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Abstract 

Mammalian gene transcription is rigorously regulated through various complex mechanisms 

to ensure accuracy and prevent errors in the synthesis of RNA molecules. Paradoxically, 

transcriptional cell-to-cell variability, despite genetic homogeneity, has been broadly 

documented, including in the innate immune system where precise responses are crucial 

upon encountering pathogens. The stochastic nature of transcription is believed to be a driver 

of this variability; the transcriptional process of most genes involves random transitions 

between inactive and active gene states, leading to the production of messenger RNA (mRNA) 

in a burst-like manner, giving rise to inherent heterogeneity in gene expression at the single-

cell level. While this phenomenon has been studied for decades, it remains unclear whether, 

and how, single-cell variability in the innate immune system is controlled in response to 

different environmental conditions. 

Combining data analysis, statistical inference, and state-of-the art mathematical modelling 

with data from various wet lab techniques, this thesis presents interdisciplinary research on 

characterising cellular variability in the innate immune Toll-like receptor system and provides 

new understanding of the underlying control mechanisms. The first chapter introduces the 

notion of gene expression heterogeneity with an overview of the existing relevant literature 

and discusses various approaches from both the biological and mathematical fields that have 

been or can be potentially employed to study this phenomenon. Chapter two focuses on 

analysis and mathematical modelling of single molecule fluorescence in situ hybridisation 

count data of inducible immune genes. Gene-specific linear mean-variance relationships of 

mRNA transcript counts across a range of immune conditions, and their corresponding 

bursting characteristics, are established. Chapter three validates the linear constraints, and 

their underlying transcriptional bursting modulation, globally and demonstrates, through 

stochastic modelling of single-cell RNA-seq counts of 96 immune genes, an association 

between high variability levels and increased complexity of transcriptional regulation. In 

addition, evolutionary differences in response variability across several species are 

characterised. Chapter four provides evidence that heterogenous single cell innate immune 

responses are in part imprinted over multiple cell divisions. Overall, this thesis offers novel 

tools and findings that take us a step forward in understanding cell-to-cell variability in the 

innate immune system with broader implications for other biological systems. 
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Rationale 

The thesis is presented in the alternative (journal) format consisting of two peer-reviewed 

published articles and one unpublished manuscript, and is organised as follows: 

• Chapter two contains the article published in Cell Systems; Gene-specific linear trends 

constrain transcriptional variability of the Toll-like receptor signaling (Bagnall et al., 

2020). 

- This article demonstrates that the variance of  TLR-induced gene expression is 

linearly constrained by mean mRNA response across a range of stimulations. 

This phenomenon is underlined by reciprocal relationship between burst size 

and frequency. Variability of two cytokines TNF𝛼 and IL1𝛽 is analysed in details 

and stochastic models of gene expression are presented to capture their 

variability. Experimental approaches used include smFISH and scRNA-seq.  

- For this publication, I developed the mathematical methodology for analysis 

of transcriptional bursting and the mathematical models of TNF𝛼 and IL1𝛽 

under the supervision of Dr Mark Muldoon and Dr Pawel Paszek. I performed 

the mathematical calculations, computational analysis and modelling 

presented in the paper. I also generated figures (Figure 4, S6, S14 and S15).  

• Chapter three contains the article published in Frontiers in Molecular Biosciences; 

Variability of the innate immune response is globally constrained by transcriptional 

bursting (Alachkar et al., 2023). 

- This article presents a genome- and species-wide analysis of transcriptional 

variability in the innate immune system. It confirms the linear mean-variance 

constraints as a global control feature of cell-to-cell variability in TLR system 

across species and introduces analytically predicted burst size and frequency 

modulations driving the constraints. A new stochastic model of gene 

expression is introduced and relationship between model complexity and the 

level of transcriptional variability is established.  

- For this publication, I performed the mathematical calculations, computational 

and data analyses, generated the figures, and assisted with writing the 

manuscript alongside Dr Pawel Paszek and Dr Mark Muldoon.  
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• Chapter four contains the unpublished article; Single-cell gene expression patterns of 

the Toll-like receptor signalling are heritable traits.  

- This chapter demonstrates that the heterogenous single-cell TLR responses are 

heritable across multiple cell divisions. These findings challenge the 

conventional stochastic modelling of gene expression and call for a re-

evaluation of the underlying assumptions. 

- For this publication, I carried out the mathematical calculations and data 

analyses, generated the figures, carried out the immunostaining experiment 

of Cd36 and assisted with writing the manuscript alongside Dr Pawel Paszek.  
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Chapter 1 Introduction 

1.1 Cellular variability in gene expression 
Heterogeneity of a single trait in a population of cells or individuals, also referred to as ‘non-

genetic individuality’ believed to cause phenotype variations, is hardly a new concept in 

biology (Grote et al., 2015; Spudich & Koshland, 1976). Gene expression heterogeneity is a 

great evident example of this concept. Despite the tight regulation of the gene expression 

processes, cell-to-cell variability in the mRNA and protein levels across a genetically 

homogeneous population has been ubiquitously observed across different species, from 

viruses and bacteria to mammals (Balaban et al., 2004; Loewer & Lahav, 2011; Raj et al., 2006; 

Schulte & Andino, 2014; Taniguchi et al., 2010), and within different tissues (Sturm et al., 

2021), raising many fundamental biological questions of how and why. The work of this thesis 

explores the phenomenon of single-cell transcriptional heterogeneity and aims to understand 

how transcriptional variability is controlled during innate immune responses. 

 

In this chapter, I review the current understanding of gene expression heterogeneity on a 

biological level through discussing its origins and biological significance for cellular systems, 

in particular the immune system, the role transcriptional bursting plays in producing this 

heterogeneity, as well as studies and methodologies capturing the phenomenon. 

