

 J. ICT Res. Appl., Vol. 17, No. 2, 2023, 181-200 181

Received August 23rd, 2022, 1st Revision March 4th, 2023, 2nd Revision June 15th, 2023, Accepted for
publication July 21st, 2023.
Copyright © 2023 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2023.17.2.4

Generative Adversarial Networks Based Scene Generation

on Indian Driving Dataset

K. Aditya Shastry*, B.A. Manjunatha, M. Mohan, T.G. Mohan Kumar &

D.U. Karthik

Department of Information Science and Engineering,

Nitte Meenakshi Institute of Technology, Bengaluru, 560064, India

*E-mail: adityashastry.k@nmit.ac.in

Abstract. The rate of advancement in the field of artificial intelligence (AI) has

drastically increased over the past twenty years or so. From AI models that can

classify every object in an image to realistic chatbots, the signs of progress can be

found in all fields. This work focused on tackling a relatively new problem in the

current scenario-generative capabilities of AI. While the classification and

prediction models have matured and entered the mass market across the globe,

generation through AI is still in its initial stages. Generative tasks consist of an AI

model learning the features of a given input and using these learned values to

generate completely new output values that were not originally part of the input

dataset. The most common input type given to generative models are images. The

most popular architectures for generative models are autoencoders and generative

adversarial networks (GANs). Our study aimed to use GANs to generate realistic

images from a purely semantic representation of a scene. While our model can be

used on any kind of scene, we used the Indian Driving Dataset to train our model.

Through this work, we could arrive at answers to the following questions: (1) the

scope of GANs in interpreting and understanding textures and variables in

complex scenes; (2) the application of such a model in the field of gaming and

virtual reality; (3) the possible impact of generating realistic deep fakes on society.

Keywords: artificial intelligence; deep learning; driving dataset; generative adversial

networks; scene generation.

1 Introduction

The advent of artificial intelligence began in 1943 when the first paper on the

concept of a neural network was published. Progress in AI has come a long way,

from a theoretical neural network model to models that can detect, classify,

predict, and more recently, generate data they have been trained on. The internet

has been abuzz with deep fakes and the potential issues such technology could

cause with the advent of generative models. However, generative models provide

a twofold benefit: they can generate new data in areas lacking suitable data (such

as native language processing) and they can be used to interpret and analyze

already existing data.

182 K. Aditya Shastry, et al.

While other types of models focus on the latter objective, generative models are

more promising because they have a lower number of parameters than the total

number of features in the data and are hence forced to find the best and most

representational features of the lot [1]. This work employed the use of generative

adversarial networks (henceforth referred to as GANs) to generate new

photorealistic scenes of India. A GAN, first proposed by Ian Goodfellow in 2014

[2], uses two different neural networks competing against each other.

Among various types of generative models, GANs have gained popularity due to

their ability to generate high-quality data while using a smaller number of

parameters than the total features in the data. GANs consist of two neural

networks that compete with each other, resulting in a game-like scenario in which

one network generates data and the other network evaluates their authenticity.

This paper focuses on the use of GANs to generate photorealistic scenes of India.

The research employed the methodology proposed by Ian Goodfellow [2]. This

paper will explore the potential of GANs to generate new data and provide a deep

analysis of the generated images, which can be useful in various applications such

as computer vision, entertainment, and virtual reality.

The research hypothesis was that by using GANs, realistic images can be

generated from a purely semantic representation of a scene, specifically the

Indian Driving Dataset. We believe that this research will provide valuable

insights into the scope of GANs in interpreting and understanding textures and

variables in complex scenes. Additionally, we hypothesized that our model could

have significant application in the fields of gaming and virtual reality, as it can

create immersive and realistic environments. Finally, we predicted that our

research would highlight the possible negative impact of generating realistic deep

fakes on society, as it could be used for malicious purposes such as spreading

misinformation or creating fake news. Overall, we expect that our study will

contribute to the further advancement of generative capabilities of AI and provide

important insights into the potential applications and risks associated with this

technology.

The following are the research contributions of our work:

1. Investigating the generative capabilities of AI, which is a relatively new

problem, with a focus on GANs.

2. Developing a GAN-based model that can generate realistic images from a

purely semantic representation of a scene.

3. Training the GAN model on the Indian Driving Dataset and evaluating its

ability to interpret and understand textures and variables in a complex scene.

4. Exploring potential applications of the proposed model in the fields of gaming

and virtual reality.

Improving Robustness Using MixUp and CutMix Augmentation 183

5. Investigating the possible negative impact of generating realistic deep fakes

on society.

