
This is a repository copy of Avalanche noise characteristics of single AlxGa1-xAs(0.3 < x <
0.6)-GaAs heterojunction APDs .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/895/

Article:

Groves, C., Chia, C.K., Tozer, R.C. et al. (2 more authors) (2005) Avalanche noise 
characteristics of single AlxGa1-xAs(0.3 < x < 0.6)-GaAs heterojunction APDs. IEEE 
Journal of Quantum Electronics, 41 (1). pp. 70-75. ISSN 0018-9197 

https://doi.org/10.1109/JQE.2004.838530

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


70 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 1, JANUARY 2005

Avalanche Noise Characteristics of Single
AlxGa1 xAs(0:3 < x < 0:6)–GaAs

Heterojunction APDs
C. Groves, C. K. Chia, Member, IEEE, R. C. Tozer, Senior Member, IEEE, J. P. R. David, Senior Member, IEEE,

and G. J. Rees

Abstract—Avalanche multiplication and excess noise
have been measured on a series of Al Ga1 As–GaAs and
GaAs–Al Ga1 As ( = 0 3 0 45, and 0 6) single hetero-
junction p+-i-n+ diodes. In some devices excess noise is lower
than in equivalent homojunction devices with avalanche regions
composed of either of the constituent materials, the heterojunction
with = 0 3 showing the greatest improvement. Excess noise
deteriorates with higher values of because of the associated
increase in hole ionization in the Al Ga1 As layer. It also
depends critically upon the carrier injection conditions and Monte
Carlo simulations show that this dependence results from the
variation in the degree of noisy feedback processes on the position
of the injected carriers.

Index Terms—Avalanche photodiodes (APDs), heterojunctions,
impact ionization, noise.

I. INTRODUCTION

A
VALANCHE photodiodes (APDs) are key components

of optical datacommunications systems because of their

high sensitivity which results from their internal avalanche gain.

However, this internal gain is provided via the stochastic process

of impact ionization and therefore contributes its own excess

noise.

It is well known that excess avalanche noise can be reduced

below the level predicted by the local model of McIntyre [1] by

reducing the avalanche region width . This is because the dead

space, the distance travelled by carriers before their ionization

coefficient reaches equilibrium with the electric field, becomes

a larger fraction of their mean ionization path lengths. The as-

sociated reduced uncertainty in ionization position reduces the

fluctuations in multiplication and hence in excess noise.

The use of heterojunctions in avalanche regions as a means

of reducing excess noise was first proposed by Chin et al. [2],

who argued that that an electron (hole) which gains energy

from a band-edge discontinuity would ionise with an enhanced

ionization coefficient . Choice of the layer heterostructure

could therefore influence the value of which con-

trols the degree of noisy feedback processes [1]. Subsequent

experiments by numerous authors variously supported [3]–[7]
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or disagreed [8]–[15] with these predictions. However, the

most compelling evidence comes from Chia et al. [16], [17],

who compared multiplication in both homojunction and single

heterojunction Al Ga As–GaAs p -i-n diodes and found

that the multiplication in heterojunction diodes, and hence

the ionization coefficients, were not enhanced over those of

corresponding homojunction diodes.

Herbert et al. [18] suggested that low avalanche noise might

be achieved in a Si–SiGe MQW APD because of the localization

of the ionization process by the heterostructure interfaces and

the associated reduction in multiplication fluctuations. Camp-

bell et al. [19]–[23] measured avalanche noise in submicron

III-V heterojunctions and demonstrated impressive reductions

in excess noise, in one case achieving an excess noise factor

as low as at a multiplication, [19]. Mod-

eling by Hayat et al. [24] later suggested that low noise could

be achieved in heterojunction APDs without invoking the het-

erojunction-enhanced ionization coefficients proposed by Chin

et al. [2], in agreement with Herbert et al. [18] and Campbell et

al. [19]–[23].

