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Online Optimal Flux-Weakening Control of
Permanent-Magnet Brushless AC Drives

Z. Q. Zhu, Member, IEEE, Y. S. Chen, and David Howe

Abstract—An enhanced online optimal control strategy, which
maximizes the flux-weakening performance of a brushless ac
motor, is described, and applied to motors having different
rotor topologies: interior (radial or circumferential), inset, and
surface-mounted magnet. It enables the maximum inherent power
capability of a brushless ac motor to be achieved independent
of any variation in its parameters, and facilitates maximum effi-
ciency over the entire speed range. It also results in good transient
dynamic performance, since it is coupled with feedforward vector
control based on optimal current profiles.

Index Terms—Brushless ac drive, flux weakening, optimal con-
trol, permanent-magnet machine.

I. INTRODUCTION

VECTOR-CONTROLLED permanent-magnet brushless ac
motors are used extensively for variable-speed applica-

tions, such as traction drives and machine tool spindle drives,
for which both constant torque and constant power (flux weak-
ening) modes of operation are required. In the constant torque
mode, the phase currents can be controlled to optimize alter-
native performance criteria, such as the torque per ampere or
the power factor [1]. In the flux-weakening mode, when the in-
verter voltage is limited, various control algorithms have been
proposed to achieve the desired torque–speed performance [2].
The most common control schemes are feedforward, in which
optimal profiles for the - and -axes currents, and , (as-
terisks designating demanded values) over the constant torque
and flux-weakening operating ranges are derived from mathe-
matical models, for which an accurate knowledge of the motor
parameters is required [2]–[6].

The influence of the machine parameters on the performance
of brushless ac motors has been investigated extensively [7],
[8]. By way of example, however, Fig. 1(a) shows how the
torque–speed characteristic of a brushless ac motor, having an
interior radial magnet rotor (see the Appendix), varies with
its back EMF, in each case the optimal and profiles for
maximum torque capability being derived from a model of
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Fig. 1. Dependence of performance, achieved with feedforward control, on
back-EMF constantE. (a) Effect of actual motor EMF. (b) Effect of EMF
assumed in controller.

the motor which assumes the correct parameters. As expected,
when the EMF constant is increased, the torque capability
increases in the constant torque operating range, the base speed
reduces, and the flux-weakening performance deteriorates.
In general, however, the motor parameters which are used
in feedforward control algorithms will differ from the actual
motor parameters, due to temperature and saturation variations,
for example, which affect the stator winding resistance and
the flux linkage and, in turn, the- and -axes inductances.
Hence, the motor performance which is achieved with optimal

and current profiles derived from such a model will
be inferior, to a greater or lesser degree, to that which the
motor is inherently capable of producing. Again, by way of
example, Fig. 1(b) shows the sensitivity of the achievable
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Fig. 2. Online optimal vector control of brushless ac drive.

torque–speed characteristic of the same brushless ac motor
when the back-EMF constant which is assumed in the model
differs from the actual value [9]. As will be seen, only the
flux-weakening performance is compromised.

Since the predetermined optimal and current profiles
are relatively sensitive to variations in the motor parameters,
the use of an online optimal control strategy, which is inde-
pendent of the parameters and always ensures that optimum
performance is achieved over the entire speed range, may
be desirable. This paper describes a comprehensive online
optimal control strategy, which incorporates enhancements to
previously published strategies [1]–[5], [11], and reports on the
resulting steady-state and transient dynamic performance of
typical brushless ac motors.

II. ONLINE OPTIMAL FLUX-WEAKENING CONTROL

Online optimal control was first applied to induction motors
[10], in order to optimize the system efficiency. Subsequently,
it was applied to open-loop-controlled permanent-magnet syn-
chronous motors [11] and, more recently, to permanent-magnet
brushless dc motors [12], the supply voltage/frequency ratio
[11] or the commutation angle [12] being adjusted to minimize
the dc-link current and, again, maximize efficiency. In this
paper, online optimization is applied to vector-controlled per-
manent-magnet brushless ac drives, with particular reference to
enhancing their flux-weakening performance.