1.1.1 Origins and consequences of cellular variability in gene expression 

Cell-to-cell variability in the number of mRNA transcripts and protein molecules in genetically 

identical population has been well documented, with the revolution of single-cell 

experimental techniques, in both prokaryotes and eukaryotes (Becskei et al., 2005; Blake et 

al., 2003a; Elowitz et al., 2002; Golding et al., 2005; Ozbudak et al., 2002). These studies 

demonstrated that the behaviour of individual cells may differ from the population average, 

a phenomenon that has been hidden for many years in cell population studies. In one of the 

earliest experimental studies to observe heterogeneity in gene expression, Novick and 

Weiner showed that synthesis of the enzyme 𝛽-galactosidase in individual cells of the 

bacterium Escherichia coli (E. coli) was variable (Novick & Weiner, 1957). Upon induction with 

low inducer concentrations, individual cells did not synthesise a common level of the enzyme 

but rather, a subset of bacteria produced 𝛽-galactosidase at full rate while the rest did not 
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make any. Thirty-three years later, Ko et al. introduced expression reporters in single-cells to 

examine the expression of a dose-sensitive glucocorticoid-responsive transgene encoding 𝛽-

galactosidase, upon induction of different doses of glucocorticoid (M. S. Ko et al., 1990). 

Through this novel technique, they found that increasing the dose level of glucocorticoid 

resulted in higher number of cells producing 𝛽-galactosidase, but without a uniform increase 

in every cell’s expression. In a following study, Ko explained the experimental results by 

producing computational simulations from a stochastic model of gene induction, where 

stochasticity is imagined to arise from the random timing of molecular collisions and 

dissociations between transcription factors and a gene copy (M. S. H. Ko, 1991). 

 

These studies evoked the fundamental question of why seemingly identical cells exhibit 

variability in gene expression, thus paving the way for a new field of gene expression 

regulation research focused on studying and unravelling the underlying mechanisms of 

cellular heterogeneity, while incorporating multidisciplinary approaches. Nowadays, this 

heterogeneity has been observed in various biological systems, indicating that it is not a result 

of mere chance but rather a fundamental and regulated aspect of cellular processes. 

 

Extrinsic versus Intrinsic heterogeneity 

Observed heterogeneity of gene expression among a clonal (isogenic) population can be 

divided into two components - extrinsic and intrinsic - depending on its origins (Elowitz et al., 

2002; Horsthemke et al., 1992; Schuster & Érdi, 1989; Swain et al., 2002). Extrinsic 

heterogeneity accounts for cell-to-cell variability resulting from non-uniform extrinsic factors 

(changes in global and cellular environment of a gene) affecting individual cells at different 

levels. For example, cells of a clonal population can be in different cell cycle stages (Rosenfeld 

et al., 2005), and can have different cell size (Kempe et al., 2015; Padovan-Merhar et al., 

2015). Even cell culture medium has been shown to influence gene expression with serum-

based medium increasing the response variability (G. Guo et al., 2016). Cell-to-cell differences 

in the amount or activity of regulatory proteins and polymerase molecules (which in turn can 

be a result of neighbouring cells activities and signalling) can also add to extrinsic 

heterogeneity by changing the rates of fundamental reactions that impact gene expression 

(Raser & O’Shea, 2004, 2005) as gene expression is controlled by their concentrations, states, 

and locations. Such variables influencing extrinsic heterogeneity are not always possible to 
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identify and quantify, however it is important to take these hidden factors into account when 

studying gene expression variability (S. Huang, 2009; Swain et al., 2002). In comparison, 

intrinsic heterogeneity refers to the temporal fluctuations of mRNA expression in an 

individual cell, and since these fluctuations are not synchronised between cells of the same 

population, they result in overall variability within the population. These fluctuations are 

believed to arise from two major factors. First, the stochastic nature of gene expression which 

conceals the random microscopic events that dictate the occurrence and sequence of 

biochemical reactions within a cell. This is attributed to the fluctuations in the low number of 

molecules involved in these reactions, a phenomenon known as the 'finite number effect' 

(Elowitz et al., 2002). Second, epigenetic factors, like DNA methylation and histone 

modification, that cause conformational changes to the gene influencing its accessibility and 

thereby its activity (Dey et al., 2015; Handy et al., 2011; Suter et al., 2011; Viñuelas et al., 

2013). Both factors will be discussed in more details in section 1.1.3, and while I discuss them 

separately, it is important to keep in mind their dynamic interplay and the mutual influence 

they exert on each other (Beckman et al., 2021; Capp, 2021).   

 

Elowitz et al. distinguishably quantified gene expression extrinsic and intrinsic components of 

heterogeneity by incorporating two distinguishable reporter genes, cyan fluorescent protein 

(cfp) and yellow fluorescent protein (yfp), into the genome of E. coli such that both genes 

were controlled by identical promoters (Elowitz et al., 2002). In the absence of intrinsic noise, 

the extrinsic component was then reflected in the equal fluctuations in expression of the two 

genes in an individual cell, but differences in expression levels from cell to cell. The intrinsic 

component was measured by the uncorrelated variations in the amount of cfp and yfp within 

individual cells. They found that both sources of noise can be significant depending on the 

transcription rate, regulatory dynamics, and genetic factors. Ozbudak et al. also provided 

evidence of intrinsic noise in bacteria and demonstrated that the level of phenotypic variation 

in isogenic population can be regulated by epigenetic parameters (Ozbudak et al., 2002). By 

altering the level of induction and introducing mutations into the ribosomal binding site, they 

quantitatively measured, using flow cytometry, the changes in phenotypic noise 

characteristics as a result from varying the rates of transcription and translation of green 

fluorescent protein (gfp) in Bacillus Subtilis cells. Interestingly, they found that increased 

translational efficiency is the predominant source of increased protein noise which, in turn, 
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depends on the stochastic mechanisms of gene activation (Kierzek et al., 2001; McAdams & 

Arkin, 1997) 

 

In mammalian cells, intrinsic noise, specifically the stochastic nature of gene expression, has 

been shown to be the major contributor to transcriptional heterogeneity (Raj et al., 2006), in 

addition to evidence supporting allelic imbalances (when two alleles of the same gene are 

expressed at different levels independently) due to possible epigenetic allelic differences 

(Pastinen et al., 2004; Wagner et al., 2010). Bahar Halpern et al., provided evidence of bursty 

expression in mammalian liver tissues contributing to noise, with genes that exhibit more 

burst-associated noise having longer mRNA lifetime to reduce overall temporal variability 

(Bahar Halpern et al., 2015). In contrary, a more recent study demonstrated that cell state 

differences are the responsible drivers for heterogeneity in gene expression (Foreman & 

Wollman, 2020). 

