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Temperature Dependence of Breakdown and
Avalanche Multiplication in In0:53Ga0:47As Diodes

and Heterojunction Bipolar Transistors
M. Yee, W. K. Ng, J. P. R. David, Senior Member, IEEE, P. A. Houston, C. H. Tan, and A. Krysa

Abstract—The avalanche multiplication and impact ionization
coefficients in In0 53Ga0 47As p-i-n and n-i-p diodes over a range
of temperature from 20–400 K were measured and shown to have
negative temperature dependence. This is contrary to the positive
temperature dependence of the breakdown voltage measured on
InP/In 0 53Ga0 47As heterojunction bipolar transistors (HBTs) in
this and previous works. It is shown that the collector–base dark
current and current gain can be the overriding influence on the
temperature dependence of breakdown in InP/In0 53Ga0 47As
HBTs and could explain previous anomalous interpretations from
the latter.

I. INTRODUCTION

A N In Ga As lattice matched to InP is used in het-
erojunction bipolar transistors (HBTs) and high electron

mobility transistors for high-speed electronics. The onset of
avalanche multiplication can lead to catastrophic breakdown,
which can limit the upper voltage or power of devices. In
most semiconductors, multiplication (and hence breakdown)
is controlled by negative temperature-dependent impact ion-
ization coefficients. However, recent measurements on n-p-n
In Ga As HBTs [1]–[3] appear to indicate anomalous
temperature breakdown behavior, leading Ritteret al. [1]
and Nevianiet al. [3] to suggest that In Ga As has a
positive temperature dependence of electron impact ionization
coefficient. On the other hand, Maliket al. [2] indicated that
this behavior in HBTs can be explained by the high collector
dark current. The term “dark current” is used here for ther-
mally generated and tunneling current in the reverse biased
base–collector junction in the HBT or the reverse biased p-i-n
or n-i-p diode. Shamiret al.[4] also observed no change with
temperature of the hole ionization rates in InGa As from
electrical characteristics of p-n-p HBTs. Our previous results
on breakdown of In Ga As p-i-n diodes [5] indicate a
more usual positive dependence of breakdown voltage with
temperature. Currently, no electron ionization coefficient
measurements as a function of temperature are available to
corroborate or otherwise these assertions. Impact ionization
can influence the maximum operating voltage of the device
due to the onset of multiplication-induced breakdown. The
temperature dependence of the breakdown voltage of
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In Ga As is therefore of great importance in the case of
an ionization coefficient which increases with temperature that
can result in an unstable positive power dissipation feedback.

In this paper, we investigate the temperature dependence
of the avalanche multiplication, and hence impact ionization
coefficients, of three In Ga As p-i-n diodes and one
In Ga As n-i-p diode using phase sensitive detection
(PSD) photomultiplication measurements over a range of
temperature from 20–400 K. This technique of modulating the
injected light signal allows the avalanche multiplication to be
determined unambiguously, even in the presence of high dark
currents. The temperature dependence of breakdown effects in
In Ga As HBTs was investigated and possible reasons for
the anomalous temperature behavior of ionization coefficients
inferred from previous HBT results are discussed.

II. EXPERIMENTAL DETAILS

Three In Ga As p-i-n structures and one n-i-p structure
were grown using metal organic vapor phase epitaxy on an InP
substrate p-i-n structure with-region thickness, obtained
from modeling capacitance–voltage (C–V) measurements,
of 1.3 m has 1.0 m p and n In Ga As cladding,
while that with of 1.9 and 4.8 m have 0.5 m p and n
InP cladding layers. The In Ga As n-i-p structure had
an -region thickness of 3.0 m sandwiched between nInP
and p In Ga As layers. Standard wet etches were used
to define the circular mesa diodes of diameter 100–400m
with annular top metal contacts to enable optical access.
InP/In Ga As n-p-n HBT structures were grown using
the same technique as the diodes on semi-insulating InP sub-
strates, with an n InP subcollector, a 3000- In Ga As
collector ( cm , n-type), an 800- In Ga As
base ( cm , p-type), a 50- In Ga As undoped
spacer layer, and an 800-InP emitter.

To measure the photomultiplication characteristics in the
p-i-n diodes, a 633-nm wavelength He–Ne laser was used to
illuminate the top of the device. This wavelength guaranteed
that nearly all the photons are absorbed in the pcladding
layer, providing pure electron injection. Due to the high dark
current inherent in In Ga As, particularly at high volt-
ages/temperatures, the PSD technique with a lock-in amplifier
was used. This ensures the elimination of dark current from
the measurement. The devices were bonded onto T05 headers,
and the low-temperature dark current and photomultiplication
measurements were carried out in a closed loop helium cryo-
genic system, while devices were placed on a heated stage for
high-temperature measurements.