The proposed control strategy is an extension to the strate-
gies reported in [3] and [4], which are also independent of the
motor parameters, and used either the error in the-axis cur-
rent [3] or the -axis current
[4] to modify and , for maximum torque per ampere [3],
[5]. In the proposed strategy, the optimal values ofand are
searched online. However, when a significant change in either
the demanded or the actual speed occurs, in order to improve the
dynamic response, and are determined from optimal cur-
rent profiles for maximum power operation, which are deduced
as for the feedforward flux-weakening control described in [2].
When the motor reverts to steady-state operation, the values of

and as determined from the optimal current profiles are
used as initial values to accelerate the online search process. The
dc-link current, the -axis current error, and the speed are then
used as optimization objectives during the online optimization,
which ensures that the power capability is maximized over the
complete operating range.

The online optimal flux-weakening control system is shown
in Fig. 2, and is essentially the same as that given in [9], except
that the optimal and currents are determined online, rather
than being predetermined, by varying the demagnetizing current
component within the range , where is the
rated phase current of the motor. The torque-producing current
component is determined by the demanded torque, but its
maximum value is limited to .

The flow chart of Fig. 3 illustrates the principle of the on-
line optimization algorithm, as implemented on a fixed-point
digital signal processor (DSP) (TMS320C50) which controls
a hysteresis current-controlled insulated gate bipolar transistor
(IGBT) inverter. It is relatively simple, in that the value of is
changed periodically by a variable increment , which is de-
termined according to its effect on the performance of the drive.
Essentially, if the motor performance improves after successive
incremental changes in of a given magnitude and polarity, the
increment is automatically increased in magnitude, other-
wise its polarity is changed and its magnitude reduced.

Since the changes which need to be made toand are
dependent on the variation in the performance of the motor, a
key issue is the assessment of this variation. The controller con-
siders three operating scenarios, signified by(1)–(3) in Fig. 3.

Scenario (1):

This is unlikely to occur in the constant torque operating
range for a well-designed and tuned control system. However, in
the flux- weakening mode, if is less than the optimal value,

will be unable to attain the commanded value, since it
will be limited by the maximum inverter voltage. Therefore, if

, where is set to an appropriate value,
is optimized so as to maximize the output power and reduce

the error . Hence, the motor speed and are used
as search criteria, by which to assess changes in the motor per-
formance, either an increase of speed or a decrease of
indicating an improvement.

Scenario (2):

and

In this case, the motor operating point is within the maximum
achievable torque/power-speed envelope.is now determined
by the demanded torque, while is minimized online so as to
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Fig. 3. Flow chart of online optimal control strategy.

reduce the motor phase current or the dc-link
current . Minimum phase current results in minimum motor
copper loss, while minimum dc-link current results in minimum
input power, the output power being maintained by. In Fig. 3,

either the phase current or the dc-link cur-
rent is used as the search criteria. Below base speed, there-
fore, the control algorithm optimizes the motor performance for
maximum torque-per-ampere phase current or maximum drive
system efficiency. Above base speed, if the demagnetizing cur-
rent was smaller than the optimal value,
would not be possible. Hence, would be increased until it
is equal to or larger than the optimal value. In other words, in
the flux-weakening range, when the demag-
netizing current is usually greater than the optimal value.
Thus, the copper loss is increased, while the terminal voltage

is not fully utilized, i.e., , where

is the phase voltage and is the maximum inverter
voltage. Therefore, the motor performance will be automati-
cally driven toward the optimal operating point, at which

and is a minimum.
Scenario (3):

In this case, the demanded motor operating point is along
the maximum torque/power-speed characteristic. Due to the in-
verter voltage limit, however, an incorrect ratio of will
cause the actual values of and/or to be lower than the de-

manded values. Therefore, . The op-

timal ratio of is that which maximizes the motor output
power, for the maximum rated phase current . Hence, the
dc-link current may again be used as the optimization criteria,
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(a) (b)