 

Although it is important to understand the differences between the two components 

(extrinsic and intrinsic) that drive heterogeneity, it is, however, worth asking the question of 

whether it is reasonable to attempt to distinguish between them experimentally. Many 

studies attempt to “control” as many extrinsic factors as they can in order to decompose 

intrinsic heterogeneity. However, it could be argued that eliminating those hidden factors 

from the process would essentially remove the randomness factor of the process (Symmons 

& Raj, 2016). One way to look at it would be that fluctuations in extrinsic factors could also 

be stochastic but on a much slower timescale than that of intrinsic factors (Rosenfeld et al., 

2005; Shahrezaei & Swain, 2008a). In addition, genes work as part of regulatory circuits, and 

intrinsic noise in one gene can be seen as an extrinsic noise factor in another downstream 

gene (Hooshangi et al., 2005). For that reason, some might argue that all intrinsic and extrinsic 

factors distinguished in the field emerge from intrinsic noise, with the difference that intrinsic 

noise is inherently initiated, while extrinsic noise is transmitted (Brown & Boeger, 2014). 

The different nature but interplay of the extrinsic and intrinsic components also imposes the 

fundamental question of whether the heterogeneity trait is stochastic (non-deterministic) or 

pre-determined to some extent (Ansel et al., 2008). If the latter is the case, we would expect 

the trait to persist for at least several generations of clonal samples. In recent studies, it has 

been discovered that gene transcription in rare (few individuals within a population) cells can 
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last for longer timescale than multiple cell divisions, i.e., having cellular memory over a multi-

generational timescale (Phillips et al., 2019; Shaffer et al., 2020). I explore this question 

further in chapter four. 

1.1.2 Is transcriptional heterogeneity just unwanted noise? 

Regardless of the origins of heterogeneity (intrinsic and extrinsic) described above, the 

measured level of variability in gene expression among genetically identical cells is also 

referred to as “noise” in gene expression. However, noise is often used to describe unwanted 

disturbance in a system, so is noise in gene expression a harmful error, that could be 

avoidable, or is it a beneficial evolutionary strategy adopted by living organisms? Variations 

in the expression level of a gene within genetically identical individual cells allow 

heterogeneous phenotypes in clonal populations. This can benefit a population when 

experiencing sudden fluctuations or switching between environments through containing 

subpopulations that are devoted to different behaviours (Kussell & Leibler, 2005; Lehner, 

2008). The consequences of this bet hedging strategy on different biological processes have 

been observed including the development of bacterial antibiotic resistance (Maisonneuve & 

Gerdes, 2014; Verstraeten et al., 2015); E. coli continuously produces a small subpopulation 

that is antibiotic-resistant even in untreated growing cultures (Balaban et al., 2004). Induction 

of stress responses is another consequence of this strategy; studies showed that stress-

related genes display higher levels of noise than those related to other biological functions 

(Newman et al., 2006; Silander et al., 2012), with increased noise only providing a significant 

selective advantage at high environmental stress levels (Blake et al., 2006). In higher 

eukaryotes, the functional importance of gene expression heterogeneity is still not obvious 

but some studies showed the effect of noise in triggering random cell-fate decisions during 

development (J.-Y. Chen et al., 2012; Magklara & Lomvardas, 2013; Spencer et al., 2009) 

leading to phenotypic diversity as a result, and allowing a wide range of possible cellular 

behaviours in homogeneous cell types; retinal mosaic (Wernet et al., 2006) and dynamic 

mosaic endothelial cell heterogeneity permitting adaptive homeostasis (Yuan et al., 2016) are 

examples. On the other hand, gene expression noise can be harmful in some cases, as it may 

limit the precision of cellular processes (Elowitz & Leibler, 2000).  
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With evidence supporting both sides of the argument, gene expression noise is believed to 

be not only a heritable genetic trait (Ansel et al., 2008), but also an evolvable one through 

natural selection, providing a higher chance of survival (Fraser & Kaern, 2009; Paszek et al., 

2010; Stern et al., 2007). In fact, in a relatively recent study (Hagai et al., 2018), it has been 

shown that gene expression variability plays a role in shaping the innate immune system 

through evolution. They found that genes exhibiting high transcriptional evolutionary 

divergence in stimulus-response across species also displayed high cell-to-cell variability 

within a species. Those genes were classified to be cytokines and chemokines (involved in the 

activation of immune responses, discussed later). In comparison, the more conserved genes 

in their transcription across species had low variability among their individual cells and were 

related in functionality to immune response regulation. One explanation of this could be that 

cell-to-cell variability allows more freedom for immune genes with certain functionalities to 

undergo rapid evolution through evolutionarily mechanisms (e.g., to adapt to the evolution 

of pathogens) in comparison to genes that need more constrained evolution. Cytokines, for 

example, are among the fastest evolving genes (Antczak et al., 2022; Scapigliati et al., 2006). 

 

Nevertheless, comparing the characteristics of variability across different species would be 

one way to provide a better understanding of the potential functionality and consequences 

of this trait.  

1.1.3 Transcriptional bursting and epigenetic roles in variability of gene expression 

Gene expression is one of the most fundamental cellular processes in all living organisms. 

Through gene expression genetic information encoded in DNA is transcribed into RNA and 

translated into proteins, determining in turn the functionality and fate of cells in an organism. 

With the advancements of single-cell experimental techniques and new technologies, it has 

been experimentally confirmed that transcription (DNA to RNA) occurs by random transitions 

between states of gene activity and inactivity (Bahar Halpern et al., 2015; Suter et al., 2011), 

resulting in periods of mRNA production with a timescale varying from few minutes up to 

multiple hours. The discontinuous nature of this phenomenon over time is referred to by the 

term “transcriptional bursting” (Tunnacliffe & Chubb, 2020). Hence, to avoid ambiguities, this 

term does not carry any implicit implications regarding a specific model or mechanism behind 

the process.  
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Integrating experimental methods with mathematical modelling showed that transcription in 

a bursty manner contributes to the expression noise (Blake et al., 2003a; Elowitz et al., 2002; 

Ozbudak et al., 2002; Raj et al., 2006; Raser & O’Shea, 2004). In mammalian cells, Raj et al. 

provided direct evidence of cell-to-cell variations in mRNA levels due to infrequent random 

gene transitions between active and inactive states (Raj et al., 2006).   