6. Providing a detailed comparison of the proposed work with related work.

2 Related Work

Since the original GAN paper [2] was published, there has been tremendous

growth in the research interest surrounding GANs. To fully understand what these

novel models are capable of, we undertook an extensive survey of papers

published in this field. We discovered several types of GANs and their

applications in various fields, such as image processing, audio and video

processing, 3D model generation, and so on. The next section covers a few of the

GANs we surveyed and considered for our work. As per our survey, GANs have

not previously been used on the IDD dataset for scene generation. DCGANs were

the first major improvement on the GAN architecture. They are more stable in

terms of training and generate higher-quality samples. Reference [3] proposed

three improvements of classic GAN, namely replacement of any pooling layers

with strided convolutions (for the discriminator) and fractional strided

convolutions (for the generator); removing the fully connected hidden layer and

using batch normalization in both networks; and using LeakyReLU in the

discriminator and ReLU activation in the generator.

Conditional GANs [4] were another advancement on the basic GAN framework.

While the original GAN used noise as the sole input to the generator, C-GANs

employ the use of a condition to control the generated output. The condition could

be a class label, a description, or any relevant data. This condition is fed to both

the discriminator and the generator as an additional input layer.

Reference [5] built a model popularly known as pix2pix to perform the following

tasks: mapping semantic labels to realistic images; aerial images to maps; black

and white to color images; edges to images; and day-time images to night-time

images. The model employs the use of a DCGAN for the generator and the

discriminator. The results produced are realistic, but the training time and the size

of the dataset increase drastically with the complexity of the problem. Built to

improve on the previous paper, pix2pixHD [6] produces high-resolution images

(a relatively new feature in image generation through AI) from semantic maps.

The proposed technique converts semantic labels of street views to real images,

labels of faces to realistic images, and offers a real-time editing interface with

which users can manipulate the semantic labels and immediately see the resultant

change in the output. As with pix2pix, the street views used the Cityscapes dataset

[7]

184 K. Aditya Shastry, et al.

Cycle GAN [9] is an architecture used for image-to-image translation. The model

captures features in an image collection and figures out how these can be

translated into another image collection; this method is also called style transfer.

A cycle GAN provides a two-way translation function. G: X → Y and F: Y → X

must be inverses of each other. As mentioned in the previous section, the task of

generating realistic driving scenes is not an altogether new idea. We surveyed the

methods used for this task to use on the IDD dataset. All the above papers used

the Cityscapes dataset [8] for their models. The present work considered the

Indian Driving Dataset [10] for similar models.

The method proposed in Reference [11] was aimed at learning a mapping

function between an input source video to an output photorealistic video. The

input source video consisted of semantic labels of frames from the Cityscapes

dataset. A spatio-temporal training method was employed on the model. Two

discriminators were used, one to ensure quality of the images and spatial

accuracy, and the other to ensure that the frames in sequence are temporally

sound. The videos generated by vid2vid are unique in terms of their high quality

and accuracy over time. However, due to the higher number of neural networks

having to run simultaneously, the training period and the resources used are both

on the high side. The same work also released results for pose detection and

translation and face to edges to face translation.

Reference [12] proposed using generative neural networks to replicate human

driving behavior for autonomous driving. They used a stable GAN architecture

to train a controller-trainer network using images and key press data from a video

game (Road Rash). The method shows promising results in learning synthetic

driving behavior. Reference [13] attempted to generate realistic images from

ground and aerial views, which is a challenging computer vision task. The

proposed method uses homography to map the images between views and

generative adversarial networks to add realism. The study demonstrated that

incorporating geometry constraints is a better approach for cross-view image

synthesis, adding fine details to the generated images.

Reference [14] proposed a scene generation framework based on GANs that

sequentially composes scenes with explicit control over the elements. The

framework has separate background and foreground generators, where the

foreground objects populate the scene one-by-one. The study demonstrated that

the proposed framework could produce more diverse images and handles

transformations and occlusion artifacts better than existing approaches through

experiments on a subset of the MS-COCO dataset. Reference [15] presents an

unsupervised method for generating diverse and realistic images using a class-

conditional GAN model. The model is conditioned on automatically derived

labels from clustering in the discriminator’s feature space to cover different

Improving Robustness Using MixUp and CutMix Augmentation 185

modes. The proposed method outperformed several existing methods in

addressing mode collapse and improved image diversity and quality metrics on

large-scale datasets such as ImageNet and Places365.

Reference [16] provides a comprehensive overview of image-to-image

translation based on GANs and its variants, including state-of-the-art techniques

based on multimodal and multidomain representations. Finally, it summarizes

open issues and future research directions, including the use of reinforcement

learning and 3D modal translation. The review paper [17] provides an overview

of the GAN framework for various image and video synthesis tasks, discussing

its applications in image translation, image processing, video synthesis, and

neural rendering. It also covers important techniques to stabilize GAN training

and enable the generation of high-resolution photorealistic images and videos.

Reference [18] provides a comprehensive review of adversarial models for image

synthesis using GANs. It covers various categories, such as image-to-image

translation, label-to-image mapping, and text-to-image translation, and discusses

the base models, architectures, loss functions, evaluation metrics, and datasets

used. The review also highlights potential future research directions and includes

a collection of loss-variant GANs, evaluation metrics, remedies for several image

generation issues, and stable training. Reference [19] provides a review of deep

learning-based frameworks used for semantic segmentation of road scenes,

discussing their architectures, well-known datasets, data augmentation

techniques, and domain adaptation methods. It also includes a quantitative

analysis and performance evaluation of different frameworks on reviewed

datasets and highlights future research directions in the field of semantic

segmentation using deep learning.

