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Abstract. The rate of advancement in the field of artificial intelligence (AI) has 

drastically increased over the past twenty years or so. From AI models that can 

classify every object in an image to realistic chatbots, the signs of progress can be 

found in all fields. This work focused on tackling a relatively new problem in the 

current scenario-generative capabilities of AI. While the classification and 

prediction models have matured and entered the mass market across the globe, 

generation through AI is still in its initial stages. Generative tasks consist of an AI 

model learning the features of a given input and using these learned values to 

generate completely new output values that were not originally part of the input 

dataset. The most common input type given to generative models are images. The 

most popular architectures for generative models are autoencoders and generative 

adversarial networks (GANs). Our study aimed to use GANs to generate realistic 

images from a purely semantic representation of a scene. While our model can be 

used on any kind of scene, we used the Indian Driving Dataset to train our model. 

Through this work, we could arrive at answers to the following questions: (1) the 

scope of GANs in interpreting and understanding textures and variables in 

complex scenes; (2) the application of such a model in the field of gaming and 

virtual reality; (3) the possible impact of generating realistic deep fakes on society. 

Keywords: artificial intelligence; deep learning; driving dataset; generative adversial 

networks; scene generation. 

1 Introduction 

The advent of artificial intelligence began in 1943 when the first paper on the 

concept of a neural network was published. Progress in AI has come a long way, 

from a theoretical neural network model to models that can detect, classify, 

predict, and more recently, generate data they have been trained on. The internet 

has been abuzz with deep fakes and the potential issues such technology could 

cause with the advent of generative models. However, generative models provide 

a twofold benefit: they can generate new data in areas lacking suitable data (such 

as native language processing) and they can be used to interpret and analyze 

already existing data.  
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While other types of models focus on the latter objective, generative models are 

more promising because they have a lower number of parameters than the total 

number of features in the data and are hence forced to find the best and most 

representational features of the lot [1]. This work employed the use of generative 

adversarial networks (henceforth referred to as GANs) to generate new 

photorealistic scenes of India. A GAN, first proposed by Ian Goodfellow in 2014 

[2], uses two different neural networks competing against each other.  

Among various types of generative models, GANs have gained popularity due to 

their ability to generate high-quality data while using a smaller number of 

parameters than the total features in the data. GANs consist of two neural 

networks that compete with each other, resulting in a game-like scenario in which 

one network generates data and the other network evaluates their authenticity. 

This paper focuses on the use of GANs to generate photorealistic scenes of India. 

The research employed the methodology proposed by Ian Goodfellow [2]. This 

paper will explore the potential of GANs to generate new data and provide a deep 

analysis of the generated images, which can be useful in various applications such 

as computer vision, entertainment, and virtual reality.  

The research hypothesis was that by using GANs, realistic images can be 

generated from a purely semantic representation of a scene, specifically the 

Indian Driving Dataset. We believe that this research will provide valuable 

insights into the scope of GANs in interpreting and understanding textures and 

variables in complex scenes. Additionally, we hypothesized that our model could 

have significant application in the fields of gaming and virtual reality, as it can 

create immersive and realistic environments. Finally, we predicted that our 

research would highlight the possible negative impact of generating realistic deep 

fakes on society, as it could be used for malicious purposes such as spreading 

misinformation or creating fake news. Overall, we expect that our study will 

contribute to the further advancement of generative capabilities of AI and provide 

important insights into the potential applications and risks associated with this 

technology.  

The following are the research contributions of our work: 

1. Investigating the generative capabilities of AI, which is a relatively new 

problem, with a focus on GANs.  

2. Developing a GAN-based model that can generate realistic images from a 

purely semantic representation of a scene. 

3. Training the GAN model on the Indian Driving Dataset and evaluating its 

ability to interpret and understand textures and variables in a complex scene. 

4. Exploring potential applications of the proposed model in the fields of gaming 

and virtual reality. 
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5. Investigating the possible negative impact of generating realistic deep fakes 

on society. 

