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This PhD thesis studies the detection problem associated with pairs trading strategies.
We model the difference between the prices of the two underlying stocks in pairs trad-
ing strategies as an Ornstein-Uhleneck process based on its mean-reverting property.
The mean-reversion rate (and the mean-reverting level) of the underlying Ornstein-
Uhleneck process is assumed to have a change at some random/unobservable time.
We consider the problem of detecting the random/unobservable time as accurately as
possible. The problem is formulated as a quickest detection problem. We consider
the most random scenario where the unobservable/random time is (i) exponentially
distributed and (ii) independent from the underlying Ornstein-Uhleneck process prior
to its change in the mean-reversion rate.

We formulate the quickest detection problem as a Lagrangian of the probability of
false alarm and the expected detection delay. By changing the probability measures we
transform the quickest detection problem to a two-dimensional Lagrange formulated
optimal stopping problem. We reduce the underlying process to its canonical form
and transform the optimal stopping problem correspondingly. We also decouple the
coefficients on the diffusion term of the underlying two-dimensional process by time
change. The Lagrange formulated optimal stopping problem is transformed to its
Mayer formulation through Itô’s formula and the optional sampling theorem. We
reduce the Lagrange formulated optimal stopping problem to a free-boundary problem
where the derivatives are understood in the sense of Schwartz distribution. We then
verify that the canonical infinitesimal generator satisfies Hörmander’s condition which
upgrades the weak solution to a strong (smooth/classic) solution.

We determine an upper bound on the rates of convergence in the Wald-Bellman
equations depending on the gain function and the transition density function of the
underlying Markov process. Making use of theories from parabolic second-order partial
differential equations, we derive an upper bound on the rates of convergence when the
transition density function is not known explicitly. We then introduce a technique of
constructing the value functions to enable the convergence of Wald-Bellman equations
to continuous-time Mayer formulated optimal stopping problems with finite horizon.
The technique is first applied to the detection problem associated with pairs trading
strategies, then applied to various Mayer formulated continuous-time optimal stop-
ping problems. Numerical approximations of Wald-Bellman equations are obtained
through Mathematica algorithms. The value functions are then used to generate the
corresponding optimal stopping boundaries through numerical calculations in Mathe-
matica.
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Chapter 1

Introduction

The pairs trading strategies have been popular since introduced by Morgan Stanley

in 1980s (cf. [33]). The two stock prices are assumed to have stationary and mean-

reverting spread around zero that means when the prices of the underlying stocks

diverge, the price spread is expected to revert to zero. The trader would short the

outperforming stock and long the underperforming stock to construct the portfolio. If

the spread reverts to zero as expected, then the investor would gain profits from both

long and short positions. The pairs trading strategies can be considered as market

neutral. For instance, in a market depression, the trader would incur losses from the

long position, but gain profits from the short position, which offsets the losses. In

practice, however, the assumed mean-reverting property may disappear at some point

which could cause large losses to the trader if the portfolio is not adjusted.

Currently, the investors manage such type of risk by using a stop-loss strategy

(cf. [17], [15] and [16]) where the underlying stocks are treated based on an assumed

mean-reverting model until they reach a predetermined loss level, then the investors

may liquidate their stocks with a loss. Among the academic literature, the spread of

the prices was first modeled as a mean-reverting process in [7]. The spread was first

modeled as an Ornstein-Uhlenbeck process in [6]. [9] was the first paper to investigate

in the detection problem on a change of the mean-reverting property. [9] formulated

the problem as a quickest detection problem for Ornstein-Uhlenbeck processes. A sim-

ilar quickest detection problems for Bessel processes was discussed in [14]. One may

find applications of the quickest detection problems of Ornstein-Uhlenbeck processes

8



Chapter 1. Introduction 9

beyond pairs trading strategy. For instance, an Ornstein-Uhlenbeck process with neg-

ative initial mean-reversion rate may be used to model financial bubbles (see [22] and

[23]). The quickest detection problems for such Ornstein-Uhlenbeck processes may

help detect the bursting of such financial bubbles.

Figure 1. The stationary (Ornstein-Uhlenbeck process with positive mean-reversion
rate) spread becomes recurrent (Brownian motion) at time θ.

Figure 2. A transient Itô process (Ornstein-Uhlenbeck process with negative mean-
reversion rate) becomes recurrent (Brownian motion) at time θ.
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This PhD project studies the similar quickest detection problems for Ornstein-

Uhlenbeck processes introduced in [9] with a different method namely the Wald-

Bellman equations and a more general choice of the mean-reverting levels. We consider

the problem in the most random situation, where we assume that the random time,

when a change of the mean-reverting rate happens, is (i) exponentially distributed and

(ii) independent from the previous Ornstein-Uhlenbeck process which is prior to the

unobservable random time. To detect the random optimal stopping time as accurately

as possible, we minimize the Lagrangian of the probability of the false alarm and the

expected detection delay . The formulation of general quickest detection problems

were first introduced in [28] and still being studied to date (cf. [29]). We reformulate

the quickest detection problems to optimal stopping problems by changing probabil-

ity measures. The optimal stopping problems are solved by Wald-Bellman equations

(cf. [21, Theorem 1.7]). Numerical approximations are obtained through Mathe-

matica algorithms. We also study the Wald-Bellman equations in the general case

for n-dimensional time-homogeneous Markov processes and apply the Wald-Bellman

equations to various optimal stopping problems. This thesis is organised as follows:

In Chapter 2, we formulate the financial problem as a mathematical problem. In

Section 2.2, we formulate the quickest detection problem as a Lagrangian of the prob-

ability of false alarm and expected detection delay under the assumption that the

observed Ornstein-Uhlenbeck process changes its initial mean-reverting rate (with a

change of mean-reversion level) at a random/unobservable time. The quickest detec-

tion problem is then reformulated as an optimal stopping problem in terms of the

posterior probability distribution process. Then we define the likelihood ratio process

and the posterior probability ratio process. In Section 2.3, we transform the optimal

stopping which is a function of the posterior probability distribution process to an

optimal stopping problem in terms of the posterior probability ratio process by chang-

ing the probability measure. The one-dimensional problem becomes two-dimensional

from where we consider the underlying stochastic process in two-dimension. In Section

2.4, we reduce the underlying two-dimensional stochastic process to its canonical form

by using standard partial differential equations arguments. We also apply transforma-

tions to the canonical process to simplify the problem. The optimal stopping problems

are reformulated correspondingly. In Section 2.5, we apply time change technique to
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the observed Ornstein-Uhlenbeck process to decouple the coefficients on the diffusion

terms in the system of stochastic differential equations. We then derive the optimal

stopping problem in terms of the time-changed process. In Section 2.6, we introduce

the Mayer formulation for the optimal stopping problem. We have not found the Mayer

formulation in the general case. The Mayer formulation is essential for the application

of Wald-Bellman equations. The lack of Mayer formulation puts restrictions on the

choices of mean-reversion rates.

In Chapter 3, we first derive the system of free-boundary problem which the value

function satisfies where the derivatives are understood in the sense of Schwartz distri-

bution. We then verify that the given weak solution satisfies the Hörmander’s condition

which implies that the value function is actually a strong (smooth/classic) solution.

In Chapter 4, we first recall the basic setting for n-dimensional Wald-Bellman

equations. We then introduce an upper bound on the rates of convergence in the

Wald-Bellman equations. We also introduce a technique of constructing the value

functions associated with finite-horizon continuous-time Mayer formulated optimal

stopping problems. The upper bound depends on the gain function and the transition

density function of the underlying process. Making use of theories from parabolic

second-order partial differential equations, we derive an upper bound on the rates of

convergence when the transition density function is not known explicitly.

In Chapter 5, we apply the Wald-Bellman equations to the Mayer formulated

optimal stopping problem introduced in Section 2.6. By using Euler approximation

(cf. [13, Chapter 2.1,]) we obtain numerical approximations of the value functions and

optimal stopping boundaries through Mathematica algorithms. The method of Wald-

Bellman equations is applicable to the optimal stopping problems which are Mayer

formulated with known stochastic differential equations for the underlying diffusion

processes.

In Chapter 6, we apply the Wald-Bellman equations to a Wald’s type optimal

stopping problem for one-dimensional Brownian motion with finite horizon of which

the analytical solution is known in the case of infinite horizon. Numerical approxi-

mations of the value functions and optimal stopping boundaries are obtained through

Mathematica algorithms.
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In Chapter 7, we study a time-inhomogeneous optimal stopping problem for one-

dimensional Brownian motion with finite horizon. The problem is solved by using

time-inhomogeneous Wald-Bellman equations. Numerical approximations of the value

functions and optimal stopping boundaries are obtained through Mathematica algo-

rithms.

In Chapter 8, we study the finite-horizon American put option. The problem is

solved in two different ways. We first simplify the problem by “killing” the sample

path of the underlying process and then transform to a time-homogeneous optimal

stopping problem. The simplified problem is solved by the time-homogeneous Wald-

Bellman equations. We then solve the problem by using time-inhomogeneous Wald-

Bellman equations directly. Numerical approximations of the value functions and

optimal stopping boundaries are obtained through Mathematica algorithm.

In Chapter 9, we study the same quickest detection problem for Bessel processes

introduced in [14]. The Mayer formulated optimal stopping problem is solved by Wald-

Bellman equations. Numerical approximations of the value functions and optimal

stopping boundaries are obtained through Mathematica algorithms.

Sections 2.1-2.3, 2.5 and Chapter 3 are generalizations of Sections 3-5 and 6 in [9].

Parts of Chapters 4-8 form a paper [3] which is submitted to the journal “Stochastic

Processes and their Applications” for consideration of publication.



Chapter 2

Formulation of the problem

In this Chapter, we formulate the optimal stopping problem for pairs trading strategies

as quickest detection problems for Ornstein-Uhlenbeck processes.

2.1 Contributions

The setting of quickest detection problems in Section 2.2 is a generalization of [9,

Section 3] in which the authors set the mean-reverting levels to 0. Such setting helps

to obtain the symmetry property of the underlying process around 0 with some losses

of generality which simplifies further analysis. In this project, we attempt to consider

the problem in full generality where the mean-reverting levels are arbitrary real values.

The likelihood ratio process plays an important role to connect the underlying

process with the random/unobservable time that we intend to detect. The likelihood

ratio process is defined as a Radon–Nikodym derivative where the explicit expression

in terms of the underlying process can be obtained. The previous literature makes use

of measure theory and Bayes formula to obtain the expression. In this research, we

use a different but less general argument through the Girsanov theorem. Moreover, we

use a more probabilistic method to determine the explicit expression of the posterior

probability ratio process in terms of the underlying process.

Since we consider the problem in full generality, the signal-to-noise ratio will always

contain a constant term which is dependent on the diffusion coefficient, the mean-

reversion rates and the mean-reverting levels. This constant term makes the system

of stochastic differential equations for the underlying process more complicated and

13
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the analysis on the corresponding infinitesimal generator more challenging than [9,

Section 5]. We have also applied time-change transformation to decouple the stochastic

processes on the diffusion term in Section 2.5. The method is similar to [14, Section

7] whereas the technique is not used in [9].

We determine the Mayer formulation of the optimal stopping problem through Itô’s

formula and the optional sampling theorem in Section 2.6 with restriction on the mean-

reverting rates. The Mayer formulation is only available when the mean-reverting is

not equal to −λ/2 before the change and equal to 0 after the change. Under this

restriction, we lose the generality of the problem because, when the mean-reversion

rate equals 0 after the change, the problem will be simplified to the cases when the

mean-reverting levels are 0 as considered in [9].

2.2 Setting

In this section we introduce the setting for the corresponding quickest detection prob-

lem. The quickest detection problem is then transferred to a Bolza formulated optimal

stopping problem (cf. [21, Chapter III]).

1. Let the unobservable/random time θ take value 0 with probability π ∈ [0, 1]

and follow exponential distribution with parameter λ > 0 given θ > 0. Given θ > 0

for any subset A of all positive real numbers IR+, the probability that θ equals t is

(1−π)
∫

A
λ e−λt dt for t ∈ A. The setting for θ can be realised on the probability space

(Ω,F ,Pπ) where the probability measure Pπ is defined by

Pπ = π P
0 + (1−π)

∫ ∞

0

λ e−λt
P
t dt. (2.1)

P
t is the probability measure under which θ equals t for t ∈ [0,∞). The underly-

ing Ornstein-Uhlenbeck process X changes its mean-reversion rate from β0 ∈ IR to

β1 ∈ IR (and mean-reverting level x0 ∈ IR to x1 ∈ IR) at time t under Pt. The unob-

servable/random time θ is a non-negative random variable such that Pπ(θ = 0) = π

and Pπ(θ > t | θ > 0) = e−λt for t ∈ IR+. The probability of the underlying Ornstein-

Uhlenbeck process X changes its mean reversion rate β0 ∈ IR to β1 ∈ IR (and mean-

reverting level x0 ∈ IR to x1 ∈ IR) at time t > 0 under probability measure P
t is

the same as the probability of X changes its mean reversion rate given that θ equals
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t > 0 under probability measure Pπ for t ∈ IR+, i.e. P
t(X ∈ · ) = Pπ(X ∈ · | θ = t)

for t > 0, which is the probability law of the underlying Ornstein-Uhlenbeck pro-

cess X. When the mean-reversion rate of the underlying Ornstein-Uhlenbeck process

X does not change and remains β0 (with mean-reverting x0) all the time, we have

θ = t = ∞ and denote such probability measure by P
∞. The probability law of the

Ornstein-Uhlenbeck process X is P∞(X ∈ · ) = Pπ(X ∈ · | θ = ∞) in this case.

2. The observed Ornstein-Uhlenbeck process X satisfies the stochastic differential

equation

dXt = [µ0(Xt) + I(t ≥ θ) (µ1(Xt)−µ0(Xt))] dt+ σ(Xt) dBt (2.2)

where B is a standard Brownian motion under Pπ and

µ0(x) = β0 (x0 − x) & µ1(x) = β1 (x1 − x) & σ(x) = σ > 0 (2.3)

for x ∈ IR with the assumption that θ and the standard Brownian motion B are

independent under Pπ for π ∈ [0, 1].

3. There are eleven cases of β0 and β1 mentioned in [9] which are

Case 0: β0 = β1 6= 0 (with x0 6= x1).

Case 1: β0 > 0 and β1 = 0 (One may set x0 = x1 = 0 without loss of generality).

Case 2: β0 = 0 and β1 > 0 (One may set x0 = x1 = 0 without loss of generality).

Case 3: β0 < 0 and β1 = 0 (One may set x0 = x1 = 0 without loss of generality).

Case 4: β0 = 0 and β1 < 0 (One may set x0 = x1 = 0 without loss of generality).

Case 5: 0 < β0 < β1 (with x0 = x1 = 0).

Case 6: 0 < β1 < β0 (with x0 = x1 = 0).

Case 7: β1 < 0 < β0 (with x0 = x1 = 0).

Case 8: β1 < β0 < 0 (with x0 = x1 = 0).

Case 9: β0 < β1 < 0 (with x0 = x1 = 0).

Case 10: β0 < 0 < β1 (with x0 = x1 = 0).

In Cases 5 - 10 one may set x0 6= x1 with non-zero real values of x0 and x1 for full

generality. Such cases may bring more difficulties to the problem which we will discuss
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in later chapters. When both β0 and β1 are non-zero with non-zero mean-reverting

levels x0 and x1, there will be a change in mean-reversion level at the random time θ.

If either β0 or β1 is zero, then the corresponding mean-reversion level can be set to 0,

and thus the other mean-reverting level can be set to zero by making an appropriate

translation of the underlying Ornstein-Uhlenbeck process X. One may also set x0 = 0

and x1 6= 0 in Cases 5 - 10 without loss of generality by making an appropriate

translation. [9] discussed the above eleven cases when x0 = x1 = 0. We will discuss

the cases when x0 = 0 and x1 6= 0.

4. Based on the observed Ornstein-Uhlenbeck process X we want to find a FX
t -

measurable stopping time τ∗ that is closest to the unobservable/random time θ where

FX
t is the natural filtration of X defined by FX

t = σ(Xs | 0 ≤ s ≤ t) for t ≥ 0.

The formulation of such quickest detection problem was first studied in [28], based on

which the value function is defined by

V (π) = inf
τ≥0

[

Pπ(τ < θ) + cEπ(τ − θ)+
]

(2.4)

where π ∈ [0, 1] is the probability that θ = 0 and c ∈ IR+ is given and fixed. We

aim to find the optimal stopping time τ∗ when the infimum in (2.4) is attained and

the corresponding value of the value function V . Pπ(τ < θ) is the probability of false

alarm and Eπ (τ − θ)+ is the expected detection delay.

5. We define the posterior probability distribution process Π = (Πt)t≥0 of θ given

X by

Πt = Pπ(θ ≤ t | FX
t ) (2.5)

for t ≥ 0. Π can be interpreted as the best prediction of the distribution function

of the unobservable/random time θ given the sample path of the observed Ornstein-

Uhlenbeck process X. (2.4) can be rewritten as

V (π) = inf
τ≥0

Eπ

(

1−Πτ + c

∫ τ

0

Πt dt

)

(2.6)

for π ∈ [0, 1] using similar arguments in [29, Section 4.3, Theorem 7]. The signal-to-

noise ratio is defined by

ρ(x) =
µ1(x)− µ0(x)

σ(x)
(2.7)
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for x ∈ IR. If we consider the case of Ornstein-Uhlenbeck process, then the signal-to-

noise ratio is simplified to

ρ(x) =
µ1(x)− µ0(x)

σ(x)
=

β0 − β1

σ
x+

β1x1 − β0x0

σ
= δx+ γ (2.8)

where δ = (β0 − β1)/σ and γ = (β1 x1 − β0 x0)/σ for x ∈ IR.

6. We denote the restrictions of the probability measures P0 and P
∞ to FX

t by P
0
t

and P
∞
t respectively. The likelihood ratio process L = (Lt)t≥0 is defined by

Lt =
dP0

t

dP∞
t

. (2.9)

By the Girsanov theorem (cf. [26, Theorem 38.5]), there exists a previsible process

c = (ct)t≥0 in IR under P∞ such that

Lt =
dP0

t

dP∞
t

= exp

(
∫ t

0

cs dBs −
1

2

∫ 1

0

c2s ds

)

. (2.10)

The measure P
∞
t is equivalent to the measure P

0
t on t ≥ 0 because the underlying

Ornstein-Uhlenbeck process is indistinguishable when the observing time is finite. Let

B = (Bt)t≥0 be a standard Brownian motion under P
∞. Then by the Girsanov the-

orem, B̃t = Bt −
∫ t

0
cs ds is a standard Brownian motion under P

0 for t ≥ 0. Under

measure P
0 let B̃ be the driving Brownian motion for X. By definition of P0, under

P
0, the underlying Ornstein-Uhlenbeck process X satisfies the stochastic differential

equation

dXt = µ1(Xt) dt+ σ dB̃t = [µ1(Xt)−σct] dt+ σ dBt. (2.11)

The equation (2.11) may be viewed under measure P∞. Let B̂ = (B̂t)t≥0 be the driving

standard Brownian motion of X under P∞. Then X satisfies the stochastic differential

equation

dXt = µ0(Xt) dt+ σ dB̂t (2.12)

under P
∞. Note that we cannot conclude that the standard Brownian motion B̂ is

equal to B at the moment. We aim to show that the drift coefficient in the latter part

of (2.11) is equivalent to the drift coefficient in (2.12), i.e. µ0(Xt) = µ1(Xt) − σct.

(2.11) and (2.12) may be rewritten in integral form

Xt = X0 +

∫ t

0

[µ1(Xs)−σcs] ds+

∫ t

0

σ dBs (2.13)

Xt = X0 +

∫ t

0

µ0(Xs) ds+

∫ t

0

σ dB̂s. (2.14)
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Subtracting (2.13) by (2.14) and rearranging, we obtain

∫ t

0

µ0(Xs)− µ1(Xs) + σcs ds = σ
(

Bt − B̂t

)

(2.15)

for t ≥ 0. The left hand side of (2.15) is a process of bounded variation. The right

hand side of (2.15) is a continuous martingale. Then, it is well know that

∫ t

0

(µ0(Xs)− µ1(Xs) + σcs) ds = σ
(

Bt − B̂t

)

= 0 (2.16)

P
∞ almost surely. We thus have shown Bt = B̂t for t ≥ 0 and

∫ t

0

µ1(Xs)− µ0(Xs)

σ
ds =

∫ t

0

cs ds (2.17)

P
∞ almost surely.