(c) (d)

Fig. 4. Measured maximum torque–speed curve of brushless ac motors with alternative rotor topologies. (a) Surface-mounted magnet. (b) Inset magnet. (c)
Interior radial magnet. (d) Interior circumferential magnet.

but with now being varied to maximize the -link current
and, therefore, the motor input power. However, sinceis de-
termined by , and may be less than the value which
is required by the demanded torque, the speed error may
increase. Hence, as shown in Fig. 3, the optimalis online
searched and the speedis used as the optimization criteria,
since an increase in signifies an increase of output power.

Existing control strategies essentially correspond to the
various operating regimes which are signified as(1)–(6)
in Fig. 3. For example, the maximum efficiency control
strategies, which are described in [2], [11], and [12], cor-
respond to operating regime(2) in Fig. 3, in which the
dc-link current is minimized; the flux-weakening control
strategies, which are based on current feedback, as described
in [3] and [4], correspond to operating regime(5) in Fig. 3,
while the flux-weakening control strategies, which are based
on feed-forward control of the optimal current profiles as
described in [1], [2], and [9], correspond to operating regime
(6) in Fig. 3. However, none of the existing control strategies
use the motor speed as one of the optimization objectives,
as in operating regime(4) in Fig. 3. As mentioned earlier, in
order to fully utilize the voltampere rating of the inverter, as
in scenario(3) in Fig. 3, the dc-link current is maximized,
which is the opposite of scenario(2). In addition, the max-
imum power capability, which is achieved with a maximum
efficiency control strategy, is always somewhat inferior to

that of which the motor is inherently capable. The proposed
online optimal control always ensures that the maximum
inherent power capability of the motor is achieved, and then
seeks to maximize the efficiency.

III. EXPERIMENTAL RESULTS OFSTEADY-STATE AND

TRANSIENT DYNAMIC PERFORMANCE

The online optimal control algorithm has been applied to four
brushless ac motors, having interior (radial or circumferential),
inset, and surface-mounted magnet rotors, for which design de-
tails are given in the Appendix. Fig. 4 compares the measured
maximum torque–speed curve which is achieved with the online
optimal control strategy with that which is obtained with con-
ventional feedforward control, based on measured motor param-
eters [9]. As will be seen, the online control strategy results in
slightly better performance over the high-speed operating range.
However, in order to highlight that the performance of feedfor-
ward control is sensitive to the assumed motor parameters, Fig. 4
also includes measured maximum torque–speed curves which
result when the assumed back-EMF constant differs from the
measured value. As can be seen, with online optimal control all
the motors achieve their maximum inherent performance capa-
bility, and eliminate the influence of errors in the motor parame-
ters, i.e., the steady-state performance is always better than that
which is obtained with feedforward control.
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(a) (b)

Fig. 5. Variation of demanded and actuald–q-axis phase currents during commanded speed change. (a) Online optimal control (time step= 200ms) with optimal
current profile control regime (time step= 50 ms). (b) Feedforward control.

In order to illustrate the transient dynamic performance of the
online optimal algorithm, Fig. 5(a) compares the variation of the
demanded - and -axes currents and with the actual cur-
rents and of the brushless ac motor having an interior radial
magnet rotor, following a step change in the commanded speed,
from 500 r/min in the constant torque range to 3500 r/min in the
flux-weakening range, i.e., about two times base speed. By way
of comparison, Fig. 5(b) shows the response with feedforward
control, in which is initially maintained constant for max-
imum torque per ampere up to base speed, after whichand

follow predetermined optimal current profiles for flux-weak-
ening operation. As long as the demanded operating working
point is within the maximum power capability which is achiev-
able with this control strategy, and follow the demanded
profiles quite well. Hence, the response is good, and the motor
quickly attains steady state. Clearly, if the demanded operating
working point is beyond the maximum achievable power capa-
bility, but within the inherent power capability, the dynamic per-
formance will deteriorate and the demanded working point will
not be attained.