6. Providing a detailed comparison of the proposed work with related work. 

2 Related Work 

Since the original GAN paper [2] was published, there has been tremendous 

growth in the research interest surrounding GANs. To fully understand what these 

novel models are capable of, we undertook an extensive survey of papers 

published in this field. We discovered several types of GANs and their 

applications in various fields, such as image processing, audio and video 

processing, 3D model generation, and so on. The next section covers a few of the 

GANs we surveyed and considered for our work. As per our survey, GANs have 

not previously been used on the IDD dataset for scene generation. DCGANs were 

the first major improvement on the GAN architecture. They are more stable in 

terms of training and generate higher-quality samples. Reference [3] proposed 

three improvements of classic GAN, namely replacement of any pooling layers 

with strided convolutions (for the discriminator) and fractional strided 

convolutions (for the generator); removing the fully connected hidden layer and 

using batch normalization in both networks; and using LeakyReLU in the 

discriminator and ReLU activation in the generator.  

Conditional GANs [4] were another advancement on the basic GAN framework. 

While the original GAN used noise as the sole input to the generator, C-GANs 

employ the use of a condition to control the generated output. The condition could 

be a class label, a description, or any relevant data. This condition is fed to both 

the discriminator and the generator as an additional input layer.  

Reference [5] built a model popularly known as pix2pix to perform the following 

tasks: mapping semantic labels to realistic images; aerial images to maps; black 

and white to color images; edges to images; and day-time images to night-time 

images. The model employs the use of a DCGAN for the generator and the 

discriminator. The results produced are realistic, but the training time and the size 

of the dataset increase drastically with the complexity of the problem. Built to 

improve on the previous paper, pix2pixHD [6] produces high-resolution images 

(a relatively new feature in image generation through AI) from semantic maps. 

The proposed technique converts semantic labels of street views to real images, 

labels of faces to realistic images, and offers a real-time editing interface with 

which users can manipulate the semantic labels and immediately see the resultant 

change in the output. As with pix2pix, the street views used the Cityscapes dataset 

[7] 
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Cycle GAN [9] is an architecture used for image-to-image translation. The model 

captures features in an image collection and figures out how these can be 

translated into another image collection; this method is also called style transfer. 

A cycle GAN provides a two-way translation function. G: X → Y and F: Y → X 

must be inverses of each other. As mentioned in the previous section, the task of 

generating realistic driving scenes is not an altogether new idea. We surveyed the 

methods used for this task to use on the IDD dataset. All the above papers used 

the Cityscapes dataset [8] for their models. The present work considered the 

Indian Driving Dataset [10] for similar models.  

The method proposed in Reference [11] was aimed at learning a mapping 

function between an input source video to an output photorealistic video. The 

input source video consisted of semantic labels of frames from the Cityscapes 

dataset. A spatio-temporal training method was employed on the model. Two 

discriminators were used, one to ensure quality of the images and spatial 

accuracy, and the other to ensure that the frames in sequence are temporally 

sound. The videos generated by vid2vid are unique in terms of their high quality 

and accuracy over time. However, due to the higher number of neural networks 

having to run simultaneously, the training period and the resources used are both 

on the high side. The same work also released results for pose detection and 

translation and face to edges to face translation. 

Reference [12] proposed using generative neural networks to replicate human 

driving behavior for autonomous driving. They used a stable GAN architecture 

to train a controller-trainer network using images and key press data from a video 

game (Road Rash). The method shows promising results in learning synthetic 

driving behavior. Reference [13] attempted to generate realistic images from 

ground and aerial views, which is a challenging computer vision task. The 

proposed method uses homography to map the images between views and 

generative adversarial networks to add realism. The study demonstrated that 

incorporating geometry constraints is a better approach for cross-view image 

synthesis, adding fine details to the generated images.  

Reference [14] proposed a scene generation framework based on GANs that 

sequentially composes scenes with explicit control over the elements. The 

framework has separate background and foreground generators, where the 

foreground objects populate the scene one-by-one. The study demonstrated that 

the proposed framework could produce more diverse images and handles 

transformations and occlusion artifacts better than existing approaches through 

experiments on a subset of the MS-COCO dataset. Reference [15] presents an 

unsupervised method for generating diverse and realistic images using a class-

conditional GAN model. The model is conditioned on automatically derived 

labels from clustering in the discriminator’s feature space to cover different 
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modes. The proposed method outperformed several existing methods in 

addressing mode collapse and improved image diversity and quality metrics on 

large-scale datasets such as ImageNet and Places365. 