7. Given (2.17), we aim to show ct = (µ1(Xt)−µ0(Xt))/σ which helps us determine

L in (2.10). Define functions f(s) = f+(s) − f−(s) := (µ1(Xs)− µ0(Xs)) /σ and

g(s) = g+(s)− g−(s) := cs for s ∈ [0, t] and t ≥ 0. Then (2.17) can be rewritten as

∫ t

0

(

f+(s) + g−(s)
)

ds =

∫ t

0

(

g+(s) + f−(s)
)

ds. (2.18)

We define Lebesgue measures µ1 and µ2 by

µ1(A) =

∫

A

(

f+(s) + g−(s)
)

ds (2.19)

µ2(A) =

∫

A

(

g+(s) + f−(s)
)

ds (2.20)

for A := {(t1, t2] | 0 ≤ t1 < t2 < +∞}⋃{∅} with µ1(∅) = 0 and µ2(∅) = 0 recalling

that f+(s) := max(f(s), 0) and f−(s) := max(−f(s), 0). It can be shown that µ1(A) =

µ2(A) < ∞. Note that A defines a π-system and B([0,+∞)) = σ(A), then by [35,

Lemma 1.6(a)], we have µ1 = µ2 on B([0,+∞)). Define A1,A2 ∈ B([0,+∞)) where

A1 := {s | f+(s) + g−(s) > g+(s) + f−(s)} = {s | f(s) > g(s)} and A2 := {s |
f+(s) + g−(s) < g+(s) + f−(s) = {s |f(s) < g(s)}. Then we have

∫

A1

(

f+(s) + g−(s)− g+(s)− f−(s)
)

ds =

∫

A1

(f(s)− g(s)) ds

=

∫

[0,+∞)

IA1 (s) (f − g) (s) ds = 0. (2.21)

Since IA1(s)(f − g)(s) ≥ 0 for s ∈ [0, t] and t ≥ 0, by [5, Corollary 2.3.12], we have

IA1(s)(f − g)(s) = 0 λ-almost everywhere where λ is the Lebesgue measure. Then we
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have f(s) ≤ g(s) λ-almost everywhere. By analogy it can be shown that f(s) ≥ g(s)

λ-almost everywhere. Combining the results we have

ct =
µ1(Xt)− µ0(Xt)

σ
(2.22)

for t ≥ 0 λ-almost everywhere. The explicit form of L in (2.10) under P∞ is thus given

by

Lt = exp

(

∫ t

0

µ1(Xs)− µ0(Xs)

σ
dBs −

1

2

∫ t

0

(

µ1(Xs)− µ0(Xs)

σ

)2

ds

)

. (2.23)

By applying (2.12), the explicit form of L in (2.23) can be reformulated as

Lt = exp

(
∫ t

0

µ1(Xs)− µ0(Xs)

σ2(Xs)
dXs −

1

2

∫ t

0

µ2
1(Xs)− µ2

0(Xs)

σ2(Xs)
ds

)

(2.24)

for t ≥ 0. The above arguments can be applied to one-dimensional quickest de-

tection problems of which the underlying process X satisfies the conditions that

[µ0(Xt)− µ1(Xt) + σ(Xt) ct] is continuous and σ(Xt) is a constant for t ≥ 0 with

the previsible process c = (ct)t≥0 taking values in IR. A more general argument for

the formulation in (2.23) is performed in [18, Section 7.5] . We are not able to verify

that (2.23) satisfies the Novikov’s condtion nor the Kazamaki’s condition (see [25])

which motivates the above arguments. For the Novikov’s condition, by (2.8), we have

attempted

E
∞

[

exp

(

1

2

∫ t

0

[

µ1(Xu)− µ0(Xu)

σ(Xu)

]2

du

)]

= E
∞
[

exp

(

1

2

∫ t

0

[δXs + γ]2 ds

)]

≤
∫ t

0

E
∞
[

exp

(

t

2
(δXs + γ)2

)]

ds

t

(2.25)

where Jensen’s inequality and Fubini’s theorem are used in the last inequality in (2.25).

X is known to be normally distributed and thus the expectation in (2.21) is only

bounded for small t. For the Kazamaki’s condition, since
∫ t

0
(µ1(Xs)−µ0(Xs)) /σ(Xs) dBs

is pure stochastic, we are not able to verify that exp
(

1
2

∫ t

0
(µ1(Xs)− µ0(Xs)) /σ(Xs) dBs

)

is uniformly integrable.

8. The posterior probability ratio process Φ = (Φt)t≥0 of θ given X is defined by

Φt =
Πt

1−Πt

. (2.26)
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Making use of (2.1), Φ in (2.26) can be reformulated as follows

Φt =
Pπ(θ ≤ t | FX

t )

Pπ(θ > t | FX
t )

=
πP0(θ ≤ t | FX

t )
dP0

t

dPπ,t
+ (1−π)

∫∞
0

λe−λs
P
s(θ ≤ t | FX

t )
dPs

t

dPπ,t
ds

πP0(θ > t | FX
t )

dP0
t

dPπ,t
+ (1−π)

∫∞
0

λe−λsPs(θ > t | FX
t )

dPs
t

dPπ,t
ds

=
π

dP0
t

dPπ,t
+ (1−π)

∫ t

0
λe−λs dPs

t

dPπ,t
ds

(1−π)
∫∞
t

λe−λs dP∞

t

dPπ,t
ds

=
π

dP0
t

dPπ,t
+ (1−π)

∫ t

0
λe−λs dPs

t

dPπ,t
ds

(1−π)e−λt dP
∞

t

dPπ,t

=
πeλt

1−π

dP0
t

dP∞
t

+ eλt
∫ t

0

λe−λs dP
s
t

dP0
t

dP0
t

dP∞
t

ds

= eλtLt

(

Φ0 +

∫ t

0

λe−λs dP
s
t

dP0
t

ds

)

. (2.27)

By the similar arguments we performed for (2.23) above, under P0,

dPs
t

dP0
t

= exp

(

−
∫ t

0

1

σ(Xu)
[µ1(Xu)− µ0(Xu)− I(u ≥ s) (µ1(Xu)−µ0(Xu))] dBu

− 1

2

∫ t

0

(

1

σ(Xu)
[µ1(Xu)− µ0(Xu)− I(u ≥ s) (µ1(Xu)−µ0(Xu))]

)2

du

)

= exp

(

−
∫ s

0

µ1(Xu)−µ0(Xu)

σ(Xu)
dBu −

1

2

∫ s

0

[

µ1(Xu)−µ0(Xu)

σ(Xu)

]2

du

)

= exp
(

−
∫ s

0

µ1(Xu)−µ0(Xu)

σ(Xu)

[

dXu

σ (Xu)
− µ1(Xu)

σ(Xu)
du

]

− 1

2

∫ s

0

[

µ1(Xu)−µ0(Xu)

σ(Xu)

]2

du
)

= exp

(

−
∫ s

0

µ1(Xu)−µ0(Xu)

σ2(Xu)
dXu +

1

2

∫ s

0

µ2
1(Xu)−µ2

0(Xu)

σ2(Xu)
du

)

=
1

Ls

(2.28)

for 0 ≤ s ≤ t. Substituting the result from (2.28) into (2.27) we obtain

Φt = eλtLt

(

Φ0 +

∫ t

0

λe−λs 1

Ls

ds

)

(2.29)

for t ≥ 0 and Φ0 = π/ (1− π).

9. By Itô’s formula, we know that L satisfies the stochastic differential equation

dLt =
µ1(Xt)−µ0(Xt)

σ2(Xt)
Lt [dXt − µ0(Xt) dt] (2.30)
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with L0 = 1. The stochastic differential equations that Π and Φ satisfy are given by

dΠt = λ (1−Πt) dt+ ρ(Xt)Πt (1−Πt) dB̄t (2.31)

dΦt =

[

λ (1+Φt) + ρ2(Xt)
Φ2
t

1+Φt

]

dt+ ρ(Xt)Φt dB̄t (2.32)

for X satisfying the stochastic differential equation

dXt = [µ0(Xt) +Πt (µ1(Xt)− µ0(Xt))] dt+ σ(Xt) dB̄t (2.33)

where B̄ = (B̄t)t≥0 is the innovation process defined by

B̄t =

∫ t

0

dXs

σ(Xs)
−
∫ t

0

[

µ0 (Xs)

σ(Xs)
+Πs

µ1(Xs)−µ0 (Xs)

σ(Xs)

]

ds (2.34)

for t ≥ 0 and x ∈ IR. By Lévy’s characterisation theorem we know B̄ is a standard

Brownian motion with respect to (FX
t )t≥0 under probability measure Pπ for π ∈ [0, 1].

2.3 Measure change

In this section, we simplify the optimal stopping problem to its Lagrange formulation

by changing the probability measure from Pπ to P
∞. The optimal stopping problem

correspondingly becomes two-dimensional. Similar change of probability measures was

introduced in [9, Section 4] and [14, Section 4].

1. By [14, Lemma 1] it is identified that the Radon-Nikodym derivative of the

probability measure change from Pπ to P
∞ is given by

dPπ,τ

dP∞
τ

= e−λτ 1−π

1−Πτ

(2.35)

for all stopping times τ of X with π ∈ [0, 1) where P∞
τ and Pπ,τ are the restrictions of

the probability measures P∞ and Pπ to FX
τ respectively. Under P∞ the two-dimensional

stochastic process (Φ,X) satisfies the system of stochastic differential equations

dΦt = λ (1+Φt) dt+ ρ(Xt)Φt dBt (2.36)

dXt = µ0(Xt) dt+ σ(Xt) dBt (2.37)

for t ≥ 0. The stochstic differential equation (2.30) is reduced to

dLt = ρ(Xt)Lt dBt. (2.38)
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The explicit expression of L in terms of X is now given by

Lt = exp

(
∫ t

0

ρ(Xs) dBs −
1

2

∫ t

0

ρ2(Xs) ds

)

(2.39)

for t ≥ 0.

2. Under P∞ the optimal stopping problem in (2.6) can be reformulated in terms

of (Φ,X) in (2.36)+(2.37) where the starting point of Φ is π/(1−π). We denote the

flow by Φπ/(1−π). By [14, Proposition 2] it is identified that the value function V in

(2.6) satisfies the identity

V (π) = (1−π)
[

1 + c V̂ (π)
]

(2.40)

where V̂ is the equivalent optimal stopping problem defined by

V̂ (π) = inf
τ≥0

E
∞
[
∫ τ

0

e−λt

(

Φ
π/(1−π)
t − λ

c

)

dt

]

(2.41)

for π ∈ [0, 1) and all stopping times τ of X.

3. Since the system of stochastic differential equations (2.36)+(2.37) has a unique

weak solution, then (Φ,X) is a two-dimensional strong Markov process (cf. [26, pp.

166-173]) under P∞. We let the two-dimensional strong Markov process (Φ,X) start

at any point (ϕ, x) ∈ [0,∞)×IR. Under P
∞
ϕ,x the optimal stopping problem (2.41)

becomes

V̂ (ϕ, x) = inf
τ≥0

E
∞
ϕ,x

[
∫ τ

0

e−λt

(

Φt −
λ

c

)

dt

]

(2.42)

for ϕ ∈ [0,∞)×IR, P∞
ϕ,x ((Φ0, X0) = (ϕ, x)) = 1 and all stopping times τ of (Φ,X). The

value function V̂ is non-positive since we can choose to stop at once and set τ = 0. We

have reduced the quickest detection problem in (2.4) to the optimal stopping problem

in (2.42) for the strong Markov process (Φ,X) satisfying the system of stochastic

differential equations

dΦt = λ (1+Φt) dt+ (δXt+γ)Φt dBt (2.43)

dXt = β0 (x0−Xt) dt+ σdBt (2.44)

under P∞ with (ϕ, x) ∈ [0,∞)×IR.
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2.4 Reduction to the canonical process

Under P∞
ϕ,x with (ϕ, x) ∈ [0,∞)×IR, the two-dimensional strong Markov process (Φ,X)

satisfies the system of stochastic differential equations (2.43)+(2.44). Without loss of

generality we set σ = 1 because we can replace the underlying Ornstein-Uhlenbeck

process X by X/σ. For full generality we consider the case when x0 = 0 and x1 6= 0.

The system of stochastic differential equations (2.43)+(2.44) is simplified to

dΦt = λ (1+Φt) dt+ (δXt + γ)Φt dBt (2.45)

dXt = −β0 Xt dt+ dBt (2.46)

with (ϕ, x) ∈ [0,∞)× IR, δ = β0 − β1 and γ = β1 x1 under P
∞
ϕ,x. The underlying

Ornstein-Uhlenbeck process X is on the diffusion coefficient in (2.45) which makes the

application of comparison theorems difficult. In this section, we reduce the system

of stochastic differential equations (2.45)+(2.46) to its canonical form and derive the

corresponding transformed optimal stopping problem.

1. The infinitesimal generator of (Φ,X) in (2.45)+(2.46) is given by

ILΦ,X = λ (1+ϕ) ∂ϕ − β0 x ∂x + (δx+γ)ϕ∂ϕx +
1

2
(δx+γ)2 ϕ2 ∂ϕϕ +

1

2
∂xx. (2.47)

We denote the coefficients in (2.47) by

a (ϕ, x) =
1

2
(δx+γ)2 ϕ2 & 2b (ϕ, x) = (δx+γ)ϕ & c (ϕ, x) =

1

2
(2.48)

with (ϕ, x) ∈ [0,∞)× IR given and fixed. The infinitesimal generator ILΦ,X is of

parabolic type because

b2 (ϕ, x)− a (ϕ, x) c (ϕ, x) =
1

4
(δx+ γ)2 ϕ2 − (δx+ γ)2 ϕ21

4
= 0. (2.49)

Therefore, it has a unique family of characteristic curves given by

dx

dϕ
=

b (ϕ, x)

a (ϕ, x)
=

1

(δx+γ)ϕ
. (2.50)

Solving the separable ordinary differential equation (2.50) we obtain

(δx+ γ) dx =
1

ϕ
dϕ ⇔ δ

2
x2 + γ x = logϕ+ u (2.51)

for a constant u ∈ IR. Setting ξ(ϕ, x) = u = δ
2
x2+γ x− logϕ and η(ϕ, x) = x, the

Jacobian is given by

J =
∂ (ξ, η)

∂ (ϕ, x)
= ξϕ ηx − ξx ηϕ = − 1

ϕ
/∈ {0,∞} (2.52)
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for ϕ 6= 0 which indicates that the inverse function theorem is applicable. The coeffi-

cients of (2.47) in the canonical form are given by

∂ϕ = ξϕ ∂ξ + ηϕ ∂η = − 1

ϕ
∂ξ (2.53)

∂x = ξx ∂ξ + ηx ∂η = (δx+ γ) ∂ξ + ∂η (2.54)

∂ϕϕ = ξϕϕ ∂ξ + ξ2ϕ ∂ξξ + 2 ξϕ ηϕ ∂ξη + ηϕϕ ∂η + η2ϕ ∂ηη =
1

ϕ2
(∂ξ + ∂ξξ) (2.55)

∂xx = ξxx ∂ξ + ξ2x ∂ξξ + 2 ξx ηx ∂ξη + ηxx ∂η + η2x ∂ηη

= δ ∂ξ + (δx+γ)2 ∂ξξ + 2 (δx+γ) ∂ξη + ∂ηη

(2.56)

∂ϕx = ξϕx ∂ξ + ξϕ ξx ∂ξξ + ξϕ ηx ∂ξη + ηϕx ∂η + ηϕ ηx ∂ηη + ηϕ ξx ∂ϕx

= − 1

ϕ
(δx+ γ) ∂ϕη −

1

ϕ
∂ξη.

(2.57)

Substituting the above expressions into (2.47) we obtain the canonical infinitesimal

generator

ILU,X =

[

δ

2

(

1−κx2
)

− λ
(

1+eu−
δ
2
x2−γ x

)

− β2
1 x1

2
x+

γ2

2

]

∂u−β0 x ∂x+
1

2
∂xx (2.58)

for κ = β0+β1 and δ = β0−β1. From (2.51) we know that the process U satisfies the

identity

Ut =
δ

2
X2

t + γXt − logΦt (2.59)

for t ≥ 0. The canonical process (U,X) satisfies the system of stochastic differential

equations

dUt =

[

δ

2

(

1−κX2
t

)

− λ
(

1+eUt− δ
2
X2

t −γXt

)

− β2
1x1

2
Xt +

γ2

2

]

dt (2.60)

dXt = −β0Xt dt+ dBt (2.61)

under P∞
u,x with P

∞
u,x ((U0, X0) = (u, x)) = 1 for (u, x) ∈ IR× IR. Note that U is a pro-

cess of bounded variation. The system of stochastic differential equations (2.60)+(2.61)

has a unique weak solution (cf. [26, pp. 166-173]) which indicates that the process

(U,X) in (2.60)+(2.61) is a strong Markov process (cf. [26, pp. 158-163]) under P∞
u,x

with (u, x) ∈ IR × IR. The underlying Ornstein-Uhlenbeck process X in (2.61) has a

unique strong solution given by

Xx
t = e−β0t

(

x+

∫ t

0

eβ0s dBs

)

(2.62)
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for t ≥ 0 where the superscript x ∈ IR indicates the initial point under P
∞. The

unique strong solution in (2.62) defines a Markovian flow. The above arguments for

reducing the strong Markov process (Φ,X) to its canonical form is analytic. Proba-

bilistic arguments for the same reduction to canonical process were introduced in [14,

Proposition 4].

2. The bounded variation U can be expressed in terms of the underlying Ornstein-

Uhlenbeck process X. We define functions f and g by

f(x) =
δ

2

(

1− κx2
)

− β2
1 x1

2
x+

γ2

2
− λ & g(x) = λ e−

δ
2
x2− γ2

2
x (2.63)

for x ∈ IR. (2.60) can be rewritten as

dUt

dt
= f(Xt)− g(Xt) e

Ut . (2.64)

Setting Rt = eUt then (2.64) can be rewritten as

dRt

dt
= f(Xt)Rt − g(Xt)R

2
t (2.65)

which is a Bernoulli equation and can be solved explicitly. Setting St = 1/Rt then

(2.65) becomes
dSt

dt
= g(Xt)− f(Xt)St. (2.66)

Using the integrating factor I(t) := exp
(

∫ t

0
f(Xs) ds

)

for t ≥ 0, we obtain the general

solution to (2.64)

Ut =

∫ t

0

f(Xs) ds− log

[
∫ t

0

e
∫ s
0 f(Xr) drg(Xs) ds+ e−U0

]

. (2.67)

3. We define the two-dimensional process (V, Z) by

(Vt, Zt) =
(

e−Ut , X2
t

)

(2.68)

for t ≥ 0. (2.67) can be rewritten as

Vt = e−
∫ t
0 f(

√
Zs)ds

[
∫ t

0

e
∫ s
0 f(

√
Zr)drg

(

√

Zs

)

ds+ V0

]

(2.69)

for t ≥ 0. With X defined in (2.61), by Itô’s formula, we obtain

Zt = Z0 +

∫ t

0

(1− 2 β0 Zs) ds+ 2

∫ t

0

√

Zs dB̃s (2.70)
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where B̃t :=
∫ t

0
sign(Xs) dBs for t ≥ 0. By Lévy’s characterisation theorem, we know

that B̃ is a standard Brownian motion. From (2.62) we know that

Zz
t = e−2β0t

(√
z +

∫ t

0

e−β0s dBs

)2

(2.71)

under P∞. The superscript z ∈ [0,∞) denotes the initial point of Z. (2.71) defines a

Markovian flow. From (2.60) and (2.70), we know that the process (V, Z) solves the

system of stochastic differential equations

dVt =

[(

λ− δ

2
(1−κZt) +

β2
1x1

2

√

Zt −
γ2

2

)

Vt + λe−
δ
2
Zt−γ

√
Zt

]

dt (2.72)

dZt = (1− 2β0Zt) dt+ 2
√

Zt dB̃t (2.73)

under P∞
v,z with P

∞
v,z ((V0, Z0) = (v, z)) = 1 for (v, z) ∈ [0,∞)×[0,∞). The system of

stochastic differential equations (2.72)+(2.73) has a unique weak solution (cf. [26, pp.