The research reported in [20] provides a comprehensive review and meta-analysis

of 231 journal papers on the use of GANs in remote sensing (RS) applications.

The review covers theories, applications, and challenges of GANs, highlights

gaps in the field, and provides insight into the potential of GANs for various RS

applications. Reference [21] provides an overview of recent advances in GANs.

The paper discusses the challenges faced in training GANs, such as instability,

mode collapse, and non-convergence, and how researchers have addressed these

issues by modifying the network topology, goal functions, and optimization

techniques. The paper also highlights the progress made in GAN architecture and

optimization solutions for improving their efficiency in various computer vision

applications. The authors suggest that further research is needed in this area to

solve real-time computer vision applications using GANs.

The paper [22] provides an overview of the GAN approach and its various model

types, as well as their benefits and limitations, and potential model alterations.

186 K. Aditya Shastry, et al.

The study also highlights the challenges of training GANs and offers suggestions

for parameter measurement. The paper reviews various GAN applications in

image processing and discusses their potential reach. Overall, this paper offers

valuable insight into GANs and their applications in image processing. Reference

[23] proposes an unsupervised representation learning method by combining

deep neural networks (DNNs) with GANs.

The method involves using encoder networks in addition to generative models

for feature extraction, leading to improved performance and faster learning in

GANs. The proposed approach was shown to outperform other unsupervised

feature learning methods by 2% to 6% in terms of classification accuracy.

Reference [24] introduced an unsupervised method for generating diverse images

using a class-conditional GAN model that does not use manually annotated class

labels. Instead, the model is conditional on labels automatically derived from

clustering in the discriminator’s feature space, which automatically discovers

different modes and requires the generator to cover them. The method

outperformed several competing methods when addressing mode collapse and

performed well on large-scale datasets such as ImageNet and Places365,

improving both diversity and standard metrics compared to previous methods.

The research initiative [25] involved a collaboration between the United States

and China with the aim of enhancing the realism of driving simulators. This

suggests a shared interest in advancing driving simulation technology. The

researchers proposed the use of GANs as a means to achieve this goal. GANs are

a type of machine learning model known for their ability to generate realistic

synthetic data. The researchers have taken a novel approach to address the

challenge of producing photorealistic point-of-view (POV) driving scenarios.

They developed a hybrid method that combines the strengths of different

approaches. Specifically, they mix the more photorealistic output of cycle GAN-

based systems with conventionally generated elements that require more detail

and consistency, such as road markings and observed vehicles.

The hybrid system developed by these researchers is called Hybrid Generative

Neural Graphics (HGNG). It involves injecting limited output from a

conventional computer-generated imagery (CGI)-based driving simulator into a

GAN pipeline. The environment generation within this pipeline is facilitated by

the NVIDIA SPADE framework. According to the authors, the advantage of

using the HGNG system is the potential to create more diverse driving

environments, resulting in a more immersive experience. They emphasize that

even converting CGI output to photoreal neural rendering output alone cannot

address the problem of repetition. The original footage entering the neural

pipeline is constrained by the limitations of the model environments, leading to

repeated textures and meshes. Overall, this paper presented an innovative

Improving Robustness Using MixUp and CutMix Augmentation 187

approach to improving the realism of driving simulators through the integration

of different techniques and the utilization of GANs. The aim was to enhance the

immersivity and diversity of driving environments to provide a more realistic

experience for users.

Reference [26] proposed a HGNG pipeline to enhance the visual fidelity of

driving simulations. This approach involves partially rendering important objects

of interest, such as vehicles, and employing generative adversarial processes to

synthesize the background and the rest of the image. A novel image formation

strategy was introduced to generate 2D semantic images from simple object

models without textures within a 3D scene. These semantic images are then

transformed into photorealistic RGB images using a state-of-the-art GAN trained

on real-world driving scenes. To address the issue of repetitiveness in the

generated images, a blending GAN is used to blend the partially-rendered and

GAN-synthesized images together.

The researchers demonstrated that the proposed method generates images with

higher photorealism compared to conventional approaches. They validated this

claim by conducting a semantic retention analysis and measuring the Fréchet

Inception Distance (FID) against real-world driving datasets such as Cityscapes

and KITTI. In summary, the research presents a HGNG pipeline that aims to

improve the visual fidelity of driving simulators. By combining partial rendering,

GAN synthesis, and blending techniques, the method achieves higher

photorealism, reducing repetitiveness and enhancing immersion. The evaluation

against real-world driving datasets supports the superiority of the proposed

approach over conventional methods.

Table 1 shows a detailed comparison of the present work with related works.