Reference [16] provides a comprehensive overview of image-to-image 

translation based on GANs and its variants, including state-of-the-art techniques 

based on multimodal and multidomain representations. Finally, it summarizes 

open issues and future research directions, including the use of reinforcement 

learning and 3D modal translation. The review paper [17] provides an overview 

of the GAN framework for various image and video synthesis tasks, discussing 

its applications in image translation, image processing, video synthesis, and 

neural rendering. It also covers important techniques to stabilize GAN training 

and enable the generation of high-resolution photorealistic images and videos.  

Reference [18] provides a comprehensive review of adversarial models for image 

synthesis using GANs. It covers various categories, such as image-to-image 

translation, label-to-image mapping, and text-to-image translation, and discusses 

the base models, architectures, loss functions, evaluation metrics, and datasets 

used. The review also highlights potential future research directions and includes 

a collection of loss-variant GANs, evaluation metrics, remedies for several image 

generation issues, and stable training. Reference [19] provides a review of deep 

learning-based frameworks used for semantic segmentation of road scenes, 

discussing their architectures, well-known datasets, data augmentation 

techniques, and domain adaptation methods. It also includes a quantitative 

analysis and performance evaluation of different frameworks on reviewed 

datasets and highlights future research directions in the field of semantic 

segmentation using deep learning. 

The research reported in [20] provides a comprehensive review and meta-analysis 

of 231 journal papers on the use of GANs in remote sensing (RS) applications. 

The review covers theories, applications, and challenges of GANs, highlights 

gaps in the field, and provides insight into the potential of GANs for various RS 

applications. Reference [21] provides an overview of recent advances in GANs. 

The paper discusses the challenges faced in training GANs, such as instability, 

mode collapse, and non-convergence, and how researchers have addressed these 

issues by modifying the network topology, goal functions, and optimization 

techniques. The paper also highlights the progress made in GAN architecture and 

optimization solutions for improving their efficiency in various computer vision 

applications. The authors suggest that further research is needed in this area to 

solve real-time computer vision applications using GANs.  

The paper [22] provides an overview of the GAN approach and its various model 

types, as well as their benefits and limitations, and potential model alterations. 
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The study also highlights the challenges of training GANs and offers suggestions 

for parameter measurement. The paper reviews various GAN applications in 

image processing and discusses their potential reach. Overall, this paper offers 

valuable insight into GANs and their applications in image processing. Reference 

[23] proposes an unsupervised representation learning method by combining 

deep neural networks (DNNs) with GANs.  

The method involves using encoder networks in addition to generative models 

for feature extraction, leading to improved performance and faster learning in 

GANs. The proposed approach was shown to outperform other unsupervised 

feature learning methods by 2% to 6% in terms of classification accuracy. 

Reference [24] introduced an unsupervised method for generating diverse images 

using a class-conditional GAN model that does not use manually annotated class 

labels. Instead, the model is conditional on labels automatically derived from 

clustering in the discriminator’s feature space, which automatically discovers 

different modes and requires the generator to cover them. The method 

outperformed several competing methods when addressing mode collapse and 

performed well on large-scale datasets such as ImageNet and Places365, 

improving both diversity and standard metrics compared to previous methods.  

The research initiative [25] involved a collaboration between the United States 

and China with the aim of enhancing the realism of driving simulators. This 

suggests a shared interest in advancing driving simulation technology. The 

researchers proposed the use of GANs as a means to achieve this goal. GANs are 

a type of machine learning model known for their ability to generate realistic 

synthetic data. The researchers have taken a novel approach to address the 

challenge of producing photorealistic point-of-view (POV) driving scenarios. 

They developed a hybrid method that combines the strengths of different 

approaches. Specifically, they mix the more photorealistic output of cycle GAN-

based systems with conventionally generated elements that require more detail 

and consistency, such as road markings and observed vehicles.  