166-173]) which indicates that the process (V, Z) in (2.68) is a two-dimensional strong

Markov process under P∞
v,z. The infinitesimal generator ILV,Z is given by

ILV,Z =

[(

λ− δ

2
(1−κz) +

β2
1x1

2

√
z − γ2

2

)

v + λe−
δ
2
z−γ

√
z

]

∂v

+ (1−2β0 z) ∂z + 2z ∂zz. (2.74)

Proposition 1. The value function V̂ in (2.42) satisfies the identity

V̂ (ϕ, x) = Ṽ
(

ϕ e−
δ
2
x2−γx, x2

)

(2.75)

for (ϕ, x) ∈ [0,∞)×IR where Ṽ is the equivalent value function defined by

Ṽ (v, z) = inf
τ≥0

E
∞
v,z

[
∫ τ

0

e−λ t

(

Vt e
δ2

2
Zt+γ

√
Zt − λ

c

)

dt

]

(2.76)

with (v, z) ∈ (0,∞]×(0,∞] for all stopping times τ of the strong Markov process (V, Z)

solving the system of stochastic differential equations (2.72)+(2.73) where the explicit

solutions are given in (2.69)+(2.71).

Proof. By (2.59) and (2.68) we have v = e−u = ϕ e−
δ
2
z−γ

√
z since z = x2. Substi-

tuting into (2.42) we obtain

Ṽ (v, z) = inf
τ≥0

E
∞
v,z

[
∫ τ

0

e−λt

(

Vt e
δ2

2
Zt+γ

√
Zt − λ

c

)

dt

]

. (2.77)

�

This section is a generalization of [9, Section 5]. Probabilistic reduction to canonical

form were introduced in [14, Section 6].
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2.5 Time change

In this section we use time change technique to decouple the stochastic processes on

the diffusion term and then derive the optimal stopping problem for the time-changed

process.

1. We define an additive function A = (A(t))t≥0 by

A(t) =

∫ t

0

(δXs + γ)2 ds (2.78)

recalling δ = β0 − β1 and γ = β1x1. A(t) is continuous and strictly increasing P
∞-

almost surely. The inverse function of A(t) defined by

T (t) = A−1(t) = inf{s ≥ 0 | A(s) > t} (2.79)

is also continuous and strictly increasing. Since A(t) is (FX
t )t≥0-measurable T (t) is

a stopping time of (Φ,X) with respect to (FX
t )t≥0. Therefore, T (t) defines a time

change transformation with respect to (FX
t )t≥0. The time-changed process (Φ̂, X̂) =

((Φ̂t, X̂t))t≥0 is defined by

(Φ̂t, X̂t) = (ΦT (t), XT (t)) (2.80)

for t ≥ 0 and (ϕ, x) ∈ [0,∞)×IR under P∞
ϕ,x. The infinitesimal generator of (Φ̂, X̂) is

given by

ILΦ̂,X̂ =
1

(δ x+γ)2
ILΦ,X (2.81)

where ILΦ,X is the infinitesimal generator of (Φ,X) defined in (2.47) above. The nat-

ural filtration generated by (Φ̂, X̂) is equivalent to the time-changed natural filtration

generated by (Φ,X), i.e. F̂Φ,X
t = FΦ,X

T (t) with t ≥ 0. The explicit expression of T (t) in

(2.79) is given by

T (t) =

∫ t

0

1

(δX̂s + γ)2
ds (2.82)

for t ≥ 0.
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2. By (2.45)+(2.46), the time-changed process (Φ̂, X̂) satisfies the system of stochas-

tic integral equations

Φ̂t = ΦT (t) = Φ0 +

∫ T (t)

0

λ (1 + Φs) ds+

∫ T (t)

0

(δXs + γ)Φs dBs

= Φ̂0 +

∫ t

0

λ
1 + Φ̂s

(δX̂s + γ)2
ds+

∫ t

0

(

δX̂s + γ
)

Φ̂s dB̂s

= Φ̂0 +

∫ t

0

λ
1 + Φ̂s

(δX̂s + γ)2
ds+

∫ t

0

Φ̂s dB̃s (2.83)

X̂t = XT (t) = X0 +

∫ T (t)

0

−β0 Xs ds+

∫ T (t)

0

dBs

= X̂0 −
∫ t

0

β0 X̂s

(δX̂s + γ)2
ds+

∫ t

0

1

(δX̂s + γ)
dB̃s (2.84)

where the process B̃ = (B̃t)t≥0 is defined by

B̃t =

∫ t

0

(

δX̂s + γ
)

dB̂s =

∫ T (t)

0

(δXs + γ) dBs = MT (t). (2.85)

for Mt =
∫ t

0
(δXs + γ) dBs with t ≥ 0. M = (Mt)t≥0 is a continuous local martingale

with respect to (FX
t )t≥0 which implies that B̃ = (B̃t)t≥0 is a continuous local martin-

gale with respect to (F̂X
t )t≥0. Further, 〈B̃, B̃〉t = 〈M,M〉T (t) =

∫ T (t)

0
(δXs + γ)2 ds =

A(T (t)) = t for t ≥ 0. By Lévy’s characterisation theorem, B̃ is a standard Brownian

motion with respect to (F̂X
t )t≥0 under P∞

ϕ,x. (2.83)+(2.84) can be written as a system

of stochastic differential equations

dΦ̂t = λ
1 + Φ̂t

(δX̂t + γ)2
dt+ Φ̂t dB̃t (2.86)

dX̂t = − β0 X̂t

(δX̂t + γ)2
dt+

1

(δX̂t + γ)
dB̃t (2.87)

with t ≥ 0 under P∞
ϕ,x for (ϕ, x) ∈ [0,∞)×IR. Since (2.86)+(2.87) has a unique weak

solution (cf. [26, pp. 166-173]), (Φ̂, X̂) is a strong Markov process (cf. [26, pp. 158-

163]) under P∞
ϕ,x for (ϕ, x) ∈ [0,∞)×IR. The time-changed process L̂ = (LT (t))t≥0 of

L from (2.38)+(2.39) satisfies the stochastic differential equation

dL̂t = L̂t dB̃t (2.88)

where the explicit form of L̂ is given by

L̂t = exp

(

B̃t −
t

2

)

(2.89)
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for t ≥ 0.

3. We now derive the time-changed version of the optimal stopping problem in

(2.42).

Proposition 2. The value function V̂ defined in (2.42) satisfies the identity

V̂ (ϕ, x) = inf
σ≥0

E
∞
ϕ,x

[

∫ σ

0

e−λ
∫ t
0 (δX̂s+γ)−2 ds Φ̂t − λ

c

(δX̂s + γ)2
dt

]

(2.90)

for (ϕ, x) ∈ [0,∞)×IR and all stopping times σ of (Φ̂, X̂).

Proof. τ = T (σ) is a stopping time of (Φ,X) if and only if σ = A(τ) is a stopping

time of (Φ̂, X̂). We can construct σ or τ if either τ or σ is known respectively. From

(2.82) we obtain

E
∞
ϕ,x

[
∫ τ

0

e−λt

(

Φt −
λ

c

)

dt

]

= E
∞
ϕ,x

[

∫ T (σ)

0

e−λt

(

Φt −
λ

c

)

dt

]

(2.91)

= E
∞
ϕ,x

[
∫ σ

0

e−λT (t)

(

Φ̂t −
λ

c

)

dT (t)

]

= E
∞
ϕ,x

[

∫ σ

0

e−λ
∫ t
0 (δX̂s+γ)−2 ds Φ̂t − λ

c

(δX̂s + γ)2
dt

]

.

The result follows by taking the infimum over all τ and σ on both sides. �

Similar arguments for the time change of Bessel processes were introduced in [14,

Section 7].

2.6 Mayer formulation

We recall that the optimal stopping problem in (2.42) is Lagrange formulated. To

derive the corresponding Mayer formulation (cf. [21, Section 7.5]) we need to find a

function M̂(ϕ, x) which solves the partial differential equation

(ILΦ,XM̂ − λM̂)(ϕ, x) = ϕ− λ

c
(2.92)

for (ϕ, x) ∈ [0,∞)×IR. By [9, Proposition 4] we know that if β0 6= −λ/2 and β1 = 0,

then the value function V̂ in (2.42) can be reformualted as

V̂ (ϕ, x) = inf
τ≥0

E
∞
ϕ,x

[

e−λτM̂(Φτ , Xτ )
]

− M̂(ϕ, x) (2.93)



Section 2.6 Mayer formulation 30

with (ϕ, x) ∈ [0,∞)× IR for all stopping times τ of (Φ,X) where M̂ is given by

M̂(ϕ, x) = ϕx2 +

(

x2 +
1

λ

)

/

(

1 +
2β0

λ

)

+
1

c
(2.94)

for (ϕ, x) ∈ [0,∞) × IR. The transformation from Lagrange formulation to Mayer

formulation is based on Itô’s formula and the optional sampling theorem. The Mayer

formulation is essential for the applications ofWald-Bellman equations (cf. [21, Section

1.2]). We note that M̂ in (2.94) is not the unique solution of the partial differential

equation (2.92).



Chapter 3

Free-boundary problem

In this chapter we verify that the value function V̂ in (2.42) is a weak solution to a

system of free-boundary problem where the derivatives are understood in the sense

of Schwartz distribution (cf. [27]). We then verify that the weak solution satisfies

Hörmander’s condition (cf. [12]) which indicates that the value function is smooth

and therefore a strong/classic solution. The verification of the Hörmander condition

in this chapter is a generalization of the technique introduced in [9].

1. We consider the Lagrange formulated optimal stopping problem in (2.42). By

analogous to Section 7 in [9], the continuation set C and stopping set D are defined

by

C = {(ϕ, x) ∈ [0,∞)×IR | V̂ (ϕ, x) < 0} (3.1)

D = {(ϕ, x) ∈ [0,∞)×IR | V̂ (ϕ, x) = 0}. (3.2)

By Proposition 5 in [9] we conclude that the stopping set D is not empty which

indicates that the incentive to continue observing is not endless. The first entry time

of the process (Φ,X) into the stopping set D defined by

τD = inf{ t ≥ 0 | (Φt, Xt) ∈ D} (3.3)

is optimal in (2.42) whenever P∞
ϕ,x (τD < ∞) = 1 for (ϕ, x) ∈ [0,∞)×IR. The optimal

stopping boundary between C and D is defined by

b(x) = inf{ϕ ≥ 0 | (ϕ, x) ∈ D} (3.4)

for x ∈ IR (cf. [9, Section 7]). The optimal stopping problem in (2.42) can be rewritten

31
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as

V̂ (ϕ, x) = E
∞
ϕ,x

[
∫ τD

0

e−λt

(

Φt −
λ

c

)

dt

]

(3.5)

with (ϕ, x) ∈ [0,∞)×IR, λ > 0 and c > 0. By Corollary 6 in [20] the value function V̂

solves the free-boundary problem

ILΦ,X V̂ − λV̂
w
= −L in C (3.6)

V̂ = 0 on D (instaneous stopping) (3.7)

V̂ = 0 at ∂C (3.8)

where L(ϕ) = λ/c − ϕ for ϕ ∈ [0,∞), ∂C = { (ϕ, x) ∈ [0,∞)×IR | ϕ = b(x) } is the

(optimal stopping) boundary between the sets C and D (cf. [21, Chapter 7]) and the

derivatives in (3.6) are understood in the sense of Schwartz distributions, i.e. we have

〈ILΦ,X V̂ , f〉 =
∫ ∞

0

∫ ∞

−∞

(

ILΦ,X V̂ (ϕ, x)
)

f(ϕ, x) dϕ dx

=

∫ ∞

0

∫ ∞

−∞
V̂ (ϕ, x) IL∗

Φ,Xf(ϕ, x) dϕ dx

= 〈V̂ , IL∗
Φ,Xf〉 (3.9)

for all f ∈ C∞
c . C∞

c = C∞
c ([0,∞)×IR) denotes the space of all infinitely differentiable

functions from [0,∞)×IR into IR with compact supports contained in the interior of

[0,∞)×IR which indicates that the function f vanishes to 0 at the ending points for

all f ∈ C∞
c . IL∗

Φ,X is the adjoint of the infinitesimal generator ILΦ,X in (2.47) defined

by

IL∗
Φ,Xf (ϕ, x) =− ∂ϕ (λ (1 + ϕ) f (ϕ, x)) + ∂x (β0 x f (ϕ, x))

+ ∂ϕx ((δx+γ)ϕf (ϕ, x)) + ∂ϕϕ

(

1

2
(δx+γ)2 ϕ2 f (ϕ, x)

)

+ ∂xx

(

1

2
f (ϕ, x)

)

(3.10)

derived through integration by parts.

2. The weak solution V̂ in (3.5) solving the system (3.6)-(3.8) has an opportunity

to upgrade into a strong (classic/smooth) if it is hypoelliptic, e.g. when V̂ satisfies the

Hörmander’s condition (cf. [12]).

Proposition 3. The value function V̂ in (3.4) solving the system (3.5)-(3.7) is

smooth which indicates that V̂ ∈ C∞ is infinitely differentiable.
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Proof. We recall the infinitesimal generator of the canonical process (U,X) in

(2.58) can be written as

ILU,X = a ∂u − β0 x ∂x +
1

2
∂xx (3.11)

where the coefficient a is defined by

a := a(u, x) =
δ

2

(

1−κx2
)

− λ
(

1+eu−
δ
2
x2−γ x

)

− β2
1 x1

2
x+

γ2

2
(3.12)

with κ = β0 + β1, δ = β0 − β1, u ∈ IR, x ∈ IR, x1 6= 0, β0 ∈ IR and β1 ∈ IR. We now

verify that the infinitesimal generator ILU,X satisfies the Hörmander’s condition (cf.

[12]). The coefficients in (3.8) are smooth which belong to C∞ on the continuation set

C. The infinitesimal generator ILU,X can be written as

ILU,X = D0 +D2
1 = D0 +D1 D1 (3.13)

where D0 and D1 are first-order differential operators given by

D0 = a ∂u − β0 x ∂x (3.14)

D1 =
1√
2
∂x. (3.15)

The product D1 D1 means the composition of first-order differential operators. The

Lie bracket of D0 and D1 understood as first-order differential operators is given by

[D0, D1] = D0 D1 −D1 D0 = −[D1, D0] = [−D1, D0] = [D1,−D0]

=
a√
2
∂u ∂x −

β0 x√
2
∂x ∂x −

1√
2
∂x (a ∂u) +

β0√
2
∂x (x ∂x)

=
a√
2
∂u ∂x −

β0 x√
2
∂x ∂x −

1√
2
((∂x a) ∂u + a ∂x∂u)

+
β0√
2
(∂x + x ∂x ∂x)

= − 1√
2
(∂x a) ∂u +

β0√
2
∂x. (3.16)

We refer to the Lie bracket [Di, Dj ] of Di and Dj as the commutator of step 1 for

i, j = 0, 1. By analogy we obtain the Lie bracket of [D0, D1] and D1

[[D0, D1], D1] = [D0, D1]D1 −D1 [D0, D1] = −[[D1, D0], D1] = [D1, [D1, D0]]

=
1√
2
∂x

(

− 1√
2
(∂x a) ∂u +

β0√
2
∂x

)

− 1

2
(∂x a) ∂u ∂x +

β0

2
∂x ∂x

=
1

2

((

∂2
x a
)

∂u + (∂x a) ∂x ∂u − β0 ∂
2
x

)

− 1

2
(∂x a) ∂u ∂x +

β0

2
∂2
x

=
1

2

(

∂2
x a
)

∂u. (3.17)
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We refer to the Lie bracket [[Di, Dj ], Dk] as the commutator of step 2 for i, j, k = 0, 1.

Inductively we obtain the commutator of step n given by

[D1, [D1, ...[D1, [D1, D0]]...]] = 2−
n
2 (∂n

x a) ∂u (3.18)

for n ≥ 2. The first order differential operators D0, D1 and their commutator of any

finite step n can be identified with the coefficients as vector fields

D0 ∼ (a(u, x),−β0 x) (3.19)

D1 ∼
(

0,
1√
2

)

(3.20)

[D1, D0] ∼
(

∂x a(u, x)√
2

,− β0√
2

)

(3.21)

[D1, [D1, D0]] ∼
(

1

2
∂2
x a(u, x), 0

)

(3.22)

...

[D1, [D1, ...[D1, [D1, D0]]...]] ∼
(

2−
n
2 ∂n

x a(u, x), 0
)

. (3.23)

The Lie algebra generated by the vector fields D0 and D1 is the set of linear combi-

nation of the vector fields D0, D1 and their commutators of any finite step which is

given by

Lie (D0, D1) = span{Di, [Di, Dj], [[Di, Dj ], Dk], ... | i, j, k, ... = 0, 1}. (3.24)

We see that dimLie (D0, D1) = 2 and the Hörmander’s condition (cf. [12]) is satisfied

for ILU,X because ∂n
x a(u, x) are not 0 at the same time for n ≥ 0 with ∂0

x a(u, x) =

a(u, x) otherwise we would have a(u0, x) = 0 for x ∈ IR with u0 ∈ IR given and

fixed by Taylor expansion. Recalling (2.59) is a smooth diffeomorphism u(ϕ, x) :=

δ
2
x2+γ x− logϕ, combining Corollary 8 in [20], we conclude that V̂ ∈ C∞ is infinitely

differentiable. �

We note that V̂ in (3.4) is a strong (classic/smooth) solution to the system (3.6)-

(3.8) even if it is not the unique solution. The derivatives in (3.12) are now understood

in the classic sense where

ILΦ,X V̂ − λV̂=− L in C. (3.25)

A general introduction to Hörmander’s condition could be found in [4, Chapter 1-2].



Chapter 4

General Wald-Bellman equations

In this chapter we recall the basic setting of time-homogeneous and time-inhomogeneous

Wald-Bellman equations. We then introduce an upper bound on the rates of conver-

gence in the time-homogeneous Wald-Bellman equations in each iteration. We finally

introduce a technique of constructing the value functions which enables the applica-

tions of Wald-Bellman equations to finite-horizon continuous-time Mayer formulated

optimal stopping problems.

1. Consider a continuous time-homogeneous Markov process X = (Xt)t≥0 defined

on a filtered probability space (Ω,F , (Ft)t≥0,Px) and taking values in IRd for d ≥ 1.

We assume that the process X starts at x under Px for x ∈ IRd. It is also assumed that

the mapping x → Px(F ) is measurable for each F ∈ F . It follows that the mapping

x → Ex(Z) is measurable for each random variable Z.