0018-9383/03$17.00 © 2003 IEEE
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III. RESULTS

In this section, we discuss the temperature dependence of
avalanche multiplication, based on photomultiplication mea-
surements performed on various InGa As p-i-n and n-i-p
diodes and compare this with avalanche multiplication mea-
surements in InP/In Ga As n-p-n HBTs. The temperature
dependence of the electron and hole ionization coefficients is
then extracted from the photomultiplication measurements.

A. Dark Current Characteristics

It is well known that photodetectors made using the
In Ga As material system exhibit large undesirable dark
currents, which increase exponentially with applied voltage [6].
The typical dark-current characteristics for the diode structures
used in this work are shown in Fig. 1, which shows high dark
current as the temperature increases. The “soft” breakdown
in In Ga As at high reverse voltages suggests that the
current in this regime can be dominated by tunneling. This was
verified using the band-to-band tunneling equation of Forrest
et al. [6], which gave a good fit to the measured dark currents
at high reverse bias voltage for all temperatures down to 20 K
(dotted lines of Fig. 1). However, at very low temperatures, the
more rapid increase in the measured dark current compared to
the tunneling equation in the higher voltage region indicates
that avalanche multiplication becomes the dominant current
mechanism.

B. Temperature Dependence of Avalanche Multiplication

In most fabricated devices for multiplication measurements,
the measured photocurrent-voltage curves have to be corrected
for the slight nonzero gradient observed experimentally at low
voltages as a slop-i-ng baseline before the onset of avalanche
multiplication. This effect is attributed to the increase in col-
lection efficiency due to the depletion region extending into the
contacts with increasing bias [7]. Room temperature multipli-
cation characteristics in the p-i-n diodes in this work has been
reported by Nget al. [8] who have shown that the change in
the collection efficiency in these diodes is negligible. Hence,
the photomultiplication characteristics for the p-i-n diodes were
normalized to the single value of photocurrent at a bias of2 V
(chosen to ensure full depletion). For the n-i-p diodes (where
the hole ionization coefficient shows no low-field enhanced
values [8]), a linear correction was used to obtain the normalized
multiplication characteristics. To ensure that heating effects did
not influence the photomultiplication values and to ensure re-
producibility of the results, several devices were measured with
different laser excitation intensities at each temperature. No dis-
cernable differences were observed.

Fig. 2 shows the temperature dependence of electron multi-
plication characteristics of the 1.3 and 1.9m In Ga As
p-i-ns from 20–400 K and the temperature dependence of
the hole multiplication for the 3.0 m In Ga As n-i-p
from 20–300 K. The results from all the layers investigated
show a very limited increase in photocurrent initially and then
the sudden and clear onset of the avalanche multiplication
process. The avalanche multiplication of all the p-i-n and
n-i-p structures clearly decreases with increasing temperature,
indicating a negative temperature dependence of electron and

Fig. 1. Typical dark current characteristic (bold lines) of a 4.8-�m-thick
In Ga As p-i-n diode from 20–300 K. Dotted lines shows the calculated
tunneling current.

Fig. 2. Measured (symbols) and calculated (lines) multiplication
characteristics of 1.3 and 1.9-�m-thick In Ga As p-i-n diode (filled
symbols) from 20–400 K and 3.0�m thick In Ga As n-i-p diode (clear
symbols) from 20–300 K.

hole ionization rates respectively. As stated previously, the
modulation of the laser signal with lock-in detection rules out
the adverse effects of the high dark currents. The can
be obtained by extrapolating the multiplication curve using
Miller’s empirical expression [9] and was previously reported
[5]. The breakdown voltages of all of the In Ga As p-i-n
and n-i-p structures increase with increasing temperature.
These results are similar to most other semiconductors, but
contrary to the positive temperature behavior of the electron
ionization coefficients measured and inferred from the
data of n-p-n InP/In Ga As HBTs [1], [3].
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C. Temperature Dependence of Ionization Coefficients

In this section, we deduce the temperature dependence of
local ionization coefficients of In Ga As (i.e., ignoring
dead space effects, sinceis thick). The simplest configuration
for measurement and analysis of photomultiplication measure-
ments is having an intrinsic region between highly doped p
and n regions. For ideal p-i-n and n-i-p structures, whereby
the field can be considered constant, the multiplication equa-
tions for electron and holes, respectively, can be simplified to
give

(1a)

(1b)

where is the electron ionization coefficient and is the hole
ionization coefficient.

The electron and hole ionization coefficients can be extracted
from the measured multiplication results if both electron initi-
ated and hole initiated multiplication results are available for
the same structure. However, due to optical access difficulties
in measuring the temperature dependence offrom the p-i-n
structures by back injection, the measured is obtained from
the n-i-p structure. Hence, to determine the parameterized ex-
pression for and of In Ga As, empirical expressions
for the ionization coefficients are verified by obtaining the best
fit for both the measured of the p-i-n structures and of
the n-i-p structure from photomultiplication measurements and
using (1a) and (1b).