The hybrid system developed by these researchers is called Hybrid Generative 

Neural Graphics (HGNG). It involves injecting limited output from a 

conventional computer-generated imagery (CGI)-based driving simulator into a 

GAN pipeline. The environment generation within this pipeline is facilitated by 

the NVIDIA SPADE framework. According to the authors, the advantage of 

using the HGNG system is the potential to create more diverse driving 

environments, resulting in a more immersive experience. They emphasize that 

even converting CGI output to photoreal neural rendering output alone cannot 

address the problem of repetition. The original footage entering the neural 

pipeline is constrained by the limitations of the model environments, leading to 

repeated textures and meshes. Overall, this paper presented an innovative 
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approach to improving the realism of driving simulators through the integration 

of different techniques and the utilization of GANs. The aim was to enhance the 

immersivity and diversity of driving environments to provide a more realistic 

experience for users. 

Reference [26] proposed a HGNG pipeline to enhance the visual fidelity of 

driving simulations. This approach involves partially rendering important objects 

of interest, such as vehicles, and employing generative adversarial processes to 

synthesize the background and the rest of the image. A novel image formation 

strategy was introduced to generate 2D semantic images from simple object 

models without textures within a 3D scene. These semantic images are then 

transformed into photorealistic RGB images using a state-of-the-art GAN trained 

on real-world driving scenes. To address the issue of repetitiveness in the 

generated images, a blending GAN is used to blend the partially-rendered and 

GAN-synthesized images together.  

The researchers demonstrated that the proposed method generates images with 

higher photorealism compared to conventional approaches. They validated this 

claim by conducting a semantic retention analysis and measuring the Fréchet 

Inception Distance (FID) against real-world driving datasets such as Cityscapes 

and KITTI. In summary, the research presents a HGNG pipeline that aims to 

improve the visual fidelity of driving simulators. By combining partial rendering, 

GAN synthesis, and blending techniques, the method achieves higher 

photorealism, reducing repetitiveness and enhancing immersion. The evaluation 

against real-world driving datasets supports the superiority of the proposed 

approach over conventional methods. 

Table 1 shows a detailed comparison of the present work with related works. 

Based on Table 1, we see that most of the related works did not address the 

following aspects which form the key research contributions of our proposed 

work: no realistic image generation from semantic scene representation; no 

gaming/VR applications; no exploration of societal impact; no use of the  IDD 

dataset; no evaluation of texture interpretability; and no discussion of future 

research. 

Table 1 Comparison of the proposed work with related works. 

Literature Comparison with Proposed Work 

[3] No semantic scene generation; deep CGAN constraints; no use of the Indian 

Driving Dataset; no consideration of deep fakes’ societal impact. 

[4] No realistic image generation from semantic scenes; CGAN limited to multi-

modal and tagging; no interpretation of textures and variables from IDD. 

[5] General image-to-image translation; no specific dataset mentioned; no 

exploration of gaming/VR applications or societal impact of deep fakes. 



188     K. Aditya Shastry, et al. 

 

Table 1  Continued. Comparison of the proposed work with related works. 

Literature Comparison with Proposed work 

[6] Limited scope: video-to-video synthesis; no evaluation of societal impact or 

interpretability of textures/variables; no use of Indian Driving Dataset or 

discussion of gaming/VR applications. 

[7] No generation of realistic images; ignores generative AI capabilities, and 

neglects gaming/VR applications and deep fake impact on society. 

[8] Does not explore AI’s generative capabilities; uses Cityscapes with fewer labels 

than the proposed IDD dataset; neglects potential GAN applications in gaming 

and virtual reality. 
[9] Focuses on high-res photo-realistic image synthesis from label maps; lacks 

dataset specification; neglects discussion of challenges and future research 

directions. 
[10] Does not explore gaming/VR applications or impact of realistic deep fakes on 

society 
[11] Does not include an investigation of the model’s impact on society. 
[12] Homogeneous dataset limits generalization; societal implications not explored. 
[13] No realistic image generation; limited homography generalizability; only for 

cross-view image synthesis. 
[14] No realistic image generation; limited data diversity due to MS-COCO dataset; 

incomplete evaluation; no societal applications discussed; nongeneralizable 

without autoencoders. 
[15] Unsupervised with limited accuracy; no exploration of deep fakes or gaming 

applications. 
[16] Review work without proposal of a model. 
[17] Review work without proposal of a GAN model; does not address the generative 

capabilities of GAN. 
[18] Review work lacking implementation/evaluation; ignores societal 

impact/semantic representation. 
[19] No generative exploration; limited dataset/evaluation; no gaming/VR discussion. 
[20] No detailed GAN investigation/solutions proposed; addresses a specific 

audience. 
[21] Review without GAN implementation; no gaming/VR exploration; no generative 

model developed. 
[22] Survey without GAN implementation; no specific applications discussed; lacks 

in-depth discussion. 
[23] Ignores AI generative capabilities in complex scenes; no dataset specification; 

neglects deep fakes. 
[24] No gaming/VR exploration; neglects societal impact investigation of realistic 

deep fakes. 