Given a measurable function G : IRd → IR satisfying the condition:

Ex

(

sup
0≤t<∞

|G(Xt)|
)

< ∞ (4.1)

for all x ∈ IRd, we consider the optimal stopping problem

V (x) = sup
0≤τ<∞

ExG(Xτ ). (4.2)

The corresponding continuation set C and stopping set D are given by

C = {x ∈ IRd | V (x) > G(x)} (4.3)

D = {x ∈ IRd | V (x) = G(x)}. (4.4)

35
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The transition operator Pt of X is defined by

PtG(x) = ExG(Xt) =

∫

IRd

G(y) p(t; x; y) dy (4.5)

for 0 ≤ t < ∞ and y ∈ IRd. The transition density function p is the unique non-

negative solution to the Kolmogorov backward equation

∂

∂t
p(t; x; y) = ILX(p)(t; x; y) (4.6)

p(0+; x; y) = δx(y) (weakly) (4.7)

where
∫

IRd p(t; x; y) dy = 1 for t > 0 with x and y in IRd and δx is the Dirac measure

at x. ILX is the infinitesimal generator of X given by

ILXf(x) =
1

2

d
∑

i=1

d
∑

k=1

aik(x)
∂2f(x)

∂xi∂xk

+
d
∑

i=1

bi(x)
∂f(x)

∂xi

(4.8)

for twice continuously differentiable function f : IRd → IR where

aik(x) =
r
∑

j=1

σij(x)σkj(x). (4.9)

for a measurable function σ : IRd → IRd×r with 1 ≤ i ≤ d, 1 ≤ j ≤ r and r ≥ 1. The

Wald-Bellman equations (cf. [29, Chapter 3]) satisfy the identity

V (x) = lim
n→∞

lim
N→∞

V N
n (x) (4.10)

where we set

V N
n (x) = sup

τ∈T N
n

ExG(Xτ ) = max
(

G(x),P2−nV N−1
n (x)

)

(4.11)

with V 0
n (x) = G(x), n ∈ IN , N ∈ IN and T N

n = {0, 2−n, 2× 2−n, ..., N × 2−n }.

2. Now consider a continuous time-inhomogeneous optimal stopping problem (cf.

[21, Section 1.2] and [21, Section 2.2]). Given a measurable function G : [0, T )×IRd →
IR satisfying the condition:

Et,x

(

sup
0≤k≤T−t

|G(t+ k,Xt+k)|
)

< ∞ (4.12)

for all t ∈ [0, T ) and x ∈ IRd, we consider the optimal stopping problem

V T (t, x) = sup
0≤τ≤T−t

Et,xG(t+ τ,Xt+τ ). (4.13)
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The continuation set C and stopping set D (cf. [21, Chapter I, 1.2]) are given by

C = {(t, x) ∈ [0, T )× IRd | V T (t, x) > G(t, x)} (4.14)

D = {(t, x) ∈ [0, T )× IRd | V T (t, x) = G(t, x)}. (4.15)

The time-inhomogeneous Wald-Bellman equations (cf. [21, Theorem 1.9]) are defined

by

V N
n (t, x) = sup

τ∈T N−t2n
n

Et,xG(t+ τ,Xt+τ ) = max
(

G(t, x),P2−nV N
n (t, x)

)

(4.16)

for t ∈ T N−1
n , x ∈ IRd, n ≥ 0, N ∈ IN , T N−1

n = { 0, 2−n, 2 × 2−n, ..., (N − 1) × 2−n }
and T N−t2n

n = {0, 2−n, 2× 2−n, ..., (N − t2n)× 2−n } where P2−nV N
n ((N − 1)2−n, x) =

E(N−1)2−n,xG(N2−n, XN2−n). P2−n is the transition operator defined by

P2−nV N
n (t, x) = Et,xV

N
n (t+ 2−n, Xt+2−n). (4.17)

3. We now introduce an upper bound on the rates of convergence in the time-

homogeneous Wald-Bellman equations (4.11) in each iteration

|V N
n (x)− V N−1

n (x)| = V N
n (x)− V N−1

n (x) (4.18)

where N → V N
n (x) is increasing.

Theorem 4. The rates of convergence in the time-homogeneous Wald-Bellman

equations (4.11) in each iteration are determined by

|V N
n (x)− V N−1

n (x)| ≤
∫

IRd

(P2−nG(y)−G(y))+ p
(

(N − 1)2−n; x; y
)

dy (4.19)

with V 0
n (x) = G(x), x ∈ IRd, n ≥ 0 and N ∈ IN .

Proof. Applying [29, Lemma 2.15] iteratively we obtain

V N
n (x)− V N−1

n (x) ≤ P2−n

(

V N−1
n (x)− V N−2

n (x)
)

≤ P2−nP2−n

(

V N−2
n (x)− V N−3

n (x)
)

= P2×2−n

(

V N−2
n (x)− V N−3

n (x)
)

...

≤ P(N−1)×2−n

(

V 1
n (x)−G (x)

)

≤ Ex

[

V 1
n

(

X(N−1)2−n

)

−G
(

X(N−1)2−n

)]
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=

∫

IRd

[

V 1
n (y)−G (y)

]

p
(

(N − 1)2−n; x; y
)

dy

=

∫

IRd

(P2−nG(y)−G(y))+ p
(

(N − 1)2−n; x; y
)

dy. (4.20)

where V 1
n (y) = max (G(x),P2−nG(x)). �

The upper bounds on the rates of convergence provides information on how many

iterations are expected to obtain an accurate value function. We extend Theorem

4 to the rate of convergence in the time-homogeneous Wald-Bellman equations with

infinite number of iterations under certain conditions.

Lemma 5. The rates of convergence in the time-homogeneous Wald-Bellman equa-

tions (4.11) with infinite number of iterations are determined by

|Vn(x)−V N−1
n (x)| ≤

∫

IRd

Kd (P2−nG(y)−G(y))+

(ǫ2−n)d/2

∞
∑

i=0

(N+i)−d/2 exp

(−2n|y−x|2
4A(N+i)

)

dy

(4.21)

if each of the derivatives of function a in (4.9) is bounded and a(x) ≥ ǫI for some ǫ > 0

where Kd < ∞ is a universal constant depending only on d and A = supx∈IRd ||a(x)||op
for x and y in IRd, d ≥ 3, n ≥ 0 and N ∈ IN .

Proof. The upper bound on the rates of convergence in Theorem 4 can be extended

to the infinite-horizon case

|Vn(x)− V N
n (x)| = Vn(x)− V N

n (x) = lim
k→∞

V N+k
n (x)− V N

n (x) (4.22)

for k ∈ IN where

V N+k
n (x)− V N

n (x)

= V N+k
n (x)− V N+k−1

n (x) + V N+k−1
n (x)− ...− V N+1

n (x) + V N+1
n (x)− V N

n (x)

=
k−1
∑

i=0

V N+i+1
n (x)− V N+i

n (x) (4.23)

which implies that

Vn(x)− V N
n (x) =

∞
∑

i=0

V N+i+1
n (x)− V N+i

n (x). (4.24)

By Theorem 4 we obtain

Vn(x)− V N
n (x) ≤

∞
∑

i=0

∫

IRd

(P2−nG(y)−G(y))+ p
(

(N + i)2−n; x; y
)

dy. (4.25)
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If each of the derivatives of function a in (4.9) is bounded and a(x) ≥ ǫI for some

ǫ > 0, then [31, Theorem 4.1.11] introduced an upper bound on the transition density

function which leads to

Vn(x)− V N
n (x) ≤

∞
∑

i=0

∫

IRd

Kd (P2−nG(y)−G(y))+

(ǫ(N + i)2−n)d/2
exp

( −|y − x|2
4A(N + i)2−n

)

dy

=

∫

IRd

Kd (P2−nG(y)−G(y))+

(ǫ2−n)d/2

∞
∑

i=0

(N+i)−d/2 exp

(−2n|y−x|2
4A(N+i)

)

dy.

(4.26)

The series in (4.26) is convergent for d ≥ 3 and divergent otherwise. �

The upper bounds in Theorem 4 and Lemma 5 converge to 0 as N increases to ∞
when the underlying process X is a diffusion process with starting point x ∈ IRd given

and fixed.

4. The identity in (4.10) shows that the discrete finite-horizon Wald-Bellman equa-

tions converge to the continuous infinite-horizon value function. However, the order

of the limits cannot be interchanged because the value function V N
n (x) is not neces-

sarily monotone in n when N ∈ IN and x ∈ IR are given and fixed. To overcome this

restriction we define the equivalent value function V̄ by

V̄ T
n (x) = V T2n

n (x) = sup
τ∈T T2n

n

ExG(Xτ ) (4.27)

for V N
n defined in (4.11), x ∈ IRd, n ≥ 0, T2n ∈ IN and T T2n

n = {0, 2−n, 2×2−n, ..., T }.
The value function V̄ T

n (x) is increasing in T and n when x is given and fixed.

Proposition 6. The value function V̄ T
n (x) defined in (4.27) converges to the

continuous infinite-horizon value function V (x) defined in (4.2) as n and T increase

to ∞. V̄ T
n (x) satisfies the identities

V (x) = lim
n→∞

lim
T→∞

V̄ T
n (x) = lim

T→∞
lim
n→∞

V̄ T
n (x) (4.28)

for x ∈ IRd, n ≥ 0 and T2n ∈ IN .

Proof. From (4.10) we claim that

V (x) = lim
n→∞

lim
N→∞

V N
n (x) = lim

n→∞
lim
T→∞

V̄ T
n (x). (4.29)
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By (4.11) and (4.27) we know that the value function V̄ T
n (x) is increasing in n and

T because for n ≥ 0, N ∈ IN , T N
n = { 0, 2−n, 2 × 2−n, ..., N × 2−n } we have T N

n ⊂
T N+1
n ⊂ T N+1

n+1 which implies that

V N
n (x) ≤ V N+1

n (x) ≤ V N+1
n+1 (x). (4.30)

Consequently, we obtain

V̄ T
n (x) = V T2n

n (x) ≤ V (T+1)2n

n (x) = V̄ T+1
n (x)

≤ V
(T+1)2n+1

n+1 (x) = V̄ T+1
n+1 (x) (4.31)

which leads to the identities

V (x) = lim
n→∞

lim
T→∞

V̄ T
n (x) = lim

T→∞
lim
n→∞

V̄ T
n (x) (4.32)

with x ∈ IRd, n ≥ 0 and T2n ∈ IN . �

5. The Wald-Bellman equations in (4.11) provide a constructive method to solve

finite-horizon discrete-time Mayer formulated optimal stopping problems. We now

show that the value function V̄ T
n in (4.36) converge to finite-horizon continuous-time

optimal stopping problems.

Theorem 7. The value function V̄ T
n (x) in (4.27) satisfies the identity

V̄ T (x) := sup
0≤τ≤T

ExG(Xτ ) = lim
n→∞

V̄ T
n (x) (4.33)

if the gain function G is continuous and satisfies (4.1) with x ∈ IRd, n ≥ 0 and

T2n ∈ IN .

Proof. (i). By the definition of V̄ T
n (x) in (4.27) we have

V̄ T (x) = sup
0≤τ≤T

ExG(Xτ ) ≥ V̄ T
n (x). (4.34)

for n ≥ 0. Since V̄ T
n (x) is increasing in n we obtain

V̄ T (x) = sup
0≤τ≤T

ExG(Xτ ) ≥ sup
n≥0

V̄ T
n (x) = lim

n→∞
V̄ T
n (x). (4.35)

(ii). Let τ ∈ [0, T ] be a stopping time of the underlying process X. Define τn by

τn = k2−n ∧ T = min
(

k2−n, T
)

if (k − 1)2−n ≤ τ < k2−n (4.36)
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for k ∈ { 1, 2, 3, ..., T2n + 1 }, T2n ∈ IN and n ≥ 0. Then τn is a stopping time of X

and τn ↓ τ as n → ∞ that τ = limn→∞ τn. τn is an element of the set of stopping

times of X defined by T T2n

n = {0, 2−n, 2× 2−n, ..., T } which implies that

ExG(Xτn) ≤ V̄ T
n (x) = sup

τ∈T T2n
n

ExG(Xτ ) (4.37)

for τn ∈ T T2n

n . SinceX is a continuous Markov process, by using that G is a continuous

function satisfying (4.1) and dominated convergence theorem, we obtain

lim
n→∞

ExG(Xτn) = ExG(Xτ ) ≤ lim
n→∞

V̄ T
n (x) (4.38)

for τ ∈ [0, T ]. By taking the supremum over the stopping time τ ∈ [0, T ] we obtain

sup
0≤τ<T

ExG(Xτ ) ≤ lim
n→∞

V̄ T
n (x). (4.39)

Combining the above results we conclude that

V̄ T (x) = sup
0≤τ≤T

ExG(Xτ ) = lim
n→∞

V̄ T
n (x) (4.40)

with x ∈ IRd, n ≥ 0 and T2n ∈ IN . �

6. We now consider the time-inhomogeneous Wald-Bellman equations. Define the

value function V̄ T
n by

V̄ T
n (t, x) = V T2n

n (t, x) = sup
τ∈T (T−t)2n

n

Et,xG(t+ τ,Xt+τ ) (4.41)

for V N
n defined in (4.16), x ∈ IRd, T2n ∈ IN , t ∈ T T2n−1

n , T T2n−1
n = { 0, 2−n, 2 ×

2−n, ..., T − 2−n } and T (T−t)2n

n = { 0, 2−n, 2 × 2−n, ..., T − t }. The value function

V̄ T
n (t, x) is increasing in T and n when t and x are given and fixed.

Theorem 8. The value function V̄ T
n (t, x) in (4.41) satisfies the identity

V T (t, x) := sup
0≤τ≤T−t

Et,xG(t+ τ,Xt+τ ) = lim
n→∞

V̄ T
n (t, x) (4.42)

if the gain function G is continuous and satisfies (4.12) with x ∈ IRd, n ≥ 0, T2n ∈ IN

and t ∈ [0, T ).

Proof. (i). By the definition of V̄ T
n (t, x) in (4.41) we have

V T (t, x) = sup
0≤τ≤T−t

Et,xG(t+ τ,Xt+τ ) ≥ V̄ T
n (t, x) (4.43)
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for n ≥ 0. Since V̄ T
n (t, x) is increasing in n we obtain

V T (t, x) = sup
0≤τ≤T−t

Et,xG(t+ τ,Xt+τ ) ≥ sup
n≥0

V̄ T
n (t, x) = lim

n→∞
V̄ T
n (t, x). (4.44)

(ii). Let τ ∈ [0, T−t] be a stopping time of the underlying process X with t ∈ [0, T )

and (T − t)2n ∈ IN . Define τn by

τn = k2−n ∧ T − t if (k − 1)2−n ≤ τ < k2−n (4.45)

for k ∈ { 1, 2, 3, ..., (T − t)2n + 1 }, (T − t)2n ∈ IN , t ∈ [0, T ) and n ≥ 0. Then τn is

a stopping time of X and τn ↓ τ as n → ∞ that τ = limn→∞ τn. τn is an element of

the set of stopping times of X defined by T (T−t)2n

n = {0, 2−n, 2× 2−n, ..., T − t} which

implies that

Et,xG(t+ τn, Xt+τn) ≤ V̄ T
n (t, x) = sup

τ∈T (T−t)2n
n

Et,xG(t+ τ,Xt+τ ) (4.46)

for τn ∈ T (T−t)2n

n . Since X is a continuous Markov process, by using that G is a

continuous function satisfying (4.12) and dominated convergence theorem, we obtain

lim
n→∞

Et,xG(t+ τn, Xt+τn) = Et,xG(t+ τ,Xt+τ ) ≤ lim
n→∞

V̄ T
n (t, x) (4.47)

for τ ∈ [0, T − t], (T − t)2n ∈ IN and t ∈ [0, T ). By taking the supremum over

τ ∈ [0, T − t] we obtain

V T (t, x) = sup
0≤τ≤T−t

Et,xG(t+ τ,Xt+τ ) ≤ lim
n→∞

V̄ T
n (t, x). (4.48)

Combining the above results we conclude that

V T (t, x) = sup
0≤τ≤T−t

Et,xG(t+ τ,Xt+τ ) = lim
n→∞

V̄ T
n (t, x) (4.49)

with x ∈ IRd, n ≥ 0, (T − t)2n ∈ IN and t ∈ [0, T ). �

In the case of infinite horizon, the time-inhomogeneous problems can be treated in

the same way as time-homogeneous problems by altering the remaining time (cf. [21,

p. 18]). Further details to Wald-Bellman equations could be found in [21, Chapter I]

and [29, Chapter 1-3].

7. The Wald-Bellman equations were first characterized implicitly in Wald’s sequen-

tial analysis [34] and then stated explicitly in [1, p. 219]. They are the simplest case of
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dynamic programming developed by Bellman [2]. Upper bounds on the rates of con-

vergence in the Wald-Bellman equations were characterized implicitly first by Ray [24]

and then Grigelionis and Shiryayev [10]. The same authors introduced the technique

of constructing the value functions associated with infinite-horizon continuous-time

Mayer formulated optimal stopping problems in [11].



Chapter 5

Quickest detection problems for

Ornstein-Uhlenbeck processes

In this chapter, we apply the results obtained in Chapter 4 to the Mayer formulated

optimal stopping problem introduced in Section 2.6. Numerical approximations of the

Wald-Bellman equations are obtained through Mathematica algorithms.

1. The value function V̂ in (2.93) can be rewritten as

V̂ (ϕ, x) = Ṽ (ϕ, x)− M̂(ϕ, x) (5.1)

where Ṽ is the equivalent optimal stopping problem defined by

Ṽ (ϕ, x) = inf
τ≥0

E
∞
ϕ,x

[

e−λτM̂(Φτ , Xτ )
]

(5.2)

with (ϕ, x) ∈ [0,∞)× IR for all stopping times τ of (Φ,X). By killing the sample path

of (Φ,X) at the rate λ (cf. [21, Subsection 5.4] and [21, Subsection 6.3]), we obtain

the identities

E
∞
ϕ,x

[

e−λtM̂(Φt, Xt)
]

= E
∞
ϕ,x

[

M̂(Φ̃t, X̃t)
]

(5.3)

e−λtp(t;ϕ, x; η, z) = p̃(t;ϕ, x; η, z) (5.4)

for t > 0 with (ϕ, x) and (η, z) in [0,∞) × IR where (Φ̃, X̃) is the killed process

starting at (ϕ, x) ∈ [0,∞)× IR. p is the transition density function of (Φ,X) and p̃ is

the transition density function of (Φ̃, X̃) under P∞
ϕ,x. The value function in (5.2) can

be simplified to

Ṽ (ϕ, x) = inf
τ≥0

E
∞
ϕ,x

[

M̂(Φ̃τ , X̃τ )
]

(5.5)

44
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with (ϕ, x) ∈ [0,∞)× IR for all stopping times τ of (Φ̃, X̃).

2. By the Wald-Bellman equations defined in (4.11) and Theorem 5, the value

function in (5.5) satisfy the identities

Ṽ (ϕ, x) = lim
n→∞

lim
T→∞

V̄ T2n

n (ϕ, x) = lim
T→∞

lim
n→∞

V̄ T2n

n (ϕ, x) (5.6)

where V̄ N
n is defined by

V̄ N
n (ϕ, x) = inf

τ∈T N
n

E
∞
ϕ,xM̂(Φ̃τ , X̃τ ) = min

(

M̂(ϕ, x),P2−nV̄ N−1
n (ϕ, x)

)

(5.7)

for V̄ 0
n (ϕ, x) = M̂(ϕ, x), (ϕ, x) ∈ [0,∞) × IR, n ≥ 0, T2n ∈ IN , N ∈ IN and T N

n =

{0, 2−n, 2× 2−n, ..., N × 2−n }. P2−n is the transition operator of (Φ̃, X̃) defined by

P2−nV̄ N−1
n (ϕ, x) = E

∞
ϕ,xV̄

N−1
n (Φ̃2−n , X̃2−n) = E

∞
ϕ,xe

λ2−n

V̄ N−1
n (Φ2−n , X2−n) (5.8)

for (ϕ, x) ∈ [0,∞)× IR.

3. The continuation set C and stopping set D (cf. [9, Section 7]) are defined by

C = {(ϕ, x) ∈ [0,∞)×IR | V̄ (ϕ, x) < M̂(ϕ, x)} (5.9)

D = {(ϕ, x) ∈ [0,∞)×IR | V̄ (ϕ, x) = M̂(ϕ, x)}. (5.10)

The first entry time of (Φ,X) into D defined by

τD = inf{ t ≥ 0 | (Φt, Xt) ∈ D}. (5.11)

is optimal in (5.5) (cf. [21, Theorem 1.7]). The optimal stopping boundary between

C and D is defined by

b(x) = inf{ϕ ≥ 0 | (ϕ, x) ∈ D} (5.12)

for x ∈ IR.

