f is only a-close to a decision tree, their algorithm

2 Tt is easy to prove that any k-junta has a decision tree of depth k and size 2’“, and also has at most 2"
non-zero Fourier coefficients.
3 The transcript lists the queries made to the oracle alongside the corresponding oracle replies.

J. Holmgren and R. Jawale

can still produce a circuit that is (a + €)-close to f for arbitrarily small e. Compared
to [9], Canetti and Karchmer learn a larger family of functions with stronger (agnostic)
correctness guarantees, and they achieve global rather than local covertness, but they
rely on the sub-exponential LPN assumption and only achieve the computational variant
of covertness.

Their main lemma regards a task that we call Goldreich-Levin learning (after the classic
paper [5], which gave the first algorithm for the problem): using membership queries,
produce a list of all parity functions whose correlation with f is above a given threshold
7 > 0. Goldreich-Levin learning is complemented by the Kushilevitz-Mansour al-
gorithm [10], which shows how to learn a Fourier-sparse function f from only random
examples if one is additionally given such a list of parity functions. Thus there is a quite
general reduction from covert learning to covert Goldreich-Levin learning.

Canetti and Karchmer’s algorithm actually achieves only a weak variant of Goldreich-
Levin learning; it does not output all parity functions that are correlated with f, only
those that depend on O(logn) variables. Nevertheless, they show that this variant is
sufficient for learning decision trees. We note that decision trees are also learnable with
only random examples if the learner is allowed to run in quasi-polynomial time (and use
quasi-polynomially many examples).

1.1 Qur Contributions

For any constant k, we construct a polynomial-time algorithm for Goldreich-Levin learning
that is (perfectly) (k — 1)-out-of-k covert. Combined with the Kushilevitz-Mansour algorithm,
this immediately implies a polynomial-time algorithm for (k — 1)-out-of-k covertly and
agnostically learning Fourier-sparse functions under the uniform distribution. In contrast to
previous works, this learning task is probably not achievable in quasi-polynomial time given
only random examples. Assuming the sub-exponential hardness of LPN (with constant noise
rate), it is even impossible to agnostically learn parities, which are maximally Fourier-sparse,
in sub-exponential time given only random examples.

Unlike [4], our algorithm achieves the full functionality of the Goldreich-Levin algorithm
(outputting all parities that correlate with the target function). In fact, for k = 2 our
algorithm is nearly identical to the original algorithm! We merely specify which queries go to
which oracle, add some dummy queries, and observe that the resulting algorithm is perfectly
1-out-of-2 covert. Our generalization to k > 2 is just a simple tweak to this algorithm, the
crux of which is our Proposition 11.

We believe that our observation, though straightforward, is only obvious with hindsight.
In particular, the original Fourier-analytic Goldreich-Levin algorithm that we crucially rely
on appears to have been largely forgotten within the cryptography community. It has been
supplanted in every cryptography curriculum known to the authors (and also in [4, 7]) by
a more elementary algorithm that is attributed (see e.g. [1]) to Charles Rackoff. However,
Rackoft’s algorithm does mot suffice for us. It is not locally covert with any reasonable
parameters (i.e. t-out-of-k covert for ¢ = Q(k)) for the simple reason that its queries do
not have enough entropy. We believe that the modern language of Fourier analysis makes
it easier to appreciate the elegance of the original proof. In the course of explaining our
observations we give a succinct exposition of that proof (heavily inspired by O’Donnell [12]),
which we hope will help in that regard.

14:3

ITC 2023

14:4

Locally Covert Learning

Interactive Proofs for Verifying Machine Learning [7]

We also mention the work of [7], which focused on a different but related problem that they
call interactive proofs for PAC verification. In this problem, the goal is to verify that a given
hypothesis h is as accurate as it is purported to be, making use of both random examples and
interaction with an untrusted prover. At first glance this appears easy even without a prover
— one can easily see how well h agrees with the target concept f by testing h on random
examples for f. The key requirement that makes their problem technically challenging is that
they focus on agnostic learning, where h is supposed to perform as well as the best function
h* in a function family F, and the verifier does not know h* or how well h* agrees with f.