[25] Does not delve into the societal implications of their research. 

[26] Exhibits limitations in terms of dataset dependence; lack of a detailed discussion 

on the challenges of conventional approaches. 

3 Proposed Architecture 

The architecture used for this work is described in this section. Our generator was 

a U-Net, as shown in Figure 1. A U-Net [27] is a classic encoder-decoder model 

with skip connections. Skip connections directly connect the encoder layer to the 
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decoder layer, allowing the neural network to bypass certain blocks if no useful 

feature is learnt in them.  

 

Figure 1 Generator architecture. 

The input to the generator is a semantic image and the output is a realistic image. 

The generator is trained on the losses produced by the discriminator. The 

discriminator takes in two inputs, the semantic map and the real image or the 

generated image. It uses these two inputs to generate a probability that the 

real/generated image is real and corresponds to the semantic map. The 

architecture of the discriminator is given in Figure 2. 

 

Figure 2 Discriminator architecture. 

The discriminator is a PatchGAN. A PatchGAN outputs an image with a size of 

30 x 30 x 1 pixels, where each pixel corresponds to the believability of a certain 

patch in the original image. It is trained to maximize the output of the semantic 

map and the real image to 1. In mathematical terms it is expressed in Eq. (2): 

 D(SI, RI) ≈ 1 and D(SI, G(SI)) ≈ 0          (2) 

3.1 Proposed Algorithm 

Algorithm 1 shows the proposed GAN algorithm for generating scenes from the 

IDD dataset. 
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Algorithm-1: GAN-scene-generation  
begin 

def make_generator_model(): # Define the generator model 
   model  Sequential 

   model.add(Dense-Layers) 

   model.add(BatchNormalization()) 

   model.add(LeakyReLU()) 

   model.add(Convolution-2D-Layer) 

   model.add(BatchNormalization()) 

   model.add(layers.LeakyReLU()) 

   model.add(Convolution-2D-Layer) 
   model.add(BatchNormalization()) 

   model.add(LeakyReLU()) 

   model.add(Convolution-2D-Layer, tanh) 

   model.add(Reshape((output_shape))) # Add reshape layer for desired output shape 

  return model 

def make_discriminator_model(): # Define the discriminator model 

    model  Sequential() 
    model.add(Convolutional-2D-Layer) 

    model.add(LeakyReLU()) 

    model.add(Dropout(0.3)) 

    model.add(Convolutional-2D-Layer) 

    model.add(LeakyReLU()) 

    model.add(layers.Dropout(0.3)) 

    model.add(Flatten()) 

    model.add(Dense-Output-Layer(1)) 
    return model 

def generator_loss(fake_output): # Define the loss function for the generator 

    return(Losses.sigmoid_cross_entropy(ones_like(fake_output), fake_output)) 

def discriminator_loss(real_output, fake_output): # Define the loss function for the discriminator 

real_loss  Losses.sigmoid_cross_entropy(multi_class_labels=ones_like(real_output),    logits=real_output) 

fake_loss  Losses.sigmoid_cross_entropy(multi_class_labels=zeros_like(fake_output), logits=fake_output) 

    total_loss  real_loss + fake_loss 
    return(total_loss) 

generator_optimizer  Train.AdamOptimizer() # Define the optimizer 

discriminator_optimizer  Train.AdamOptimizer() 

data  Load('indian_driving_dataset.npy') # Load the Indian Driving dataset 

data = (data / 127.5) – 1 # Normalize the data 

BUFFER_SIZE = 60000; BATCH_SIZE = 256; EPOCHS = 50 # Define the batch size and number of epochs 

train_dataset  data.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) # Batch and shuffle the data 

generator = make_generator_model() # Define the generator and discriminator models 
discriminator = make_discriminator_model() 

checkpoint_dir = './training_checkpoints' # Define the checkpoint directory and checkpoint prefix 

checkpoint 

def generate_random_latent_vector(): # Generate random latent vectors 

return np.random.normal(size=(BATCH_SIZE, latent_dim)) 

def generate_images(generator, latent_vector): # Generate images from the generator using latent vectors 

generated_images = generator.predict(latent_vector) 

return generated_images 
for epoch in range(EPOCHS): 

for batch in train_dataset: 