Based on Table 1, we see that most of the related works did not address the

following aspects which form the key research contributions of our proposed

work: no realistic image generation from semantic scene representation; no

gaming/VR applications; no exploration of societal impact; no use of the IDD

dataset; no evaluation of texture interpretability; and no discussion of future

research.

Table 1 Comparison of the proposed work with related works.

Literature Comparison with Proposed Work

[3] No semantic scene generation; deep CGAN constraints; no use of the Indian

Driving Dataset; no consideration of deep fakes’ societal impact.

[4] No realistic image generation from semantic scenes; CGAN limited to multi-

modal and tagging; no interpretation of textures and variables from IDD.

[5] General image-to-image translation; no specific dataset mentioned; no

exploration of gaming/VR applications or societal impact of deep fakes.

188 K. Aditya Shastry, et al.

Table 1 Continued. Comparison of the proposed work with related works.

Literature Comparison with Proposed work

[6] Limited scope: video-to-video synthesis; no evaluation of societal impact or

interpretability of textures/variables; no use of Indian Driving Dataset or

discussion of gaming/VR applications.

[7] No generation of realistic images; ignores generative AI capabilities, and

neglects gaming/VR applications and deep fake impact on society.

[8] Does not explore AI’s generative capabilities; uses Cityscapes with fewer labels

than the proposed IDD dataset; neglects potential GAN applications in gaming

and virtual reality.
[9] Focuses on high-res photo-realistic image synthesis from label maps; lacks

dataset specification; neglects discussion of challenges and future research

directions.
[10] Does not explore gaming/VR applications or impact of realistic deep fakes on

society
[11] Does not include an investigation of the model’s impact on society.
[12] Homogeneous dataset limits generalization; societal implications not explored.
[13] No realistic image generation; limited homography generalizability; only for

cross-view image synthesis.
[14] No realistic image generation; limited data diversity due to MS-COCO dataset;

incomplete evaluation; no societal applications discussed; nongeneralizable

without autoencoders.
[15] Unsupervised with limited accuracy; no exploration of deep fakes or gaming

applications.
[16] Review work without proposal of a model.
[17] Review work without proposal of a GAN model; does not address the generative

capabilities of GAN.
[18] Review work lacking implementation/evaluation; ignores societal

impact/semantic representation.
[19] No generative exploration; limited dataset/evaluation; no gaming/VR discussion.
[20] No detailed GAN investigation/solutions proposed; addresses a specific

audience.
[21] Review without GAN implementation; no gaming/VR exploration; no generative

model developed.
[22] Survey without GAN implementation; no specific applications discussed; lacks

in-depth discussion.
[23] Ignores AI generative capabilities in complex scenes; no dataset specification;

neglects deep fakes.
[24] No gaming/VR exploration; neglects societal impact investigation of realistic

deep fakes.

[25] Does not delve into the societal implications of their research.

[26] Exhibits limitations in terms of dataset dependence; lack of a detailed discussion

on the challenges of conventional approaches.

3 Proposed Architecture

The architecture used for this work is described in this section. Our generator was

a U-Net, as shown in Figure 1. A U-Net [27] is a classic encoder-decoder model

with skip connections. Skip connections directly connect the encoder layer to the

Improving Robustness Using MixUp and CutMix Augmentation 189

decoder layer, allowing the neural network to bypass certain blocks if no useful

feature is learnt in them.

Figure 1 Generator architecture.

The input to the generator is a semantic image and the output is a realistic image.

The generator is trained on the losses produced by the discriminator. The

discriminator takes in two inputs, the semantic map and the real image or the

generated image. It uses these two inputs to generate a probability that the

real/generated image is real and corresponds to the semantic map. The

architecture of the discriminator is given in Figure 2.

Figure 2 Discriminator architecture.

The discriminator is a PatchGAN. A PatchGAN outputs an image with a size of

30 x 30 x 1 pixels, where each pixel corresponds to the believability of a certain

patch in the original image. It is trained to maximize the output of the semantic

map and the real image to 1. In mathematical terms it is expressed in Eq. (2):

 D(SI, RI) ≈ 1 and D(SI, G(SI)) ≈ 0 (2)

3.1 Proposed Algorithm

Algorithm 1 shows the proposed GAN algorithm for generating scenes from the

IDD dataset.

190 K. Aditya Shastry, et al.

Algorithm-1: GAN-scene-generation
begin

def make_generator_model(): # Define the generator model
 model  Sequential

 model.add(Dense-Layers)

 model.add(BatchNormalization())

 model.add(LeakyReLU())

 model.add(Convolution-2D-Layer)

 model.add(BatchNormalization())

 model.add(layers.LeakyReLU())

 model.add(Convolution-2D-Layer)
 model.add(BatchNormalization())

 model.add(LeakyReLU())

 model.add(Convolution-2D-Layer, tanh)

 model.add(Reshape((output_shape))) # Add reshape layer for desired output shape

 return model

def make_discriminator_model(): # Define the discriminator model

 model  Sequential()
 model.add(Convolutional-2D-Layer)

 model.add(LeakyReLU())