With the proposed online optimal control, the algorithm re-
verts to feedforward control whenever the rate of speed change
exceeds a prescribed value. Thus, since there are significant
variations in the commanded and actual speeds, the initial con-

trol strategy is also feedforward, being maintained constant
initially in the constant torque range before following the op-
timal current profiles in the constant power range, both cor-
responding to maximum torque per ampere. However, the av-
erage performance, i.e., the average speed in this case, is mon-
itored continuously over fixed time steps (50 ms,200 sam-
pling points), and once the steady state has been attained, online
optimal control is implemented, and the average performance
is monitored over longer time steps (200 ms,1000 sampling
points). Thus, and change automatically in magnitude, and
in variable increments, as the commanded speed is approached,
at which time and have attained optimal values. Com-
paring Fig. 5(a) and (b), it can be seen that online optimal control
has retained the good transient dynamic performance of feed-
forward control, but has the advantages of enhanced maximum
torque/power capability and improved efficiency (lower phase
current), particularly in the flux-weakening operating range.

In order to further highlight the performance improvement
which is achieved with the online optimal control algorithm, the
step response which results from an online search alone, i.e.,
without the feedforward control regime, and which results from
the online optimal control strategy using a constant time step are
shown in Fig. 5(c) and (d), respectively. It will be observed that
the demanded-axis current in Fig. 5(c) is initially set to zero
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(c) (d)

Fig. 5. (Continued.)Variation of demanded and actuald–q-axis, phase currents during commanded speed change. (c) Online optimal control without optimal
current profile control regime (time step= 200 ms). (d) Online optimal control (time step= 200 ms) with optimal current profile control regime (time step=
200 ms).

until the speed variation is within the specified band, which
has deliberately been set large so that the optimal search starts
when the actual speed reaches about 2/3 of the commanded
speed. However, the online search for the optimalis not suf-
ficiently fast to follow the commanded change in speed. Con-
sequently, when the motor enters the flux-weakening range the
actual -axis current cannot follow the demanded current due
to the converter voltage limit. As a result, the step response is
very slow and much inferior to that which is obtained with feed-
forward control. One possible way of improving the dynamic
performance is to reduce the time step when searching for the
optimal . However, the resulting improvement has been found
to be rather limited, while undesirable oscillations may occur if
the time-step length is too small. Fig. 5(d) again shows the im-
proved step response which results when feedforward control is
integrated into the online optimal control algorithm,and
being set to values deduced from optimal current profiles when
there is a significant change in either the commanded or actual
speed. However, due to the use of identical time steps during
both transient and steady-state operation, the-axis current ex-
hibits an error during the transient period when the feedforward
optimal current profile control is employed. To reduce this cur-

rent error, the time step during the transient may be reduced, as
was the case in Fig. 5(a).

IV. CONCLUSIONS

An improved online optimal control strategy has been devel-
oped, and applied to alternative permanent-magnet brushless ac
motor topologies. The dc-link current, the-axis current error,
and the speed are used as optimization objectives, according
to different operating scenarios. In addition, since it is coupled
with feedforward vector control, based on optimal current pro-
files, it retains excellent transient dynamic performance, while
achieving the maximum inherent power capability of the motor
in the flux-weakening range and guaranteeing maximum effi-
ciency over the entire operating range.

APPENDIX

Four prototype three-phase six-pole brushless perma-
nent-magnet ac motors were used during the investigation. As
shown in Fig. 6, they have the same stator design but different
rotors: surface-mounted magnet, inset magnet, and interior
(radial or circumferential) magnet, the ratio of
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(a) (b)

(c) (d)

Fig. 6. Brushless ac motors with different rotor topologies. (a) Surface-mounted magnet. (b) Inset magnet. (c) Interior radial magnet. (d) Interior circumferential
magnet

being 0.45, 0.57, 0.61, and 0.69, respectively. The dc-link
voltage V, the rated phase current A
(peak), and the base speed1700 r/min.
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