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Abstract
In recent years, the number of applications of the repeated squaring assumption has been growing
rapidly. The assumption states that, given a group element x, an integer T , and an RSA modulus N ,
it is hard to compute x2T

mod N – or even decide whether y
?= x2T

mod N – in parallel time less
than the trivial approach of simply computing T squares. This rise has been driven by efficient proof
systems for repeated squaring, opening the door to more efficient constructions of verifiable delay
functions, various secure computation primitives, and proof systems for more general languages.

In this work, we study the complexity of statistically sound proofs for the repeated squaring
relation. Technically, we consider proofs where the prover sends at most k ≥ 0 elements and
the (probabilistic) verifier performs generic group operations over the group Z⋆

N . As our main
contribution, we show that for any (one-round) proof with a randomized verifier (i.e., an MA proof)
the verifier either runs in parallel time Ω(T/(k + 1)) with high probability, or is able to factor N

given the proof provided by the prover. This shows that either the prover essentially sends p, q such
that N = p · q (which is infeasible or undesirable in most applications), or a variant of Pietrzak’s
proof of repeated squaring (ITCS 2019) has optimal verifier complexity O(T/(k + 1)). In particular,
it is impossible to obtain a statistically sound one-round proof of repeated squaring with efficiency
on par with the computationally-sound protocol of Wesolowski (EUROCRYPT 2019), with a generic
group verifier.

We further extend our one-round lower bound to a natural class of recursive interactive proofs
for repeated squaring. For r-round recursive proofs where the prover is allowed to send k group
elements per round, we show that the verifier either runs in parallel time Ω(T/(k + 1)r) with high
probability, or is able to factor N given the proof transcript.
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4:2 The Cost of Statistical Security in Proofs for Repeated Squaring

1 Introduction

The repeated squaring (RS) assumption (first introduced by Rivest, Shamir, and Wagner [33])
states that for an RSA modulus N , a group element x, and a time bound T , it is hard to
compute x2T mod N – or even decide whether y

?= x2T mod N – in parallel time less than
the trivial approach of simply computing T squares. Under this assumption, the RS function
is a candidate sequential function, meaning it cannot be sped up using parallel processors.
This gives the ability to tune the time bound T so that computing the RS function requires
a specified amount of wall-clock time, e.g. you can set T so that computing x2T mod N

takes at least 1 hour. This property, combined with the algebraic structure of the repeated
squaring function, has led to many exciting applications.

Originally, Rivest, Shamir, and Wagner [33] used the RS function to construct time-lock
puzzles. Time-lock puzzles provide a mechanism to send a message “to the future”, by
allowing a sender to quickly generate a puzzle with an underlying message that remains
hidden for a specified amount of wall-clock time. These are possible because repeated
squaring in RSA group has a natural trapdoor that allows the puzzle generator to evaluate
the function quickly. Namely, given the factorization of N , one can reduce 2T mod the order
of the group to compute x2T efficiently. In this sense, time-lock puzzles effectively give a
“fine-grained” variant of standard cryptographic commitments, where the hiding property
only holds for some fixed amount of time specified by T .

More recently, Pietrzak [30] and Wesolowski [41] showed how to construct efficient (non-
interactive) proofs for the RS relation. (In both works, this was obtained by first designing
an interactive protocol for RS and then making it non-interactive via the Fiat-Shamir
transform [12].) Such proofs for the RS relation have been the main driving force behind
various applications of the repeated squaring function. For instance, they are used to
construct verifiable delay functions (VDFs), first proposed by Boneh, Bonneau, Bünz, and
Fisch [5], where the output of the function serves as a unique “proof-of-sequential-work” that
can be efficiently verified with an associated non-interactive proof. Among other applications,
Boneh et al [5] propose VDFs as a way to generate randomness for a trusted lottery or to
construct resource-efficient blockchains (which has since been adopted by Chia [1]).

Since the initial works of [6, 30, 41], there have been many new proposed applications
for proofs of repeated squaring: [7] construct accumulators, [11] construct randomness
beacons, [10] construct polynomial commitments for succinct arguments, and [4] build
off of [10] to construct time and space-efficient arguments. Furthermore, there has been
much focus on understanding the efficiency and security of such proofs (see e.g. [30, 41, 6,
11, 34, 4, 19]) as well as the security of the sequentiality assumption underlying RS (see
e.g. [36, 23, 37, 35]).

Proofs of repeated squaring. In this work, we are interested in proofs for the repeated
squaring language, defined with respect to a multiplicative group of integers modulo N :

RSN =
{

(x, y, T ) | y = x2T

mod N
}

,

where x and y are two group elements and T is an integer.1 A proof system for this language
consists of a prover P and a (probabilistic) verifier V . The goal of the verifier is to decide,
given an instance (x, y, T ), whether it is in RSN or not, and the prover sends the verifier a

1 More generally, our results hold for the repeated squaring relation in any multiplicative group of unknown
order. We focus on RSA groups for this introduction for simplicity of presentation.
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proof string π to help in this task. We emphasize that we are mostly interested in the setting
of non-interactive proofs in this work as they are most useful for applications, but later we
also generalize the above and consider interactive protocols.

For a proof system to be meaningful, it must satisfy completeness and soundness. Com-
pleteness stipulates that an honestly generated proof will convince the verifier whenever
(x, y, T ) ∈ RSN , and soundness requires that, whenever (x, y, T ) ̸∈ RSN , there is no cheating
proof π that will convince a verifier with noticeable probability. As stated, this is a statistical
notion of soundness, asking whether there exist cheating proofs at all. We also consider
proof systems that are only computationally sound – commonly known as arguments – where
there may exist such cheating proofs, but we assume they are hard to find. Furthermore,
computationally sound proofs come in many forms depending on the kind of assumptions
they rely on.

There are several known proofs for RSN (see Appendix B for an overview). For all of
them, at least one of the following hold:
(A) The proof is only computationally sound. This is undesirable or even insufficient for

several important applications; see below.
(B) The prover leaks the factorization to the verifier. This only allows N to be used once

and is infeasible unless the prover can factor N .
(C) There is a tradeoff between proof size, |π|, and (parallel) running time of V , TimeV ,

where

|π| · TimeV ≥ T.

That is, inefficiency is somewhat necessary: any improvement in communication com-
plexity must necessarily cause an increase in computational complexity and vice versa.

All three of the above properties are undesirable for various reasons as we discussed
above. So, in this work, we aim to understand whether having one of the above drawbacks is
necessary. We do this by studying the cost of statistical soundness in RSN :

Can we construct a (statistically sound) non-interactive proof system for RSN with low
communication, an efficient verifier, and that doesn’t leak the factorization of N?

On statistical soundness and tradeoffs between efficiency and security. Purely based
on security and ignoring efficiency, it is clear that proofs with statistical soundness are
strictly better than ones with only computational soundness. So perhaps in high-stakes
applications (e.g. for blockchains where lots of money is at stake), having soundness rely on
newer and untested mathematical/ computational assumptions may not be worth it. It’s
worth emphasizing, however, that the computationally sound, non-interactive proofs for
RSN rely not only on well-formulated computational assumptions, but potentially also on
assumptions regarding the setup used to generate the RSA modulus N .

Wesolowski’s argument [41], for instance, is completely broken if the prover knows
the factorization of N . This is not the case for Pietrzak’s non-interactive proof [30], but
this already suffers an O(log T ) multiplicative communication overhead in efficiency. Still,
Pietrzak’s protocol is potentially broken if N is not a product of safe primes. To fix this,
Block et al. [4] give a non-interactive proof that works for any group and hence value of N ,
but results in an additional O(λ) blowup in efficiency over Pietrzak’s proof.2 This protocol

2 We mention that Hoffmann et al. [19] give a similar result to [4] that works in any group with improved
efficiency by considering repeated qth powers for structured q ≫ 2. Still, their protocol inherently
cannot be made more efficient than the protocol of [30].

ITC 2023
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still relies on a random oracle to securely instantiate the FS heuristic though. Technically,
the FS heuristic can be instantiated for [4] assuming LWE [3], but only at a further cost
in efficiency for both the prover and the verifier with its own additional trusted setup. So
it seems, no matter which computationally sound proof you choose, there is a complex
combination of both computational and setup assumptions, and if one piece fails, the security
of the entire system may be completely compromised. However, if the underlying proof is
statistically sound, then this problem does not exist as it is impossible to generate accepting
proofs for false statements (this is true even if P = NP and factoring is easy).