 model.add(Dropout(0.3))

 model.add(Convolutional-2D-Layer)

 model.add(LeakyReLU())

 model.add(layers.Dropout(0.3))

 model.add(Flatten())

 model.add(Dense-Output-Layer(1))
 return model

def generator_loss(fake_output): # Define the loss function for the generator

 return(Losses.sigmoid_cross_entropy(ones_like(fake_output), fake_output))

def discriminator_loss(real_output, fake_output): # Define the loss function for the discriminator

real_loss  Losses.sigmoid_cross_entropy(multi_class_labels=ones_like(real_output), logits=real_output)

fake_loss  Losses.sigmoid_cross_entropy(multi_class_labels=zeros_like(fake_output), logits=fake_output)

 total_loss  real_loss + fake_loss
 return(total_loss)

generator_optimizer  Train.AdamOptimizer() # Define the optimizer

discriminator_optimizer  Train.AdamOptimizer()

data  Load('indian_driving_dataset.npy') # Load the Indian Driving dataset

data = (data / 127.5) – 1 # Normalize the data

BUFFER_SIZE = 60000; BATCH_SIZE = 256; EPOCHS = 50 # Define the batch size and number of epochs

train_dataset  data.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) # Batch and shuffle the data

generator = make_generator_model() # Define the generator and discriminator models
discriminator = make_discriminator_model()

checkpoint_dir = './training_checkpoints' # Define the checkpoint directory and checkpoint prefix

checkpoint

def generate_random_latent_vector(): # Generate random latent vectors

return np.random.normal(size=(BATCH_SIZE, latent_dim))

def generate_images(generator, latent_vector): # Generate images from the generator using latent vectors

generated_images = generator.predict(latent_vector)

return generated_images
for epoch in range(EPOCHS):

for batch in train_dataset:

Train the discriminator

noise = generate_random_latent_vector()

with tf.GradientTape() as disc_tape:

generated_images = generator(noise, training=True)

real_output = discriminator(batch, training=True)
fake_output = discriminator(generated_images, training=True)

disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

end

Improving Robustness Using MixUp and CutMix Augmentation 191

Algorithm 1 shows a GAN to generate images from the Indian Driving Dataset.

The GAN consists of a generator and a discriminator model. The generator takes

random noise as input and generates images that the discriminator then tries to

distinguish from real images in the dataset. The two models are trained together,

with the generator trying to produce images that fool the discriminator, and the

discriminator trying to correctly distinguish between real and fake images. The

specific implementation of the generator and discriminator models is as follows.

The generator has an input layer that takes random noise as input, followed by a

dense layer. Batch normalization and a LeakyReLU activation function are

applied to this output followed by two transposed convolutional layers with batch

normalization and LeakyReLU activation functions. The final layer is another

transposed convolutional layer with a tanh activation function. The discriminator

has an input layer followed by two convolutional layers with LeakyReLU

activation functions and dropout. The output is then flattened and passed through

a dense layer with a single output, representing the probability that the input

image is real. The loss function for the generator is the sigmoid cross entropy

between the generated output and a vector of ones. The loss function for the

discriminator is the sum of the sigmoid cross entropy between the real output and

a vector of ones, and the sigmoid cross entropy between the fake output and a

vector of zeros. The models are trained using the Adam optimizer. The dataset is

loaded from an npy file, normalized to the range [-1, 1] and then batched and

shuffled. The training loop runs for fifty epochs, during which the models are

trained on batches of data, with the generator being updated twice for every

update of the discriminator. The checkpoints for the models are saved in the

‘training_checkpoints’ directory.

3.2 Training:

The training process is performed as shown in Algorithm 2.

Algorithm-2: Training
for epoch in range(total_epochs) do

for batch in range(total_batches), do
Semantic_Map = generate_random_semantic_map()

Fake_Image= Generate(Semantic_Map)

err_Fake=Discriminate(Fake_Image)
Real_Image = get_real_image()

err_Real=Discriminate(Real_Image)

Generator_Err = err_Fake
Discriminator_Err = avg(err_Real, err_Fake)

Propagate error and optimize models

Generator_Losses.append(Generator_Err)
Discriminator_Losses.append(Discriminator_Err)

 Analyze_performance(Generator_Losses, Discriminator_Losses)

End

192 K. Aditya Shastry, et al.

Algorithm 2 trains the model by generating fake images from semantic maps,

calculating the errors from the discriminator, and optimizing the generator and

discriminator models through error propagation. The training was performed on

Colaboratory, Google’s free online computing resource. The entire process took

five to six days to train. Table 2 specifies the training parameters used for our

model.

Table 2 Summary of training parameters.

Training parameters Training parameter values

Number of epochs 150

Mini batch size 32

Learning rate 2e−4

Optimizer Adams

Loss Functions
Loss L1 (used for both generator and discriminator).