However, the excess noise characteristics of heterojunction

APDs have not shown sustained improvement after successive

iterations of device design [19]–[23], despite the improved un-

derstanding of their behavior [24], [25]. This is partly because

few experimental data exist to support design optimization. The

purpose of the present work is to improve understanding of the

excess noise behavior of heterojunction APDs by measuring

excess noise in a systematic series of single heterojunction

Al Ga As–GaAs p -i-n diodes with , and

. Both type A heterojunctions, where the electrons are

injected from the wider bandgap material, and type B het-

erojunctions, where electrons are injected the other way, are

studied.

We also discuss why the simple Monte Carlo (SMC) model

[25], and also the even simpler modified hard dead space model

(MHDSM) of Hayat et al. [24] perform so well in predicting

ionization behavior of heterojunction devices.

II. EXPERIMENTAL DETAILS

The devices used in this investigation were grown on GaAs

substrates using MBE. Figs. 1 and 2 show the layer structure

for type A and B devices, which were grown with m

in all cases. Both the Al Ga As and GaAs layers were

grown as 0.05 m thick in all cases so as to examine the effects

0018-9197/$20.00 © 2005 IEEE



GROVES et al.: AVALANCHE NOISE CHARACTERISTICS OF SINGLE Al Ga As –GaAs HETEROJUNCTION APDs 71

Fig. 1. Device structure for a type A, Al Ga As–GaAs single
heterojunction p -i-n diode.

Fig. 2. Device structure for a type B, GaAs–Al Ga As single
heterojunction p -i-n diode.

of changing materials and injection conditions on roughly

similar device designs. As the devices used in this work were

designed for a systematic investigation, they are not expected

to show optimal excess noise characteristics, which have been

shown to be very sensitive to the layer structure [24], [25]. The

layers were subsequently etched into mesa diodes of radius

50–400 m using standard wet chemical etching. Annular top

contacts were deposited to allow optical access.

The avalanche region thickness was estimated from capaci-

tance–voltage (CV) measurements, and in some cases by SIMS

measurements. The thickness of the undoped Al Ga As and

GaAs layers in the avalanche region and also the aluminum

mole fraction, were also estimated by X-ray diffraction

spectroscopy. The results of these analyzes are summarized in

Table I. Good agreement between CV and X-ray measurements

was achieved in all cases. Device dimensions determined by

X-ray diffraction spectrometry are used in preference here since

CV analysis is rather insensitive to small changes in device

structure. All devices showed sharp breakdown, indicating low

defect density in the avalanche region. Breakdown voltage was

measured on several devices from the same layer and was found

to vary by less than 0.1 V, indicating good avalanche region

uniformity.

Laser light of various wavelengths incident on the p surface

of the mesa generated photomultiplication characteristics corre-

sponding to pure electron, mixed carrier, and, in some cases, pure

hole injection, designated , and , respectively. The

degree of optical absorption in the 1- m p - cladding layer was

estimated using the optical absorption coefficients of Monemar

et al. [26]. The laser light was chopped mechanically and the re-

sulting ac photocurrent was detected using a lock in amplifier

in order to reject dc leakage currents. The increase in photocur-

rent with bias due to the increasing collection efficiency of the

widening depletion region was corrected for by using a linear ex-

pression, after Woods et al. [27]

Table I
AVALANCHE REGION PARAMETERS DETERMINED BY X-RAY ROCKING

DIFFRACTION SPECTROSCOPY AND CV MEASUREMENTS

Multiplication and noise measurements were performed si-

multaneously using a lock-in noise measurement system, oper-

ating at a center frequency of 10 MHz and with a bandwidth of

4.2 MHz, as used by Li et al. [28]. The excess noise factor

was calculated from

(1)

after Bulman et al. [29], where is the unmultiplied primary

photocurrent and is the photocurrent which flows in a Si

p -i-n diode operating below avalanche which produces the

same noise power as the device under test. Measurements of

both multiplication and noise were made on at least three de-

vices for each structure to ensure reproducibility. Optical inten-

sity was varied in some cases to check that device heating was

not affecting the results.

III. RESULTS

Measurements of on our diodes have been reported previ-

ously by Chia et al. [16], [17], and so only the results are summa-

rized here; good agreement between the present measurements

and those of Chia et al. [16], [17] are obtained in all cases.

