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Effective Thermal Conductivity of
Porous Solder Layers

Leonard S. Pritchard, Paul P. Acarnley, and C. Mark Johnson, Member, IEEE

Abstract—Microscopic voids in the die attachment solder layers
of power semiconductor devices degrade their overall thermal
transfer performance. This paper presents analytical results of the
effect of spherical and spheroidal void geometries on the thermal
conductivity of bulk media. Analytical results are compared with
axially symmetric and three-dimensional thermal simulations
of single and multiple cavity defects in planar structures. The
effective thermal conductivity of the die to case attachment solder
layer of two commercial metal oxide semiconductor field effect
transistor (MOSFET) devices is estimated using these results,
with cavity dimensions and distributions obtained by electron
microscopy.

Index Terms—Analytical model, die attach, finite element simu-
lation, MOSFET, packaging, power semiconductor, solder layers,
thermal conductivity, voids.

I. INTRODUCTION

P
OWER semiconductor devices have at least one internal

solder layer, namely that attaching the die to the package

metal base plate, as illustrated in Fig. 1.

A further solder layer is used in those devices where the die

is electrically isolated from the case with a thin dielectric plate.

Although the solder layers are thin, the alloys used have compar-

atively low thermal conductivities, and can produce significant

thermal resistances in these regions [1], [2].

Electron microscopy was used to investigate the solder layer

of a sample of commercial power MOSFET devices. Substan-

tial variation in the solder thickness was measured between de-

vices, in the approximate range 10–50 . In addition, internal

voids of various sizes and distributions were observed. Some

layers had relatively large cavities, but few in number. By con-

trast, other solder layers contained many more voids of smaller

dimensions [2]. Internal voids must reduce the overall thermal

conductivity to some degree, the extent of which forms the sub-

ject matter of this paper.

Various techniques have been used to model the effect, espe-

cially for multiple cavity systems, including volume averaging

[3], analogy with micro-cracks in elastic solids [4] and sum-
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Fig. 1. Cross sectional schematic of a power semiconductor device.

mation of thermal resistance components [5]. The method pre-

sented here is based on a field analysis.

To obtain analytical solutions for the reduced heat flow, the

effects of regular cavity geometries are considered. Spherical

and spheroidal (oblate and prolate) bodies are introduced into

a base material supporting an otherwise uniform, steady-state

thermal field. Expressions for the disturbance to the heat flow

path are used to derive effective thermal conductivities for the

various inclusion geometries. The analytical results are com-

pared with finite element thermal simulations for single cavities

of various sizes in a cylindrical system. Simulations are also per-

formed to evaluate the accuracy of the analysis to systems with

multiple spherical cavities. These simulations used randomly

placed cavities with separations to minimize field interactions.

Estimates of the effective thermal conductivity of two

MOSFET die attachment solder layers are calculated. These

estimates use the analytical results for spherical cavities with

approximate cavity dimensions and number densities measured

from the electron micrographs.

II. THERMAL ANAYSIS

A three-dimensional (3–D) steady-state thermal field,

without heat sources or sinks is described by Laplace’s

equation [6]

or

(1)

The rate of heat flow per unit area is described by Fourier’s

law, where is the thermal conductivity

(2)

The thermal field, , is defined by

The following general property of Laplacian fields is used in

the derivations of effective thermal conductivity. Consider a

volume, , initially of uniform thermal conductivity , into

which a cavity of conductivity and volume , is introduced.

Fig. 2 illustrates the situation before and after introduction of

1521-3331/04$20.00 © 2004 IEEE
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Fig. 2. Change in field quantities after the introduction of a cavity with
different thermal conductivity.

the cavity. Note that is the volume enclosed by surface S

minus the cavity. The temperature and heat flow distributions

change from to and to , respectively.

Assume that on the surface S.

The change in the volume integral

can be expressed as

(3)

where .

Since over the whole volume, (3) becomes [see

Appendix A]

or

(4)

Equation (4) defines an effective thermal conductivity,

over the volume , expressible in terms of the initial undis-

turbed field and the modified field inside .

The various cavity geometries are considered in turn.

Fig. 3 shows the general case of an ellipsoid of thermal con-

ductivity placed in a region of uniform thermal field and

conductivity , in this case with . The two views are

along the orthogonal axes “c” and “b,” respectively, with the

field parallel to the “a” axis.

The field inside the cavity is uniform and parallel to the am-

bient field, as expressed by (5) [see Appendix B]

(5)

where

(6)

and u is a parameter representing a family of ellipsoidal

surfaces.

Fig. 3. Thermal field distortion by an ellipsoidal inclusion in a uniform field.