 

The ordered assembly of RNA polymerases (RNAP), transcription factors (TF) together with 

their associated transcription mediator complexes binding to cis-regulatory elements 

(including promoters, enhancers, silencers, and insulators) of the DNA at a particular time 

following chromatin remodelling, which refers to the dynamic modification of chromatin 

structure (including histone modifications and nucleosome eviction), is the key for initiating 

and regulating transcription (Johnson et al., 2002) (Figure 1.1). Therefore, the interplay of 

these molecules constitutes key mechanisms underlying the burstiness nature of 

transcription. Studying how these molecular components of transcription contribute to 

transcriptional bursting and cell-to-cell variability is of a great interest in the field.  

 

Promoter architecture (defined by the number, strength and position of transcription factor 

and RNAP binding sites) has been shown to affect cell-to-cell variability levels (Jones et al., 

2014; Sanchez et al., 2011; Sharon et al., 2014). In Saccharomyces cerevisiae, it has been 

revealed that both the position and the number of repressor binding sites – namely operators 

– can influence cellular variability (Murphy et al., 2007). An increase in the number of the 

operators and a decrease in the distance of the operator site within a promoter to the TATA-

box results in an increase in the noise level.  
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Other established regulatory features of transcriptional variability associated with genes 

promoters’ structure are CpG islands (DNA methylations regions) and TATA-boxes 

(transcription factors binding sites). Short CpG islands and the existence of a TATA-box motif 

(not all genes have them, some genes have TATA-like sequence (Rhee & Pugh, 2012)) in the 

core promoter are associated with increased transcriptional noise (Blake et al., 2003b; 

Morgan & Marioni, 2018; Ravarani et al., 2016). This effect of TATA-box presence can be 

indirectly related to the affinity and competition for TATA box-binding protein (TBP), which in 

turn can be affected by the specific co-activator complex (SAGA or TFIID) binding to it. 

Recruitment of TBP has a major role to play in regulating the output of gene expression in 

general (Kim & Iyer, 2004). Contrary to what the name suggests, TBP can bind to promoters 

with both TATA-box and TATA-like sequences (Rhee & Pugh, 2012). However, TATA-box 

promoters exhibit higher flexibility in recruiting TBP (Zhou et al., 2013). They show more 

competition with higher affinity for TBP which arises from their interplay with co-activators 

complex bound to the TATA-box (Cianfrocco et al., 2013; Ravarani et al., 2016). It has been 

shown that promoters containing a TATA-box tend to bind to SAGA, while promoters with a 

TATA-like sequence mostly recruit TFIID, with the former exhibiting higher noise levels 

        

 
Figure 1.1: Schematic representation of transcriptional initiation. Adapted from “Eukaryotic 
Gene Regulation - Transcriptional Initiation”, by BioRender.com (2023). Retrieved from 
https://app.biorender.com/biorender-templates. Shown is the transcription initiation complex: RNAPol II and 
general transcription factors (TBP, IIB, IIF, IIH, TFIID and IIA) attached to the TATA Box region of the promoter to 
activate transcription. Activator proteins bind to the enhancer part of the DNA to stabilise promoter binding 
through DNA looping and interactions with a mediator.  

 

 
 
Figure 1.2: Schematic representation of transcriptional initiation. Adapted from “Eukaryotic 
Gene Regulation - Transcriptional Initiation”, by BioRender.com (2023). Retrieved from 
https://app.biorender.com/biorender-templates. Shown is the transcription initiation complex: RNAPol II and 
general transcription factors (TBP, IIB, IIF, IIH, TFIID and IIA) attached to the TATA Box region of the promoter to 
activate transcription. Activator proteins bind to the enhancer part of the DNA to stabilise promoter binding 
through DNA looping and interactions with a mediator.  

 

 
 
Figure 1.3: Schematic representation of transcriptional initiation. Adapted from “Eukaryotic 
Gene Regulation - Transcriptional Initiation”, by BioRender.com (2023). Retrieved from 
https://app.biorender.com/biorender-templates. Shown is the transcription initiation complex: RNAPol II and 
general transcription factors (TBP, IIB, IIF, IIH, TFIID and IIA) attached to the TATA Box region of the promoter to 
activate transcription. Activator proteins bind to the enhancer part of the DNA to stabilise promoter binding 
through DNA looping and interactions with a mediator.  

 

 
 
Figure 1.4: Schematic representation of transcriptional initiation. Adapted from “Eukaryotic 
Gene Regulation - Transcriptional Initiation”, by BioRender.com (2023). Retrieved from 
https://app.biorender.com/biorender-templates. Shown is the transcription initiation complex: RNAPol II and 
general transcription factors (TBP, IIB, IIF, IIH, TFIID and IIA) attached to the TATA Box region of the promoter to 
activate transcription. Activator proteins bind to the enhancer part of the DNA to stabilise promoter binding 
through DNA looping and interactions with a mediator.  
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(Ravarani et al., 2016). The binding of TBP with TFIID is a more stable complex, leading to 

longer residence time of TBP at the TATA-like promoters, and hence by a consistent 

transcriptional output with low noise levels in comparisons to less stable TBP:SAGA complex 

(de Jonge et al., 2017; Ravarani et al., 2016). 

Overall, the type of transcription binding sites, TBP, the corresponding co-activators complex 

assembled at the promoter and their complex interactions are all responsible, to some extent, 

for cell-to-cell variability.  

 

Epigenetic processes (alterations of transcriptional potential of a cell without modifying the 

underlying DNA sequence (Waterland, 2006)), including DNA methylation and histone 

modification, play a crucial role in regulating gene expression and shaping mRNA output 

(Gibney & Nolan, 2010).  

Differences in promoter nucleosome configuration in the same gene has been shown to 

contribute to the gene expression noise (Brown & Boeger, 2014). In yeast, promoter 

nucleosome occupancy was linked to transcriptional plasticity (flexibility of a gene to alter its 

expression in response to stimuli) (Tirosh & Barkai, 2008). Further, genes with occupied 

proximal-nucleosome (OPN), an established nucleosome occupancy promoter pattern, 

defined by the lack of a nucleosome-free region in which it prevents promoter accessibility to 

different proteins needed for transcription, exhibited high levels of expression noise (Field et 

al., 2008; Tirosh & Barkai, 2008). 

 

Transcriptional bursting characteristics 

The output of the resulting stochastic bursts during transcriptional activity is characterised by 

their size, defined as the number of mRNA produced per transcriptional burst event, and their 

frequency which is the number of bursts per unit time (Raj et al., 2006; Raj & van 

Oudenaarden, 2008; Suter et al., 2011), and these characteristics form a terminology 

framework to study gene expression variability as will be discussed. 