Even if one is extremely confident in their computational assumptions, there are protocols
based on proofs for RSN that are completely broken if the wrong underlying protocol is
used. Specifically, in the recent work of Freitag, Komargodski, Pass, and Sirkin [13], they
use proofs for RSN on top of a time-lock puzzle based on the RS function in order to
construct publicly verifiable and non-malleable time-lock puzzles (on their way to building
fair multi-party coin-flipping and auction protocols without trusted setup). In the context
of time-lock puzzles, the party who generates the puzzle needs to know the factorization
of N ; this is actually a feature of time-lock puzzles, not a bug. However, this implies that
they need the corresponding proof in their construction to be sound even if some party
may know the factorization of N , so as pointed out above, Wesolowki’s protocol will not
suffice. They instead rely on Pietrzak’s protocol, which is still plausibly secure when the
factorization of N is leaked. But again, even though Wesolowski and Pietrzak’s protocols
are both “computationally secure”, you cannot simply default to using the more practically
efficient protocol of Wesolowski.

We highlight two important takeaways from the example of [13]:
If using computationally sound rather than statistically sound proofs, protocol designers
need to be very careful about the specific assumptions that the soundness of this proof
relies on. This crucially includes the interplay between the setup assumptions and
mathematical/ computational assumptions that are needed in the case of [13].
In settings where security is required (or simply desired) even when the factorization of
N may be known, current protocols start with a statistically sound interactive proof,
and then compile it to a non-interactive argument using the FS heuristic. As such, we
see it as an important goal to characterize the efficiency of general, statistically sound,
interactive proofs for RSN , which first requires understanding the setting of statistically
sound, non-interactive proofs.

Still, statistically secure protocols tend to be much less efficient than their computationally
secure counterparts. As such, our overall goal is to try to formally characterize the exact
tradeoffs between efficiency and security for proofs of RSN , which has led to many exciting
practical and theoretical applications in recent years.

The complexity of RS (without proofs). Even ignoring the potential help from a prover,
the complexity of the RS function – or deciding the RSN language – was not well understood
until the very recent works of [36, 23], even in generic models. Specifically, Rotem and
Segev [36] show that computing the RS function or deciding RSN in less than T parallel
time implies a factoring algorithm for N , at least when restricted to generic-ring algorithms.
Katz, Loss, and Xu [23] show a similar result for computing the RS function in the strong
algebraic group model.3

3 These are incomparable models. The generic-ring model allows for multiplication/ division/ addition/
subtraction/ equality queries, but require that queries are independent of the group elements represen-
tations. The strong algebraic group model only allows multiplication/ division queries, but allows these
queries to be made in a way that depends on the group elements explicit bit representations.
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1.1 Our Results
We make progress towards resolving the above-mentioned questions. Within a certain
restricted model (the generic-group model relative to a hidden order group; see below),
we prove results on the tradeoffs between the communication complexity and the verifier’s
complexity in a large class of proof systems for RS. In particular, for the class of proof
systems that we consider, any improvement over known ones would lead to a non-trivial
factoring algorithm. Thus, assuming that factoring is hard, any improvement must either be
outside of the restricted model or relax soundness to computational.

A bound for MA proof systems. We consider proof systems where the prover sends the
verifier a single possibly long message, and then the verifier decides whether to accept or not
by running a probabilistic polynomial time computation. This corresponds to the class MA
(which generalizes NP by allowing the verifier to be probabilistic).

We briefly mention two statistically sound proofs for RS. First, the prover can just send
the factorization (p, q) where N = p · q. The verifier can check that N = p · q, compute the
order of the group φ(N), and then efficiently check that y equals x2T mod φ(N) mod N . The
second is a sumcheck-style proof [27] that is a generalization of Pietrzak’s protocol [30] due
to [11]. Here, the prover sends k evenly spaced “midpoints” between x and T , which results
in k + 1 statements corresponding to T/(k + 1) squares. The verifier uses random exponents
to combines these statements into a new statement (x′, y′, T/(k + 1)) that it can check itself
in time T/(k + 1).

We show that the above two protocols are essentially the best possible among all generic-
group proofs. Specifically, we show that either we can factor composite numbers (matching
the first protocol), or otherwise in any MA proof that includes k ≥ 0 group elements, the
verifier must run in parallel time at least Ω(T/(k + 1)) (matching the second protocol).
Additionally, if neither of these hold, then the protocol must not be statistically sound –
there must exist proofs for false statements, even if they may be computationally hard to
find.

We prove our result by presenting an algorithm that uses any “too-good-to-be-true” generic-
group MA proof to solve factoring in the plain model. To this end, we use Maurer’s [28]
generic-group algorithms abstraction and extend it to capture MA proofs. In our model,
we restrict the verifier to be a generic-group algorithm (in Maurer’s sense) that makes a
bounded number of group multiplication and division queries4, and we say that it accepts
if it outputs the group’s identity 1. Notice, for example, that this allows the verifier to
compute two element g, h and accept if they are equal by outputting g ·h−1. Furthermore, the
verifier can perform ANDs of equality checks and accept if many pairs (g1, h1), . . . , (gn, hn)
are equal (allowing parallel repetition). This can be done by sampling random exponents
r1, . . . , rn ∈ [2λ] and outputting

∏n
i=1(gi · h−1

i )ri , a la the sumcheck-style technique used
in [30]. Finally, we note that all efficient proofs specifically designed for RSN fall into this
generic model.

The prover, on the other hand, may still be an unbounded (not necessarily generic)
algorithm whose proof consists of a bit string and a sequence of group elements. Note
that not restricting the prover to be generic only makes our result applicable to larger
classes of constructions, thereby making it stronger. Refer to Section 2 for the precise model

4 Such algorithms are sometimes referred to as straight-line programs.
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definition. We emphasize that even in this simplified one-round setting, it turns out to
be highly non-trivial to prove our result in a way that captures the behaviors of arbitrary
provers and verifiers; see Section 1.3 for an overview.

▶ Theorem 1 (Simplified and Informal; see Theorem 4). For any generic-group MA proof
system for RSN , if the prover sends k ≥ 0 group elements and a string st, the verifier either
runs in parallel time Ω(T/(k + 1)), or is able to factor N given st.

In fact, we prove in Corollary 9 that the above holds for any hidden order group. In
addition to RSA groups, this notably includes class groups of unknown order, which was
suggested in the context of repeated squaring by Wesolowski [41] (see [9] for a more general
survey on the use of class groups in cryptography). In the general case, we show that either
the verifier runs in parallel time Ω(T/(k + 1)), or is able to compute (a non-zero multiple of)
the order of the group given the string st output by the prover. However, by a variant of the
Miller-Rabin primality test [29, 31], it is well known that this implies a factoring algorithm
for N when working over the multiplicative group Z⋆

N .
We note that if the prover is efficient, we can compute st ourselves. So, the existence of a

verifier with o(T/(k + 1)) parallel runtime implies a standard model factoring algorithm.

A bound for recursive interactive proofs. We extend our lower bound for MA proofs
to a certain natural class of general (multi-round) interactive proofs (IPs). Specifically,
we consider a class of recursive IPs, where in every round of communication, the prover
attempts to prove a new instance of RSN , although with a different starting point x, a
different endpoint y, and a different delay parameter T . This class of IPs captures many
sumcheck-style proofs for RSN ; see Appendix B for an overview. In particular, for a bound
on the round complexity r and a communication bound k, the adaptation of Pietrzak’s [30]
protocol results with a recursive IP with total communication k · r and verifier running time
O(T/(k + 1)r). Here, we obtain an optimal tradeoff between the message complexity, the
round complexity, and the verifier’s parallel running time, at least when restricted to generic
group verifiers.

▶ Theorem 2 (Simplified and Informal). For any generic-group r-round recursive interactive
proof system for RSN , if the prover sends k group elements per round and results in a
transcript tr, the verifier either runs in parallel time Ω(T/(k + 1)r), or is able to factor N

given tr.