A. Spherical Cavity

For a spherical cavity, and

Giving

(7)

Using (4)

(8)

For a vacuum cavity with and neglecting radiation ex-

change of heat

(9)

B. Oblate Spheroidal Cavity

An oblate spheroidal cavity has with . This

geometry can be used to estimate the effect of delamination type

defects by setting , for example

Giving

(10)

Equation (5) becomes

(11)

In (4)

(12)

When

(13)

C. Prolate Spheroidal Cavity

A prolate spheroidal cavity has and . In this case,

the geometry is ‘stretched’ in the direction of the field and could
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Fig. 4. Geometry of the axially symmetric system used in the simulations.

be used for estimating the effects of fissure type defects, for

example. With , (10) becomes

(14)

where

this expression is used in (12) and (13) to calculate the effective

conductivity, .

III. SIMULATIONS

Simulations were performed for the various cavity geome-

tries using a commercial finite element program [8]. In this

way, a comparison of the results of the preceding section could

be made with those for planar systems with imposed boundary

conditions. For single cavities, axially symmetric analyzes were

performed to reduce solution times and memory requirements.

These simulations modeled cylindrical systems of unit diameter

and length, with almost zero thermal conductivity set for the

cavity and unit conductivity for the surrounding medium. Unit

thermal gradient was established by setting the lower face of the

cylinder to unit temperature and the upper face to zero.

A. Spherical Cavity

A number of simulations were performed using a range of

cavity diameters from 0.1 unit to 0.8, placed centrally in a unit

dimension cylinder, as illustrated in Fig. 4. Fig. 5 shows the

simulation results with the heat flow path for cavity diameters

at the extremes of the range. The arrow lengths represent the

magnitude of the heat flux per unit area, calculated at the finite

element centroids.

These simulations enabled the total heat flow through the

cylinder to be calculated by summing the heat flux results at

the upper (or lower) surface, from which the effective thermal

conductivity was evaluated. Fig. 6 is a graph plotting effective

conductivity against relative cavity diameter compared with the

values calculated from (9).

Simulations were also performed to investigate the effect of

axial offset in the cavity position. For a 0.2 unit diameter spher-

Fig. 5. Heat flow path for 0.1 and 0.8 diameter cavities.

ical cavity, the difference in effective thermal conductivity be-

tween a cavity with a central location and one with the cavity

centre 3/4 from the base (or top) is approximately 0.01%. For

a 0.4 diameter cavity, the corresponding difference is approxi-

mately 0.2%.

Equation (9) relates the reduction in thermal conductivity to a

function of the cavity to system volume ratio. It is reasonable to

expect that multiple cavities, sufficiently separated to minimize

field interaction, will produce a net effect that can be calculated

from the total cavity to system volume ratio. To investigate fur-

ther, 3-D analyses were made with increasing numbers of 0.2

diameter spherical cavities in a unit cube. The cavities were

distributed over the full cube volume, but positioned to avoid

overlap or close proximity. Fig. 7 plots the results of the simu-

lations for comparison with (9) using the total cavity volume.
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Fig. 6. Graph of effective thermal conductivity as a function of relative cavity
diameter.

Fig. 7. Effective thermal conductivity with number of 0.2 diameter cavities in
a unit cube.

The results are in close agreement up to the maximum of 23

cavities considered, although the effect of increasing total cavity

to system volume ratio, discussed in Section V, must be taken

into account.

B. Oblate Spheroidal Cavity

Fig. 8 shows the position of the oblate cavity in a unit cylinder.

Heat flow paths for cavities with and axis ratios

and 0.05 respectively are presented in Fig. 9, while Fig. 10 is

an expanded view of the outlined region in Fig. 9 showing detail

of the heat flow at the edge of the cavity. Figs. 11 and 12 show

the effective thermal conductivity for a range of values for axis

c, comparing simulation results with calculations from (13) and

(10). The axis ratios are and 0.05, respectively.

The largest cavity, with a diameter to cylinder diameter ratio

of 0.9, covers approximately 0.8 of the cylinder cross sectional

area. In this case, a smaller figure for effective conductivity

might be expected. However a large temperature gradient de-

velops between the edge of the cavity and the cylinder surface

that produces a high rate of heat flow in this region, as evident

in Fig. 10.

Fig. 8. Geometry of oblate spheroidal cavity in unit cylinder.

Fig. 9. Heat flow paths for oblate spheroidal cavities of semi-axis c = 0:45

and axis ratio 0.1 and 0.05, respectively.
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Fig. 10. Expanded view of the heat flow path around the edge of the cavity of
axis ratio 0.05.

Fig. 11. Effective thermal conductivity of an oblate spheroid as a function of
spheroid diameter for axis ratio a=c = 0:1.