Loss BCE (used for generator)

4 Experimental Setup and Results

Experiments were performed on Google Colab with the software Python 3.6,

Pytorch 1.0.1, Cuda 10, and PIL; and the hardware CPU: SSE2 instruction set

support (Unity Requirements), and GPU: graphics card with DX10 (shader model

4.0) capabilities.

4.1 Training Specifications:

Our model was trained for 150 epochs until the loss functions of the generator

and the discriminator reached equilibrium (the losses remained parallel to each

other) as shown in Figure 3. With Google Colab, the model was trained for about

six days.

Figure 3 Losses of the networks: generator – blue, discriminator – green.

Improving Robustness Using MixUp and CutMix Augmentation 193

Figures 4, 5, and 6 show the results generated by our model and the improvement

in the quality of the images over epochs. It is clear that there is a distinct

improvement in the images generated. In epoch 0, the model seems to have no

understanding of colors or details required by the scene. By epoch 75, there is a

distinct improvement, where features and colors stand out but are marred by

distortion of elements present in the picture. By epoch 150, this distortion has

reduced significantly, only showing up when there is ambiguity in the semantic

scene such as shadows.

Figure 4 Epoch 0. Figure 5 Epoch 75. Figure 6 Epoch 150.

4.2 Evaluation of Results

As the Indian Driving Dataset does not currently have a publicly available

segmentation model, we were unable to test our results with it and compare the

accuracies between our model and the real images from the dataset. Hence, our

evaluations of the results were mostly done by simply viewing them and manually

deciding if their quality was acceptable and decipherable. While there is a certain

amount of noise and distortion in our images, the model was successful in

generating objects that could be recognized by humans.

We also used the architecture of pix2pixhd [6-Tang] to compare the images

generated by both models, as shown Figures 7 and 8. Table 3 presents the

comparison of the two generated images.

Figure 7 Pix2pix. Figure 8 Pix2PixHD.

194 K. Aditya Shastry, et al.

Table 3 Comparison of Pix2Pix and Pix2PixHD.

Pix2pix Pix2pixHD

Requires less computational

resources (less training time and

memory)

More computational resources

required (more training time

and memory)

Simpler Model (consists of an

encoder-decoder)

Complex model (consists of a

resnet)

More noise Less noise

Another method we used for evaluation was through the use of a pre-trained

semantic segmentation model, RefineNet. RefineNet is a MATLAB-based neural

network meant for identifying objects in scenes and segmenting the images based

on them. The pretrained model we used for evaluation was trained on the

PASCAL Context dataset. This dataset offers diverse images for the purpose of

semantic segmentation ‘in the wild’. RefineNet was also one of the top-

performing models for semantic segmentation of the Cityscape dataset. Due to

these reasons and the lack of an equivalent suitable and publicly available model

for the IDD, we chose a RefineNet model for our evaluation. The process flow

using the RefineNet model is shown in Figure 9.

Figure 9 Process flow of the RefineNet model.

As shown in Figure 9, the process involved the generation of images from

semantic images. Subsequently, the real and generated images were fed to the

pretrained RefineNet model to obtain the corresponding segmentation maps.

Then, the absolute difference between the real and generated images was

computed. The total number of non-zero elements in the difference was summed

up assuming that this indicated the misclassified number of pixels of the

generated image. Finally, the average across all images in the dataset was

obtained. Figure 10 depicts the semantic maps of the real and generated images.

After running this evaluation method on our dataset, the average error obtained

was 40.49%.

Generate

images

from
semantic

images

Load the

pre-trained

RefineNet
model

RefineNet segmentation maps from real and

generated images

Compute image

difference
Sum the non-zero

differences

Average

the

dataset’s
images

Improving Robustness Using MixUp and CutMix Augmentation 195

Figure 10 Evaluation using semantic segmentation.

5 Deployment with Unity

Unity is a game development platform for Windows and Mac. Using this

platform, we procedurally generated a city made of semantic labels with the

addition of an auto rickshaw object. A first-person walkthrough was set up to

allow the user to walk around a generated semantically labeled city. By capturing

every frame and sending it to our model, we overlayed the city with an equivalent

realistic image, allowing users to walk through an AI generated city in first

person.

5.1 Design

Figure 11 shows the process flow of Deployment on Unity.

Figure 11 Process flow of Deployment on Unity

We start by generating a city with roads, buildings, pedestrians, and vehicles,

with materials corresponding to the semantic labels of the Indian Driving Dataset

[7], in a procedural manner in Unity. Then we attach two cameras to the first-

196 K. Aditya Shastry, et al.

person character. The first camera renders the original view of the city and the

second camera is used to overlay the generated frames on the screen. The first

camera is made to draw the frame into a RenderTexture object, which is in turn

read into a Texture object. The Texture object is then encoded as PNG bytes.

These bytes are sent over a request-response socket using NetMQ, a library in C#

for ZeroMQ. An equivalent ZMQ socket is used in our Python script. The Python

script receives the frame in the form of bytes and feeds it to our generator. The

generator takes this as input and generates a realistic image based on the frame.