Fig. 3 shows , and for the type A,

diode resulting from excitation by laser light at wavelengths

, and nm, of which 98%, 83%, and 0% (i.e.,

absorbed in the GaAs layers), respectively, was estimated to be

absorbed in the 1- m p Al Ga As top cladding layer.

Also shown is for the type B, device resulting

from laser light excitation at nm which was estimated

to be % absorbed in the 1- m p GaAs cladding layer. Mul-

tiplication is plotted as on a log scale to emphasise small

values of multiplication.

At values of the multiplication characteristic of the

heterojunction device resembles that of a homojunction device

composed of the material in the latter half of the avalanche re-

gion, in agreement with Chia et al. [16], [17]. These authors

argued that this was because primary carrier ionization is post-

poned until the latter half of the avalanche region by the dead

space, and that these carriers thereafter ionise at a rate corre-

sponding to the local material. Later, detailed Monte Carlo sim-

ulations by Groves et al. [25] qualitatively supported these ar-
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Fig. 3. M (circles) and M corresponding to 83% (squares) and 0%
(triangles) optical absorption in the p cap layer for the x = 0:45 type A
device (solid) and also M for the x = 0:45 type B (open circles) device. Also
shown is M for a w = 0:1 �m GaAs homojunction (dashed line).

guments. As the field is increased, secondary carrier ionization

sets in across the whole of the avalanche region at a rate corre-

sponding approximately to that of the local material, so that the

multiplication characteristic converges to an average of those

for the corresponding devices formed from its constituent ma-

terials.

Multiplication in the type A device is seen to fall with de-

creasing purity of electron injection. This is because under con-

ditions of pure electron (hole) injection, a portion of the large

(small) bandgap Al Ga As (GaAs) layer is unavailable for

primary ionization, because of the effects of dead space. Con-

sequently, with pure electron injection, injected electrons in-

jected only miss out on the low ionization coefficient in the

Al Ga As layer, whereas under pure hole injection, holes

injected from the bottom miss out on the higher ionization coef-

ficient in the GaAs, yielding lower multiplication. This behavior

of and seen in a type A devices and of in type B

devices, shown in Fig. 3 for , was observed for all .

Excess noise characteristics for single heterojunction

Al Ga As GaAs, , and devices are shown

in Figs. 4–6. The claims by Chin et al. [2], and by others

[3]–[7] that heterojunctions could be used in avalanche re-

gions to reduce excess noise by tailoring the ratio via the

band-edge discontinuity, have not been borne out [8]–[17].

Indeed, increasing the aluminum fraction above and

hence band-edge discontinuity actually increases excess noise,

as shown in Figs. 4–6.

Figs. 4–6 also show that pure electron injection yields lower

excess noise for a type A structure than for a type B device. The

reason for this is examined with the help of the Monte Carlo

model used previously by Groves et al. [25]. The multiplication

and noise characteristics for Al Ga As GaAs type A and B

diodes corresponding to the measured devices are simulated and

the resulting noise characteristics are shown in Fig. 6. The sim-

ulations correctly predict higher noise for pure electron injec-

tion in the type B than in the type A structure. Qualitative fits to

measured multiplication characteristics (not shown) were also

achieved. It should be noted that the fits to excess noise would

have been better had an ideal p -i-n profile not been assumed.

Fig. 4. F (circles) and F (squares), corresponding to 83% optical
absorption of in the 1-�m cladding layer for type A (solid) and B (open)
x = 0:3 devices. Also shown is F when M = 9 and 9:5 for a w = 0:1 �m
GaAs (hexagon) and Al Ga As (diamond) homojunction p -i-n diodes
from Li et al. [28].

Fig. 5. F (circles) and F corresponding to 83% (squares) and 0%
(triangles) for type A (solid) x = 0:45 device and F corresponding to the
type B x = 0:45 device (open circles). Same symbols as in Fig. 3. Also shown
is F when M = 9 for a w = 0:1 �m GaAs homojunction p -i-n diode
(hexagon) from Li et al. [28].