Future Directions and Open Problems

Our work leaves many exciting open problems. We mention some of them next:
1. We prove our result in the generic-group model where we only allow multiplication and

division queries. It would be interesting to extend this to handle general equality queries
or addition/ subtraction queries in the the generic-ring model [2, 21, 36].

2. Can we get a similar result to Theorem 2 for general (public-coin) IPs rather than just
for “recursive” IPs?

3. In general, for what other languages can we say that sumcheck-style (e.g. see [8] and
references therein) proofs are optimal (at least among a reasonable but restricted class of
verifiers)?



C. Freitag and I. Komargodski 4:7

Paper Organization

In Section 1.2, we give an overview of related work, and then in Section 1.3, we give a detailed
overview of the main techniques in this work. In Section 2, we define the generic group model
we use in this work in the context of proofs. Then in Section 3, we give our main result for
MA proofs. We provide standard notation and preliminaries in Appendix A and a detailed
overview of existing non-interactive proofs for the repeated squaring relation in Appendix B.

Due to space constraints, we refer the reader to the full version of the paper for more
details regarding our result on recursive interactive proofs and for all proofs.

1.2 Related Work

Complexity of interactive proofs. Goldreich and Håstad [15] initiated the investigation
of interactive proofs with bounded communication. They showed that if a language L

has an interactive proof in which the total communication is bounded by c(n) bits then
L ∈ BPTime(2c(n) · poly(n)). Further relations between the communication complexity of
interactive proof for a language and its complement were shown by Goldreich, Vadhan, and
Widgerson [16].

The IP=PSPACE result [27, 38] says that languages that can be verified in polynomial
time are exactly those proofs that can be generated with polynomial space. In this interactive
proof system, the honest prover runs in super-polynomial time (even for log-space languages);
this is true even for the scaled down version which captures polynomially recognizable
languages. Nevertheless, the “easy” side of this result says that every language with an
interactive proof of c bits is decidable with c space [27, 38]. Therefore, languages that require
a lot of space to decide cannot have super efficient interactive proof systems.

Computationally sound proof systems can recognize any language in NP while using only
poly-logarithmic message complexity (assuming collision resistant hash functions) [24].

In the statistical setting, the first interactive proofs with an efficient prover were given by
Goldwasser, Kalai, and Rothblumn [17]. They designed an interactive proof system where
the honest prover is efficient and run in polynomial time. In their proof system the language
is given by a log-space uniform Boolean circuit with depth d and input length n. Their
verifier runs in time n · poly(d, log n), the communication complexity is poly(d, log n), and
the prover runs in time poly(n). This protocol is very useful for low-depth computations.

Reingold, Rothblum, and Rothblum [32] showed a different protocol which suits polynomial
time and bounded-polynomial space computations. They give a constant round protocol
for polynomial time and space S = S(n) languages such that: the honest prover runs in
polynomial time, the verifier is almost linear time, and the communication complexity is
O(S · nδ) for δ ∈ (0, 1). Applied on the repeated squaring language, (where S = poly log n)
this protocol’s communication roughly matches Pietrzak’s [30] when adapted to run in
constant rounds (in which case it also requires the transmission of nδ group elements).

Generic models. The problem we consider can be placed in a long line of research on
proving efficiency trade-offs for various primitives, in some restricted class of constructions
usually termed “black-box” or “generic”. Generic or black-box constructions have the benefit
of being applicable to every instantiation of the underlying structure, irrespectively of the
exact details of its description. For specific instances, this usually allows for cleaner and more
efficient constructions. The interactive proofs for RS of Pietrzak [30] and Wesolowski [41]
are generic.

ITC 2023



4:8 The Cost of Statistical Security in Proofs for Repeated Squaring

Our work is the first to study the complexity of proofs for RS from a foundational
perspective. The most relevant previous works study the (“generic”) complexity of related
cryptographic primitives or assumptions. Rotem and Segev [36] and Katz et al. [23] showed
that any generic algorithm for repeated squaring which is faster-than-trivial can be used to
solve factoring. The result of [36] rules out generic constructions in the generic-ring model
introduced by Aggarwal and Maurer [2] (see also Jager and Schwenk [21]). The result of [23]
rules out constructions in the strong algebraic group model (extending [14]) wherein the
adversary may use the concrete representation of group elements to make its group queries. In
another work, Rotem, Segev, and Shahaf [37] showed that hidden order groups are necessary
for achieving “delay” functions, at least generically. The result of [37] rules out generic-group
constructions in Maurer’s model [28] (same as our proof).

On class groups. It is worth noting that class groups are an alternative candidate for
a group of hidden order. In contrast to RSA groups, they only require a trusted setup
consisting of an honestly generated random string. Since this setup is simpler and easy to
generate, it is presumably less likely that someone may know a trapdoor (the order of the
group) for class groups. However, while they can be used to construct VDFs, it is not known
how to use them to get TLPs. See [9] for a general survey of the use of class groups in
cryptography.

1.3 Technical Overview
Throughout this overview, we use λ ∈ N to refer to the security parameter and let N denote
the RSA modulus, where N is a product of two random λ-bit primes. We use Z⋆

N to denote
the multiplicative group of integers mod N . We consider interactive proof systems for the
repeated squaring relation RSN , which we represent via the function fN,T (x) = x2T mod N

for any time bound T ∈ N. As a warm up, we will start by considering single-round, NP-style,
proof systems where the verifier is a deterministic, generic group algorithm. We will later
show how to deal with randomized verifiers, and additionally extend to the class of recursive
interactive proofs.

Overview of generic group proof systems. A (non-interactive) proof system consists of
two parties, the prover P and the verifier V . On input a group element x ∈ Z⋆

N , P ’s goal
is to convince V that another group element y is equal to fN,T (x) = x2T mod N . P is
allowed to send V up to k group elements π1, . . . , πk ∈ Z⋆

N as well as a bit string st ∈ {0, 1}∗.
Throughout the overview, we will always assume that P sends exactly k group elements as
part of its proof. V processes this information and outputs 1 to accept that y = x2T mod N

or rejects otherwise. We require that the proof system satisfies the standard notions of
completeness and soundness. Completeness says that if y = x2T mod N , then an honest
prover P causes V to accept. We parameterize soundness by a parameter δ, which says that
if y ̸= x2T mod N , then no (potentially unbounded) cheating prover P ⋆ can cause V to
accept with probability more than δ.

We restrict the above model by requiring that V is a (straight-line) generic group verifier,
whereas we still allow the prover to be unbounded and behave arbitrarily. Specifically, V

takes as input the modulus N , the time bound T , the prover’s string st as explicit inputs.
However, V only has implicit access to the input group element x, the purported output y,
and the proof elements π1, . . . , πk sent by P . Intuitively, this means that V is allowed to
multiply and divide these elements arbitrarily, as long as it does so in a way that independent
of their representation. We formalize this following Maurer’s generic group model [28], which
we outline in Section 2.
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At the end of the day, we leverage the fact that V uses its explicit inputs5 to effectively
generate various exponents α, β, γ1, . . . , γk such that its output is given by the group element
corresponding to

V (N, T, st, x, y, π1, . . . , πk) = xα · yβ ·
k∏

i=1
πγi

i = g.

Furthermore, we can always run V with dummy elements x, y, π1, . . . , πk and compute the
exponents (α, β, γ1, . . . , γk) by observing its group operations. We say that V accepts if
the output group element g is equal to the multiplicative identity 1 ∈ Z⋆

N , and V rejects
otherwise. While this convention may seem restrictive, as V doesn’t even know whether it
is accepting or rejecting, we claim that this is still very expressive as V can compute two
different group elements g, h and then output g · h−1, which is 1 if and only if g = h. Most
natural protocol for repeated squaring including [30, 41] fall into this category. Furthermore,
the verifier can perform ANDs of equality checks and accept if many pairs (g1, h1), . . . , (gn, hn)
are equal (allowing parallel repetition). This can be done by sampling random exponents
r1, . . . , rn ∈ [2λ] and outputting

∏n
i=1(gi · h−1

i )ri , a la the sumcheck-style technique used
in [30].