This is then encoded as bytes and sent back to the socket in Unity. Unity overlays

the received message onto the camera. This process in a loop allows a user to

walk through a purely AI generated city.

5.2 Implementation

5.2.1 Unity

Development in Unity was done in C#. To create our ZMQ socket, we used the

NetMQ library for Visual Studio. Unity provides an update function that is called

every time the frame is updated in the camera. Through this function, we create

our socket to send and receive the generated images. This process involves

initializing two cameras and connecting to a Python server using a request socket.

A Texture object is created to capture the active camera texture, which is encoded

as a PNG and sent to the server. Upon receiving a byte array from the server, it is

loaded as an image onto another Texture object. The Blit method is then used to

efficiently replace every pixel in the second camera’s texture with the new

texture. This process is repeated for every frame using the Update method.

5.2.2 Python

While Unity acts as the client in this scenario for sending requests and receiving

responses, Python is the server that receives requests, processes them, and sends

Unity the appropriate response. We used Python’s PyMQ package to create a

ZMQ server socket. The process involves initializing the generator model by

loading saved weights, creating a ZMQ socket to connect and listen to a port, and

receiving a byte string from a Unity client. The byte string is then converted to a

PNG image using the Pillow library’s BytesIO module. The PNG image is pre-

processed by resizing to 256 x 256 and removing the alpha channel from it. The

pre-processed image is then fed into the generator, and the returned value is stored

as an array. The generated image is reshaped to 1024 x 768, and the alpha channel

is re-attached. Finally, the image is sent back to Unity over the socket.

Improving Robustness Using MixUp and CutMix Augmentation 197

5.3 Challenges and Results

One of the key challenges we faced during this phase was maintaining a constant

game feed with no latency. As we were running our generator locally, the model

utilized the CPU to generate the image and hence caused a visible latency while

walking through the city. This problem is easily fixed when the generator is run

on a system with a GPU instead. Another challenge we faced was the increase in

the noise and distortion in the generated image. We pinpointed this effect since

the semantic representations were not accurate, that is, the shapes of the vehicles

were rather sharp because cubes were used to create them. When the semantic

representation is improved, there is a distinct improvement in the quality of the

generated images. Figures 12, 14, 16, and 18 are the equivalent generated frames

of Figures 13, 15, 17 and 19.

Figure 12 Generated

image - first frame.

Figure 13 Semantic

image – first frame.

Figure 14 Generated

image – second

frame.

Figure 15 Semantic

image – second frame.

Figure 16 Generated

image – third frame.

Figure 17 Semantic

image – third frame.

Figure 18 Generated image – fourth

frame.

Figure 19 Semantic image – fourth

frame.

198 K. Aditya Shastry, et al.

6 Conclusion and Future Scope

In this research paper, we discussed the use of generative adversarial networks

(GAN) to generate realistic images from semantic representations of a scene. We

trained our model using the Indian Driving Dataset and explored the scope of

GANs in interpreting complex scenes and understanding textures and variables.

We also discussed the potential applications of our model in the field of gaming

and virtual reality. Finally, we highlighted the possible impact of generating

realistic deep fakes on society. We foresee the use of our work in the fields of

game design, virtual reality, and autonomous driving. Through our Unity

deployment it is clear that the laboriousness of the process of designing

landscapes is brought down tremendously, as this model takes over the task of

filling in the details. The same applies for designing virtual reality environments.

Another application of this work we envision is its use in autonomous driving as

the model learns to capture important features and identify elements in a driving

scene. We believe this learning can be utilized by autonomous vehicles in their

training.

References

[1] Hossam, H., Elgmmal, E. & Elnabawy, R.H., A Review of Generative

Adversarial Networks Applications, in 4 Novel Intelligent and Leading

Emerging Sciences Conference (NILES), pp. 142-146. 2022.

[2] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., Courville, A. & Bengio, Y., Generative Adversarial Nets, in

Advances in Neural Information Processing Systems, pp. 2672-2680,

2014.

[3] Radford, A., Metz, L. & Chintala, S., Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks, 4th

International Conference on Learning Representations, ICLR 2016, San

Juan, Puerto Rico, May 2-4, 2016.

[4] Hong, W., Wang, Z., Yang, M. & Yuan, J., Conditional Generative

Adversarial Network for Structured Domain Adaptation,. in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1335-1344. Salt Lake City, UT, USA, 2018.

[5] Isola, P., Zhu, J. -Y., Zhou, T. & Efros, A.A., Image-to-Image Translation

with Conditional Adversarial Networks, in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 5967-5976, 2017.

Honolulu, HI, USA. DOI: 10.1109/CVPR.2017.632. 2017.

[6] Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Liu, G., Tao, A., Kautz, J. &

Catanzaro, B., Video-To-Video Synthesis, in Advances in Neural

Information Processing Systems, 31, 2018.