In reality, the depletion region extends into the heavily doped

cladding layers [31], which effectively widens the depletion re-

gion and thus increases excess noise [32]. We make this simpli-

fying assumption, as our aim is only to show qualitatively why

the excess noise characteristics for these devices are different.

It is perhaps not surprising that the SMC model gives rea-

sonable agreement despite its simplicity and our additional sim-

plifying assumption. The model gives good agreement with the

ionization path length pdf calculated from a full band model [33]

and so can accurately reproduce multiplication and noise in ho-

mojunction structures [34]. Since this model gives quantitative

predictions of the ionization properties of homojunction devices

for each component material it can also be expected to work

in heterojunction structures, provided the physics of the hetero-

junction is treated suitably. Ma et al. [21] used a three-valley

Monte Carlo model to show that heterojunction APD perfor-

mance was relatively insensitive to effects quantum mechanical

tunnelling and the band line-up scheme at the heterojunction in-

terface.
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Fig. 6. Measured (symbols) F (circles) and F (squares), estimated to
correspond to 80% optical absorption in the 1-�m cladding layer, for type A
(solid) and B (open) x = 0:6 devices. Also shown are simulated (lines) F
for type A (solid) and B (dashed) devices, together with F when M = 9

for w = 0:1 �m GaAs (hexagon) from Li et al. [28] and M = 10 for
w = 0:09 �m Al Ga As (triangle) homojunction p -i-n diodes from
Tan et al. [30].

The MHDSM of Hayat et al. [24] was also used to predict

the multiplication and excess noise characteristics of the type

A and B Al Ga As–GaAs structures measured here using

modeling parameters deduced from Groves et al. [25]. The

MHDSM employs a displaced exponential model for ionization

path length pdf in a recurrence equation technique to calculate

multiplication and noise. The exponential decay in the pdf is

characterized by the enabled ionization coefficient in the local

material and is displaced from the origin by a dead space.

This is calculated as the distance required to reach the local

hard threshold by ballistic transport in the electric field and

band edge structure encountered on the way to ionization. The

excess noise characteristics (not shown here) show a similar

quality of fit to experiment as the SMC model, with slight

variations depending on how the model parameters for GaAs

or Al Ga As are calculated (the SL and LD parameters in

[25]). The quality of fit is surprisingly good, considering the

simplicity of the model, which ignores diffusion in both posi-

tion and energy and also energy losses due to phonon scattering.

This is because the pdf for ionization equilibrates to the local

material value quickly after crossing a heterojunction, as shown

in Figs. 4 and 5 in [25]. Hence, the assumption of Hayat et al.

[24] that the enabled ionization coefficient [35] depends only

upon the local material and electric field is substantially correct,

at least in the case of Al Ga As–GaAs heterojunctions.

The soft ionization path length pdf resultant from diffusion in

energy can be imitated within the MHDSM by softening the

ionization threshold energy, although this has been shown to

have little effect upon the model predictions [36], [37].

The distributions of electron initiated and hole initiated ion-

ization events in the type A and B Al Ga As–GaAs devices

simulated using SMC at are shown in Figs. 7 and 8,

respectively. It can be seen that there is more hole initiated ion-

ization in the type B device than in the type A device simply

because the accumulated holes drift toward the lower bandgap

GaAs layer, while corresponding converse arguments apply for

electrons. Consequently, there is more reliance on noisy feed-

Fig. 7. Ionization position distribution at M � 10 for electron (solid)
and hole (dotted) initiated ionization events after 20 000 trials in a type A
Al Ga As–GaAs diode simulated by SMC. Electrons are injected at z = 0,
the heterojunction is at z = 0:0548 �m and w = 0:1048 �m.

Fig. 8. Ionization position distribution at M � 10 for electron (solid) and
hole (dotted) initiated ionization events in a type B Al Ga As–GaAs diode
simulated by SMC. Electrons are injected at z = 0, the heterojunction is at
z = 0:0429 �m and w = 0:0953 �m.