 

Several studies presented work prompting the hypothesis that different genes display 

different bursting characteristics governed by gene-specific bursting mechanisms (Muramoto 

et al., 2012; Skinner et al., 2016; Suter et al., 2011). For instance, transcriptional burst 



 
 

 22 

frequency in mammalian cells can vary from a burst every 30 minutes up to 10 hours, while 

burst size ranges from one to few hundreds mRNA molecules (Lionnet & Singer, 2012).  

Mathematically, and under the condition that transcription is happening in short and 

infrequent bursts with respect to the timescale of mRNA (and sometimes protein) half-life, 

with large burst size, approximations for both burst size b and burst frequency f can be 

obtained in terms of the mean µ and variance s2 of the mRNA transcript numbers, with 𝒃 =

𝝈𝟐

𝝁
	(i.e the Fano factor, which has been used to quantify cell-to-cell variability as being the 

noise strength), while 𝒇 = 𝝁
𝒃$𝟏

  (Nicolas et al., 2017; So et al., 2011). These expressions 

capture departures from a non-bursty (Poissonian) regime where variance and mean are 

equal, for which burst size is equal to one and frequency is infinity. I refer to these throughout 

the thesis as moment estimators. 

 

Studying how molecular mechanisms of transcription alter the bursting characteristics in the 

cell and whether these characteristics are global or gene-specific is one fundamental 

approach to refine our understanding of the regulation of transcriptional bursting and hence 

cell-to-cell variability in mRNA at single-cell level.  

Over the years, studies using different experimental approaches, such as smFISH and MS2-

GFP, integrated with mathematical approaches revealed the impact of different molecular 

mechanisms on transcriptional bursting characteristics under specific experimental 

conditions. Using the approach of integrating a constant reporter at different genomic 

locations, several studies have shown that local chromatin environment affects mainly the 

burst size (Batenchuk et al., 2011; Singh et al., 2010; Skupsky et al., 2010). However, other 

studies taking wider observed expression ranges provided evidence of the impact of 

integration sites on both burst size and frequency in mammalian cells (Dar et al., 2012; Dey 

et al., 2015). Interestingly, Dar et al. found that enhancing expression with the cell signalling 

molecule TNF-a causes transcriptional burst frequency variation at low mRNA expression 

levels until a threshold is reached beyond which only burst size can then be further regulated 

(Dar et al., 2012; Nicolas et al., 2017). 

 

Histone modifications appear to play a role in modulations of transcriptional kinetics. Analysis 

of transcription dynamics upon treatment with Trichostatin A (TSA, a histone deacetylase 
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inhibitor) revealed an increase in transcription rate with higher burst sizes observed (Harper 

et al., 2011; Suter et al., 2011). High acetylation levels, in other studies, increased burst 

frequency by shortening the duration of which the gene is inactive (Nicolas et al., 2017; 

Viñuelas et al., 2013). In addition, cis-regulatory DNA elements, such as TATA box and 

enhancers, help to a great extent shaping the bursting characteristics (Blake et al., 2006; Raser 

& O’Shea, 2004; Suter et al., 2011). The effects of different numbers and affinities of CCAAT 

box for the transcriptional activator NF-Y were examined in different cell lines; and results 

showed an increase in the burst size when using more than one CCAAT box or with higher 

affinity, without affecting the “on” phase duration (Suter et al., 2011). Studies looking at the 

role of enhancers using completely different approaches on different genes produced 

compatible results stating that enhancers control mainly burst frequency modulation rather 

than burst size (Bartman et al., 2016; Fukaya et al., 2016). Notably, recent work by Larsson et 

al. demonstrated, utilising scRNA-seq data, that burst size is encoded within core promoters, 

whereas burst frequency regulation is controlled via enhancer elements defining cell-type-

specific variability (Larsson et al., 2019) 

 

1.2 Gene expression variability in the innate immune system 
Upon infection with pathogens, the mammalian innate immune system is required to produce 

a robust and effective response in order to protect the host without causing any self-damage 

(Chaplin, 2010). Therefore, tight regulation of immune responses is expected. However, cell-

to-cell variability in innate immune responses is a feature that has been observed in different 

studies (Avraham et al., 2015; Rand et al., 2012; Shalek et al., 2013a; Zhao et al., 2012). 

Remarkably, Hu et al. work suggested that this variability is even essential for an effective 

innate immune response to viruses (Hu et al., 2011). However, understanding its functional 

importance in a broader context, how it is emerged despite the tight regulation of the system, 

and the mechanisms controlling it is still unclear. 

 

The work presented in this thesis utilises the Toll-like receptor (TLR) signalling system, a well 

characterised evolutionarily-conserved class of pattern recognition receptors (PRRs) 

(Medzhitov, 2007), to study cell-cell variability in innate immune responses. For this reason, I 
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present an overview of the innate immune system, with an emphasis on the TLR, and what is 

known about cell-cell variability within this intricate system. 

1.2.1 An overview of the innate immune system 

The immune system is built upon two fundamental “lines of defence”: the innate immune 

system and the adaptive immune system, covering different types of cells and complex 

processes. Although the two pillars operate through fundamentally different mechanisms, 

the inevitable interplay between them is vital for a robust, effective immune response 

(Chaplin, 2010). For the purpose of this thesis, I focus on the mechanisms of the innate 

immune system. 

Innate immunity provides immediate, nonspecific defence mechanism against pathogens by 

employing its defensive barriers; physical (including skin and mucous membrane), chemical 

(such as lysozyme enzymes that break down bacterial cell walls), cellular (the focus of this 

thesis) which includes phagocytes and lymphocytes (Turvey & Broide, 2010). Phagocytes such 

as neutrophils and macrophages engulf and destroy pathogens through phagocytosis, while 

lymphocytes such as Natural killer (NK) cells can recognise and kill infected or abnormal cells. 

In turn, they play a role in activating the inflammatory barrier, the fourth defensive barrier, 

by producing key inflammatory proteins such as cytokines and chemokines (Marshall et al., 

2018).  

 

How does the innate immune system recognise pathogens?  