The complexity of deterministic (NP) proofs. As a warm-up, suppose that the verifier V

is deterministic. This means that for every set of explicit inputs N, T, st that V receives, it
generates the same exponents (α, β, γ1, . . . , γk). Given this knowledge, we want to characterize
all possible strategies a cheating prover may use. So, say a cheating prover P ⋆ wants to fool
V on any y = xd ̸= x2T mod N . Effectively, P ⋆ can only set each group element πi to be
equal to xzi for some value zi.6 Then, it follows that V accepts if

xα · xd·β ·
k∏

i=1
xzi·γi = 1.

However, since the base x is shared by all of the group elements, the above holds if

α + d · β +
k∑

i=1
zi · γi = 0 mod Carm(N),

where Carm(N) is Carmichael totient function, which is defined as the minimal value c such
that gc = 1 ∈ Z⋆

N for all g ∈ Z⋆
N .7 But, as long as γ⃗ = (γ1, . . . , γk) ̸= 0⃗ mod Carm(N), it

follows that P ⋆ can simply solve for a solution to z1, . . . , zk in the equation above to generate
a proof that will falsely convince V that xd = x2T .8

5 If we allowed V to also use the representation of the input group elements, this would correspond to the
strong algebraic group model of [23].

6 Note that this is not true in general since Z⋆
N is not cyclic and hence there are group elements not

represented as xc for some c ∈ Z. However, we assume this in the overview for simplicity as it captures
the main idea of the proof.

7 We note that we can simply choose x to be a group element whose order attains the maximal value
Carm(N). This is what allows us to switch to working over the exponent without loss of generality.

8 We note that this style of attack works for Wesolowski’s (computationally sound) proof of repeated
squaring [41], which is an AM protocol. The adaptive root assumption essentially states that it is
computationally infeasible to perform such an attack, leveraging the randomness sampled by the verifier
before the prover sends its message.
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Still, it may be the case that V simply ignores the proof elements π1, . . . , πk by setting
γ1, . . . , γk = 0. In this case, we leverage the completeness of the proof system to conclude
that either V is inefficient and runs in parallel time T , or V must be able to factor N . If
y = x2T mod N and γ1, . . . , γk = 0, then we know, by the above equation, that V accepts if

α + 2T · β = 0 mod Carm(N).

We consider two different cases, either (1) α + 2T · β = 0 ∈ Z or (2) α + 2T · β = c · Carm(N)
for some c ̸= 0 ∈ Z.

In case (2), this actually immediately implies a probabilistic factoring algorithm for N

via a well known adaptation of the Miller-Rabin primality test (formally stated in Lemma 6).
Since we can compute α and β, given the code of V and the prover’s string st, and hence
α+2T ·β = c·Carm(N), this implies a factoring algorithm in the standard model given st. If the
prover P is efficient, then we can compute st by ourselves, so it implies a factoring algorithm
for any N , without any auxiliary advice. We emphasize, however, that it may be the case
that the explicit string st sent by P helps V to compute some value α = 2T mod Carm(N).
For example, P could have just set st to be a representation of Carm(N), and V simply set
α = 2T mod Carm(N) and β = −1. This is why the factoring algorithm must receive the
proof string st as input in general.

We split case (1) into two further subcases, either (1A) β = 0 or (1B) β ≠ 0. In case (1B)
where β ̸= 0, this implies that

2T ≤ 2T · |β| ≤ |α|.

But that implies that V must run in parallel time T to compute xα since |α| ≥ 2T .
In case (1A) where β = 0 and α+2T ·β = 0, it must also be the case that α = 0. However,

we’ve already assumed that γ1, . . . , γk = 0, so this means that V just always outputs 1 and
accepts! So clearly, (P, V ) cannot be a valid proof system as V accepts any y ̸= x2T mod N

with probability 1 in this case.
In summary, if (P, V ) is a sound proof system where V is a deterministic generic group

verifier, then either:
1. V must run in parallel time at least T , or
2. there is a standard model factoring algorithm for N given the code of V and the string st

output by P .
Stated another way, if V runs in parallel time less than T , then V must be able to factor N

(with the help of the prover via st).

Extending to randomized verifiers. The high level outline of the lower bound for randomized
verifiers is actually very similar to the case of deterministic verifiers. However, allowing the
verifier to use randomness to determine its exponents introduces many highly non-trivial
challenges. The key distinction between deterministic and randomized verifiers is that
randomized verifiers are allowed to choose their exponents as a function of their randomness,
so the attack where a cheating prover simply solves a single equation to fool the verifier no
longer works. Instead, the cheating prover needs to satisfy a random equation with better
than δ probability in order to violate soundness. Still, we will show how we can use the
verifier’s exponents to factor, or argue that the verifier must have parallel running time
greater than T/(k + 1) with high probability.
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Throughout, we will consider a fixed set of explicit inputs N , T , and st received by the
verifier. Then, for any random string ρ ∈ {0, 1}λ sampled by the verifier, we use coef(ρ) to
denote the exponents that V uses to compute its output. So, if

V (N, T, st, x, y, π1, . . . , πk; ρ) = xα · yβ ·
k∏

i=1
πγi

i ,

then we say that coef(ρ) = (α, β, γ1, . . . , γk). We note that we refer to these exponents
as “coefficients” as they will correspond to coefficients in a system of equations over the
exponent, hence the notation coef(ρ).

Our main strategy is to sample many different values ρ1, . . . , ρn such that ||coef(ρi)||max ≪
2T/(k+1) for each i ∈ [n], where ||·||max indicates the maximum absolute value in the coefficient
vector. If this isn’t possible, then that means that the verifier must run in parallel time
at least T/(k + 1), and we are done. Otherwise, it remains to show that we can either
use these coefficients to factor or show that (P, V ) is not a valid proof system. For each
randomness value ρi, let coef(ρi) = (αi, βi, γi,1, . . . , γi,k) denote the corresponding coefficient
vector for ρi. We combine all of these coefficients together in the following way. Let
Γ ∈ Zn×k be the matrix consisting of all of the γi,j values, and let α⃗, β⃗ ∈ Zn be vectors
of the αi and βi values. A key property we will leverage is that the system of equations
Γ · z⃗ = −α⃗ − d · β⃗ mod Carm(N) has a solution for d = 2T by completeness, but does not
have a solution for any d ̸= 2T mod Carm(N) by soundness (with high probability), which
we explain next.

For simplicity, we will assume throughout this overview that the proof elements πj

potentially output by the prover are all equal to xzj for some zj ∈ Z. Then, for y = x2T and
all i ∈ [n], completeness tells us that there must be a solution for z1, . . . , zk to the equation

αi + 2T · βi +
k∑

j=1
γi,j · zj = 0 mod Carm(N).

Since the prover’s proof must work for all randomness values by completeness, we know that
the prover’s vector z⃗ = (z1, . . . , zk)⊤ actually satisfies

Γ · z⃗ = −α⃗− 2T · β⃗ mod Carm(N).

However, for any d ̸= 2T mod Carm(N) corresponding to xd ̸= x2T , we use soundness to
show that

̸ ∃z⃗, Γ · z⃗ = −α⃗− d · β⃗ mod Carm(N),

as long as we sample enough vectors n. At a very high level, this follows since each newly
sampled coefficient vector must restrict the space of solutions in a non-trivial way, since
otherwise the same solution will work with good probability for many different choices of
exponents. So we set n large enough such that, with high probability, the space of possible
solutions for any d ̸= 2T mod Carm(N) is empty. The details of this argument are given in
the full version of the paper.

Next, we prove a key technical lemma that allows us to relate whether or not a system of
equations mod Carm(N) has a solution. Specifically, we show that there exists an efficiently
computable matrix M that satisfies the following two properties:
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1. If there exists a solution z⃗ such that Γ·z⃗ = −α⃗−d·β⃗ mod Carm(N), then M ·(−α⃗−d·β⃗) =
0⃗ mod Carm(N).

2. If M · (−α⃗− d · β⃗) = 0⃗ over Z, then there exists a solution z⃗ such that Γ · z⃗ = (−α⃗− d · β⃗)
over Z (and hence mod Carm(N)).