Covert learning turns out to be applicable to this problem, as explored in both [4] and [7].
The rough idea is that the verifier runs a covert learning algorithm £, and whenever £
makes a query ¢, the verifier requests f(q) from the prover. To prevent the prover from lying
with impunity, the verifier also requests f(z) for different values of a for which the verifier
already knows f(x) — such z are readily available in the form of random examples for f.
Covertness is used to ensure that the prover cannot distinguish these “dummy” queries (on
which incorrect answers would be caught) from the real queries (where incorrect answers
would be impactful). Since the prover is now forced to answer queries mostly correctly, the
verifier is assured that the resulting output of £ is good.

The connection between covertness and interactive PAC verifiability remains intact for
locally covert learning. Specifically, a 1-out-of-k covert learning algorithm gives rise to a
standard multi-prover interactive proof (MIP), where each prover’s messages are a function
only of the messages sent to that prover. Starting instead with a t-out-of-k covert learning
algorithm for ¢ > 1 gives soundness against a form of bounded prover collusion that to our
knowledge has not been previously studied in the context of MIPs.

2 Locally Covert Learning

In this section, we spell out the details of our learning model. We first formalize what
an adversary (a coalition of oracles) is able to see when one of our learning algorithms is
executed.

» Definition 1 (The Adversarial View). For any k-oracle algorithm L, an input x, and a
function f, we define

Viewf(L,x) = (T, s Tk)s

where Ti,..., T, are correlated random wvariables that are sampled as follows. Let r be
uniformly sampled randomness for L. Suppose that on inpul x and randomness r, and with
each oracle implementing f, the algorithm L’s queries to its it oracle are qgl), . ,q,(ﬁ)i. Then

T; (the transcript with the it" oracle) is defined as
Tii= (0, £@™), - (a2, 1 (@))).

For any subset S = {i1,..., it} C [k] with iy < - - < iy, we also define Viewg(ﬁ,:z:) =
(Tirs - Tay)-

We are now ready to define locally covert algorithms, following the standard real/ideal
simulation paradigm that dates back to [6].

J. Holmgren and R. Jawale

» Definition 2 (Local Covertness). We say that a k-oracle learning algorithm L is (perfectly)
t-out-of-k covert modulo ¢(-) if there exists a probabilistic polynomial-time algorithm Sim
such that for every subset S C [k] with |S| < t, every function f, and every input x, it holds
that

Viewg(ﬁ,z) = Sim&®) (S, ¢(z)), (1)

where = denotes equality of distributions and Ex(f) denotes a probabilistic oracle that when
queried, samples x uniformly from the domain of f and returns (w, f(x))

If “=” in Equation (1) is replaced by a form of computational (resp. statistical) indistin-
guishability, we say that L is computationally (resp. statistically) t-out-of-k covert.

In this definition, the function ¢(-) serves to enumerate all leakage about £’s input that we
consider benign. For example, the input x to a learning algorithm often includes an accuracy
parameter € and a confidence parameter §. Relaxing the desired guarantees on accuracy or
error probability means that the algorithm can make fewer queries. Fewer queries is usually
a good thing, but it is also clearly visible to the adversary, so we declare it benign by defining
¢(z) to include € and §.

On the other hand, for some learning algorithms the input may explicitly include more
sensitive information, such as auxiliary information z about the target function f. When
this information is omitted from ¢(z), covertness modulo £(-) guarantees that the algorithm’s
queries do not convey information about z.

3 Fourier Analysis Preliminaries

It is mathematically convenient in this paper to view Boolean functions as functions from &
to {—1,1} (as opposed to functions from {0,1}"™ to {0,1}). In this setting, a parity function
is also known as a character.

» Definition 3. A character of § is a homomorphism from § to the multiplicative group
{=1,1} C R. Characters are parameterized by a vector ~y €%, with the character corresponding
to v mapping x — (—1)7".

The characters form a group under multiplication, which corresponds to addition of the
vectors v in §. We will identify characters with their index, i.e. we will simply write v(z)

rather than (—1)7*. To avoid resulting confusion, we will denote the set of characters by %
instead of 3.