Phagocytes and lymphocytes express PRRs on their surfaces or within their cytoplasm that 

can detect specific pathogen-associated molecular patterns (PAMPs) found on the surface of 

pathogens (Medzhitov, 2007), but not the host, allowing the immune cells to differentiate 

between self and non-self (Chaplin, 2010). A major class of PRRs is TLRs expressed on various 

cells, either on their cell surface or within endosomes. Macrophages are an example of TLR-

expressing cells, they are key players in the innate immune system due to their ability to 

secrete cytokines that promote inflammation by recruiting other immune cells to the site of 

infection and activating their immune functions, as well as producing anti-inflammatory 

cytokines that regulate the inflammation response (Arango Duque & Descoteaux, 2014). Each 

TLR recognizes a specific PAMP (Akira et al., 2006). For example, TLR3 recognizes viral double-

stranded RNA (dsRNA), a type of nucleic acid structure for several viruses, as well as its 
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synthetic version Polyinosinic-polycytidylic acid (PIC), also known as poly(I:C) (CHEN et al., 

2021), while TLR4 is responsible for detecting bacterial lipopolysaccharides (LPS), a major 

component of the outer membrane of Gram-negative bacteria (Poltorak et al., 1998). Both 

TLRs are utilised in the work presented in the coming chapters. 

Upon binding to their specific PAMPs, TLR3 and TLR4 recruit adaptor proteins such as 

Toll/interleukin-1 receptor (TIR)-domain-containing adaptor protein inducing interferon-β 

(TRIF) and myeloid differentiation primary response gene 88 (MyD88) (Bryant et al., 2015), 

which subsequently activate signalling pathways like Nuclear factor-kappa B (NF-kB) and the 

interferon regulatory factor (IRF) pathways, resulting in the transcriptional upregulation of 

various genes involved in immune responses (Bryant et al., 2015), including pro-inflammatory 

cytokines, such as interleukins (IL-1a, IL-1β, IL-6, IL-10, and IL-12), TNF-α and type I interferons 

(including interferon-beta (IFN-β), chemokines, like CCL2, CCL5, CXCL8, and CXCL10, and other 

immune mediators (Hayden et al., 2006; Kramer, 2016; Liu et al., 2017) (see Figure 1.2 for an 

overview of TLR signalling pathway). These molecules promote inflammation, recruit immune 

cells, enhance defences, and coordinate the overall immune response to viral and bacterial 

                 
 
Figure 1.2: TLR signaling pathway. Adapted from “TLR Signaling Pathway”, by BioRender.com (2023). 
Retrieved from https://app.biorender.com/biorender-templates. Shown are the different types of TLRs and their 
specific pathogen-associated molecular patterns (PAMPs). Upon their binding, adaptor proteins (such as MyD88 and 
TRIF) are recruited to activate signalling pathways (like NF-kB  and IRFs) that are responsible for expressing immune 
genes. 
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infection. In fact, TNF and IFN-I also have the ability to alter TLR4 responses through 

reprogramming the macrophages epigenome (Park et al., 2017). 

Therefore, it is vital for the mechanisms responsible for producing these molecules to be 

tightly regulated, allowing no margin for error. But how can tightly regulated dynamic 

mechanisms result in heterogeneous immune response outcomes? This question serves as 

the central inquiry of this thesis. 

 

Although the above-mentioned description of the innate immune responses is a very 

simplified version of all the mechanisms involved in the process, it still gives us a sense of the 

very complex network of biochemical events, including feedback loops, that underly precise 

immune outcomes. 

1.2.2 Cell-to-cell variability in innate immune responses 

Several studies demonstrated that, at population level, the TLR-mediated gene response is 

highly constrained related to tight epigenetic and transcription regulation (Adamik et al., 

2013; Escoubet-Lozach et al., 2011; Hao & Baltimore, 2009; Meissner et al., 2013; Oda & 

Kitano, 2006a; Ramirez-Carrozzi et al., 2009; Tong et al., 2016). At the single-cell level, 

however, innate immune gene expression responses upon encounter with pathogens exhibit 

high variability (Avraham et al., 2015; Lu et al., 2015; Shalek et al., 2014; Xue et al., 2015). This 

is believed to reflect complex transcriptional regulation, involving dynamic TF signalling 

(Bagnall et al., 2018; Selimkhanov et al., 2014; Sung et al., 2014) as well as diverse genomic 

architecture (Hagai et al., 2018) in the host, in addition to cell-to-cell variability in the 

pathogen (Avraham et al., 2015). 

In particular, Shalek et al., revealed, using scRNA-seq, bimodal expression patterns of many 

TLR-dependent genes across single cells upon stimulation with LPS (Shalek et al., 2013b). They 

also found that distinct cellular developmental states of dendritic cells, specifically maturity 

states, and stochastic differences in activating antiviral regulatory circuits contribute to the 

variability reflected in the bimodal expression. In a further study, the same group showed 

that stimulated bone marrow derived dendritic cells exhibit distinct patterns of variability 

(digital and analogue patterns, also seen in single-cell NF-κB dynamics (Tay et al., 2010)) 

determined by the stimulus and time of stimulation (Shalek et al., 2014),  illustrating the 

importance of considering the temporal aspect when studying variability in gene expression. 
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Interferon (IFN)-mediated paracrine signals, which alter the repertoire of TF activation, seem 

to have a major role in regulating (promoting and restraining) this variability of TLR responses 

through positive and negative feedback loops (Shalek et al., 2014; Wimmers et al., 2018). In 

fact, as mentioned earlier, IFN-I has the ability to alter the epigenome of macrophages by 

modifying the chromatin structure to make it accessible and permissive of gene expression 

even at low levels of stimulation, this in turn prevents the occurrence of TNF “cross-

tolerance”, a phenomenon where cells become less responsive to TNF signalling over time. 

As a result, TNF can control target genes of NF-κB that encode inflammatory molecules (Park 

et al., 2017). It would not be surprising if this interplay between IFN-I and TNF to reprogram 

the epigenome contributes to cell-to-cell variability in TLR4 responses. NF-κB responses have 

been shown to be heterogeneous upon stimulation with TNFα (Tay et al., 2010). Gene 

expression variability of TNFa itself has been observed in macrophages after stimulation with 

lipid A, the cytotoxic component of LPS, and this variability has been explained partly by the 

differences in the cell size (Bagnall et al., 2018).  