Fig. 12. Effective thermal conductivity of an oblate spheroid as a function of
spheroid diameter for axis ratio a=c = 0:05.

C. Prolate Spheroidal Cavity

Fig. 13 shows the prolate geometry in a unit cylinder and

Fig. 14 presents the simulation heat flow results for a cavity with

and axis ratio . Fig. 15 is an expanded view

Fig. 13. Geometry of prolate spheroidal cavity in unit cylinder.

Fig. 14. Heat flow paths for prolate spheroidal cavity of semi-axis c = 0:045
and axis ratio 10.

of the indicated region at the top of the cavity whilst Fig. 16

compares the calculations from (13) with (14) with simulation

results for a range of cavity dimensions and an axis ratio

.

The reduction in heat flow from these cavities is much less

than the oblate case, caused by lower values of (14). In ad-

dition, cavity volume is much reduced for small spheroid diam-

eters, with . For example, an oblate cavity with

and axis ratio has a volume of ,

this may be compared with a prolate cavity of and

whose volume is an order of magnitude smaller.

IV. SOLDER LAYERS

A total of nine devices, three from each of three different man-

ufacturers, were cut up for examination by electron microscopy.

These devices were commercial power switching MOSFETS

in TO-220 plastic packages and of the same type designation.

Fig. 17 shows the position of the cut plane and viewing direction

and Fig. 18 is a typical low magnification image ( 35) showing

the overall structure.
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Fig. 15. Expanded view of the heat flow path at the top of the prolate cavity.

Fig. 16. Effective thermal conductivity of a prolate spheroid as a function of
spheroid length for axis ratio a=c = 10.

Fig. 17. Direction of cut plane and the viewing direction for electron
microscopy.

At 1000 magnification, the solder layer became clearly vis-

ible, and imaging with back scattered electrons was chosen to

reveal cavities. All of the devices were examined; the two with

the greatest degree of solder voiding are shown in Fig. 19.

From these images, the cavities were counted according to the

numbers falling into discrete ranges of approximate diameter. In

this way, an area density for each diameter range was estimated,

in turn converted to volume densities by raising to the power

3/2. Assuming the voids to be spherical, the volume densities

were used to estimate the total cavity to solder volume for each

device.

For device (a), the volume fraction

and assuming negligible heat transfer within the cavities,

, (9) gives

Fig. 18. Cross section through a power MOSFET at �35 magnification.

Fig. 19. Images at �1000 magnification revealing cavities within the solder
layer of two devices.

For device (b), the volume fraction and

These figures are based on the single cross-sectional micro-

graphs of the solder layers.

V. DISCUSSION

Differences between simulated and calculated effective

thermal conductivity are generally low for small cavities. For

example, with spherical geometry the difference is 0.1% up

to a cavity to cylinder diameter ratio of almost 0.4. Beyond

this point, the difference increases more rapidly until it reaches
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approximately 9% at a ratio of 0.8. The derivations of Section II

assume that the cavities are in an uniform field, unaffected

by the introduction of the void. With the simulations, the

background thermal field is produced by a finite cylindrical

system with constant temperature boundary conditions at the

top and bottom surfaces and zero radial heat flow through the

cylindrical surface. Clearly, the two systems are not the same,

and they produce solutions that progressively diverge as the

ratio of cavity to cylinder volume increases, when the cavity

surface approaches the bounding surfaces. Test simulations

for a spherical void show that the internal field is markedly

nonuniform for large volume ratios, with significant deviations

from (7). Similarly, the simple summation of cavity volume

in situations of multiple voiding assumes that the cavities

are sufficiently separated that the field disturbances do not

significantly interact.

The calculation of thermal conductivity reduction factors for

the solder layers of the two MOSFET devices assumes spherical

voiding. When spherical, and ellipsoidal cavities in general, are

placed in a uniform field, the internal field is also uniform. This

result simplifies the formulation of effective conductivity for

these geometries. However, the micrographs of Fig. 19 reveal

that the surfaces of many voids are irregular, some with sharp

angles. For such cavities, the internal field will not be uniform

and the value of the cavity volume integral in (4) will deviate

from that of the regular geometries examined. In addition, some

of the cavities are in close proximity, particularly with solder

layer (a). For these reasons, the calculated conductivity reduc-

tion factors should be considered as order of magnitude approx-

imations. The visual appearance of the solder layers might sug-

gest a more pronounced reduction of the thermal conductivity,

particularly with layer (b). However, the volume ratios in the ex-

amined regions are at most 3.2%, causing a change of only 5%

in the heat flow.