Furthermore, we show that ||M · v⃗||max < 2T when ||v⃗||max, ||Γ||max << 2T/(k+1). When
working over a field, such a result is well known by simply converting Γ into reduced row
echelon form and the linear function M is closely related to the determinant of Γ. However,
working over the integers mod Carm(N), this becomes much messier to work with. At a very
high level, we show the lemma by first converting Γ to its Hermite normal form H, which is
the integer counterpart to reduced row echelon form. We then augment the matrix H with
the column (−α⃗− d · β⃗) and apply linear operations to zero out the last column to construct
the matrix M . However, working over the integers, we must be careful to make sure that the
values don’t blow up in order to get our desired bound on ||M · v⃗||max. The full details for
the proof of this technical lemma are provided in the full version of the paper.

Armed with our key technical lemma and the observations above, we are ready to complete
the logic of our result, which follows the same high level structure as the deterministic case.
Given M , we compute v⃗ = M · (−α⃗− 2T · β⃗). By completeness, we know that there exists a
vector z⃗ such that Γ · z⃗ = (−α⃗− d · β⃗) mod Carm(N), so by the technical lemma, we know
that v⃗ = 0⃗ mod Carm(N). We consider two different cases, either (1) v⃗ = 0⃗ over Z or (2)
there exists an index i such that v⃗i = c · Carm(N) for c ∈ Z. In case (2), we can factor given
v⃗i using the variant of the Miller-Rabin primality test, so we are done.

For case (1), we use the fact that M is linear, so

v⃗ = M · (−α⃗− 2T · β⃗) = −M · α⃗− 2T ·M · β⃗ mod Carm(N).

We consider two further subcases, either (1A) M · β⃗ = 0⃗ over Z or (1B) there exists an index
i such that Mi · β⃗ ̸= 0. In case (1B), this implies that

2T ≤ 2T · |Mi · β⃗| ≤ |Mi · α⃗|,

but we show in our key technical lemma that |Mi · α⃗| < 2T . So case (1B) cannot happen.
In case (1A) where M · β⃗ = 0⃗, this actually implies that M · α⃗ = 0⃗ since we have already

assumed that v⃗ = M · (−α⃗− 2T · β⃗) = 0⃗. But, this implies that M · (−α⃗− d · β⃗) = 0⃗ over Z
for any d ̸= 2T mod Carm(N)! So, by our key technical lemma, we conclude that there exists
a solution over Z, and hence mod Carm(N) for some d ̸= 2T mod Carm(N). However, we
argued above that this cannot be the case by soundness (with high probability).

Combining the above, we’ve ruled out the possibility of case (1), so case (2) must hold,
which implies we can factor with high probability. So, in summary, if (P, V ) is a sound proof
system where V is now a randomized generic group verifier and P sends at most k group
elements in its proof, then either:
1. V runs in parallel time at least T/(k + 1) with high probability, or
2. there is a standard model factoring algorithm for N given the code of V and the string st

output by P .
An alternative way to view this result is as follows. If V runs in parallel time less than
T/(k + 1) with good probability, then either it must “know” a factorization of N to be able
to reduce its exponents mod Carm(N), or there must be a cheating strategy that falsely
convinces V on such randomness values. Hence, if you want both statistical security and an
efficient verifier V , it must be the case that V can factor N .
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Recursive interactive proofs. We next discuss how our result for one-round, MA-style,
proofs extends to the class of recursive interactive proofs. First, we define what we mean by
a r-round recursive interactive proof for the function fN,T (x) = x2T mod N . In each round
i, there is an input statement (x, y, T ) claiming that y = x2T mod N . P starts the round
by sending a string st ∈ {0, 1}∗ and up to k group elements π1, . . . , πk. V then responds
with a random string ρ← {0, 1}λ. If i is the last round, V uses its randomness ρ and the
message from P to decide whether or not y = x2T mod N . Otherwise, P and V both use
a generic group algorithm Ai to compute a new statement (x′, y′, T ′) given the prover’s
message and the verifier’s random coins, and they start a new independent (recursive) proof
for this statement with one fewer round.

The overall running time of V is simply the running time of Ai in each round i, plus
its final running time to compute its output at the end of the protocol. In addition to
standard notions of completeness and soundness, we require that if (x, y, T ) is valid at the
beginning of the round, then (x′, y′, T ′) is also valid for the start of the next round. However,
if (x, y, T ) starts as invalid, so y ̸= x2T mod N , then we require that (x′, y′, T ′) is invalid
with probability at least 1− δ.

Due to the recursive nature of this interactive proof, we are able to reduce to the one-round
case to show that in each round T ′ cannot shrink too much relative to T , assuming Ai (and
hence V ) runs in low parallel time. If there exists a round i such that T ′ is much smaller than
T , then we could construct a proof system (P̂ , V̂ ) for y = x2T mod N as follows. The prover
P̂ sends whatever P would have sent in round i. Then, V̂ runs Ai to compute (x′, y′, T ′)
and outputs (x′)2T ′

· (y′)−1. It follows that V̂ runs in time corresponding to the running
time of Ai plus T ′, which is dominated by T ′. By our result for one-round proofs, this
means that T ′ must be at least T/(k + 1) with high probability, otherwise we can construct
a factoring algorithm given the proof string st from P in round i. Hence, after r − 1 rounds,
the final time bound T ′ must be at least T/(k + 1)r−1 and V must run in parallel time at
least T/(k + 1)r to be a valid proof system.

In summary, if (P, V ) is a recursive, generic group, r-round interactive proof for fN,T (x) =
x2T mod N , where the prover sends at most k group elements per round, then either:
1. V runs in parallel time at least T/(k + 1)r with high probability, or
2. there is a standard model factoring algorithm for N given the code of V and the transcript

generated by an honest prover P .

2 Generic Group Proof Systems

We next give the details for the generic group model we use in this work. Then we define
proof systems where the verifier is restricted to generic group operations.

2.1 The Generic Group Model
In this work, we use Maurer’s generic group model abstraction [28], following the related
works of Aggarwal and Maurer [2] and Rotem and Segev [36]. We note that this is not
the same as Shoup’s random representation model [39]. See the work of Zhandry [42] for a
detailed comparison between these two models.

Informally, a generic group algorithm is one that can perform arbitrary group operations
as long as the operations performed are independent of the representation of the group
elements. At a high level, we model this by giving the algorithm indirect access to its input
group elements via pointers into a table, and each new multiplication or division adds a new
element to the table and returns the corresponding pointer.
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Formally, we consider the multiplicative group Z⋆
N in this work, where N is an RSA

modulus in Supp
(
ModGen(1λ)

)
for some security parameter λ ∈ N. A generic group

algorithm A receives N as input as an explicit bit string and also receives access to a table
Table via an oracle O that stores the group elements computed so far. Initially, Table contains
the identity v0 = 1 ∈ Z⋆

N at index 0, and all of the group elements x1, . . . , xk ∈ Z⋆
N provided

as input to A in indices 1, . . . , k. A can make queries to the oracle O via the following syntax:
Mutliplication: On input (i1, i2, j,×), the oracle O checks that the values vi1 and vi2 at
indices i1 and i2 in Table are non-empty and not ⊥. If so, O computes vi1 ◦ vi2 and stores
the result at index j in Table. Otherwise, O stores ⊥ at index j.
Division: On input (i1, i2, j,÷), the oracle O additionally checks vi2 is invertible. If so, O
computes v−1

i2
and stores vi × v−1

i2
at index j in Table, if applicable. Otherwise, O stores

⊥ at index j.
We note that Maurer’s generic group model usually includes equality queries, which we do
not handle in this work. An algorithm A that does not issue any equality queries is known
as a straight-line algorithm, so for this reason, we state our formal results for straight-line
generic group algorithms to avoid confusion. We note that generic-ring algorithms are defined
similarly as above, but they also include addition and subtraction queries with essentially
the same syntax.

For a group element g computed by A, we use ĝ to denote the pointer to the corresponding
element g in the table Table. We abuse notation slightly and whenever we write that A

receives a group element g as input, we mean that it receives a pointer ĝ to the element in
the corresponding table Table.

We allow generic group algorithms to receive and output both “explicit” values, represented
by bit strings, and “implicit” values indicating group elements, represented by pointers into
Table. We can think of all of the explicit values as helping the generic algorithm decide how
to invoke the oracle O to perform generic operations.