# Train the discriminator 

noise = generate_random_latent_vector() 

with tf.GradientTape() as disc_tape: 

generated_images = generator(noise, training=True) 

real_output = discriminator(batch, training=True) 
fake_output = discriminator(generated_images, training=True) 

disc_loss = discriminator_loss(real_output, fake_output) 

gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) 

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) 

end 

 



Improving Robustness Using MixUp and CutMix Augmentation  191 

Algorithm 1 shows a GAN to generate images from the Indian Driving Dataset. 

The GAN consists of a generator and a discriminator model. The generator takes 

random noise as input and generates images that the discriminator then tries to 

distinguish from real images in the dataset. The two models are trained together, 

with the generator trying to produce images that fool the discriminator, and the 

discriminator trying to correctly distinguish between real and fake images. The 

specific implementation of the generator and discriminator models is as follows. 

The generator has an input layer that takes random noise as input, followed by a 

dense layer. Batch normalization and a LeakyReLU activation function are 

applied to this output followed by two transposed convolutional layers with batch 

normalization and LeakyReLU activation functions. The final layer is another 

transposed convolutional layer with a tanh activation function. The discriminator 

has an input layer followed by two convolutional layers with LeakyReLU 

activation functions and dropout. The output is then flattened and passed through 

a dense layer with a single output, representing the probability that the input 

image is real. The loss function for the generator is the sigmoid cross entropy 

between the generated output and a vector of ones. The loss function for the 

discriminator is the sum of the sigmoid cross entropy between the real output and 

a vector of ones, and the sigmoid cross entropy between the fake output and a 

vector of zeros. The models are trained using the Adam optimizer. The dataset is 

loaded from an npy file, normalized to the range [-1, 1] and then batched and 

shuffled. The training loop runs for fifty epochs, during which the models are 

trained on batches of data, with the generator being updated twice for every 

update of the discriminator. The checkpoints for the models are saved in the 

‘training_checkpoints’ directory. 

3.2 Training: 

The training process is performed as shown in Algorithm 2. 

Algorithm-2: Training 
for epoch in range(total_epochs) do 

for batch in range(total_batches), do 
Semantic_Map = generate_random_semantic_map()  

Fake_Image= Generate(Semantic_Map) 

err_Fake=Discriminate(Fake_Image) 
Real_Image = get_real_image() 

err_Real=Discriminate(Real_Image) 

Generator_Err = err_Fake 
Discriminator_Err = avg(err_Real, err_Fake) 

Propagate error and optimize models 

Generator_Losses.append(Generator_Err) 
Discriminator_Losses.append(Discriminator_Err) 

 Analyze_performance(Generator_Losses, Discriminator_Losses) 

End 
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Algorithm 2 trains the model by generating fake images from semantic maps, 

calculating the errors from the discriminator, and optimizing the generator and 

discriminator models through error propagation. The training was performed on 

Colaboratory, Google’s free online computing resource. The entire process took 

five to six days to train. Table 2 specifies the training parameters used for our 

model. 

Table 2 Summary of training parameters. 

Training parameters Training parameter values 

Number of epochs 150 

Mini batch size 32 

Learning rate 2e−4 

Optimizer Adams 

Loss Functions 
Loss L1 (used for both generator and discriminator). 

Loss BCE (used for generator) 

4 Experimental Setup and Results 

Experiments were performed on Google Colab with the software Python 3.6, 

Pytorch 1.0.1, Cuda 10, and PIL; and the hardware CPU: SSE2 instruction set 

support (Unity Requirements), and GPU: graphics card with DX10 (shader model 

4.0) capabilities. 

4.1 Training Specifications: 

Our model was trained for 150 epochs until the loss functions of the generator 

and the discriminator reached equilibrium (the losses remained parallel to each 

other) as shown in Figure 3. With Google Colab, the model was trained for about 

six days. 