» Theorem 4 (Fourier Expansion Theorem [12, Theorem 1.1]). Ewvery function f :5— R can
be uniquely expressed as

f@)=> " f() ()
ver
where each f (7) is a real number called the Fourier coefficient of f on v. This expression is

called the Fourier expansion of f.

» Proposition 5 (Fourier Coefficient Formula [12, Proposition 1.8]). For f : 3 — R and y € 3,
the Fourier coefficient f(vy) is given by the formula

14:5

ITC 2023

14:6

Locally Covert Learning

One can view f as a function from § to R (because characters 7 correspond to elements
of & as described in Definition 3). Then combining Theorem 4 and Proposition 5, we obtain
the standard fact that two iterations of the Fourier transform applied to a function returns
the same function scaled by a factor of 27,

» Theorem 6 (Fourier Duality). For any f :5— R, f: 27" . f.

» Theorem 7 (Parseval’s theorem). For any function f : § — R, it holds that

T4—

Eg[f(x)z] =T

vEY

Recall that for a subset A C X, the indicator function of A in X, denoted by 14, maps
r € X to1lif x € A and to 0 otherwise.

» Proposition 8 (Fourier Transform of Affine Subspaces [12, Proposition 3.12]). If A=V +x
is an affine subspace of § with codimension k, then

—koN(z) i L
ﬁ(’y):{z &) ifyeV

0 otherwise.

Here 14 :3— {0,1} denotes the indicator function for A in'%, and V* denotes the set of
v €5 for which v-v=0 (i.e. y(v)=1) for everyv € V.

In the statement of Proposition 8, note that although the decomposition A = V + z is
not unique (A can also be written A = V 4 2’ for any 2’ € x + V), the definition of 14 is
independent of the choice of decomposition. This is because for any =’ € z + V and any

7 € VE, we have 1(x) = 1(2' + (¢ — o)) = 1(@') - y(z — a') = (a').

» Corollary 9. If A =V +~* is an affine subspace ofg with dimension d, then for any x €5,

2t (@) difzeVt
Zv(w){o

by otherwise.

Equivalently, the function f :J— R defined by f=14 :g% {0,1} s

0 otherwise.

) = {Qd-fy*(x) ifr eVt

Proof. Follows from applying Fourier duality (Theorem 6) to Proposition 8. |

» Corollary 10 (Generalization of Plancherel). For any fi,..., fx : & = R, it holds that

k

k
Y IIim= E II5@)|- (2)

~ - T14eey TR €Y 1
yenJI= z1 =0 [J7

J. Holmgren and R. Jawale

Proof. We have

= Z H xE [fi(z) - v()] (Proposition 5)

v J=1
= Z E [H filz;) - y(xj)} (independence of z1,...,xx)
11,‘..,‘%)&-(—? .
vy Jj=1
k k
= ; xl,mI’Eik{_g [(11 fj(xj)) - Zl ;z:j)} (characters are homomorphisms)
Jj= j=

k
= E {fl(xl) o fe(ag) - Z v(Z 1:])} (linearity of expectation)

But this is equal to

k

s (1o
1,0 TREY ; f](j)
z1+-+xR=0 j=1

because

I .
o

= 0 otherwise.

4 Covertly Measuring Fourier Weight on Affine Spaces

The following algorithm is the main subroutine in our exposition of the Goldreich-Levin
algorithm.

» Proposition 11. For all k € 7%, there is a perfectly (k — 1)-out-of-k covert algorithm
(modulo the parameters n, € and ¢ below) that takes as input:

an affine subspace A=V +~* of é‘\, where V is a vector subspace;

an “accuracy” parameter € > 0;

a “confidence” parameter § > 0; and

oracle access to a function f :5— [—1,1],
runs in time poly(n, %,log(%)) and, with all but § probability, outputs a real number W
satisfying

b—e< Y f(pF<ite

Moreover, the queries of this algorithm are non-adaptive and are computable in time

poly(n, %, log(%)) given V, €, §, and the algorithm’s randomness (in particular there is no

dependence on v*).