Fig. 9. Multiplication distribution logged from 40 000 trials for a type A (solid)
and B (dotted) Al Ga As–GaAs devices at M � 10.

back ionization in the type B structure to provide multiplica-

tion. Fig. 9 shows the distribution of multiplication values for
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the type A and B Al Ga As–GaAs structures at a mean mul-

tiplication, for 40 000 trials. The increased reliance

on feedback events for the type B device clearly results in more

long multiplication chains than in the type A device. Further

simulations, not reported here, show that the multiplication dis-

tributions shown in Fig. 9 and corresponding noise figures are

not sensitive to variations in the thickness of the layers within

the avalanche region, such as are normally encountered in the

growth process.

Indeed, the type B structure operates in a manner converse

to that of the low noise, type A devices reported in the liter-

ature [24], [25]. In type A structures, the high bandgap layer

serves two purposes, to inject the electrons hot from the high

bandgap into the low bandgap layer and to suppress feedback

hole ionization, both of which reduce noise. In the type B device,

hole feedback ionization occurs freely in the small bandgap

GaAs injector layer and, furthermore, primary electron ioniza-

tion is suppressed when these carriers reach the large bandgap

Al Ga As layer.

Excess noise characteristics resulting from mixed injection in

the and type A devices are intermediate between

those of pure injection in the type A and type B devices. The

excess noise for the type B device, shown in Fig. 6, is

lower than that for mixed injection in the type A device. How-

ever, this may be because the type B device is thinner and so will

show more pronounced dead space effects. The progressive in-

crease in the excess noise with may also be due to the device

design becoming less optimal.

It is also useful to ask whether the excess noise in hetero-

junction APDs is lower than in a homojunction device of sim-

ilar width composed of either of the constituent materials. The

excess noise results for other m and

homojunction diodes taken from the literature are also shown

in Figs. 4–6. Evidently, in some cases heterojunction devices

do indeed give excess noise lower than for an equivalent homo-

junction. The improvement is greatest for the device

and deteriorates with increasing until , when the het-

erojunction and homojunction excess noise characteristics are

broadly similar (note that the Al Ga As homojunction has

a multiplication region width and so is slightly more

subject to dead space effects).

The increase in noise with aluminum mole fraction can be ex-

plained in terms of hole ionization in the Al Ga As, whose

ionization coefficient was calculated for the type A devices

using the results of Plimmer et al. [37] at the field required to

obtain , and is found to increase by 12% as increases

from 0.3 to 0.6. This increase in is counter-intuitive, since

ionization coefficients at a fixed field are known to decrease

with [37]. However, the electric field must be increased as

increases to maintain the same value of and moreover the

electric field difference between the Al Ga As and GaAs

layers also increases with , resulting in a net increase in .

Since the likelihood of noisy feedback processes increases

with it follows that the noise performance of the type A

Al Ga As–GaAs heterojunction devices deteriorates with

increasing for the device design considered here. It appears

that optimal low noise single heterojunction APDs contain

a smaller amount of Al Ga As as is increased, since

this reduces the operating field and consequently the degree

of hole ionization occurring in the Al Ga As layer [25].

Type A Al Ga As–GaAs heterojunction APDs with smaller

proportions of Al Ga As in their avalanche regions than the

present devices have been modeled and are predicted to give

even lower noise [24], [25].

IV. CONCLUSION

Excess noise and multiplication have been measured on a sys-

tematic series of m Al Ga As–GaAs type A and

B heterojunction p -i-n diodes with , and .

The noise characteristics of the heterojunction APDs were

found to depend critically upon the injection conditions, with

lowest noise corresponding to pure electron injection into a type

A device for all values of . Monte Carlo modeling showed that

the increased importance of feedback ionization in the type B

structures served to increase the noise.

In some cases the excess noise of the heterojunction devices

was lower than for homojunction devices composed of either

of the constituent materials. Noise was shown to increase with

increasing aluminum mole fraction, in disagreement with the

arguments of Chin et al. [2]. The increase in noise is explained

in terms of an increase in hole ionization in the Al Ga As,

which in turn leads to increased feedback and consequently to

higher noise.
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