The parameterized ionization coefficients of InGa As
from 20–400 K were derived, assuming ideal p-i-n and n-i-p
structures with negligible dead space. Across the range of elec-
tric field from 180–310 kV/cm for the electron ionization coef-
ficient, , and hole ionization coefficient, , the parameters
can be described by

(2)

where
cm

V/cm

and

(3)

cm

V/cm

The equation parameters were derived as a function of tempera-
ture, where is a dimensionless quantity representing the tem-
perature in Kelvin.

The best fit parameterized ionization coefficients are verified
by calculating the multiplication factors for each layer using (2)

Fig. 3. Comparison of room temperature electron ionization coefficient of
this work with published results based on photomultiplication experiments
([8], [10]–[12]) and results based on electrical characterization of n-p-n HBTs
[1]. Theoretical predictions are also shown ([13]).

and (3) and comparing the results with the measured photomul-
tiplication characteristics. The temperature dependence of the
calculated (using (2) and (3)) (lines) and measured (symbols)
multiplication characteristics of the 1.3m and 1.9 m p-i-n
and 3.0 m n-i-p diodes are given in Fig. 2, showing excellent
agreement. The parameterized temperature dependence of

for In Ga As at room temperature were compared
with those obtained from electrical measurement of n-p-n
In Ga As HBTs [1], photomultiplication measurement of
In Ga As diodes [8], [10]–[12] and theoretical prediction
of Bude and Hess [13] are shown in Fig. 3. The results are
in good agreement with all the previously published data
other than those of Pearsall [10]. The best fit at room
temperature is shown in Fig. 4. Room temperaturefrom
electrical measurement of p-n-p In Ga As HBTs [4],
[14] and photomultiplication measurement of InGa As
diodes [8], [10]–[12] are shown in Fig. 4 for comparison. The
parameterized room temperature results of the hole ionization
coefficients in Fig. 4 appear to be in less agreement with
other results compared to those for the electrons. However,
there is an uncertainty in the-region thickness peculiar to
the n-i-p structure due to the smearing of the p-dop-i-ng in
the lower layer during growth, causing an uncertainty in the
electric field profile. This uncertainty is adequate to explain the
differences between our current results and previous data from
our laboratory [8]. The parameterized temperature dependence
of electron and hole ionization coefficients for In Ga As
at 20, 140, and 400 K are shown in Fig. 5.

D. Multiplication Measurements in HBTs

In order to try and reconcile the differences in the measure-
ments made on our p-i-ns, n-i-ps and HBTs, the temperature
dependence of the breakdown voltage was also measured
from our n-p-n In Ga As HBTs, at temperatures of
150, 250, and 400 K as shown in Fig. 6. These results,
and other recent breakdown voltage measurements in n-p-n
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Fig. 4. Comparison of room temperature hole ionization coefficient of this
work with published results based on photomultiplication experiments ([8],
[10]–[12]). Results based on electrical characterization of p-n-p HBTs are also
shown ([4], [14]).

Fig. 5. “Best fit” electron and hole ionization coefficients as a function of
inverse electron field for In Ga As at 400, 140, and 20 K.

In Ga As HBTs [1]–[3], appear to indicate anomalous
temperature behavior (i.e., reducing breakdown voltage with
increasing temperature). To demonstrate that the anomalous
temperature-dependent voltage breakdown behavior seen in
the InP/In Ga As HBTs is not due to a positive temper-
ature dependence of electron impact ionization coefficients
in In Ga As, the emitter of our InP/In Ga As
HBTs was etched away to form a thin p-i-n structure from the
remaining base collector junction. Fig. 7 shows the avalanche
multiplication characteristics based on PSD photomultipli-
cation measurements, which greatly reduces the detrimental
effects of the dark current. The thin collector structures are not
ideal for photomultiplication measurements because of the high
tunneling leakage currents, which raises the noise floor, even

Fig. 6. Measured common-emitter current–voltage (I–V) characteristics
at 150, 250, and 400 K for the n-p-n InP/In Ga As HBT (lines).
Dotted lines show calculated common-emitterI–V characteristic at 250 K
using temperature-dependent� , M and I and dash-dotted lines show
calculated common-emitterI–V characteristics at 250 K but using dark current
at 400 K.

Fig. 7. Multiplication characteristics of the thin p-i-n structure(w = 0:3�m)
from 20–250 K. This structure was taken from a n-p-n InP/InGa As HBT
with the emitter removed.

with the use of modulated light. Despite this, a clear reduction
in multiplication with increasing temperature is observed,
contrary to the negative temperature dependence of breakdown
with temperature in the HBTs evident in Fig. 6.