A randomized generic group algorithm also receives as input a string ρ ∈ {0, 1}λ (we
assume λ bits of randomness for simplicity, however this could be extended arbitrarily).
For any input inp, We denote A(1λ, N, inp; ρ) the randomized generic group algorithm with
random tape ρ.

Measuring complexity. Let A be a generic group algorithm. We denote by TimeA(1λ, N, inp;
ρ) the total running time of A on the given inputs with random tape ρ, where each oracle
query costs a single unit of time. Additionally, we allow A to be a parallel algorithm.
Following Rotem and Segev [36], we model parallel generic group algorithms A by allowing A

to issue oracle queries in “rounds”. In each round, A can issue any number of oracle queries
to O in a single time step via multiple processors. We use WidthA(1λ, N, inp; ρ) to denote
the maximum number of processors used by A at any time step and ParTimeA(1λ, N, x⃗; ρ)
to denote the number of sequential time steps that it takes for A to compute its output.
Whenever we omit input/ randomness parameters from TimeA, WidthA, or ParTimeA, we
mean the worst case running time over an arbitrary choice of input parameters.

The behavior of generic group algorithms. Let λ ∈ N and N ∈ Supp
(
ModGen(1λ)

)
. Let

A be a straight-line generic group algorithm such that A(1λ, N, st, x⃗; ρ) takes as input an
explicit string st ∈ {0, 1}∗ and group elements x⃗ = x1, . . . , xk ∈ Z⋆

N and outputs a group
element g. As A is only allowed to perform generic operations, it follows that A’s output is
of the form

∏k
i=1 xγi

i for γ1, . . . , γk ∈ Z. Furthermore, by running A, we can compute these
coefficients by providing arbitrary pointers as input to A in place of x⃗. We use the notation
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coefV,λ,N,st(ρ) = (γ1, . . . , γk)⊤ to denote the coefficient vector of V on input ρ for security
parameter λ, modulus N , and explicit string st. We note that the main distinction between
our model and the strong algebraic group model of [23] is that they allow the coefficient
vector to additionally depend on the bit representations of the input group elements.

Relating parallel running time to degree. Its easy to see that a straight-line generic
group algorithm that computes A(1λ, N, st, x⃗; ρ) =

∏k
i=1 xγi

i , where γ1, . . . , γk are given by
γ⃗ = coefA,λ,N,st(ρ), must run in depth at least log ||γ⃗||max. This can be shown by induction
for ||γ⃗||max equal to 2i for i ≥ 0. If ||γ⃗||max = 20 = 1, then it may be the case that A just
immediately outputs a group element in 0 steps, satisfying the base case. Suppose that
||γ⃗||max = 2i. After i−1 steps, the maximum exponent in absolute value of any group element
in Table is 2i−1 by assumption. So, in the next time step, A can issue a multiplication query
multiplying two such elements together. However, this will result in an element with depth
at most 2i, as required. It follows that

ParTimeA(1λ, N, st, x⃗; ρ) ≥ log ||coefA,λ,N,st(ρ)||max

for all λ ∈ N, N ∈ Supp
(
ModGen(1λ)

)
, string st ∈ {0, 1}∗, input elements x⃗, and random

string ρ ∈ {0, 1}λ.
We additionally note that, even if we only require A to compute a high degree function

with high probability and with pre-processing over a random input, then the same lower
bound holds by the work of Rotem and Segev [36].

2.2 Proof Systems in the Generic Group Model

A proof system consists of two algorithms: the prover P and the verifier V . For a language
L, P and V interact on common input x over potentially many rounds until V either accepts
or rejects. In order to be non-trivial, the prover P must have some additional capabilities
compared to the verifier V . For classical proof systems, the prover P is an unbounded
algorithm while V is polynomially bounded. The two main properties of a proof system
are completeness and soundness. Completeness stipulates that P convinces V on x ∈ L,
and δ-soundness stipulates no cheating prover P ⋆ can convince V on x ̸∈ L with probability
better than δ.

We consider generic group proof systems for languages defined by a function f defined
over a group Z⋆

N for λ ∈ N and N ∈ Supp
(
ModGen(1λ)

)
. For such proof systems, we restrict

V to be a generic group algorithm that makes a bounded number of group multiplication and
division queries, whereas P may still be an unbounded (not necessarily generic) algorithm
that sends a bit string and group elements to V . So, for a function f , P and V receive an
input a security parameter 1λ, the group description N , an input group element x, and the
output of the function f(x) as common input. P sends a bit string st ∈ {0, 1}∗ and sequence
of group elements π1, . . . , πk to V , which V receives access to via pointers into a table as a
generic group algorithm. V then performs generic computations and outputs a pointer to a
group element ĝ and “accepts” if the corresponding group element g = 1.

▶ Definition 3 (Generic Group Proof Systems). Let δ : N → [0, 1] and k : N → N. For any
λ ∈ N, N ∈ Supp

(
ModGen(1λ)

)
, let f : Z⋆

N → Z⋆
N be a function. We say that the pair (P, V )

is a k-element generic group proof system for f with δ-soundness if V is a generic group
algorithm, and for all λ ∈ N, N ∈ Supp

(
ModGen(1λ)

)
, and k = k(λ), the following hold:
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Completeness: For all x ∈ Z⋆
N , let st, π1, . . . , πk be the output of P (1λ, N, x, f(x)), then

it holds that

V (1λ, N, st, x, f(x), π1, . . . , πk) = 1.

Soundness: For all x ∈ Z⋆
N , y ≠ f(x), and algorithms P ⋆ such that P ⋆(1λ, N, x, y) outputs

a string st and group elements z1, . . . , zk, it holds that

Pr
ρ←{0,1}λ

[
V (1λ, N, st, x, y, z1, . . . , zk) = 1

]
≤ δ(λ).

If the verifier V is a straight-line algorithm, we say that (P, V ) is a straight-line generic
group proof system.

3 One Round Proofs

In this section, we provide our main theorem. Let λ ∈ N and N ∈ Supp
(
ModGen(1λ)

)
. We

show that if there is a k-element generic group proof system with a straight-line verifier that
runs in parallel time less than T/2(k + 1) with probability ϵ, then there is a poly(1/ϵ) ·TimeV

algorithm that factors N . We define some useful notation for the theorem first, and then
provide a high level outline of the proof structure.

For each randomness ρ, let coefV,λ,N,st(ρ) = (γ1, . . . , γk, α, β)⊤ be the coefficients such that
V (1λ, N, st, x, y, z1, . . . , zk) outputs xα · yβ ·

∏k
i=1 zγi

i . As V is a generic group algorithm, we
can compute coefV,λ,N,st(ρ) by simply running V (1λ, N, st, x, y, z1, . . . , zk) for generic elements
x, y, z1, . . . , zk and keep track of the operations of V . For notational convenience, when
V, λ, N, st are clear from context, we simply write coef(ρ). We also define dcoefV,λ,N,st(ρ, d)
to denote the vector (γ1, . . . , γk, α + d · β)⊤, where (γ1, . . . , γk, α, β) are given by coef(ρ),
which will be useful in our analysis.

▶ Theorem 4. Let λ ≥ 2, T ∈ N, k : N→ N, δ, ϵ : N→ [0, 1], N ∈ Supp
(
ModGen(1λ)

)
, and

(P, V ) be a k-element straight-line generic-group proof system for the function fN,T (x) =
x2T mod N with soundness error δ.

Let x ∈ Z⋆
N and (st, π1, . . . , πk(λ)) ∈ Supp

(
P (1λ, N, T, x, fN,T (x))

)
. If

Pr
ρ

[
ParTimeV (1λ, N, T, st) <

T

k(λ) + 1 − log(k(λ))
]
≥ max(2δ(λ), ϵ(λ)),

then there exists a standard model probabilistic poly(λ, k(λ), T, 1/ϵ(λ)) ·TimeV (1λ, N, st) time
algorithm A such that

Pr
[
p, q ← A

(
1λ, N, k, T, st, 1/ϵ(λ)

)
: N = p · q

]
≥ 1− 2−λ.