Another relevant source of variability in macrophages responses is the variability of the 

pathogens. Avraham et al., (Avraham et al., 2015) showed that high levels of IFN response 

genes are expressed in around only third of the cells, while the rest showing low levels of 

expression, confirming bimodal distribution observed in other parts of the immune system, 

as mentioned earlier. They combine fluorescent reporters, single-cell microscopy, and scRNA-

seq methods to reveal that variability in macrophage IFN expression is attributed to variability 

in the infecting Salmonella cells rather than inherent variations within the macrophage 

population. This study provided a new dimension to the origins of cell-to-cell variability in the 

host system and added a new perspective in understanding host-pathogen interactions and 

outcomes. 

 

Through the use of RNA FISH, interleukin-4 (IL-4), an anti-inflammatory cytokine, has been 

showed to produce mRNA transcripts upon stimulation in only 60% of cells population, and a 

significant proportion of these expressing cells were monoallelic with a small number of cells 

expressing two alleles (L. Guo et al., 2005). This is in agreement with several studies 

demonstrating that IL-4 expression is controlled by allele-specific activation, which in turn 

depends on the antigen dose (Bix & Locksley, 1998; Rivière et al., 1998). Monoallelic 

expression is the dominant mechanism until a sufficient increase in the signalling level 
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(reflecting high levels of antigen dose) that would allow for biallelic expression. Guo et al., (L. 

Guo et al., 2005) also proved experimentally that heterogeneity in frequency of IL-4 

expressing cells and from which allele are primarily determined by probabilistic processes. 

They also argue that this stochastic regulation has a functional advantage in controlling 

differentiation of certain immune cell types upon interaction with IL-4.  

Interestingly, an analogous mechanism to the antigen-dose-dependent activation of IL-4 

alleles was revealed in macrophages upon stimulation with LPS. Macrophages has been 

shown to possess the ability to distinguish between different levels of LPS concentrations and 

to respond proportionally (Sung et al., 2014), playing an important functional role in 

controlling NF-κB activation dynamics. However, in this case almost all cells were responsive, 

contrary to the behaviour of NF-κB activity upon stimulation with TNFα, where the activation 

is heterogeneous at the single cell level, and the sensitivity to low doses is manifested in fewer 

responsive cells (Tay et al., 2010).  

 

1.3 Methodologies for studying cell-to-cell variability  
Throughout the years and with the accumulating interest in single-cell biology, experimental 

methods, including smFISH, scRNA-seq in fixed cells, and mass spectrometry tagging in living 

cells, have been developed and widely used to quantify transcription in single cells when 

studying mechanisms that underly the dynamics of transcriptional bursting, revealing how 

individual cells can be different from each other (Avraham et al., 2015; Dar et al., 2016; Ezer 

et al., 2016; Kim & Marioni, 2013; Newman et al., 2006).  

1.3.1 Single-molecule Fluorescence in situ Hybridization  

The single-molecule FISH technique provides measurements of the counts of individual mRNA 

molecules in a single cell as well as the number of active transcription sites (TS) (Femino et 

al., 1998). Fluorescent DNA probes bind to individual RNA molecules with specific 

complementarity, then static snapshots of mRNA molecules and active TS, appearing as bright 

dots with different intensities, are collected at different time points using fluorescence 

microscopy (Raj et al., 2008). Absolute number of mRNAs and active TS can be then counted 

using analysis tools like FISH-quant (Mueller et al., 2013). Other available software packages 

also allow quantifying transcription and degradation rates from smFISH images (Bahar 

Halpern & Itzkovitz, 2016). Several studies utilised this technique to analyse heterogeneity in 
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gene expression and revealed properties of transcriptional bursting (Little et al., 2013; 

Sepúlveda et al., 2016; Zenklusen et al., 2008) (as mentioned in previous sections).  

1.3.2 Single-cell RNA sequencing 

scRNA-seq experiments offer the ability to analyse the distribution of gene expression levels 

in all the expressed genes across a population of cells, which can range from hundreds to 

millions of cells. This allows for the investigation of cell-to-cell variations in transcription level 

within the population. There are various published experimental protocols (>20 to date) 

available for conducting scRNA-seq experiments. The selection of the most suitable protocol 

primarily depends on the specific research question. In general, scRNA-seq involves several 

key steps, including cell capturing, reverse transcription, amplification, library generation, and 

sequencing (Sasagawa et al., 2013; Tang et al., 2009). One major challenge faced by 

experimentalists when carrying scRNA-seq is striking the right balance between sequencing 

depth and the number of cells analysed (Zhang et al., 2020). Determining the optimal 

sequencing depth is crucial to ensure sufficient coverage of gene expression within individual 

cells, while considering the practical constraints of cost and time.  

 

Strategies for cell capturing include microtitre-plate-based, microfluidic-array-based, and 

microfluidic-droplet-based.  Microtitre-plate-based methods, such as fluorescent activated 

cell sorting (FACS), work on isolating cells into individual wells of the plate without damaging 

the cells in the process. One of this method’s advantages compared to other methods is the 

ability to assess whether two or more cells have been mistakenly isolated into one well, as 

well as discarding any isolated damaged cells. In addition, several efficient technology 

platforms are available to generate scRNA-seq libraries, such as the 10x Genomics systems, 

which can capture up to tens of thousands of cells. Subsequently, computational pipelines 

are employed to pre-process and clean the obtained data (Hwang et al., 2018).  

 

scRNA-seq protocols often suffer from technical limitations and inherent noise causing 

dropout events in the data, where genes are not detected or appear as zero counts in certain 

cells despite their expression in reality (Svensson, 2020). This in turn can pose challenges for 

downstream analysis and interpretation. Recent protocols are providing ways to overcome 
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these challenges (Ran et al., 2020; Sarkar & Stephens, 2021) and quantify data in the number 

of mRNA transcripts, making it suitable for mathematical modelling (Larsson et al., 2019).  

1.3.3 Live cell imaging 

A complete understanding of cell-to-cell variability necessitates the studying of gene 

expression dynamics at a mechanistic level within individual cells, and live cell imaging is the 

most suitable experimental approach for achieving this goal (Sung & McNally, 2011). By 

directly visualizing gene expression in real time, live cell imaging provides valuable insights 

into the temporal and spatial aspects of cellular behaviour, compared to fixed-cell 

approaches, enabling a deeper understanding of the sources and consequences of cell-to-cell 

variability. Dynamic imaging of transcription is feasible through utilising RNA labelling 

methods in live cells such as stem-loop labelling and fluorescence protein tagging by the MS2 

coat protein (MCP) system (Wu et al., 2012). The MS2-MCP system has been widely used to 

study real-time kinetics of transcriptional bursts (Chubb et al., 2006; Golding et al., 2005; 

Yunger et al., 2010). 