 

Figure 3 Losses of the networks: generator – blue, discriminator – green. 
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Figures 4, 5, and 6 show the results generated by our model and the improvement 

in the quality of the images over epochs. It is clear that there is a distinct 

improvement in the images generated. In epoch 0, the model seems to have no 

understanding of colors or details required by the scene. By epoch 75, there is a 

distinct improvement, where features and colors stand out but are marred by 

distortion of elements present in the picture. By epoch 150, this distortion has 

reduced significantly, only showing up when there is ambiguity in the semantic 

scene such as shadows. 

   

Figure 4 Epoch 0. Figure 5 Epoch 75. Figure 6 Epoch 150. 

4.2 Evaluation of Results 

As the Indian Driving Dataset does not currently have a publicly available 

segmentation model, we were unable to test our results with it and compare the 

accuracies between our model and the real images from the dataset. Hence, our 

evaluations of the results were mostly done by simply viewing them and manually 

deciding if their quality was acceptable and decipherable. While there is a certain 

amount of noise and distortion in our images, the model was successful in 

generating objects that could be recognized by humans.  

We also used the architecture of pix2pixhd [6-Tang] to compare the images 

generated by both models, as shown Figures 7 and 8. Table 3 presents the 

comparison of the two generated images. 

  

Figure 7 Pix2pix. Figure 8 Pix2PixHD. 
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Table 3 Comparison of Pix2Pix and Pix2PixHD. 

Pix2pix Pix2pixHD 

Requires less computational 

resources (less training time and 

memory) 

More computational resources 

required (more training time 

and memory) 

Simpler Model (consists of an 

encoder-decoder) 

Complex model (consists of a 

resnet) 

More noise Less noise 

Another method we used for evaluation was through the use of a pre-trained 

semantic segmentation model, RefineNet. RefineNet is a MATLAB-based neural 

network meant for identifying objects in scenes and segmenting the images based 

on them. The pretrained model we used for evaluation was trained on the 

PASCAL Context dataset. This dataset offers diverse images for the purpose of 

semantic segmentation ‘in the wild’. RefineNet was also one of the top-

performing models for semantic segmentation of the Cityscape dataset. Due to 

these reasons and the lack of an equivalent suitable and publicly available model 

for the IDD, we chose a RefineNet model for our evaluation. The process flow 

using the RefineNet model is shown in Figure 9. 

 

Figure 9 Process flow of the RefineNet model. 

As shown in Figure 9, the process involved the generation of images from 

semantic images. Subsequently, the real and generated images were fed to the 

pretrained RefineNet model to obtain the corresponding segmentation maps. 

Then, the absolute difference between the real and generated images was 

computed. The total number of non-zero elements in the difference was summed 

up assuming that this indicated the misclassified number of pixels of the 

generated image. Finally, the average across all images in the dataset was 

obtained. Figure 10 depicts the semantic maps of the real and generated images. 

After running this evaluation method on our dataset, the average error obtained 

was 40.49%. 

Generate 

images 

from 
semantic 

images 

 

Load  the 

pre-trained 

RefineNet 
model 

RefineNet segmentation maps from real and 

generated images 

Compute image 

difference 
Sum the non-zero  

differences 

Average 

the 

dataset’s 
images 
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Figure 10 Evaluation using semantic segmentation. 

5 Deployment with Unity 

Unity is a game development platform for Windows and Mac. Using this 

platform, we procedurally generated a city made of semantic labels with the 

addition of an auto rickshaw object. A first-person walkthrough was set up to 

allow the user to walk around a generated semantically labeled city. By capturing 

every frame and sending it to our model, we overlayed the city with an equivalent 

realistic image, allowing users to walk through an AI generated city in first 

person. 

5.1 Design 

Figure 11 shows the process flow of Deployment on Unity. 
 

 

Figure 11 Process flow of Deployment on Unity 

We start by generating a city with roads, buildings, pedestrians, and vehicles, 

with materials corresponding to the semantic labels of the Indian Driving Dataset 

[7], in a procedural manner in Unity. Then we attach two cameras to the first-



196     K. Aditya Shastry, et al. 

 

person character. The first camera renders the original view of the city and the 

second camera is used to overlay the generated frames on the screen. The first 

camera is made to draw the frame into a RenderTexture object, which is in turn 

read into a Texture object. The Texture object is then encoded as PNG bytes. 