IV. D ISCUSSION

The variations of In Ga As ionization coefficients as a
function of temperature shown in Fig. 5 suggest that the tem-
perature sensitivity of ionization coefficients of In Ga As
is small, as seen in the breakdown voltage ([5], Fig. 2). This
modest change of and with temperature may explain why
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Shamiret al.[4] observed no change in over the range of
290–390 K from the electrical characterization of p-n-p HBTs.
Our results suggest that, over a temperature variation of 100 K,
we would expect only a 2.5% change in breakdown voltage.

One of the main considerations for obtaining accurate ioniza-
tion coefficients from HBTs is that the open-emitter saturation
current (i.e., collector dark current) must be negligible.
This is because the dark current contributes to the negative base
current (flowing from the collector to the base) in the same way
as impact ionization induced base current, with the possibility
of the former dominating the base current. The common-emitter
collector current is given by [2]

(4)

where is the common-base current gain, is the base
current before the onset of multiplication and is the
collector multiplication. Both the dark currents and the dc
current gain, , of our InP/In Ga As HBTs increase
rapidly with temperature. Using the measured temperature
dependence of , (from Fig. 7) and measured from
our InP/In Ga As HBTs, we were able to reproduce
the common emitter characteristics (shown as the dotted line
in Fig. 6), using (4) for temperatures at 250 K as well as
150 K. This shows that a negative temperature dependence
of multiplication is not incompatible with a negative temper-
ature dependence of breakdown voltage in our HBTs. Good
agreement was also obtained when using the independently
measured (from custom p-i-n and n-i-p diodes) ionization
coefficients from Fig. 5 to generate for use in (4). These
observations clearly show that the temperature dependence
of and in (4) can dominate over the opposite
temperature dependence of ( and ).

Malik et al.[2] observed that the of In Ga As is
times that of GaAs for low collector–base voltages. Clearly,

from the dark current characteristics and at higher temperature
or/and higher voltage, [from (4)] plays an increasingly im-
portant role in determining . The positive temperature depen-
dence of comes about due to the bandgap variation and its
effect on the tunneling current. However, in the electrical char-
acterization of In Ga As HBTs used to obtain the ioniza-
tion coefficients, dark currents were assumed to be insignificant
in the past [1], [3], [15]. Based on (4) and our results, HBTs with
a positive temperature dependence of and , together
with a negative multiplication dependence, can exhibit reduced
breakdown voltage as the temperature increases. [2] To show the
effects of alone, the parameters of (4) were kept at 250 K
values except for , where the measured 400 K value was
used. The calculated common emitter characteristic showed a
reduced breakdown voltage when a higher dark current was used
(dash-dotted lines in Fig. 6). This indicates that the temperature
dependence of alone (i.e., in the case where is constant
with temperature) is enough to dominate the temperature depen-
dence of the breakdown voltage in InP/InGa As HBTs.
Although the ionization coefficients of In Ga As showed
negative temperature dependence, the ionization coefficients are
relatively temperature insensitive compared to other materials
such as GaAs, making it more difficult to interpret the temper-

ature dependence of multiplication from the common-emitter
characteristics of InP/In Ga As HBTs.

The good agreement of measured here with that of Ritter
et al. [1] from HBT measurements indicates that, at room tem-
perature at least, dark current is negligible and does not interfere
with the measurements. To further illustrate the significance of
dark current on multiplication measurements, various injected
light intensities were used in our measurements on our 3.0m
n-i-p diodes but without modulation and the use of a lock-in
amplifier. This allowed us the directly observe the effects of the
dark currents relative to that induced by the optical signal. These
studies indicated that the dark current has to be at least three or-
ders of magnitude less than that of the photocurrent for it to have
a negligible effect on the multiplication characteristics. This is
especially important at higher temperature where the dark cur-
rent is more likely to dominate.

V. CONCLUSION

The temperature-dependent avalanche multiplication of bulk
In Ga As was investigated and the results between 20 and
400 K indicate a negative temperature dependence of impact
ionization multiplication, unlike that previously inferred from
HBTs. Empirical expressions for the ionization coefficients of
In Ga As over the range 20–400 K were also deduced
from the photomultiplication measurements. The discrepancy of
the temperature dependence of multiplication between that mea-
sured on HBTs and that on p-i-n and n-i-p diodes most likely re-
sults from the effect of dark current and on the former. Using
the isolated base-collector junction from the HBT, together with
modulated optical injection, we demonstrated that a more usual
negative temperature dependence of avalanche multiplication is
not inconsistent with our, and previous, measurements of break-
down voltage as a function of temperature in InP/InGa As
HBTs.
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