We refer the reader to the full version for the proof of the theorem.
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A Preliminaries

For any n ∈ N, we use [n] = {1, . . . , n} to denote the set from 1 to n. For a distribution X,
we denote by x← X the process of sampling a value x from the distribtion X. For a set X ,
we use x ← X to denote the process of sampling a value x from the uniform distribution
over X . For a bit string st ∈ {0, 1}∗, we use |st| to denote the length of st. Throughout, we
use λ ∈ N to denote the security parameter.

A.1 Number Theory
In this work, we consider the multiplicative group of integers mod N , denoted by Z⋆

N , where
N is a product of two primes. Specifically, for any λ ∈ N, we let ModGen(1λ) denote the
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algorithm that samples two random primes p, q in the interval [2λ, 2λ+1) and outputs N = p·q.
The group is given by Z⋆

N = {x ∈ [1, N) : gcd(x, N) = 1}, and multiplication in the group
corresponds to multiplication over Z mod N . When it is clear from context we are working
in the group Z⋆

N , we will omit mod N when discussing multiplication of group elements.
The main language we consider in this work is the repeated squaring relation, RSN ,

defined as follows

RSN =
{

(x, y, T ) | y = x2T

mod N
}

.

For a particular value of N and T , we represent this relation by the function fN,T (x) =
x2T mod N . It is widely believed that fN,T cannot be computed and RSN cannot be
decided in depth less than T even with poly(λ, T ) parallel processors. We focus on the proof
complexity of this language in this work.

For any a, b ∈ Z, we use gcd(a, b) and lcm(a, b) to denote the greatest common divisor
and least common multiple of a and b, respectively. Specifically, gcd(a, b) is the maximal
c ∈ N such that c divides a and b, and lcm is the minimal c ∈ N such that a and b both
divide c. Let a, b ∈ Z, then there always exist integers c, d such that c · a + d · b = gcd(a, b).
c and d are known as Bezout coefficients for a and b. While Bezout coefficients may not be
unique, we note that there always exist bezout coefficients such that |c|, |d| ≤ max(|a|, |b|),
and these are the coefficients given by the standard euclidean algorithm.

We denote by φ(N) = |Z⋆
N |, known as the Euler totient function of N , and Carm(N) =

min{a ∈ N : ∀g ∈ Z⋆
N , ga = 1}, known as the Carmichael totient function. For λ ∈ N and

N ∈ Supp
(
ModGen(1λ)

)
such that N = p · q, it holds that

φ(N) = (p− 1) · (q − 1), and Carm(N) = lcm(p− 1, q − 1).

For a specific element g ∈ Z⋆
N , we define the order of g, ord(g), to be the minimum c ∈ N

such that gc = 1 ∈ Z⋆
N .

In this work, we use the fact that for N = p · q, Z⋆
N
∼= Z⋆

p × Z⋆
q , where Z⋆

p and Z⋆
q are

each cyclic groups of order φ(p) = p − 1 and φ(q) = q − 1, respectively. Let gp and gq be
generators for the corresponding subgroups. Then, we can write any group element h ∈ Z⋆

N

in the form h = ga
p · gb

q for some a, b ∈ N. For convenience of notation, we will use h|p to
denote the p “component” of h and h|q to denote the q component, so a = h|p and b = h|q
above.

In order to translate between results mod a composite number Φ and its solutions mod
its prime power divisors, we make use of the Chinese remainder theorem (CRT). We use the
following version of CRT.

▶ Lemma 5. Let k ∈ N, n1, . . . , nk, a1, . . . , ak ∈ N. Then, the set of equations

x = ai mod ni

has a solution over Z if and only if for all i, j ∈ [k], ai = aj mod gcd(ni, nj). Moreover, any
two solutions x1, x2 satisfy x1 = x2 mod lcm(n1, . . . , nk).

The following lemma, based on the Miller-Rabin primality test [29, 31], gives a probabilistic
factoring algorithm given any non-zero multiple of Carm(N). For the proof of the lemma
and further discussion, we refer the reader to Section 10.4 of Shoup [40].

▶ Lemma 6 (Factoring Lemma). Let λ ∈ N, N ∈ Supp
(
ModGen(1λ)

)
, and m = c · Carm(N)

for c ∈ Z such that c ̸= 0. For any δ : N→ [0, 1], there exists a probabilistic algorithm A that
runs in poly(λ, log(1/δ(λ))) time such that

Pr
[
p, q ← A(1λ, N, m) : N = p · q

]
≥ 1− δ(λ).
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A.2 Linear Algebra
Let M be a matrix in Zm×ℓ. For i ∈ [m], j ∈ [ℓ], we use Mi to denote the ith row and Mi,j

to denote the element in the ith row and jth column. We use M⊤ to denote the transpose of
a matrix. We treat vectors v⃗ ∈ Zn as column vectors, so implicitly of the form v⃗ ∈ Zn×1. To
take the dot product of two vectors v⃗, u⃗, we write v⃗⊤ · u⃗. If v ∈ Zm×1 is a vector, we simply
write vi to denote the ith component. We write ||M ||max = maxi∈[m],j∈[ℓ] |Mi,j | to denote
the largest element in absolute value in the matrix M . For a matrix M (1) ∈ Zm×ℓ1 and a
matrix M (2) ∈ Zm×ℓ2 , we write M ′ = (M (1)|M (2)) to denote the augmented matrix which
appends M (2) to the right of M (1) to get the matrix M ′ ∈ Zm×(ℓ1+ℓ2).

For any composite Φ, let ZΦ be the ring of integers mod Φ. We say that a function
f : Zn

Φ → Zn
Φ is linear if for any vectors g⃗, h⃗ ∈ ZΦ and a, b ∈ Z, it satisfies f(a · g⃗ + b · h⃗) =

a · f(g⃗) + b · f (⃗h). We say that a function f is affine if there exists some matrix M such that
f(g⃗) = M · g⃗′ where g⃗′ is equal to g⃗ appended by 1. In particular, this means that f is a
linear function shifted by a constant.

Let Perm(n) denote the set of all permutations over [n]. For a permutation σ ∈ Perm(n),
we write sign(σ) to denote the sign of σ, i.e. 1 if there are an even number transpositions from
the identity to σ, and −1 otherwise. For a square matrix M , the determinant of M is given
by det(M) =

∑
σ∈Perm(n) sign(σ) ·

∏n
i=1 Mi,σ(i). It follows by definition of the determinant

that det(M) ≤ n! · ||M ||nmax. We say that an integer matrix U ∈ Zm×m is unimodular if
det(U) ∈ {+1,−1}.

Let v⃗(1), . . . , v⃗(n) ∈ Zm be a set of vectors. This determines a lattice

L = L
(

v⃗(1), . . . , v⃗(n)
)

=
{

m∑
i=1

ci · v⃗(i) : c1, . . . , cm ∈ Z

}
of points spanned by these vectors. For a lattice L, we refer to a basis of the lattice as
a set of vectors b⃗(1), . . . , b⃗(m), often written in matrix matrix B = (⃗b(1)| . . . |⃗b(m)), that are
linearly independent over R and L = L(B). A lattice is unique up to multiplication of B by
a unimodular matrix U , so when the basis is clear from context, we refer simply to the lattice
L. The determinant of a lattice det(L) is defined to be the volume of the parallelepiped
formed by a set of basis vectors over Rm.

We next define the Hermite normal form (HNF) of an integer matrix M ∈ Zm×n. We use
the notion of column-style HNF, defined via right multiplication by a unimodular matrix, in
contrast to row-style HNF.

▶ Definition 7 (Hermite Normal Form). A matrix H ∈ Zm×n is in Hermite normal form if
the following hold:
1. Lower triangular: For some h ≤ n, there exists a sequence 1 ≤ i1 < i2 < . . . < ih ≤ n

such that Hi,j ̸= 0⇒ i > ij.
2. Row-reduced: For all k ≤ j ≤ n, 0 ≤ Hij ,k ≤ Hij ,j.

We additionally use the fact that the HNF of a matrix M ∈ Zm×n has entries bounded by
||M ||nmax. See [25] for a proof of this claim.