14:7

ITC 2023

14:8

Locally Covert Learning

Proof. Let A =V + ~* be an affine subspace of’; (here V is the vector space parallel to A,
and v* € 7 is the offset of A), and let d denote the dimension of A. We can write

ST I =Y Fk1a().

yEA ver

By Corollary 9, the indicator function 14 : g — {0,1} is the Fourier transform of the
function

g5—R
(z) = 24 . ¥ (z) ifx eVt
g 0 otherwise.

Rewriting 14 as g, we obtain

Zf(V)k “g(v) = E [f(ffl)f(xk) ~g(x1 +-~-+xk)] (Corollary 10)

- T1yeey TRl
vEY
= LB [f@) f) e))
T4tz €V
Our algorithm estimates Equation (3) by sampling m = O(log(1/§)/€?) i.i.d. tuples
((xgi), e ,xg)))ie[m] sampled uniformly from (;)k conditioned on mgl) + -+ m,(;) eVt

Then for each j € [k], the algorithm queries its j!* oracle to obtain f (xgi)), and computes
a “sample” f(zgi)) e f(:cg)) -y (zﬁ” + -+ x](f)). Finally, it outputs the average of these
samples. This output satisfies the desired accuracy guarantee by Hoeffding’s inequality. The
“moreover” of the theorem statement follows from the fact that the values (:cy)) were sampled
from a distribution that depends only on V.

(k — 1)-out-of-k covertness follows from the standard fact that for any v, when the

queries (xgi), e ,x,(;)) are sampled uniformly from % conditioned on xgi) + -+ xg) = v, the
distribution of xg) is uniform on (3)!5! for any S C [k] with |S| < k. <

5 The Goldreich-Levin Theorem

The seminal theorem of Goldreich and Levin [5] plays an important role in cryptography,
learning theory, and this paper. Loosely speaking, the theorem says that it is possible to
efficiently find all heavy Fourier coefficients of a function f using membership queries to f.
We prove a (k — 1)-out-of-k covert variant of this theorem for any constant & (the running
time and number of queries grow exponentially in k).

» Theorem 12 (Locally Covert Goldreich-Levin). For every integer k > 2, there is an explicit
algorithm that when given:

an integer n € ZT,

a “threshold” parameter 0 < 7 <1,

a “confidence” parameter § > 0, and

access to k oracles all implementing the same function f :5— [—1,1],
the algorithm runs in time poly(n,log(}), %) and outputs a set S C o (of size O(1)7%)) such
that with all but & probability,

S contains all v € § for which |f(~)] > 7. (4)

Moreover, this algorithm is perfectly (k — 1)-out-of-k covert modulo (n,T,9).

J. Holmgren and R. Jawale

Proof. We assume without loss of generality that k is even (so we are looking for ~ satisfying
f (7)*¥ > 7%). This is without loss of generality because for odd k, we can emulate a k-out-
of-(k 4+ 1) covert algorithm £. Whenever £ makes a query ¢ to its i*" oracle, we pass the
query to our (i mod k)" oracle. With this query mapping, it is easy to see that the view of
any k — 1 of our oracles is simulatable from the view of k of L’s oracles, which is in turn
simulatable from random examples.

For a given f and 7, say that v € § is heavy if |f('y)| > 7, and let H denote the set
of heavy . Our algorithm maintains a set S of O(1/7%) disjoint affine subspaces that
collectively cover H (i.e. H C UgesA). The algorithm starts with the trivial covering
S = {§} It then “refines” S until S contains only affine sets of dimension 0, i.e. singleton
sets, at which point S (or more precisely UacgA) is the desired output.

To refine S, the algorithm repeats the following two steps n times:

1. Replace each A € S by disjoint Ay and Ay such that dim Ag = dim A; = dim A — 1 and
A=AyUA,.

2. Use Proposition 11 to “filter” S, keeping all A for which >, f()F > 7% (in particular
this includes all A that contain a heavy) and removing all A for which >°_ ., F)k <
7k /2. This involves running the algorithm of Proposition 11 |S| times, where recall
|S| < O(1/7%). For covertness, we we also perform up to O(1/7%) “dummy” executions
of the algorithm so that we do not leak information through |S|.