VI. CONCLUSION

Expressions for effective thermal conductivity of systems

with spherical and spheroidal inclusions were derived from

the general properties of Laplacian fields. These expressions

are in good agreement with simulations for the spherical and

spheroidal geometries considered, for small cavity dimensions

and volume fraction. In the case of spherical cavities, the accu-

racy is within 1% for volume fractions less than approximately

0.1. Systems with multiple voids are treated by summation

of the total cavity volume, with the inherent assumption that

they are sufficiently small and sparse that their individual field

disturbances do not significantly interact.

Based on estimates from the cross-sectional micrographs, the

reduction in conductivity for the solder layer is at worst approx-

imately 5% for the devices in this test group.

APPENDIX A

EFFECTIVE THERMAL CONDUCTIVITY FOR A VOLUME

CONTAINING A VOID

With reference to Fig. 2, case 1 (denoted by suffix 1) refers to

a uniform material of thermal conductivity and case 2 (suffix

2) to a material into which a void of volume and thermal con-

ductivity has been introduced. The temperature and heat flow

distributions change from and to and respectively

while the boundary conditions are such that on the sur-

face S surrounding the volume .

Consider the surface integral

(A1)

This must be zero by definition through the specification

on the surface S. (A1) may be expressed as a volume integral

(A2)

By expanding the divergence term, (A2) may be written as

(A3)

By noting that and , and that

the second term on the RHS of (A3) becomes

In a similar fashion the first term on the RHS of (A3) may be

expressed as

This may be split into two separate volume integrals over and

(A4)

Then, by noting that and in , the first

term on the RHS of (A4) is zero, leaving

Thus

(A5)

For case 1 over , whilst for case 2

over . (A5) may thus be written

(A6)

Consider the case of a thin, uniform layer of semi-infinite extent

and thickness d with its upper and lower surfaces held at tem-
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peratures and , respectively. is then a uniform field of

strength

Following the introduction of a void the thermal field be-

comes altered locally to yield a nonuniform field distribution

. The effective thermal conductivity of the region including

the void may be defined through the original field distribution

and modified distribution as

(A7)

Then, using (A6), the effective thermal conductivity may be

written

(A8)

APPENDIX B

THERMAL FIELD RESULTING FROM THE INTRODUCTION OF AN

ELLIPSOIDAL CAVITY IN A UNIFORM FIELD DISTRIBUTION

The derivation is analogous to the solution for a dielectric el-

lipsoid placed in a parallel electric field, as described by Stratton

[7].

The temperature distribution, T, arising from an ellipsoidal

cavity is obtained from the superposition of the original undis-

turbed distribution, , and the distribution arising from the

presence of the cavity,

(B1)

and for an initial uniform field

(B2)

A general ellipsoid, centred at the origin and with semi-principal

axes of length a, b, c, can be written in terms of rectangular

coordinates

(B3)

It is convenient to work in terms of the ellipsoidal coordinates:

u, v, w, which are related to the rectangular coordinates by

(B4)

and ; ; .

The surface of an ellipsoid is defined by u = constant

It is helpful to define

(B5)

The Laplacian of a scalar, T, in ellipsoidal coordinates is

(B6)

Considering first the undisturbed temperature distribution de-

fined by (B2). Substituting for x from (B4)

(B7)

which can be rewritten

(B8)

Now consider the effect of introducing the cavity.

If the boundary conditions are to be satisfied, the temperature

must vary over the surface of an ellipsoid (u = constant) in

the same manner as , so the form of is

(B9)

Now is a solution of Laplace’s Equation in ellipsoidal coor-

dinates, so substituting from (B6)

(B10)

Substituting into (B10) from (B5), (B8), (B9), it can be shown

that

(B11)

which can be expanded

(B12)

(B12) is a second-order differential equation relating to the

ellipsoidal variable, u. One solution is: .

If a general second-order differential equation

has a solution then a second independent solution is given

by

(B13)

Applying the result in (B13) to (B12) with

and gives

(B14)
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From (B8) and (B9)

(B15)

so, the temperature distribution, , outside the ellipsoid can

be written

(B16)

where, for the ellipsoid with surface defined by

(B17)

For the temperature distribution, , inside the ellipsoid, pos-

sible solutions are

but is infinite at , whereas is finite at all points

within , so

(B18)

The constants and must satisfy the boundary conditions

on the ellipsoid surface at . First, the two temperature

distributions must be equal at the surface

(B19)

and substituting from (B16) and (B18)

(B20)

The second boundary condition arises from the continuity of

heat flow across the surface

(B21)

which leads to

(B22)

From (B20) and (B22)

(B23)

and combining (B7), (B8), (B18), (B23), the temperature inside

the ellipsoidal cavity is

(B24)

and the field distribution is

(B25)
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