4. We recall that the transition density function p of (Φ,X) is the unique non-

negative solution to the Kolmogorov backward equation

pt(t;ϕ, x; η, z) = ILΦ,X(p)(t;ϕ, x; η, z) (5.13)

p(0+;ϕ, x; η, z) = δϕ,x(η, z) (weakly) (5.14)

under P∞
ϕ,x satisfying

∫∞
0

∫∞
−∞ p(t;ϕ, x; η, z) dη dz = 1 for t > 0 with (ϕ, x) and (η, z) in

[0,∞)×IR (cf. [8]) where ILΦ,X is the infinitesimal generator defined in (2.47) and δϕ,x
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is the Dirac measure at (ϕ, x). As an alternative method to compute the expectations

in the Wald-Bellman equations (5.7), we use Euler approximation (cf. [13, Chapter

2.1]) where

Φ2−n = ϕ+

∫ 2−n

0

λ(1 + Φs) ds+

∫ 2−n

0

β0XsΦs dBs

≈ ϕ+

∫ 2−n

0

λ(1 + ϕ) ds+

∫ 2−n

0

β0xϕ dBs

= ϕ+ λ(1 + ϕ)2−n + β0xϕB2−n (5.15)

X2−n ≈ x− β0x2
−n + B2−n (5.16)

for large n ∈ IN . The expectations associated with (Φ,X) can be approximated by

using the law of standard Brownian motion.

It remains our interest to find an explicit general solution to the Kolmogorov back-

ward equation (5.13)+(5.14). We suspect that the general solutions may not exist in

all cases. However, we may attempt to find the explicit solutions in some special cases

by adding some restrictions. For instance, we may first focus on one-dimensional cases

and assume that the coefficients are smooth and locally integrable with the infinitesi-

mal generator of the underlying Markov process satisfying Hörmander’s condition (cf.

[12]). In addition, instead of treating the problem through pure partial differential

equations methods, we may also embed probability theories because we could follow

the sample path of the underlying Markov process which provides additional informa-

tion to the classical partial differential equations methods that may lead to potential

further research.

5. We now introduce the algorithm of Wald-Bellman equations and the correspond-

ing numerical analysis. The computation is conducted in Mathematica language on

a computer with 64-bit Windows 10 system, CPU i5-11500 and 32 GB RAM. The

idea of Wald-Bellman equations is value iteration which starts with the corresponding

gain function. Consider the Wald-Bellman equations in (5.6)+(5.7), the iterations are

given by

V̄ 0
n (ϕ, x) = M̂(ϕ, x) (5.17)

V̄ 1
n (ϕ, x) = inf

τ∈T 1
n

E
∞
ϕ,xM̂(Φ̃τ , X̃τ ) = min

(

M̂(ϕ, x),P2−nV̄ 0
n (ϕ, x)

)

= min
(

M̂(ϕ, x),E∞
ϕ,xe

λ2−n

V̄ 0
n (Φ2−n , X2−n)

)
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= min

(

M̂(ϕ, x),

∫ ∞

0

∫ ∞

−∞
eλ2

−n

V̄ 0
n (η, z) p(2

−n;ϕ, x; η, z) dη dz

)

≈ min
(

M̂(ϕ, x),
∫ ∞

−∞
eλ2

−n

V̄ 0
n (ϕ+λ(1+ϕ)2−n+β0xϕy, x−β0x2

−n+y) p̂(2−n; y) dy
)

(5.18)

V̄ 2
n (ϕ, x) = inf

τ∈T 2
n

E
∞
ϕ,xM̂(Φ̃τ , X̃τ ) = min

(

M̂(ϕ, x),P2−nV̄ 1
n (ϕ, x)

)

≈ min
(

M̂(ϕ, x),
∫ ∞

−∞
eλ2

−n

V̄ 1
n (ϕ+λ(1+ϕ)2−n + β0xϕy, x−β0x2

−n+y) p̂(2−n; y)dy
)

(5.19)

...

V̄ T2n

n (ϕ, x) = inf
τ∈T T2n

n

E
∞
ϕ,xM̂(Φ̃τ , X̃τ ) = min

(

M̂(ϕ, x),P2−nV̄ T2n−1
n (ϕ, x)

)

≈ min
(

M̂(ϕ, x),
∫ ∞

−∞
eλ2

−n

V̄ T2n−1
n (ϕ+λ(1+ϕ)2−n+β0xϕy, x−β0x2

−n+y)p̂(2−n; y)dy
)

(5.20)

for (ϕ, x) ∈ [0,∞)× IR, n ≥ 0, T2n ∈ IN , N ∈ IN and T N
n = {0, 2−n, 2× 2−n, ..., N ×

2−n } where p̂ is the transition density function of standard Brownian motion defined

by

p̂(t; y) =
e−y2/(2t)

√
2πt

(5.21)

with t > 0 and y ∈ IR. We first construct V̄ 1
n based on (5.18) by using V̄ 0

n in (5.17)

and continue constructing value functions iteratively until V̄ T2n

n . Starting from V̄ 2
n , the

value functions are defined as nested integrals which cannot be computed explicitly.

To overcome this problem, we use interpolations functions to approximate the value

functions and decouple the integrals. We now illustrate an example code in Mathe-

matica where the idea is applicable to other similar problems in different programming

languages. Firstly, the coefficients are defined by

Code 1.

c=1.; time=1.; phistep=phiubound/100.;

xstep=(xubound-xlbound)/100.; h=0.5^10.; w=time/h;
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lambda=1. ;beta0=1.; xubound =1.; xlbound =-1.;

phiubound=2.; philbound=0.;

lossfunction[phi ,x ]:=phi*x2.+(x2.+1./lambda)/(1.+(2.*beta0)/lambda)

+1./c;

functionlist={lossfunction};

where c is the constant c ∈ IR+ in (2.4). time is T in (5.6). phiubound and

philbound are the upper and lower bounds of the interpolation domain for ϕ. Sim-

ilarly, xubound and xlbound are the upper and lower bounds of the interpolation

domain for x. h is 2−n in (5.7). w is the number of total iterations defined as T2n ∈ IN

in (5.6). lambda is λ > 0 in (2.1). beta0 is the mean-reversion rate β0 ∈ IR in

(2.3). phistep denotes the distance between the grids for interpolating ϕ. xstep

denotes the distance between the grids for interpolating x. lossfunction is M̂ in

(2.94). functionlist is a list of functions which stores the interpolated value func-

tions. After the value iterations, the functionlist should consists of approximated

value functions where functionlist = {V̄ 0
n , V̄

1
n , V̄

2
n , ..., V̄

T2n

n }. We now introduce the

algorithm of iterations

Code 2.

Do[Subscript[valuefunctionexact,n][phi ,x ]:=

Min[lossfunction[phi, x],

NIntegrate[

functionlist[[n]][lambda*(1.+phi)*h+beta0*x*phi*b+phi,-beta0*x*h+b+x]*

Exp[-lambda*h]/Sqrt[2.*Pi*h]*Exp[-0.5/h*b2.],{b,-0.5,0.5},
Method->{Automatic,"SymbolicProcessing"->0},AccuracyGoal->10]];

Subscript[table,n]=N[Flatten[

Table[{phi,x,Subscript[valuefunctionexact,n][phi, x]},
{phi,0,phiubound,phistep},{x,xlbound,xubound,xstep}],1]];

Subscript[valuefunction,n]=Interpolation[Subscript[table,n]];

functionlist=Insert[functionlist,Subscript[valuefunction,n],-1],{n,w}].

We recall that NIntegrate is a built-in function in Mathematica to compute in-

tegrals numerically. The option Method->{Automatic,"SymbolicProcessing"->0}
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is used to let Mathematica start numerical integrating without simplifying the inte-

grals which increases the computation speed of the algorithm. As mentioned above,

functionlist stores the generated value functions. The command functionlist[[n]]

calls the n-th element from the functionlist. Table is a built-in function which gen-

erates a List depending on the inputs. N is a built-in function which converts its

inputs into Float type data. Flatten is a built-in function which relax the nested

levels of the List. Interpolation is a built-in function which generates an interpo-

lation function based on the input List. Insert is a built-in function which insert an

element to the required position of the List.

The idea of Code 2 is to first construct an approximated value function called

Subscript[valuefunctionexact,n] based on the value function given by Wald-

Bellman equations in (5.7) with Euler approximations in (5.15)+(5.16). The integrals

for computing expectations are taken from −0.5 to 0.5 instead from −∞ to ∞ be-

cause the algorithm is computation intensive. Shrinking the integral interval helps

reduce the computation time. The marginal distribution of (ϕ, x) is approximated by

standard Brownian motion which has light tailed distribution, thus the approximation

should still remain reliable. Then we construct a list of data Subscript[table,n]

which has the form {{phi,x,Subscript[valuefunctionexact,n][phi,x]}} for all

phi=philbound, philbound+phistep, philbound+2*phistep, ..., phiubound and

x=xlbound, xlbound+xstep, xlbound+2*xstep, ..., xubound. The interpolation

function Subscript[valuefunction,n] is generated from the list of data

Subscript[table,n] where the default interpolation order in Mathematica is 3. The

interpolation function Subscript[valuefunction,n] is added to the last position of

the functionlist. The whole procedure is repeated T2n ∈ IN times to obtain V̄ T2n

n .

6. The generation of value functions V̄ N
n defined in (5.7) through Wald-Bellman

equations can be imaged as a surface put under the loss function M̂ defined in (2.94)

being pulled down towards the exact the value function Ṽ defined in (5.2). The more

iterations conducted in Wald-Bellman equations, the closer the approximated value

functions to Ṽ as shown in Figure 6. We recall in Theorem 5 that the finite-horizon

Wald-Bellman equations converge to the infinite-horizon optimal stopping problem as

the number of iterations goes to infinity. We generate the value function V̂ defined

in (5.1) according to V̄ N
n as shown in Figure 7. The generation of value functions
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V̂ defined in (5.1) through Wald-Bellman equations can be similarly imaged as a

surface put at 0 being pulled down. Figure 8 shows a comparison between the results

generated by free-boundary problem and Wald-Bellman equations. We recall that the

value function V̂ in (2.42) is non-positive because one could always choose to stop at

once. It is remarkable that the constructive solution through Wald-Bellman equations

is very reliable and close to the result generated through free-boundary problem. It is

also remarkable that the value functions generated by Wald-Bellman equations comply

with smooth fit (cf. [21, Chapter IV, 9.1] and [9, Section 7, 8]) at the touching points

between the value functions and loss function as shown in Figure 9 and 10.

7. We construct the optimal stopping boundary by the definition in (5.12). Recall

that for V̂ defined in (2.42), it is not optimal to stop when Φt <
λ
c
. The definitions of

continuation set C and stopping set D in (5.9)+(5.10) can be written as

C = {(ϕ, x) ∈ [0,∞)×IR | V̂ (ϕ, x) < 0} (5.22)

D = {(ϕ, x) ∈ [0,∞)×IR | V̂ (ϕ, x) = 0}. (5.23)

for V̂ defined in (5.1) (cf. [9, Section 7]). By observing Figure 7 and 8, we see that the

boundary b(x) between C and D satisfies the identity b(x) ≥ λ
c
. The optimal stopping

boundary b(x) is constructed in Mathematica as follows

Code 3.

boundary=Table[{phi/.FindRoot[functionlist[[w+1]][phi, x]]-

lossfunction[phi, x],{phi,lambda/c},AccuracyGoal->10,
PrecisionGoal -> 10], x},{x, xlbound, xubound, xstep}];.

The built-in function FindRoot finds the roots of the input equations starting

from a given data point. As we mentioned above, it is optimal to stop when ϕ ≥ λ/c.

Therefore, we choose lambda/c to be the starting points for FindRoot. The symbol

/. converts the result generated by FindRoot from Array to Float data type which

is necessary. The generated boundary contains the List of data points in the form

(b(x), x). The smoothness of optimal stopping boundary is controlled by the number of

grids used for interpolation as shown in Figure 11. The more grids used, the smoother

and more accurate the boundary would be. The construction of optimal stopping

boundaries along with Wald-Bellman equations can be imaged as a rope being pulled
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towards the true boundary as shown in Figure 12. The numerical approximation

converges from finite-horizon to the infinite-horizon optimal stopping boundary as the

iteration continues which complies with Theorem 5.

Figure 3. Numerical approximations of optimal stopping boundaries generated
through free-boundary problem in [9, Section 8] (yellow) and Wald-Bellman equations
in (5.6)+(5.7) (blue) with λ = 1, β0 = 1, T = 1 , c = 1 and σ = 1.

Figure 4. Simulated sample path of the Ornstein-Uhlenbeck process X with β0 = 1
and σ = 1.
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Figure 5. Kinematics of the process (Φ,X) associated with the sample path from
Figure 4 and locations of the optimal stopping boundaries from Figure 3.

Figure 6. Numerical approximations of value functions V̄ N
n defined in (5.7) generated

by Code 1 and 2 with 251 iterations (blue), 501 iterations (green) and 1024 iterations
(yellow). M̂ defined in (2.94) (red).
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Figure 7. Numerical approximations of value functions V̂ defined in (5.1) according
to V̄ N

n in Figure 6 with 251 iterations (blue), 501 iterations (green) and 1024 iterations
(yellow).

Figure 8. Numerical approximations of value functions V̂ according to Figure 6 with
1024 iterations (blue) and value function generated through finite difference method
in [9, Section 8] (yellow).
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Figure 9. Numerical approximations of value functions V̂ according to Figure 6 with
1024 iterations when ϕ ∈ [0, 2] and x = −1 (blue), x = −0.6 (yellow) and x = −0.2
(green).

Figure 10. Numerical approximations of value functions V̂ according to Figure 6
with 1024 iterations when x ∈ [−1, 1] and ϕ = 0 (blue), ϕ = 0.2 (brown), ϕ = 0.4
(purple), ϕ = 0.6 (red), ϕ = 0.8 (green) and ϕ = 1 (yellow).
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Figure 11. Numerical approximations of optimal stopping boundaries according to
Code 1, 2 and 3 when the number of grids used for interpolation are 50 (green), 100
(blue) and 200 (yellow) for ϕ and x.

Figure 12. Numerical approximations of optimal stopping boundaries according to
Code 1, 2 and 3 when the number of iterations are 10 (yellow), 20 (green), 30 (red),
50 (purple) and 1024 (blue).



Chapter 6

Applications to one-dimensional

Brownian motion problem

In this Chapter we consider aWald’s type optimal stopping problem for one-dimensional

Brownian motion with finite horizon of which the analytical solution is known in the

case of infinite horizon.

1. We consider the optimal stopping problem given by

V T (x) = sup
0≤τ≤T

Ex (|Xτ | − cτ) (6.1)

where τ is a stopping time of the Brownian motion X = (Xt)t≥0 satisfying Xt = x+Bt.

B = (Bt)t≥0 is a standard Brownian motion starting at 0 under Px for T > 0 and

c ∈ IR+. Px is the probability measure under which X0 = x ∈ IR.

2. We know that the process X2
t − t is a martingale for 0 ≤ t ≤ T . Consider a

stopped version of the process X2
t − t, we obtain

|X2
t∧τ − t ∧ τ | ≤ |X2

t∧τ |+ |t ∧ τ | = x2 + |2xBt∧τ |+ |B2
t∧τ |+ |t ∧ τ |

= x2 + |2x| max
0≤t≤τ

|Bt|+ max
0≤t≤τ

|B2
t |+ τ. (6.2)

If τ is a bounded stopping time such that τ ≤ M < ∞, then we have

|X2
t∧τ − t ∧ τ | ≤ x2 + |2x| max

0≤t≤M
|Bt|+ max

0≤t≤M
|B2

t |+M := Z. (6.3)

We claim Z is integrable. It is enough to show that

|2x| max
0≤t≤M

|Bt|+ max
0≤t≤M

|B2
t | (6.4)

56
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is integrable. We have

|2x|Ex

(

max
0≤t≤M

|Bt|
)

+ Ex

(

max
0≤t≤M

|B2
t |
)

≤ 2|x|
√

π

2
M + 4Ex(B

2
M)

= 2|x|
√

π

2
M + 4M < ∞ (6.5)

by applying Doob’s maximal inequality. By optional sampling theorem we have

Ex(X
2
τ − τ) = Ex(X

2
0 ) = x2 (6.6)

which shows that

Ex(X
2
τ ) = Ex(τ) + x2. (6.7)

In the general case when τ is not bounded such that Ex(τ) < ∞, we apply the

result in (6.7) to the bounded stopping time τn := τ ∧ n and conclude that:

Ex(X
2
τn) = Ex(τn) + x2 (6.8)

for n ≥ 1. By applying monotone convergence theorem to the right hand side of (6.8),

we have

lim
n→∞

Ex(τn) + x2 = Ex

(

lim
n→∞

τn

)

+ x2 = Ex(τ) + x2. (6.9)

For the left hand side of (6.8), note that

|X2
τn | = | (x+ Bτn)

2 | = |x2 + 2xBτn + B2
τn| ≤ x2 + 2|x| max

0≤t≤τn
|Bt|+ max

0≤t≤τn
B2

t := Z ′.

(6.10)

We claim that Z ′ is integrable. It is enough to show that

2|x| max
0≤t≤τn

|Bt|+ max
0≤t≤τn

B2
t (6.11)

is integrable.

|2x|Ex

(

max
0≤t≤τn

|Bt|
)

+ Ex

(

max
0≤t≤τn

B2
t

)

≤ 2C|x|
√

Ex(τn) + 4Ex(τn) (6.12)

by applying Doob’s maximal inequality with the best constant C equal to
√
2. By

applying monotone convergence theorem to both sides of (6.12) we have

|2x|Ex

(

max
0≤t≤τ

|Bt|
)

+ Ex

(

max
0≤t≤τ

B2
t

)

≤ 2C|x|
√

Ex(τ) + 4Ex(τ) < ∞ (6.13)

which shows that Z ′ is integrable. By applying dominated convergence theorem to the

left hand side of (6.8) we have

lim
n→∞

Ex(X
2
τn) = Ex

(

lim
n→∞

X2
τn

)

= Ex(X
2
τ ). (6.14)
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Combining the results from (6.9) and (6.14) we conclude that

Ex(X
2
τ ) = Ex(τ) + x2 (6.15)

for stopping time τ satisfying Ex(τ) < ∞. Applying the result in (6.15) to the optimal

stopping problem in (6.1) we have

V T (x) = sup
0≤τ≤T

Ex(|Xτ |−cX2
τ +cx2) = cx2+ sup

0≤τ≤T
Ex(|Xτ |−cX2

τ ) = cx2+Ṽ T (x) (6.16)

where we set

Ṽ T (x) = sup
0≤τ≤T

Ex(|Xτ | − cX2
τ ). (6.17)

The optimal stopping problem in (6.17) is equivalent to the optimal stopping problem

in (6.1).

3. The optimal stopping problem (6.17) has analytical solution in the case of infinite

horizon that is

Ṽ (x) = sup
0≤τ<∞

Ex(|Xτ | − cX2
τ ). (6.18)

By setting F (a) = a− ca2 for a ∈ IR, we have

Ṽ (x) = sup
0≤τ<∞

Ex(F (|Xτ |)). (6.19)

We could calculate the maximum of function F by setting F ′(a) = 1− 2ca = 0 which

implies a = 1
2c

and F ( 1
2c
) = 1

4c
. If we define a stopping time cccccc

4. We apply Wald-Bellman equations to the optimal stopping problems in (6.17).

By (4.11) and Theorem 7 we obtain the identities

Ṽ T (x) = lim
n→∞

V̄ T2n

n (x) (6.20)

where

V̄ N
n (x) = sup

τ∈T N
n

ExG(Xτ ) = max
(

G(x),P2−nV̄ N−1
n (x)

)

(6.21)

for V̄ 0
n (x) = G(x) = |x| − c x2, x ∈ IR, n ≥ 0, N ∈ IN , T2n ∈ IN and T N

n =

{0, 2−n, 2× 2−n, ..., N × 2−n }. P2−n is the associated transition operator of X defined

in (4.5).