We remark that with a careful choice of decomposition in step 1, this algorithm can be

made non-adaptive. Specifically, fix a basis ey, ..., e, for J, and in the *" iteration choose
Ay :={vy € A:~v(e;) = (—1)"}. Then in the i’ iteration at step 2, each affine space 4 € S
will be parallel to the fixed vector space V; = {y € § : v(e1) = --- = y(e;) = 1}. The

“moreover” of Proposition 11 then implies that the queries can all be made nonadaptively.

To complete the description and analysis of the algorithm, it remains to show that this
filtration process guarantees |S| < O(1/7%). Specifically we claim |S| < 2/7%, for otherwise
we would have

k
1<|5\.%

<> > et

AeS~yeA

<> >)2 (cach f() lies in [—1,1])

AeS~yeA
< Z f(7)? (the spaces A € S are disjoint)
ver

<1 (Parseval). <

—— References

1 Mihir Bellare. The goldreich-levin theorem, October 1999. Lecture notes, available at
https://cseweb.ucsd.edu/~mihir/papers/gl.pdf.

2 Avrim Blum. Learning a function of r relevant variables. In Bernhard Schélkopf and Man-
fred K. Warmuth, editors, Computational Learning Theory and Kernel Machines, 16th Annual
Conference on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003,
Washington, DC, USA, August 24-27, 2003, Proceedings, volume 2777 of Lecture Notes in
Computer Science, pages 731-733. Springer, 2003. doi:10.1007/978-3-540-45167-9_54.

3 Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM, 50(4):506-519, 2003.

14:9

ITC 2023

https://cseweb.ucsd.edu/~mihir/papers/gl.pdf
https://doi.org/10.1007/978-3-540-45167-9_54

14:10

Locally Covert Learning

4 Ran Canetti and Ari Karchmer. Covert learning: How to learn with an untrusted intermediary.
In Kobbi Nissim and Brent Waters, editors, Theory of Cryptography — 19th International
Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part III,
volume 13044 of Lecture Notes in Computer Science, pages 1-31. Springer, 2021. doi:
10.1007/978-3-030-90456-2_1.

5 Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washington, USA, pages 25-32. ACM, 1989. doi:
10.1145/73007.73010.

6 Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In STOC, pages 365-377. ACM, 1982.

7 Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive
proofs for verifying machine learning. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume
185 of LIPIcs, pages 41:1-41:19. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021.
doi:10.4230/LIPIcs.ITCS.2021.41.

8 Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In FOCS, pages 230-235. IEEE Computer Society, 1989.

9 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptographic sensing. In
CRYPTO (3), volume 11694 of Lecture Notes in Computer Science, pages 583-604. Springer,
2019.

10 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM J. Comput., 22(6):1331-1348, 1993. doi:10.1137/0222080.

11 Yishay Mansour. Learning boolean functions via the fourier transform. Theoretical advances
in neural computation and learning, pages 391-424, 1994.

12 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014. Available
online at arXiv:2105.10386.

13 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pages 84-93. ACM, 2005.

A Agnostic Learning from Heavy Fourier Coefficients

In agnostic learning, the goal is to learn a hypothesis h € H that is nearly as good as any
other hypothesis H. More precisely, we aim to (approximately) minimize a loss function
L(h, f).

We use the squared /5 loss function, i.e. L(h, f) = ||h—f|?* := Eqp {(h(m)—f(x))ﬂ . This
loss function possesses a number of appealing mathematical properties. When h, f :5— {0,1}
are both Boolean functions, L(h, f) is just the fraction of inputs on which h and f differ. On
the other hand if & is a real-valued function with L(h, f) = €, then one can efficiently obtain
a Boolean function h with L(h, f) < 4e by setting h(z) = 0 if h(z) < 1/2, and h(z) = 1
otherwise.