When working over a field F, such as the integers mod a prime p or the rationals Q, we
can define standard notions like span and rank. The span of a set over vectors over an n

dimensional vector space over a field F is defined as the set of all linear combinations of
the vectors, with coefficients from the field F. When clear from context, we use span in the
context of integers to refer to the set of linear combinations with coefficients from Z, as in
the definition of a lattice. The rank of a matrix or vector space over a field F is the size of
the minimal set of vectors that spans the space over F.
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A.3 Concentration Inequalities
Concentration inequalities allow us to bound the probability that certain random variables
take values too far away from their mean. In this work, we use the following version of the
well known Chernoff-Hoeffding bound [18].

▶ Lemma 8 (Chernoff-Hoeffding Bound [18]). Let X =
∑m

i=1 Xi such that Xi ∈ [0, 1] are
independent random variables. Let µ = E[X]. Then, for all t,

Pr[|X − µ| > t] ≤ 2e−2t2/m.

B Existing Proofs for RS

We give a brief overview of the currently known proof systems for RSN , focusing on the
practical setting of non-interactive proofs. When discussing the proofs below, we use λ to
denote the security parameter. Informally, we say that a verifier is efficient if it runs in time
poly(λ, log T ), essentially independent of the time bound T .

The empty proof. The prover can always do nothing and let the verifier check the
relation y = x2T mod N itself.
This is a valid, albeit not very helpful, proof system that is perfectly complete and sound.
In terms of efficiency, the verifier runs in time T to compute T squares, so nothing has
been gained.
The factoring proof. The prover can factor N to get primes p, q where N = p · q and
send (p, q) to the verifier. The verifier can check that indeed N = p · q, compute the order
of the group φ(N), and check if y = x2T mod ϕ(N) mod N .
This protocol is extremely efficient for the verifier, and is perfectly complete and sound.
However, such a proof disallows N to be reused again since RS is not a sequential
function whenever p, q are known. Furthermore, unless P generated N itself, it requires
an inefficient prover.
Sumcheck-style proofs. This is a general proof style that follows the structure of the
sumcheck protocol of Lund, Fortnow, Karloff, and Nisan [27]. The main idea is that the
prover first splits the statement (x, y, T ) into k ≥ 2 sub-statements (xi, yi, T ′) for i ∈ [k]
for T ′ < T . Then, the verifier uses its randomness to merge these sub-statements into a
single statement (x′, y′, T ′) which is hopefully easier to handle. Such protocols naturally
lend themselves to recursive interactive proofs. We note that the proofs of [30, 11, 4, 19]
as well as a generic proof for space-bounded computation [32] generally fall into this
framework. We focus on Pietrzak’s protocol [30] as it is the simplest and is specifically
tailored for RSN .
In the proof of [30], the prover sends a midpoint µ = x2T/2 , which induces two sub-
statements (x, µ, T/2) and (µ, y, T/2). The verifier samples a random exponent r ← [2λ],
and computes a new statement (x′, y′, T/2) where x′ = xr · µ, y′ = µr · y, and T ′ = T/2.
In the non-interactive setting, the verifier can then simply check (x′)2T/2 = y′ itself.
In terms of efficiency, this protocol only cuts down the running time of the verifier by a
factor of 2. [11] show how to reduce this to an T/k + 1-time verifier for any k ≥ 0 by
having the prover sending k evenly spaced midpoints.
It’s easy to see that if (x, y, T ) is valid, then so is (x′, y′, T ′). Soundness follows since if
(x, y, T ) is invalid, then (x′, y′, T ′) becomes valid only with probability at most O(1/s),
where s is the size of the smallest subgroup of Z⋆

N . If N is a product of safe primes, then
s = 2λ, and the protocol is statistically sound. Block et al. [4] show how to adapt this
protocol, at the cost of O(λ) multiplicative overhead in communication, to be statistically
sound for any multiplicative group.

ITC 2023



4:22 The Cost of Statistical Security in Proofs for Repeated Squaring

FS-style arguments. We can get non-interactive proofs by applying the Fiat-Shamir
(FS) heuristic [12] to the public-coin, interactive variants of the sumcheck-style proofs
above. Again, we focus on the protocol of Pietrzak [30] for sake of comparison.
The FS heuristic generates the verifier’s randomness in each round by applying a (suffi-
ciently random) hash function on the transcript of the protocol so far. Hence, the prover
can generate all of its messages without needing to interact with the verifier, resulting in
a non-interactive proof.
In the case of [30], the prover generates an initial midpoint µ1 = x2T/2 , then hashes µ1
(along with the statement) to get a random value r1 ∈ [2λ]. The prover can then compute
(x′, y′, T/2) itself as above. At this point, P compute a second midpoint µ2 = (x′)2T/4 ,
generate randomness r2 using the hash function, and continue this process r times until
it generates a statement (x̂, ŷ, T ′) where T ′ = T/2r that the verifier can check directly. If
r = log T , then T ′ = O(1), resulting in an efficient verifier. The prover needs to send r

group elements in this protocol, so this requires Ω(log T · λ)-bits of communication in
total.
In terms of security, we note that, even when modeling the hash function h as a random
function, the resulting protocols are only computationally sound. An unbounded prover
that can query the random oracle arbitrarily can generate cheating proofs for false
statements. However, there is a recent line of work (see e.g. [26, 22, 3]) showing how
to securely instantiate hash functions for different sumcheck-style protocols from more
standard assumptions. Most relevant to us is the work of Bitansky et al. [3] that
instantiates the FS-heuristic for the interactive proof of [4] for RSN assuming only
(polynomially hardness) LWE using the hash function of [20].
Wesolowski’s argument. Wesolowski [41] gave an extremely efficient non-interactive
proof for RSN where the prover sends a single group element and the verifier computes
only O(λ) squares. In this protocol, the verifier first samples a random λ-bit prime ℓ (or
is sampled using a random function as in the FS-heuristic), and the prover sends an ℓth
root of y, π = x⌊2

T /ℓ⌋. The verifier then accepts iff y = πℓ · xc for c = 2T mod ℓ.
The computational soundness of this protocol relies on a new “adaptive root assumption”,
which says that the prover cannot compute an ℓth root of a group element for a random
prime ℓ. Aside from this assumption being relatively new, this protocol is broken if the
prover knows the factorization of N . Namely, given the order of the group, the prover can
break the adaptive root assumption. This means that the protocol additionally requires
a strong assumption on the setup used to generate N as well. We note that this style of
assumption is not required for the computational soundness for the FS-style arguments
mentioned above.

C Extension to General Hidden Order Groups

Let G be any finite, abelian, multiplicative group. For any λ ∈ N, we let GroupGen(1λ) be
an algorithm that outputs some group of size [2λ, 2λ + 1) such that it is believe that it is
hard to compute the order of a random group G← GroupGen(1λ). Any such group G must
be finitely generated, so there exist elements g1, . . . , gs such that every h ∈ Z⋆

N is equal to∏s
i=1 g

h|i
i , where h|i ∈ Z is the ith component of h. We use ord(G) to denote the size of the

group, and ord(g) to denote the minimum c such that gc = 1. Borrowing notation from Z⋆
N ,

we use Carm(G) to denote the maximum value of ord(g) for any g ∈ G. In particular, there
must exist some g ∈ G such that ord(g) = Carm(G).
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The proof of Theorem 4 goes through by considering an arbitrary group G. We refer to
the full version of the paper for more details.

▶ Corollary 9. Let λ ≥ 2, T ∈ N, k : N→ N, δ, ϵ : N→ [0, 1], G ∈ Supp
(
GroupGen(1λ)

)
, and

(P, V ) be a k-element straight-line generic-group proof system for the function fG,T (x) =
x2T ∈ G with soundness error δ. For any (st, π1, . . . , πk(λ)) ∈ Supp

(
P (1λ,G, T, x, fG,T (x))

)
.

If

Pr
ρ

[
ParTimeV (1λ,G, T, st) <

T

(k(λ) + 1) − log(k(λ) + 1)
]
≥ max(2δ(λ), ϵ(λ)),

then there exists a standard model probabilistic poly(λ, k(λ), T, 1/ϵ(λ)) ·TimeV (1λ,G, st) time
algorithm A such that

Pr
[
c← A

(
1λ,G, k, T, st, 1/ϵ(λ)

)
: ord(G) divides c, c ̸= 0

]
≥ 1− 2−λ.
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