Improving Robustness Using MixUp and CutMix Augmentation 199

[7] Varma, G., Subramanian, A., Namboodiri, A., Chandraker, M. & Jawahar,

C.V., IDD: A Dataset for Exploring Problems of Autonomous Navigation

in Unconstrained Environments, in IEEE Winter Conference on

Applications of Computer Vision (WACV), pp. 1743-1751, 2019.

[8] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson,

R., Franke, U., Roth, S. & Schiele, B., The Cityscapes Dataset for Semantic

Urban Scene Understanding, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 3213-3223, 2016.

[9] Wang, T. C., Liu, M. -Y., Zhu, J. -Y., Tao, A., Kautz, J. & Catanzaro, B.,

High-Resolution Image Synthesis and Semantic Manipulation with

Conditional GANs., in 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 8798-8807, 2018.

[10] Lin, G., Milan, A., Shen, C. & Reid, I.D., RefineNet: Multi-path

Refinement Networks for High-Resolution Semantic Segmentation, IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp.

5168-5177, 2017.

[11] Mottaghi, R., The Role of Context for Object Detection and Semantic

Segmentation in the Wild, IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 891-898, 2014.

[12] Ghosh, A., Bhattacharya, B. & Roy Chowdhury, S. B., SAD-GAN:

Synthetic Autonomous Driving using Generative Adversarial Networks,

30th Conference on Neural Information Processing Systems (NIPS), 2016.

[13] Regmi, K. & Borji, A., Cross-view image synthesis using geometry-guided

conditional GANs, Computer Vision and Image Understanding, 187, 2019.

[14] Turkoglu, M.O., Thong, W., Spreeuwers, L.J. & Kicanaoglu, B., A Layer-

Based Sequential Framework for Scene Generation with GANs, AAAI

Conference on Artificial Intelligence, 2019.

[15] S Liu, S., Wang, T., Bau, D., Zhu, J.-Y. & Torralba, A., Diverse Image

Generation via Self-Conditioned GANs, IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) , pp. 14274-14283,

2020.

[16] Alotaibi, A., Deep Generative Adversarial Networks for Image-to-Image

Translation: A Review, Symmetry, 12(10), 2020.

[17] Liu, M.Y., Huang, X., Yu, J., Wang, T.C. & Mallya, A, Generative

Adversarial Networks for Image and Video Synthesis: Algorithms and

Applications, Proceedings of the IEEE, 109(5), 2021.

[18] Shamsolmoali, P., Zareapoor, M., Granger, E., Zhou, H., Wang, R., Celebi,

M.E. & Yang, J., Image synthesis with adversarial networks: A

comprehensive survey and case studies, Information Fusion, 72, pp.126-

146, 2021.

[19] Alokasi, H. & Ahmad, M.B., Deep Learning-Based Frameworks for

Semantic Segmentation of Road Scenes, Electronics, 11(12), 1884, 2022.

200 K. Aditya Shastry, et al.

[20] Jozdani, S., Chen, D., Pouliot, D., Johnson, B.A., A Review and Meta-

Analysis of Generative Adversarial Networks and Their Applications in

Remote Sensing, International Journal of Applied Earth Observation and

Geoinformation, 108, 2022.

[21] Pradhyumna, P. & Mohana., A Survey of Modern Deep Learning based

Generative Adversarial Networks (GANs), 6th International Conference on

Computing Methodologies and Communication (ICCMC), pp. 1146-1152,

2022.

[22] Porkodi, S. P., Sarada, V. & Maik, V., Generic image application using

GANs (Generative Adversarial Networks): A Review, Evolving Systems,

2022.

[23] Liu, Y., Gal, R., Bermano, A., Chen, B. & Cohen-Or, D., Self-Conditioned

Generative Adversarial Networks for Image Editing, SIGGRAPH '22:

ACM SIGGRAPH 2022, 16, pp.1-19, 2022.

[24] Mehralian, M. & Karasfi, B., RDCGAN: Unsupervised Representation

Learning with Regularized Deep Convolutional Generative Adversarial

Networks, 9th Conference on Artificial Intelligence and Robotics and 2nd

Asia-Pacific International Symposium, pp. 31-38, 2018.

[25] Yurtsever, E., Yang, D., Koc, I.M. & Redmill, K.A., Photorealism in

Driving Simulations: Blending Generative Adversarial Image Synthesis

with Rendering, IEEE Transactions on Intelligent Transportation Systems,

23(12), pp. 23114-23123, 2022.

[26] Yurtsever, E., Yang, D., Koc, I.M. & Redmill, K.A., Photorealism in

Driving Simulations: Blending Generative Adversarial Image Synthesis

with Rendering, IEEE Transactions on Intelligent Transportation Systems,

23(12), pp.23114-23123, 2022.

[27] Ronneberger, O., Fischer, P., Brox, T., U-Net: Convolutional Networks for

Biomedical Image Segmentation, in N. Navab, J. Hornegger, W. Wells, A.

Frangi (Eds.), Medical Image Computing and Computer-Assisted

Intervention – MICCAI, Lecture Notes in Computer Science, 9351,

Springer, Cham., 2015.