This loss function has two appealing properties that connect it to Boolean functions.
When h, f :5— {—1,1} are both Boolean functions, L(h, f) is exactly four times the fraction
of inputs on which h and f differ. On the other hand if & is a real-valued function with
L(h, f) = a, then one can efficiently obtain a Boolean function h with L(h, f) < 4a by

setting h(z) = sign(h(x)), i.e.

h(z) = {1 if h(z) >0

—1 otherwise.

https://doi.org/10.1007/978-3-030-90456-2_1
https://doi.org/10.1007/978-3-030-90456-2_1
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.1137/0222080
https://arxiv.org/abs/2105.10386

J. Holmgren and R. Jawale

For completeness we include a proof of the following proposition, which was already known
(see e.g. the survey of Mansour [11]).

» Proposition 13. For every integer k > 2, there is an explicit algorithm that when given:
an integer n € 7.,
a “sparsity” parameter t € Z+,
an “accuracy” parameter € > 0,
a “confidence” parameter § > 0, and

access to k oracles all implementing the same function f:{-1,1}" — [-1,1],

runs in time poly (n,log(%)7 (é)k> and outputs a t-sparse polynomial p: R™ — R (as a list

of monomials and coefficients) such that with all but § probability, L(p, f) < L(p, f) + € for
every t-sparse polynomial p.
Moreover, this algorithm is perfectly (k — 1)-out-of-k covert modulo (n,t,¢,9).

Proof. The algorithm executes the following steps:

1. Use the (locally covert) Goldreich-Levin algorithm of Theorem 12 to find a set S C g such
that, for some parameter 7 to be specified later, S contains all v for which \f(w)\ >T
(unless a certain bad event By occurs, which happens with probability at most 6/2).
Without loss of generality assume |S| > t (arbitrary elements can be added to S if
necessary to ensure this).

2. Use random examples to obtain estimates f(7) of f(y) such that

|F(v) = f(7)] < V/7 for each y € § (5)

(unless a certain bad event By occurs, which happens with probability at most §/2).

3. Sort the elements of S as 7, ... +Yg such that [f(51)] = [f(F2)| = - = |f(’7‘§‘)|, and
define S; = {1, .. ,jt}.

4. Output p=3_ 5 f(v) -7

Toward analyzing the correctness of this algorithm, enumerate the elements of ;22 as
Y1,72y -5 Y2n such that |f(y1)] = - > ’f(’)/gn) , let S; denote the set {v1,...,7:}, and
define the function p = Zwe s, f (7) -y Note that this p is the t-sparse function that is closest
to f, so we wish to compare L(p, f) to L(p, f).

L(p, f) has a convenient formula in the Fourier domain:

Lip. /)= (6() — fF()* =Y Fn* (6)

Ner Y¢St
Similarly
LG) =Y f@)?+ > (Fo) - F)%, (7)
v¢35; v€ES,

so we have

LG)~ Lo =Y Fn? =3 F*+ > (Fon) - Fo)™. ®)

¢S, YESt YES:

< tr by (5)
It remains to bound

Y IP = f)=

’yES't YES: i=1

(f(i)* = f(30)°). (9)

]~

14:11

ITC 2023

14:12

Locally Covert Learning

Recall that f (7i) can be obtained by sorting the 2™ Fourier coefficients of f and picking the
it" largest. In comparison, f (%:) is obtained by first perturbing each Fourier coefficient by at
most 7, then sorting and taking the i*" largest, then unperturbing by at most 7. Sorting of
real numbers is 1-Lipschitz with respect to the o, metric (this follows from the analogous
fact for min and max), which implies that | f(v;) — f(5:)| < 27 for every 4. Since each |f(7)]
is at most 1, (9) is at most 4¢7, which finally implies that (8) is at most 5¢7.

Setting 7 = €/5t then achieves the desired accuracy. <

	1 Introduction
	1.1 Our Contributions

	2 Locally Covert Learning
	3 Fourier Analysis Preliminaries
	4 Covertly Measuring Fourier Weight on Affine Spaces
	5 The Goldreich-Levin Theorem
	A Agnostic Learning from Heavy Fourier Coefficients