These bytes are sent over a request-response socket using NetMQ, a library in C# 

for ZeroMQ. An equivalent ZMQ socket is used in our Python script. The Python 

script receives the frame in the form of bytes and feeds it to our generator. The 

generator takes this as input and generates a realistic image based on the frame. 

This is then encoded as bytes and sent back to the socket in Unity. Unity overlays 

the received message onto the camera. This process in a loop allows a user to 

walk through a purely AI generated city. 

5.2 Implementation 

5.2.1 Unity 

Development in Unity was done in C#. To create our ZMQ socket, we used the 

NetMQ library for Visual Studio. Unity provides an update function that is called 

every time the frame is updated in the camera. Through this function, we create 

our socket to send and receive the generated images. This process involves 

initializing two cameras and connecting to a Python server using a request socket. 

A Texture object is created to capture the active camera texture, which is encoded 

as a PNG and sent to the server. Upon receiving a byte array from the server, it is 

loaded as an image onto another Texture object. The Blit method is then used to 

efficiently replace every pixel in the second camera’s texture with the new 

texture. This process is repeated for every frame using the Update method. 

5.2.2 Python 

While Unity acts as the client in this scenario for sending requests and receiving 

responses, Python is the server that receives requests, processes them, and sends 

Unity the appropriate response. We used Python’s PyMQ package to create a 

ZMQ server socket. The process involves initializing the generator model by 

loading saved weights, creating a ZMQ socket to connect and listen to a port, and 

receiving a byte string from a Unity client. The byte string is then converted to a 

PNG image using the Pillow library’s BytesIO module. The PNG image is pre-

processed by resizing to 256 x 256 and removing the alpha channel from it. The 

pre-processed image is then fed into the generator, and the returned value is stored 

as an array. The generated image is reshaped to 1024 x 768, and the alpha channel 

is re-attached. Finally, the image is sent back to Unity over the socket. 



Improving Robustness Using MixUp and CutMix Augmentation  197 

5.3 Challenges and Results 

One of the key challenges we faced during this phase was maintaining a constant 

game feed with no latency. As we were running our generator locally, the model 

utilized the CPU to generate the image and hence caused a visible latency while 

walking through the city. This problem is easily fixed when the generator is run 

on a system with a GPU instead. Another challenge we faced was the increase in 

the noise and distortion in the generated image. We pinpointed this effect since 

the semantic representations were not accurate, that is, the shapes of the vehicles 

were rather sharp because cubes were used to create them. When the semantic 

representation is improved, there is a distinct improvement in the quality of the 

generated images. Figures 12, 14, 16, and 18 are the equivalent generated frames 

of Figures 13, 15, 17 and 19. 

 

   

Figure 12 Generated 

image - first frame. 

Figure 13 Semantic 

image – first frame. 

Figure 14 Generated 

image – second 

frame. 

 
  

Figure 15 Semantic 

image – second frame. 

Figure 16 Generated 

image – third frame. 

Figure 17 Semantic 

image – third frame. 

  

Figure 18 Generated image – fourth 

frame. 

Figure 19 Semantic image – fourth 

frame. 
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6 Conclusion and Future Scope 

In this research paper, we discussed the use of generative adversarial networks 

(GAN) to generate realistic images from semantic representations of a scene. We 

trained our model using the Indian Driving Dataset and explored the scope of 

GANs in interpreting complex scenes and understanding textures and variables. 

We also discussed the potential applications of our model in the field of gaming 

and virtual reality. Finally, we highlighted the possible impact of generating 

realistic deep fakes on society. We foresee the use of our work in the fields of 

game design, virtual reality, and autonomous driving. Through our Unity 

deployment it is clear that the laboriousness of the process of designing 

landscapes is brought down tremendously, as this model takes over the task of 

filling in the details. The same applies for designing virtual reality environments. 

Another application of this work we envision is its use in autonomous driving as 

the model learns to capture important features and identify elements in a driving 

scene. We believe this learning can be utilized by autonomous vehicles in their 

training. 
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