5. The sections of the continuation set C and stopping set D are defined by

Ct = {x ∈ IR | Ṽ T−t(x) > G(x)} (6.22)

Dt = {x ∈ IR | Ṽ T−t(x) = G(x)} (6.23)
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for t ∈ [0, T ]. The first entry time τD defined by

τD = inf{ t ∈ [0, T ] | Xt ∈ Dt }. (6.24)

is the optimal stopping time for the problem (6.18) (cf. [21, Theorem 1.7]). The

optimal stopping boundary between C and D is defined by

b+(t) = inf{x ∈ IR+ | x ∈ Dt } (6.25)

b−(t) = sup{x ∈ IR− | x ∈ Dt }. (6.26)

for t ∈ [0, T ] where b+(t) denotes the positive part of the boundary and b−(t) denotes

the negative part of the boundary.

6. By Theorem 4, the rates of convergence in the Wald-Bellman equations in (6.21)

is given by

V̄ N
n (x)− V̄ N−1

n (x) ≤
∫ ∞

−∞
(P2−nG(y)−G(y))+ p

(

(N − 1)2−n; x; y
)

dy (6.27)

where P2−n is the associated transition operator ofX defined in (4.5) and p ((N − 1)2−n; x; y)

is the transition density function of Brownian motion given by

p
(

(N − 1)2−n; x; y
)

=

√

2n−1

π(N − 1)
exp

(

2n−1(x− y)2

1−N

)

(6.28)

with n ≥ 0, N ∈ IN , x and y in IR.

7. We now introduce the algorithm of Wald-Bellman equations in Mathematica and

the corresponding numerical analysis. The algorithm is similar to Chapter 5, but the

optimal stopping problem is now seeking for supremum. The marginal distribution of

one-dimensional Brownian motion is know explicitly, thus Euler approximation is not
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Figure 13. Simulated sample path of the Brownian motionX starting at 0. Numerical
approximations of optimal stopping boundaries generated by Wald-Bellman equations
for (6.20)+(6.21) with finite horizon for T = 1 and c = 1 (black). Analytical optimal
stopping boundaries for (2.62) with infinite horizon (blue).

Figure 14. Numerical approximations of rates of convergence in the Wald-Bellman
equations (blue) and the upper bound (yellow) with x = 0 and c = 1.
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used. The iterations for Wald-Bellman equations in (6.20)+(6.21) are given by

V̄ 0
n (x) = G(x) = |x| − cx2 (6.29)

V̄ 1
n (x) = sup

τ∈T 1
n

ExG(Xτ ) = max
(

G(x),P2−nV̄ 0
n (x)

)

= max
(

G(x),ExV̄
0
n (X2−n)

)

= max

(

G(x),

∫ ∞

−∞
V̄ 0
n (y) p(2

−n; x; y) dy

)

(6.30)

V̄ 2
n (x) = sup

τ∈T 2
n

ExG(Xτ ) = max
(

G(x),P2−nV̄ 1
n (x)

)

= max

(

G(x),

∫ ∞

−∞
V̄ 1
n (y) p(2

−n; x; y) dy

)

(6.31)

...

V̄ T2n

n (x) = sup
τ∈T T2n

n

ExG(Xτ ) = max
(

G(x),P2−nV̄ T2n−1
n (x)

)

= max

(

G(x),

∫ ∞

−∞
V̄ T2n−1
n (y) p(2−n; x; y) dy

)

(6.32)

for x ∈ IR, n ≥ 0, T2n ∈ IN , N ∈ IN and T N
n = {0, 2−n, 2 × 2−n, ..., N × 2−n } where

p is the transition density function of Brownian motion staring at x under Px defined

in (6.28) with t > 0 and y ∈ IR. We now illustrate an example code in Mathematica.

The coeffcients are defined by

Code 4.

h=0.5^8.; time=1.; w=time/h; c=1.;

gainfunction[x ]:=Abs[x]-c*Abs[x]^2; xubound= 1.;

xlbound=-1.; xsize=200.; xstep=(xubound-xlbound)/xsize;

functionlist={gainfunction}; intbound=Infinity;

where h denotes 2−n for n ≥ 0 in (6.21), time denotes T , w is the number of iter-

ations T2n ∈ IN , c is the constant c ∈ IR+ in (6.1), gainfunction is G in (6.21),

xlbound and xubound are the lower and upper bound for interpolation functions

respectively, xsize is the number of grids used for interpolation in each iteration

and intbound is used for the integration intervals to compute expectations in Wald-

Bellman equations. Since the problem is one-dimensional which is less computation
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intensive, we compute the expectation by integrating from −∞ to ∞ instead of trun-

cating the interval in Chapter 5. The generated value functions are stored as interpo-

lation functions in functionlist where functionlist = {V̄ 0
n , V̄

1
n , V̄

2
n , ..., V̄

T2n

n }. The
algorithm for generating value functions is similar to Code 2 whereas the problem is

now looking for a supremum instead of an infimum.

Code 5.

Do[Subscript[valuefunctionexact,n][x ]:=

Max[gainfunction[x], NIntegrate[

functionlist[[n]][b]/Sqrt[2.*Pi*h]*Exp[-0.5/h*(b− x)2.],

{b,-intbound,intbound},Method->{Automatic,"SymbolicProcessing"->0},
AccuracyGoal->10]];

Subscript[table,n]=N[Table[{x,Subscript[valuefunctionexact,n][x]},
{x,xlbound,xubound,xstep}]];
Subscript[valuefunction,n]=Interpolation[Subscript[table,n]];

functionlist=Insert[functionlist,Subscript[valuefunction,n],-1],{n,w}].

8. The construction of value functions V̄ N
n defined in (6.21) through Wald-Bellman

equations can be imaged as a rope put on the gain function G being pulled up towards

the exact value function with infinite horizon Ṽ defined in (6.18). The rates of con-

vergence in Figure 14 illustrates the speed that the rope being pulled up. The more

iterations conducted in Wald-Bellman equations, the closer the approximated value

functions to Ṽ as shown in Figure 15. The finite-horizon Wald-Bellman equations

converge to the infinite-horizon optimal stopping problem as the number of iterations

goes to infinity. Figure 16 and 17 illustrate the smooth fit of the value function at

touching points with the gain function.

9. The optimal stopping boundary is constructed based on the definitions in (6.25)

+(6.26). The example code in Mathematica is given as follows

Code 6.

boundarylistpositive=Table[{N[(w+1-k)*h],
N[x/.FindRoot[functionlist[[k]][x]-gainfunction[x], {x, 0.000001}]]},
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{k,w + 1}];

boundarylistnegative=Table[{N[(w+1-k)*h],
N[x/.FindRoot[functionlist[[k]][x]-gainfunction[x], {x, -0.000001}]]},
{k,w + 1}];

boundary=Flatten[{Reverse[boundarylistpositive],boundarylistnegative},
1];

We recall that Reverse is a built-in function which reverts the order of the List.

Since the optimal stopping boundary is defined as two parts in (6.25)+(6.26), we

generate the boundaries separately and combine them. boundarylistpositive is the

positive part defined in (6.25) with the form (t, b+(t)). boundarylistnegativ is the

negative part defined in (6.26) with the form (t, b−(t)). boundary is the combined List

of data points. The construction of optimal stopping boundaries along with Wald-

Bellman equations can be imaged as a rope being pulled towards the infinite-horizon

boundary as shown in Figure 18. The numerical approximation through Wald-Bellman

equations converges to the infinite-horizon optimal stopping boundary as the iteration

continues which complies with Theorem 6. The smoothness of the optimal stopping

boundary is controlled by the number of grids used for interpolation as shown in Figure

19. The more grids used, the smoother and more accurate the boundary would be.

10. Since the transition density function p is known, we can compute the upper

bound on rates of convergence in the Wald-Bellman equations explicitly based on

(6.27)+(6.28). We recall that the upper bounds on the rates of convergence in the

Wald-Bellman equations (6.21) are given by

V̄ N
n (x)− V̄ N−1

n (x) ≤
∫ ∞

−∞

[

V̄ 1
n (y)−G (y)

]

p
(

(N − 1)2−n; x; y
)

dy (6.33)

for p defined in (6.28). The Mathematica code for computing the rates of convergence

and the corresponding upper bounds when x = 0 are given as follows

Code 7.

ratetable=Table[{i,Abs[functionlist[[i]][0.]-functionlist[[i-1]][0.]]},
{i,3,w + 1}];

boundfunction[m ]:=NIntegrate[(functionlist[[2]][b]-
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gainfunction[b])/Sqrt[h*2*Pi*m]*Exp[-0.5/h*(b^2)/m],

{b,-intbound,intbound},
Method->{Automatic, "SymbolicProcessing"->0},AccuracyGoal->10];

boundlist=Table[N[{i+2, boundfunction[i]}], {i,1,w-1}];

where ratetable is a List containing the rates of convergence in the Wald-

Bellman equations when x = 0 namely V̄ N
n (0) − V̄ N−1

n (0). ratetable has the form

((N, V̄ N
n (0) − V̄ N−1

n (0))). boundfunction is a function which computes the upper

bounds in (6.29). boundlist is a List containing the upper bounds on the rates

of convergence in the Wald-Bellman equations when x = 0 which has the form

((N,
∫∞
−∞
[

V̄ 1
n (y)−G (y)

]

p ((N − 1)2−n; 0; y) dy)). n is given and fixed.

Figure 15. Numerical approximations of value functions with c = 1, n = 8 and
T = 2−n (yellow), T = 7 × 2−n (green), T = 25 × 2−n (red), T = 75 × 2−n (purple)
and T = 256× 2−n (brown). Gain function G (blue).
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Figure 16. Right touching points of value function with 256 iterations (yellow) and
gain function (blue) according to Figure 15.
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Figure 17. Left touching points of value function with 256 iterations (yellow) and
gain function (blue) according to Figure 15.
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Figure 18. Numerical approximations of optimal stopping boundaries with c = 1,
n = 8 and T = 70 × 2−n (blue), T = 140 × 2−n (green), T = 210 × 2−n (red) and
T = 256 × 2−n (yellow). Optimal stopping boundaries with infinite horizon (purple
and brown).

Figure 19. Numerical approximations of optimal stopping boundaries through Wald-
Bellman equations with number of grids used for interpolation 50 (blue), 100 (yellow)
and 200 (green).



Chapter 7

Applications to two-dimensional

diffusion process problem

In this Chapter, we consider a nonlinear time-inhomogeneous optimal stopping prob-

lem for one-dimensional Brownian motion with finite horizon. This optimal stopping

problem was introduced in [19, Example 3.2].

1. Consider the optimal stopping problem

V (t, x) = sup
0≤τ≤1−t

Et,x ((1− t− τ)Xt+τ ) (7.1)

where τ is a stopping time of the Brownian motion X = (Xt+s)0≤s≤1−t satisfying

Xt+s = x + Bs. B = (Bt)t≥0 is a standard Brownian motion starting at 0 under Pt,x.

Pt,x is the probability measure under which Xt = x ∈ IR for t ∈ [0, 1).

2. By Theorem 8 and (4.16), the Wald-Bellman equations satisfy the identities

V (t, x) = lim
n→∞

V̄ 2n

n (t, x) (7.2)

where

V̄ N
n (t, x) = sup

τ∈T N−t2n
n

Et,xG(t+ τ,Xt+τ ) = max
(

G(t, x),P2−nV̄ N
n (t, x)

)

(7.3)

for P2−nV̄ N
n ((N − 1)2−n, x) = E(N−1)2−n,xG(N2−n, XN2−n), t ∈ T N−1

n , n ≥ 0, 2n ∈ IN ,

x ∈ IR, N ∈ IN , T N−1
n = {0, 2−n, 2×2−n, ..., (N−1)×2−n } and T N−t2n

n = {0, 2−n, 2×
2−n, ..., (N − t2n) × 2−n }. P2−nV N

n is the transition operator defined in (4.17). The

gain function G is defined by G(t, x) = (1− t)x.

67
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3. The continuation set C and stopping set D are defined by

C = {(t, x) ∈ [0, 1)×IR | V (t, x) > G(t, x)} (7.4)

D = {(t, x) ∈ [0, 1)×IR | V (t, x) = G(t, x)}. (7.5)

The first entry time of (t,Xt)0≤t<1 into D defined by

τD = inf{ t ∈ [0, 1) | (t,Xt) ∈ D} (7.6)

is the optimal stopping time (cf. [21, Theorem 1.9]). The optimal stopping boundary

between C and D is defined by

b(t) = inf{x ∈ IR | (t, x) ∈ D} (7.7)

for t ∈ [0, 1).

4. We now introduce the algorithm of time-inhomogeneous Wald-Bellman equa-

tions in Mathematica and the corresponding numerical analysis. The idea of time-

inhomogeneous Wald-Bellman equations starts with the corresponding gain function

and continues backwardly. Consider the Wald-Bellman equations in (7.2)+(7.3), the

iterations are given by

V̄ 2n

n ((2n − 1)2−n, x) = sup
τ∈T 1

n

E(2n−1)2−n,xG
(

(2n − 1)2−n + τ,X(2n−1)2−n+τ

)

(7.8)

V̄ 2n

n (1− 2−n, x) = sup
τ∈T 1

n

E1−2−n,xG
(

1− 2−n + τ,X1−2−n+τ

)

= max
(

G(1− 2−n, x),P2−nV̄ 2n

n (1− 2−n, x)
)

= max
(

G(1− 2−n, x),E1−2−n,xG(1, X1)
)

= max
(

G(1− 2−n, x), 0
)

(7.9)

V̄ 2n

n ((2n − 2)2−n, x) = sup
τ∈T 2

n

E(2n−2)2−n,xG
(

(2n − 2)2−n + τ,X(2n−2)2−n+τ

)

V̄ 2n

n (1− 2× 2−n, x) = sup
τ∈T 2

n

E1−2×2−n,xG
(

1− 2× 2−n + τ,X1−2×2−n+τ

)

V̄ 2n

n (1− 2−n+1, x) = max
(

G(1− 2−n+1, x),P2−nV̄ 2n

n (1− 2−n+1, x)
)

= max
(

G(1− 2−n+1, x),E1−2−n+1,xV̄
2n

n (1− 2−n, X1−2−n)
)

= max

(

G(1− 2−n+1, x),

∫ ∞

−∞
V̄ 2n

n (1− 2−n, y) p(2−n; x; y) dy

)

(7.10)
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...

V̄ 2n

n (0, x) = sup
τ∈T 2n

n

E0,xG(τ,Xτ ) = max
(

G(0, x),P2−nV̄ 2n

n (0, x)
)

= max
(

G(0, x),E0,xV̄
2n

n (2−n, X2−n)
)

= max

(

G(0, x),

∫ ∞

−∞
V̄ 2n

n (2−n, y) p(2−n; x; y) dy

)

(7.11)

where p is the transition density function of Brownian motion defined in (6.28) with

2n ∈ IN , x ∈ IR and y ∈ IR. We first construct V̄ 2n

n ((2n − 1)2−n, x) based on the

definition in (7.3), then construct V̄ 2n

n ((2n − 2)2−n, x) by using results in (7.9) and

continue constructing value functions iteratively until V̄ 2n

n (0, x). We now illustrate an

example code in Mathematica. The coefficients are defined by

Code 8.

h=0.5^10.; time=1.; intbound = Infinity; xubound =1.; xlbound =-2.;

xsize = 200; xstep=(xubound-xlbound)/xsize; w=time/h;

gainfunction[t , x ]:=(1-t)*x; functionlist={ };

where time is the upper bound on time horizon in (7.1). xubound and xlbound are

the upper and lower bounds of the interpolation domain for x. h is 2−n in (7.3). w is

the number of total iterations defined as 2n ∈ IN in (7.2). intbound is used to control

the integral interval for the computation of expectations. xsize is the number of grids

used for interpolation. xstep denotes the distance between the grids for interpolating

x. gainfunction is G in (7.3). functionlist is a list of functions which stores

the interpolated value functions. After the value iterations, the functionlist should

consists of approximated value functions where functionlist =

{V̄ 2n

n ((2n − 1)2−n, x), V̄ 2n

n ((2n − 2)2−n, x), V̄ 2n

n ((2n − 3)2−n, x), ..., V̄ 2n

n (0, x)}. The dif-

ference between time-homogeneous and time-inhomogeneous is that the index N ∈ IN

, which denotes the number of iterations now, is also a coordinate of the value function.

The time coordinates of the value functions in functionlist is not a variable which

means that these value functions can be considered as one-dimensional functions in x.

The gain function G is two-dimensional. Therefore, we first generate the value func-

tion in (7.8), then construct the value functions iteratively by considering the value
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function as one-dimensional functions. The example code in Mathematica is given by

Code 9.

Subscript[valuefunctionexact, 1][x ]:=

Max[gainfunction[(w-1)*h,x],NIntegrate[

gainfunction[w*h,b]/Sqrt[2*Pi*h]*Exp[-0.5/h*(b-x)^2],

{b,-intbound,intbound},Method->{Automatic,"SymbolicProcessing"->0}
AccuracyGoal->10]];

Subscript[table,1]=N[

Table[x,Subscript[valuefunctionexact,1][x],x,xlbound,xubound,xstep]];

Subscript[valuefunction,1]=Interpolation[Subscript[table,1]];

functionlist=Insert[functionlist,Subscript[valuefunction,1],-1];.

The value function V̄ 2n

n ((2n − 1)2−n, x) has now been constructed. Although the

function has two coordinates, the time coordinate (2n − 1)2−n is given and fixed.

We then construct the remaining value functions iteratively by treating them as one-

dimensional functions. The example code in Mathematica is given by

Code 10.

AbsoluteTiming[Do[Subscript[valuefunctionexact,n][x ]:=

Max[gainfunction[(w-n)*h,x],NIntegrate[

functionlist[[n-1]][b]/Sqrt[2*Pi*h]*Exp[-0.5/h*(b-x)^2],

{b,-intbound,intbound},Method->{Automatic,"SymbolicProcessing"->0},
AccuracyGoal->10]];

Subscript[table,n]=N[

Table[x,Subscript[valuefunctionexact,n][x],{x,xlbound,xubound,xstep}]];

Subscript[valuefunction,n]=Interpolation[Subscript[table,n]];

functionlist=Insert[functionlist,Subscript[valuefunction,n],-1],

{n,2,w}]].

Since the time coordinates of the value functions in functionlist is fixed, we

need to restore the two-dimensional value function defined in (7.2)+(7.3). The idea to
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construct an interpolation function based on data grids generated by functionlist.

The example code in Mathematica is given as follows

Code 11.

valuetabletx=Flatten[Table[{(w-n+1)*h,x,functionlist[[n]][x]},
{x,xlbound,xubound,xstep},{n,w}],1];

valuetx=Interpolation[valuetabletx];

where valuetabletx is a List which stores data pairs with the form {{t, x, V̄ 2n

n (t, x)}}.
valuetx is the interpolated value function generated from valuetabletx. The value

function V̄ in (7.1) is non-negative because one could always to choose stop at the

terminal time as shown in Figure 21. The value functions generated by Wald-Bellman

equations comply with smooth fit at the touching points between the value functions

and the gain function.

5. We construct the optimal stopping boundary by the definition in (7.7). The

example code in Mathematica is given as follows

Code 12.

boundary= Table[{(w-k)*h,N[x/.FindRoot[
functionlist[[k]][x]-gainfunction[(w-k)*h,x], {x, 0.005},
AccuracyGoal->6,PrecisionGoal->6]]},{k,w}];.

The smoothness of optimal stopping boundary is controlled by the number of grids

used for interpolation as shown in Figure 22. The more grids used, the smoother the

boundary would be.
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Figure 20. Simulated sample path of the Brownian motion X starting at 0.2. Numer-
ical approximations of optimal stopping boundary generated by Wald-Bellman equa-
tions (6.20)+(6.21) with n = 10 and c = 1 (red). Analytical boundary t 7→ 0.63

√
1− t

introduced in [19, Example 3.2] (blue).

Figure 21. Numerical approximations of value function in (7.1) through Wald-
Bellman equations (7.2)+(7.3) according to code 8, 9, 10 and 11 with n = 10 and
c = 1 (yellow). Gain function (blue).
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Figure 22. Numerical approximations of optimal stopping boundaries through Wald-
Bellman equations according to Code 12 with the number of grids used for interpolation
50 (blue), 100 (yellow) and 200 (green).



Chapter 8

Applications to American put

option

In this section, we consider the optimal stopping problem associated with the arbitrage-

free price of the American put option with finite horizon (cf. [21, Chapter VII]).

The optimal stopping problem will be discussed both as time-homogeneous and time-

inhomogeneous problems.

1. The arbitrage-free price of the American put option with finite horizon is given

by

V T (t, x) = sup
0≤τ≤T−t

Et,x

(

e−rτ (K −Xt+τ )
+) (8.1)

for t ∈ [0, T ) and Xt = x ∈ IR+ under Pt,x where τ is a stopping time of the geometric

Brownian motion X = (Xt+s)s≥0 solving

dXt+s = rXt+s ds+ σXt+s dBs. (8.2)

B = (Bs)s≥0 is a standard Brownian motion starting at 0. T > 0 is the expiration

date (maturity). r > 0 is the interest rate. K > 0 is the strike (exercise) price. σ > 0

is the volatility coefficient. The strong solution of (8.2) under Pt,x is given by

Xt+s = x exp
(

σBs +
(

r − σ2/2
)

s
)

. (8.3)

2. Since X is a time-homogeneous Markov process, (8.1) could be reformulated as

a time-homogeneous optimal stopping problem (cf. [21, p. 16])

V T (t, x) = V̂ T−t(x) = sup
0≤τ≤T−t

Ex

(

e−rτ (K −Xτ )
+) (8.4)

74
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where the geometric Brownian motion X = (Xs)s≥0 now satisfies

dXs = rXs ds+ σXs dBs (8.5)

with the strong solution given by

Xs = x exp
(

σBs +
(

r − σ2/2
)

s
)

(8.6)

under Px with X0 = x ∈ IR+. The value function V̂ T−t(x) in (8.4) is equivalent to

V̂ T−t(x) = sup
0≤τ≤T−t

Ex

(

e−rτG(Xτ )
)

(8.7)

for gain function G defined by G(x) = (K−x)+. V̂ T−t is a time-homogeneous optimal

stopping problem.

3. By killing the sample path of X at rate r (cf. [21, Chapter 5.4 and Chapter 6.3])

we obtain the identities

Ex

[

e−rtG(Xt)
]

= Ex

[

G(X̃t)
]

(8.8)

e−rtp(t; x; y) = p̃(t; x; y) (8.9)

where X̃ is the killed geometric Brownian motion starting at x, p̃ is the transition

density function of the killed geometric Brownian motion X̃ and p is the transition

density function of the geometric Brownian motion X under Px. The optimal stopping

problem in (8.7) is simplified to

V̂ T−t(x) = sup
0≤τ≤T−t

Ex

(

G(X̃τ )
)

(8.10)

for stopping times τ of X̃.

4. By Theorem 7 and (4.11), the Wald-Bellman equations satisfy the identities

V̂ T−t(x) = lim
n→∞

V̄ (T−t)2n

n (x) (8.11)

where we set

V̄ N
n (x) = sup

τ∈T N
n

ExG(X̃τ ) = max
(

G(x),P2−nV̄ N−1
n (x)

)

(8.12)

for V̄ 0
n (x) = G(x), x ∈ IR+, n ≥ 0, t ∈ [0, T ), (T − t)2n ∈ IN , N ∈ IN and T N

n =

{0, 2−n, 2× 2−n, ..., N × 2−n }. P2−n is the transition operator of X̃ defined by

P2−nV̄ N−1
n (x) = ExV̄

N−1
n (X̃2−n) = Exe

r2−n

V̄ N−1
n (X2−n). (8.13)
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5. The sections of the continuation set C and the stopping set D are defined by

Ct = {x ∈ (0,∞) | V̂ T−t(x) > G(x)} (8.14)

Dt = {x ∈ (0,∞) | V̂ T−t(x) = G(x)} (8.15)

for t ∈ [0, T ). The first entry time of the process X into D defined by

τD = inf{ t ∈ [0, T ) | Xt ∈ Dt } (8.16)

is optimal in (8.10) (cf. [21, Theorem 1.7]). The optimal stopping boundary between

C and D is defined by

b(t) = sup{x ∈ (0,∞) | x ∈ Dt } (8.17)

for t ∈ [0, T ).

6. By Theorem 4, the rates of convergence in the Wald-Bellman equations (8.12)

are given by

V̄ N
n (x)− V̄ N−1

n (x) ≤ Ex

(

V̄ 1
n (X̃(N−1)2−n)−G(X̃(N−1)2−n)

)

= e−r(N−1)2−n

Ex

(

V̄ 1
n (XN2−n)−G(XN2−n)

)

= e−r(N−1)2−n

Ex (P2−nG(XN2−n)−G(XN2−n))+ (8.18)

for V̄ 1
n (x) = max(G(x),P2−nG(x)), x ∈ IR+, n ≥ 0, N ∈ IN and r > 0.

7. We now introduce the algorithm of the time-homogeneous Wald-Bellman equa-

tions in Mathematica and the corresponding numerical analysis. The algorithm is

similar to Chpater 10. The iterations for Wald-Bellman equations in (8.11)+(8.12)

are given by

V̄ 0
n (x) = G(x) = (K − x)+ (8.19)

V̄ 1
n (x) = sup

τ∈T 1
n

ExG(X̃τ ) = max
(

G(x),P2−nV̄ 0
n (x)

)

= max
(

G(x),ExV̄
0
n (X̃2−n)

)

= max

(

G(x),

∫ ∞

−∞
V̄ 0
n

(

x exp
(

σy + (r − σ2/2)2−n
))

p(2−n; y) dy

)

(8.20)

V̄ 2
n (x) = sup

τ∈T 2
n

ExG(X̃τ ) = max
(

G(x),P2−nV̄ 1
n (x)

)

= max

(

G(x),

∫ ∞

−∞
V̄ 1
n

(

x exp
(

σy + (r − σ2/2)2−n
))

p(2−n; y) dy

)

(8.21)

...
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V̄ (T−t)2n

n (x) = sup
τ∈T (T−t)2n

n

ExG(X̃τ ) = max
(

G(x),P2−nV̄ (T−t)2n−1
n (x)

)

= max

(

G(x),

∫ ∞

−∞
V̄ (T−t)2n−1
n

(

x exp
(

σy+(r−σ2/2)2−n
))

p(2−n; y) dy

)

(8.22)

for x ∈ IR+, y ∈ IR, n ≥ 0, t ∈ [0, T ), (T − t)2n ∈ IN , N ∈ IN and T N
n = {0, 2−n, 2×

2−n, ..., N × 2−n } where p is the transition density function of standard Brownian

motion staring at 0 under Px defined by

1√
2πt

exp

(

−y2

t

)

(8.23)

with t > 0 and y ∈ IR.

8. We illustrate an example code in Mathematica. The coefficients are defined by

Code 13.

h=0.5^12.; time=1.; w=time/h; r=0.1; k=1.; sigma=1.;

gainfunction[x ]:=Max[k-x,0.]; binf=k/(1.+sigma^2./(2.*r));

xubound= 2.; xlbound=0.; xsize=100.; xstep=(xubound-xlbound)/xsize;

functionlist={gainfunction}; intbound=Infinity;

Subscript[c,2]=(sigma^2./(2.*r))*(binf^(1.+(2.*r)/sigma^2.));

valuefunctionth=Piecewise[

{{Subscript[c,2]*x^((-2.*r)/sigma^2.)),x >= binf},{k-x,0.<=x<binf}}];

where h denotes 2−n for n ≥ 0 in (8.12), time denotes T . w is the number of

iterations T2n ∈ IN . r is the interest rate. k is the strike price. sigma is the volatil-

ity. gainfunction is G in (8.7). binf is the optimal stopping boundary with infinite

horizon (cf. [21, Chapter VII]). xlbound and xubound are the lower and upper bound

for interpolation functions respectively. xsize is the number of grids used for inter-

polation in each iteration. intbound is used for the integration intervals to compute

expectations in Wald-Bellman equations. valuefunctionth is the explicit value func-

tion with infinite horizon (cf. [21, Chapter VII]). Since the problem is one-dimensional

which is less computation intensive, we compute the expectation by integrating from

−∞ to ∞. The generated value function are stored as interpolation functions in
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functionlist where functionlist = {V̄ 0
n , V̄

1
n , V̄

2
n , ..., V̄

T2n

n }. The value iterations in

Mathematica are given as follows

Code 14.

Do[Subscript[valuefunctionexact,n][x ]:=

Max[gainfunction[x],

NIntegrate[

Exp[-r*h]*

functionlist[[n]][x*Exp[sigma*b+(r-(sigma^2)/2)*h]]/

Sqrt[2*Pi*h]*Exp[-0.5/h*b^2],{b,-intbound,intbound},
Method->{Automatic,"SymbolicProcessing"->0},AccuracyGoal->10]];

Subscript[table,n]=N[Table[{x,Subscript[valuefunctionexact,n][x]},
{x,xlbound,xubound,xstep}]];
Subscript[valuefunction,n]=Interpolation[Subscript[table,n]];

functionlist=Insert[functionlist,Subscript[valuefunction,n],-1],{n,w}].

We now restore the two-dimensional value function defined in (8.1) based on the

identity in (8.4). The example code in Mathematica is given as follows

Code 15.

valuetabletx=Flatten[Table[{(w-n+1)*h,x,functionlist[[n]][x]},
{x,xlbound,xubound,xstep},{n,w}],1];

valuetx=Interpolation[valuetabletx];

where valuetabletx is a List which stores data pairs with the form

{{t, x, V̄ (T−t)2n

n (t, x)}}. valuetx is the interpolated value function generated from

valuetabletx. The construction of value functions V̄ N
n defined in (8.12) through

Wald-Bellman equations can be imaged as a rope put on the gain function G being

pulled up towards the explicit value function with infinite horizon (cf. [21, Chapter

VII]). The rates of convergence in Figure 24 illustrates the speed that the rope being

pulled up. The more iterations conducted in Wald-Bellman equations, the closer the

approximated value functions to the explicit value function as shown in Figure 25. The

finite-horizon Wald-Bellman equations converge to the infinite-horizon optimal stop-

ping problem as the number of iterations goes to infinity. Figure 25 and 26 illustrate
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the smooth fit of the value function at touching points with the gain function.

9. The optimal stopping boundary is constructed based on the definitions in (8.17).

The example code in Mathematica is given as follows

Code 16.

boundarylist=Table[{N[(w+1-i)*h],
N[x/.FindRoot[functionlist[[i]][x]-gainfunction[x],{x,0.999999}]]},
{i,w + 1}];

The construction of optimal stopping boundaries along with Wald-Bellman equa-

tions can be imaged as a rope being pulled towards the infinite-horizon boundary as

shown in Figure 27. The numerical approximation through Wald-Bellman equations

converges to the infinite-horizon optimal stopping boundary as the iteration continues

which complies with Proposition 6. The smoothness of optimal stopping boundary is

controlled by the number of grids used for interpolation as shown in Figure 28. The

more grids used, the smoother and more accurate the boundary would be.

10. We now consider (8.1) as a time-inhomogeneous optimal stopping problem.

Since the gain function in (8.1) does not have time coordinate t, the value function

V T in (8.1) can be modified as

V T (t, x) = ert Ṽ T (t, x) (8.24)

where we set

Ṽ T (t, x) = sup
0≤τ≤T−t

Et,xĜ (t+ τ,Xt+τ ) . (8.25)

The gain function Ĝ is defined by Ĝ(t, x) = e−rt (K − x)+ for t ∈ [0, T ), x ∈ IR+ and

r > 0. The problem in (8.25) is time-inhomogeneous.

11. By Theorem 8 and (4.16), the time-inhomogeneous Wald-Bellman equations

satisfy the identities

Ṽ T (t, x) = lim
n→∞

V̆ T2n

n (t, x) (8.26)

where we set

V̆ N
n (t, x) = sup

τ∈T N−t2n
n

Et,xĜ(t+ τ,Xt+τ ) = max
(

Ĝ(t, x),P2−nV̆ N
n (t, x)

)

(8.27)
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for t ∈ T N−1
n , n ≥ 0, T2n ∈ IN , N ∈ IN , T N−1

n = {0, 2−n, 2× 2−n, ..., (N − 1)× 2−n }
and T N−t2n

n = {0, 2−n, 2× 2−n, ..., (N − t2n)× 2−n } where P2−nV̆ N
n ((N − 1)2−n, x) =

E(N−1)2−n,xĜ(N2−n, XN2−n). P2−n is the transition operator defined by

P2−nV̆ N
n (t, x) = Et,xV̆

N
n (t+ 2−n, Xt+2−n). (8.28)

12. The continuation set Ĉ and stopping set D̂ are defined by

Ĉ = {(t, x) ∈ [0, T )×IR | Ṽ T (t, x) > Ĝ(t, x)} (8.29)

D̂ = {(t, x) ∈ [0, T )×IR | Ṽ T (t, x) = Ĝ(t, x)}. (8.30)

The first entry time of (t,Xt)0≤t<T into D̂ defined by

τ̂D = inf{ t ∈ [0, T ) | (t,Xt) ∈ D̂} (8.31)

is the optimal stopping time in (8.25) (cf. [21, Theorem 1.9]). The optimal stopping

boundary between Ĉ and D̂ is defined by

b̂(t) = sup{x ∈ (0,∞) | (t, x) ∈ D̂} (8.32)

for t ∈ [0, T ).

13. The algorithm is similar to Chapter 6. Consider the Wald-Bellman equations

in (8.26)+(8.27), the iterations are given by

V̆ T2n

n ((T2n − 1)2−n, x) = sup
τ∈T 1

n

E(T2n−1)2−n,xĜ
(

(T2n − 1)2−n + τ,X(T2n−1)2−n+τ

)

(8.33)

V̆ T2n

n (T − 2−n, x) = sup
τ∈T 1

n

ET−2−n,xĜ
(

T − 2−n + τ,XT−2−n+τ

)

= max
(

Ĝ(T − 2−n, x),P2−nV̆ T2n

n (T − 2−n, x)
)

= max
(

Ĝ(T − 2−n, x),Et−2−n,xĜ(T,XT )
)

= max
(

Ĝ(T − 2−n, x),
∫ ∞

−∞
Ĝ
(

T, x exp
(

σy + (r − σ2/2)2−n
))

p(2−n; y) dy
)

(8.34)

V̆ T2n

n ((T2n − 2)2−n, x) = sup
τ∈T 2

n

E(T2n−2)2−n,xĜ
(

(T2n − 2)2−n + τ,X(T2n−2)2−n+τ

)

V̆ T2n

n (T − 2× 2−n, x) = sup
τ∈T 2

n

ET−2×2−n,xĜ
(

T − 2× 2−n + τ,XT−2×2−n+τ

)
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V̆ T2n

n (T − 2−n+1, x) = max
(

Ĝ(T − 2−n+1, x),P2−nV̆ T2n

n (T − 2−n+1, x)
)

= max
(

Ĝ(T − 2−n+1, x),ET−2−n+1,xV̆
T2n

n (T − 2−n, XT−2−n)
)

= max
(

Ĝ(T − 2−n+1, x),
∫ ∞

−∞
V̆ T2n

n

(

T−2−n, x exp
(

σy+(r−σ2/2)2−n
))

p(2−n; y) dy
)

(8.35)

...

V̆ T2n

n (0, x) = sup
τ∈T T2n

n

E0,xG(τ,Xτ ) = max
(

Ĝ(0, x),P2−nV̆ T2n

n (0, x)
)

= max
(

Ĝ(0, x),E0,xV̆
T2n

n (2−n, X2−n)
)

= max
(

Ĝ(0, x),
∫ ∞

−∞
V̆ T2n

n

(

2−n, x exp
(

σy + (r − σ2/2)2−n
))

p(2−n; y) dy
)

(8.36)

where p is the transition density function of Brownian motion defined in (6.28) with

t > 0, 2n ∈ IN , x ∈ IR and y ∈ IR. We first construct V̄ 2n

n ((2n− 1)2−n, x) based on the

definitions in (7.3), then construct V̄ 2n

n ((2n − 2)2−n, x) by using results in (7.9) and

continue constructing value functions iteratively until V̄ 2n

n (0, x). We now illustrate an

example code in Mathematica. The coefficients are defined by

Code 17.

h=0.5^12.; time=1.; w=time/h; r=0.1; k=1.; sigma=1.;

gainfunction[x ]:=Exp[-r*t]*Max[k-x,0.]; binf=k/(1.+sigma^2./(2.*r));

xubound= 2.; xlbound=0.; xsize=100.; xstep=(xubound-xlbound)/xsize;

functionlist={gainfunction}; intbound=Infinity;

Subscript[c,2]=(sigma^2./(2.*r))*(binf^(1.+(2.*r)/sigma^2.));

valuefunctionth=Piecewise[

{{Subscript[c,2]*x^((-2.*r)/sigma^2.)),x >= binf},{k-x,0.<=x<binf}}];

where the coefficients are defined similar to Code 13, but gainfunction is Ĝ in

(8.25). functionlist is a list of functions which stores the interpolated value func-

tions. After the value iterations, the functionlist should consists of approximated
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value functions where functionlist =

{V̆ T2n

n ((T2n − 1)2−n, x), V̆ T2n

n ((T2n − 2)2−n, x), V̆ T2n

n ((T2n − 3)2−n, x), ..., V̆ T2n

n (0, x)}.
We first generate the value function in (8.33), then construct the value functions it-

eratively by considering the value function as one-dimensional functions similarly to

Code 9. The example code in Mathematica is given by

Code 18.

Subscript[valuefunctionexact, 1][x ]:=

Max[gainfunction[(w-1)*h,x],NIntegrate[

gainfunction[w*h,x*Exp[sigma*b+(r-(sigma^2)/2)*h]]/

Sqrt[2*Pi*h]*Exp[-0.5/h*b^2],{b,-intbound,intbound},
Method->{Automatic,"SymbolicProcessing"->0},
AccuracyGoal->10]];

Subscript[table,1]=N[

Table[x,Subscript[valuefunctionexact,1][x],x,xlbound,xubound,xstep]];

Subscript[valuefunction,1]=Interpolation[Subscript[table,1]];

functionlist=Insert[functionlist,Subscript[valuefunction,1],-1];.

The value function V̆ T2n

n ((T2n − 1)2−n, x) has now been constructed. We then

construct the remaining value functions iteratively by treating them as one-dimensional

functions. The example code in Mathematica is given by

Code 19.

Do[Subscript[valuefunctionexact,n][x ]:=

Max[gainfunction[(w-n)*h,x],NIntegrate[

functionlist[[n-1]][x*Exp[sigma*b+(r-(sigma^2)/2)*h]]/

Sqrt[2*Pi*h]*Exp[-0.5/h*b^2],{b,-intbound,intbound},
Method->{Automatic,"SymbolicProcessing"->0},
AccuracyGoal->10]];

Subscript[table,n]=N[

Table[x,Subscript[valuefunctionexact,n][x],{x,xlbound,xubound,xstep}]];

Subscript[valuefunction,n]=Interpolation[Subscript[table,n]];
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functionlist=Insert[functionlist,Subscript[valuefunction,n],-1],{n,2,w}].

We need to restore the two-dimensional value function defined in (7.2)+(8.25). The

idea is similar to Code 11. The example code in Mathematica is given as follows

Code 20.

valuetabletx=Flatten[Table[{(w-n+1)*h,x,functionlist[[n]][x]},
{x,xlbound,xubound,xstep},{n,w}],1];

valuetx=Interpolation[valuetabletx];

where valuetabletx is a List which stores data pairs with the form {{t, x, V̆ T2n

n (t, x)}}.
valuetx is the interpolated value function generated from valuetabletx. The value

functions generated with time-homogeneous and time-inhomogeneous Wald-Bellman

equations are identical. The value functions should in fact be strictly positive which

is different from Figure 25. This is caused by the interpolating technique. The inter-

polated value functions could be more accurate by enlarging the interpolation interval

and the computation time would be increased as well. If the value function is not of

the interest, and the optimal stopping boundary is more important, then we could

only focus on the touching points between the value functions and gain functions.

Smooth fit at the touching points between the value functions and the gain function

is persisted.

14. We construct the optimal stopping boundary by the definition in (8.32). The

example code in Mathematica is given as follows

Code 21.

boundary= Table[{(w-k)*h,N[x/.FindRoot[
functionlist[[k]][x]-gainfunction[(w-k)*h,x], {x, 0.005},
AccuracyGoal->6,PrecisionGoal->6]]},{k,w}];.

The smoothness of optimal stopping boundary is controlled by the number of grids

used for interpolation as shown in Figure 28. The more grids used, the smoother the

boundary would be.
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Figure 23. Simulated sample path of the geometric Brownian motion X starting
at 0.5. Numerical approximations of optimal stopping boundary generated by Wald-
Bellman equations in (8.11)+(8.12) and (8.26)+(8.27) with T = 1, r = 0.1, k = 1,
n = 12 and σ = 1 (blue). Numerical approximations of optimal stopping boundary
generated by nonlinear integral equation introduced in [21, Chapter 25.2] (red). As-
sociated analytical boundary with infinite horizon introduced in [21, Chapter 25.1]
(yellow).

Figure 24. Numerical approximations of rates of convergence in the Wald-Bellman
equations (blue) and the upper bound (yellow) in (8.18) x = 0.94, T = 1, r = 0.1,
k = 1, n = 12 and σ = 1.
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Figure 25. Numerical approximations of value functions in (8.10) through Wald-
Bellman equations in (8.11)+(8.12) with T = 1, r = 0.1, k = 1, σ = 1, n = 12 and
T − t = 100× 2−n (yellow), T − t = 700× 2−n (green), T − t = 1800× 2−n (red) and
T − t = 4096× 2−n (purple). Gain function G in (8.10) (blue). Value function in (8.1)
with infinite horizon (brown) (cf. [21, Chapter VII]).

Figure 26. Numerical approximations of value function (yellow) and gain function
(blue) in (8.25) according to Wald-Bellman equations in (8.26)+(8.27) with T = 1,
r = 0.1, k = 1, n = 12 and σ = 1.
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Figure 27. Numerical approximations of optimal stopping boundaries in (8.17) and
(8.32) through Wald-Bellman equations in (8.11)+(8.12) and (8.26)+(8.27) with r =
0.1, k = 1, σ = 1, n = 12 and T = 700 × 2−n (green), T = 1800 × 2−n (red),
T = 3000×2−n (yellow) and T = 4096×2−n (blue). Optimal stopping boundary with
infinite horizon (purple) (cf. [21, Chapter VII]).

Figure 28. Numerical approximations of optimal stopping boundaries through Wald-
Bellman equations according to Code 12 with the number of grids used for interpolation
50 (yellow), 80 (blue) and 100 (green).



Chapter 9

Quickest detection problems for

Bessel processes

In this chapter, we consider the Mayer formulated optimal stopping problem which

appeared in the quickest detection problems for Bessel processes in [14, Section 6]. The

problem considered the movement of a particle which initially follows δ0-dimensional

Brownian motion and then after some random/unobservable time θ becomes δ1-dimensional

Brownian motion with δ0 ≥ 2 and δ1 > δ0. It is assumed that only the distance of the

particle to the origin is being observed, and the problem is to detect the time θ at which

the particle changes its dimension as accurately as possible. The random/unobservable

time θ is assumed to be (i) exponentially distributed and (ii) independent from the ini-

tial motion of the particle. By proper transformations introduced in [14], the quickest

detection problem is formulated as a two-dimensional optimal stopping problem.

1. We consider the two-dimensional optimal stopping problem given by

V (ϕ, x) = inf
τ≥0

Eϕ,x

[

e−λτM(Φτ , Xτ )
]

(9.1)

for (ϕ, x) ∈ [0,∞)×(0,∞) and λ > 0. τ is a stopping time of the two-dimensional

strong Markov process (Φ,X) satisfying the system of stochastic differential equations

dΦt = λ (1+Φt) dt+
1

2
(δ1 − δ0)

Φt

Xt

dBt (9.2)

dXt =
δ0 − 1

2Xt

dt+ dBt (9.3)

where δ0 ≥ 2 is the dimension of the Brownian motion before the change and δ1 > δ0

is the dimension after the change with t > 0 and Pϕ,x ((Φ0, X0) = (ϕ, x)) = 1. B =

87
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(Bt)t≥0 is a standard Brownian motion starting at 0 under Pϕ,x. X is known to be a

Bessel process. M(ϕ, x) is a solution of the partial differential equation

(ILΦ,XM − λM)(ϕ, x) = ϕ− λ

c
(9.4)

with c > 0 given and fixed where ILΦ,X is the infinitesimal generator of the strong

Markov process (Φ,X) given by

ILΦ,X = λ (1+ϕ) ∂ϕ +
δ0 − 1

2x
∂x +

1

2
(δ1 − δ0)

ϕ

x
∂ϕx +

1

8
(δ1 − δ0)

2ϕ
2

x2
∂ϕϕ +

1

2
∂xx. (9.5)

An explicit expression of M is derived in [14, Section 5] where

M(ϕ, x) =
1

δ1

[

(1 + ϕ)x2 +
δ0
λ

+
δ1
c

]

(9.6)

with (ϕ, x) ∈ [0,∞)×(0,∞).

2. By killing the sample path of (Φ,X) at the rate λ > 0, we obtain the identities

Eϕ,x

[

e−λtM(Φt, Xt)
]

= Eϕ,x

[

M(Φ̃t, X̃t)
]

(9.7)

e−λtp(t;ϕ, x; η, z) = p̃(t;ϕ, x; η, z) (9.8)

for t > 0 with (ϕ, x) and (η, z) in [0,∞) × (0,∞) where (Φ̃, X̃) is the killed process

starting at (ϕ, x) ∈ [0,∞)× (0,∞). p is the transition density function of (Φ,X) and

p̃ is the transition density function of (Φ̃, X̃) under Pϕ,x. The value function in (9.1)

can be simplified to

V (ϕ, x) = inf
τ≥0

Eϕ,x

[

M(Φ̃τ , X̃τ )
]

(9.9)

for (ϕ, x) ∈ [0,∞)× (0,∞) and stopping times τ of (Φ̃, X̃).

3. By the Wald-Bellman equations in (4.11) and Proposition 6, the value function

in (9.9) satisfy the identities

V (ϕ, x) = lim
n→∞

lim
T→∞

V̄ T2n

n (ϕ, x) = lim
T→∞

lim
n→∞

V̄ T2n

n (ϕ, x) (9.10)

where we set

V̄ N
n (ϕ, x) = inf

τ∈T N
n

Eϕ,xM(Φ̃τ , X̃τ ) = min
(

M(ϕ, x),P2−nV̄ N−1
n (ϕ, x)

)

(9.11)

for V̄ 0
n (ϕ, x) = M(ϕ, x), (ϕ, x) ∈ [0,∞)× (0,∞), n ≥ 0, T2n ∈ IN , N ∈ IN and

T N
n = {0, 2−n, 2× 2−n, ..., N × 2−n }. P2−n is the transition operator of (Φ̃, X̃) defined

by

P2−nV̄ N−1
n (ϕ, x) = Eϕ,xV̄

N−1
n (Φ̃2−n , X̃2−n) = Eϕ,xe

λ2−n

V̄ N−1
n (Φ2−n , X2−n) (9.12)
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for (ϕ, x) ∈ [0,∞)× (0,∞).

4. The continuation set C and stopping set D (cf. [14, Section 8]) are defined by

C = {(ϕ, x) ∈ [0,∞)×(0,∞) | V (ϕ, x) < M(ϕ, x)} (9.13)

D = {(ϕ, x) ∈ [0,∞)×(0,∞) | V (ϕ, x) = M(ϕ, x)}. (9.14)

The first entry time of (Φ,X) into D defined by

τD = inf{ t ≥ 0 | (Φt, Xt) ∈ D} (9.15)

is optimal in (9.1) (cf. [14, Section 8]). The optimal stopping boundary between C

and D is defined by

b(x) = inf{ϕ ≥ 0 | (ϕ, x) ∈ D} (9.16)

for x ∈ IR+.

5. We recall that the transition density function p of (Φ,X) is the unique non-

negative solution to the Kolmogorov backward equation

pt(t;ϕ, x; η, z) = ILΦ,X(p)(t;ϕ, x; η, z) (9.17)

p(0+;ϕ, x; η, z) = δϕ,x(η, z) (weakly) (9.18)

under Pϕ,x satisfying
∫∞
0

∫∞
0

p(t;ϕ, x; η, z) dη dz = 1 for t > 0 with (ϕ, x) and (η, z)

in [0,∞) × (0,∞) (cf. [8]) where ILΦ,X is the infinitesimal generator defined in (9.5)

and δϕ,x is the Dirac measure at (ϕ, x). As an alternative method to compute the

expectations in the Wald-Bellman equations (9.11), we use Euler approximation (cf.

[13, Chapter 2.1]) where

Φ2−n = ϕ+

∫ 2−n

0

λ(1 + Φs) ds+

∫ 2−n

0

1

2
(δ1 − δ0)

Φs

Xs

dBs

≈ ϕ+

∫ 2−n

0

λ(1 + ϕ) ds+

∫ 2−n

0

1

2
(δ1 − δ0)

ϕ

x
dBs

= ϕ+ λ(1 + ϕ)2−n +
1

2
(δ1 − δ0)

ϕ

x
B2−n (9.19)

X2−n ≈ x+
δ0 − 1

2x
2−n +B2−n . (9.20)

for large n ∈ IN . The expectations associated with (Φ,X) can be approximated by

using the law of standard Brownian motion.
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Figure 29. Simulated sample path of the Bessel process X with δ0 = 2 and δ1 = 3.

Figure 30. Kinematics of the process (Φ,X) associated with the sample path from
Figure 11 and locations of the optimal stopping boundary when λ = 1 and c = 2.
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6. We now introduce the algorithm of Wald-Bellman equations and the correspond-

ing numerical analysis. The idea is similar to Chapter 5. Consider the Wald-Bellman

equations in (9.10)+(9.11), the iterations are given by

V̄ 0
n (ϕ, x) = M(ϕ, x) (9.21)

V̄ 1
n (ϕ, x) = inf

τ∈T 1
n

E
∞
ϕ,xM(Φ̃τ , X̃τ ) = min

(

M(ϕ, x),P2−nV̄ 0
n (ϕ, x)

)

= min
(

M(ϕ, x),E∞
ϕ,xe

λ2−n

V̄ 0
n (Φ2−n , X2−n)

)

= min

(

M(ϕ, x),

∫ ∞

0

∫ ∞

0

eλ2
−n

V̄ 0
n (η, z) p(2

−n;ϕ, x; η, z) dη dz

)

≈ min
(

M(ϕ, x),
∫ ∞

−∞
eλ2

−n

V̄ 0
n (ϕ+λ(1+ϕ)2−n+

1

2
(δ1−δ0)

ϕ

x
y, x+

δ0−1

2x
2−n+y) p̂(2−n; y) dy

)

(9.22)

V̄ 2
n (ϕ, x) = inf

τ∈T 2
n

E
∞
ϕ,xM̂(Φ̃τ , X̃τ ) = min

(

M̂(ϕ, x),P2−nV̄ 1
n (ϕ, x)

)

≈ min
(

M̂(ϕ, x),
∫ ∞

−∞
eλ2

−n

V̄ 1
n (ϕ+λ(1+ϕ)2−n+

1

2
(δ1−δ0)

ϕ

x
y, x+

δ0−1

2x
2−n+y) p̂(2−n; y) dy

)

(9.23)

...

V̄ T2n

n (ϕ, x) = inf
τ∈T T2n

n

E
∞
ϕ,xM(Φ̃τ , X̃τ ) = min

(

M(ϕ, x),P2−nV̄ T2n−1
n (ϕ, x)

)

≈ min
(

M(ϕ, x),
∫ ∞

−∞
eλ2

−n

V̄ T2n−1
n (ϕ+λ(1+ϕ)2−n+

1

2
(δ1−δ0)

ϕ

x
y, x+

δ0−1

2x
2−n+y)p̂(2−n; y) dy

)

(9.24)

for (ϕ, x) ∈ [0,∞) × (0,∞), n ≥ 0, T2n ∈ IN , N ∈ IN and T N
n = { 0, 2−n, 2 ×

2−n, ..., N × 2−n } where p̂ is the transition density function of standard Brownian

motion defined in (5.21). We now illustrate an example code in Mathematica. The

coefficients are defined by

Code 22.

c=2.; time=1.; phistep=phiubound/100.;

xstep=(xubound-xlbound)/100.; h=0.5^10.; w=time/h;
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lambda=1. ;delta0=2.; delta1=3.; xubound=2.; xlbound=0.1;

phiubound=1.5.; philbound=0.;

lossfunction[phi ,x ]:=((1.+phi)*x2.+delta0/lambda+delta1/c)/delta1;

functionlist={lossfunction};

where c is the constant c ∈ IR+ in (9.4). time is T in (9.10). phiubound and

philbound are the upper and lower bounds of the interpolation domain for ϕ. Simi-

larly, xubound and xlbound are the upper and lower bounds of the interpolation do-

main for x. h is 2−n in (9.10). w is the number of total iterations defined as T2n ∈ IN

in (9.10). lambda is λ > 0 in (9.1). delta0 is the initial dimension δ0 ≥ 2 in (9.2).

delta1 is dimension δ1 > δ0 after the change. phistep denotes the distance between

the grids for interpolating ϕ. xstep denotes the distance between the grids for inter-

polating x. lossfunction is M in (9.6). functionlist is a list of functions which

stores the interpolated value functions. After the value iterations, the functionlist

should have the form functionlist = {V̄ 0
n , V̄

1
n , V̄

2
n , ..., V̄

T2n

n }. We now introduce the

algorithm of value iterations

Code 23.

Do[Subscript[valuefunctionexact,n][phi ,x ]:=

Min[lossfunction[phi, x],

NIntegrate[

functionlist[[n]][lambda*(1.+phi)*h+((delta1-delta0)/2.)*

(phi/x)*b+phi,((delta0-1.)/(2.*x))*h+b+x]*

Exp[-lambda*h]/Sqrt[2.*Pi*h]*Exp[-0.5/h*b2.],

{b,-1.,1.},Method->{Automatic,"SymbolicProcessing"->0},
AccuracyGoal->10]];

Subscript[table,n]=N[Flatten[

Table[{phi,x,Subscript[valuefunctionexact,n][phi, x]},
{phi,0,phiubound,phistep},{x,xlbound,xubound,xstep}],1]];

Subscript[valuefunction,n]=Interpolation[Subscript[table,n]];

functionlist=Insert[functionlist,Subscript[valuefunction,n],-1],{n,w}].

The integrals for computing expectations are taken from −1 to 1 instead from −∞
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to ∞ because the algorithm is computation intensive. Shrinking the integral interval

helps reduce the computation time.

7. The constructions of value functions V̄ N
n defined in (9.9) through Wald-Bellman

equations can be imaged as a surface placed under the loss function M in (2.94)

being pulled down towards the exact the value function Ṽ defined in (9.1) as the

number of iterations tends infinity. The more iterations conducted in Wald-Bellman

equations, the closer the approximated value functions to Ṽ as shown in Figure 31. The

value functions generated by Wald-Bellman equations comply with smooth fit (cf. [21,

Chapter IV, 9.1] and [14]) at the touching points between the value functions and loss

function as shown in Figure 32 and 33. The value function in Figure 32 is decreasing

when x is small and ϕ is large. This is caused by the numerical approximations. We

recall that x is strictly positive. The behaviour of the value function when x ↓ 0

is challenging to obtain because the Euler approximations in (9.20) would tend to

infinity. The singularity cannot be handled by a computer. However, although there

are some biases when x is small, the optimal stopping may not be affected because

the constructed value functions are accurate around the touching points with the loss

function M .

8. We construct the optimal stopping boundary by the definition in (9.16). The

optimal stopping boundary b(x) is constructed in Mathematica as follows

Code 24.

boundary=Table[{phi/.FindRoot[functionlist[[w+1]][phi, x]]-

lossfunction[phi, x],{phi,lambda/c},AccuracyGoal->3,
PrecisionGoal -> 3], x},{x, 0.15, xubound, 0.005}];.

The smoothness of optimal stopping boundary is controlled by the number of grids

used for interpolation as shown in Figure 34. The more grids used, the smoother

and more accurate the boundary would be. The construction of optimal stopping

boundaries along with Wald-Bellman equations can be imaged as a rope being pulled

towards the true boundary as shown in Figure 35. The numerical approximation

converges from finite-horizon to the infinite-horizon optimal stopping boundary as the

iteration continues which complies with Proposition 6.
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Figure 31. Numerical approximations of value functions with 251 iterations (blue),
501 iterations (green) and 1024 iterations (yellow).



Chapter 9. Quickest detection problems for Bessel processes 95

Figure 32. Numerical approximations of value functions according to Figure 31 with
1024 iterations when ϕ ∈ [0, 1.5] and x = 0.1 (blue), x = 0.38 (yellow) and x = 0.76
(green).

Figure 33. Numerical approximations of value functions with 1024 iterations when
x ∈ [0.1, 2] and ϕ = 0 (blue), ϕ = 0.15 (brown), ϕ = 0.3 (purple), ϕ = 0.45 (red),
ϕ = 0.6 (green) and ϕ = 0.75 (yellow).
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Figure 34. Numerical approximations of optimal stopping boundaries when the num-
ber of grids used for interpolation are 50 (green), 100 (blue) and 200 (yellow).

Figure 35. Numerical approximations of optimal stopping boundaries when the num-
ber of iterations are 10 (yellow), 20 (red), 30 (green), 50 (purple) and 1024 (blue).
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[6] EKSTRÖM, E. LINDBERG, C. and TYSK, J. (2011). Optimal liquidation of a pairs

trade. Advanced Mathematical Methods for Finance. Springer (247-255).

[7] ELLIOTT, R. VAN DER HOEK, J. and MALCOLM, W. (2005). Pairs trading.

Quant. Finance 5 (271-276).

[8] FELLER, W. (1952). The parabolic differential equations and the associated semi-

groups of transformations. Ann. of Math. 55 (468-519).

[9] GLOVER, K. and PESKIR, G. (2017). Quickest detection problems for Ornstein-

Uhlenbeck processes. Research Report No. 11, Probab. Statist. Group Manchester

(28 pp).

[10] GRIGELIONIS, B. I. and SHIRYAEV, A. N. (1965). The “truncation” criteria for

the optimal stopping time in the sequential analysis. Theory Probab. Appl. 10

(601-613).

97



Bibliography 98

[11] GRIGELIONIS, B. I. and SHIRYAEV, A. N. (1966). On Stefan’s problem and

optimal stopping rules for Markov processes. Theory Probab. Appl. 11 (541-558).
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[27] SCHWARTZ, L. (1951). Théory des Distributions. Hermann.

[28] SHIRYAEV, A. N. (1961). The problem of the most rapid detection of a distur-

bance of a stationary regime. Soviet Math. Dokl. 2 (795-799).

[29] SHIRYAEV, A. N. (1978). Optimal Stopping Rules. Springer.

[30] SHIRYAEV, A. N. (2010). Quickest detection problems: Fifty years later. Sequen-

tial Anal. 29 (345-385).

[31] STROOCK, D. W. (2008). Partial Differential Equations for Probabalists. Cam-

bridge University Press.

[32] UHLENBECK, G. E. and ORNSTEIN, L. S. (1930). On the theory of Brownian

motion. Phys. Rev. 36 (823-841).

[33] VIDYAMURPHY, G. (2004). Pairs Trading: Quantitative Methods and Analysis.

John Wiley.

[34] WALD, A. (1976). Sequential Analysis. Wiley, New York; Chapman & Hall,

London.

[35] WILLIAMS, D. (1991). Probability with Martingales. Cambridge University Press.