 

A recent breakthrough in real-time RNA imaging involves the utilization of CRISPR-Cas13 

systems (Yang et al., 2019), offering a promising alternative to overcome limitations 

associated with conventional methods. By employing Cas13 along with RNA guides (gRNA) 

that specifically bind to the target RNA of interest, this approach assures no genetic 

modifications in the targeted cells (Yang et al., 2019), unlike the MS2-MCP method. While 

improvements are in progress (H. Cao et al., 2022; Yang et al., 2022), the method still suffers 

from high signal-to-noise ratio in comparison to MS2-MCP and guidelines for designing 

efficient gRNAs are still lacking (Yang et al., 2019). Nevertheless, it has already been used to 

reveal important features related to gene expression (Y. Huang et al., 2023). 

 

1.4 Mathematical modelling  
Mathematical modelling integrated with appropriate experimental measurements is crucial 

to refine our understanding of transcriptional bursting and the resulting cell-to-cell variability. 

Here I describe mathematical models of gene expression used in the literature, their 

differences, and limitations as well as numerical methods for model solving, simulations and 
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model selection. For the purpose of this thesis, I focus on modelling the transcription process 

of gene expression and neglect translation. 

1.4.1 Kinetic models of gene expression 

Based on the Central Dogma of Molecular Biology (DNA to RNA to protein), one can think of 

the simplest rate-kinetic model to describe the dynamics of mRNA production in the system 

using the following deterministic ordinary differential equation (ODE): 
&'())
&)

= 𝑘) − 𝑘&𝑚(𝑡),                                               (1.1) 

where 𝑚 is the number of mRNA, rather than its concentration, in a cell over time t, 𝑘) and 

𝑘&  are synthesis and degradation rates, respectively. Solving the ODE for the initial condition 

𝑚(0) = 0 gives the solution: 

𝑚(𝑡) = 	 +"
+#
	(1 − 𝑒$+#)), (1.2) 

which demonstrates that mRNA production will accumulate over time following an 

exponential function with a time constant ,
+#
	, reaching its equilibrium (steady state) at +"

+#
.  

A change in one of the kinetic parameters, e.g., due to stimulus, would lead to a new steady 

state for the system reached in an exponential manner with its time constant. From this 

model, one can establish the important relationship between the half-life of an mRNA and its 

degradation rate (C.-Y. A. Chen et al., 2008; Hargrove et al., 1991; Lugowski et al., 2018): 

𝑡$
%
= -.(/)

+#
. (1.3) 

This model has been utilized in the earlier stages of mRNA studies (Greenberg, 1972; Rodgers 

et al., 1985). However, over the years and with much greater understanding of gene 

expression, this model is no longer deemed sufficient to describe the dynamics of the process 

due to the inherently probabilistic nature of chemical reactions and the relatively small 

number of biochemical molecules involved in gene expression which are ignored in this 

deterministic model. 

1.4.2 Stochastic models of gene expression 

A stochastic model is indispensable when studying gene expression. By considering the 

involved biochemical reactions as probabilistic events, a stochastic model accounts for the 

inherent variability and randomness in the process. This provides a more accurate 

representation of the experimental observations and a better comprehensive understanding 
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of the complex dynamics and emergent properties of gene expression, such as cell-to-cell 

variability.  

 

1.4.2.1 The telegraph model 

Most genes, in prokaryotes and eukaryotes, produce mRNA in a “bursty”, intermittent, non-

Poissonian manner (Golding et al., 2005; Raj et al., 2006; Raj & Oudenaarden, 2008; Sanchez 

& Golding, 2013; Suter et al., 2011). The simplest stochastic model that captures such 

behaviour is the so called ‘telegraph’ model, a two-state switching model in which the gene, 

specifically its promoter, randomly transitions from an inactive to an active state in which 

transcription occurs. Inactive-to-active transitions occur with an activation rate 𝑘0.		resulting 

in short periods of transcriptional activity generating mRNA molecules at a transcription rate 

𝑘)	until the gene is “switched off” and returned, with deactivation rate 𝑘022, to its inactive 

state. The mRNA transcripts are degraded at a rate 𝑘&  (see Figure 1.3). This model, therefore, 

accounts for the main four biochemical reactions in the process (promoter activation, 

inactivation, mRNA synthesis and mRNA degradation).  

 

 

 

 

 

 

 

Let τ34 =
,
5&''

  be the time the promoter stays active for, while τ366 =
,
5&(

 be the off-time. 

Then, under this model, burst size and frequency at steady state can be defined in terms of 

the model’s kinetic parameters as follows (Nicolas et al., 2018): 

𝑏 = 𝑘)𝜏0. =
+"
+)**

,	 (1.4) 

𝑓 = ,
7)+87)**

= +)++)**
(+)+8+)**)

. (1.5) 

I refer to these as kinetic estimators and show in Chapter 2 that they can be equivalent to the 

moment estimators (𝒃 = 𝝈𝟐

𝝁
, 𝒇 = 𝝁

𝒃$𝟏
) under certain conditions.   

 

 
Figure 1.3: Schematic of the telegraph model. Gene promoter can be in one of two states: inactive (left) 
or active (right). When in the active state, mRNA transcripts are produced at a rate 𝒌𝒕	, which then degrade at a rate	𝒌𝒅. 
Transitions from the inactive to the active state occur at a rate 𝒌𝒐𝒏, while those from active to inactive go at rate 𝒌𝒐𝒇𝒇. 

 

 
 

 
Figure 1.8: Schematic of the telegraph model. Gene promoter can be in one of two states: 
inactive (left) or active (right). When in the active state, mRNA transcripts are produced at 
a rate 𝑘)	, which then degrade at a rate	𝑘&. Transitions from the inactive to the active state 
occur at a rate 𝑘0., while those from active to inactive go at rate 𝑘022. 
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In mathematical terms, the described model considers the temporal evolution of a gene state 

as a Markov process and is represented analytically using the Chemical Master Equation 

(CME). The CME is a set of coupled ODEs describing the time evolution of 𝑃(𝑥, 𝑡), the 

probability of the biochemical system being in a particular state 𝑥 at time t; where a state 𝑥 

is defined by the number of mRNA molecules, i.e., probability of having 𝑚 mRNA in a single 

cell at time 𝑡. Under the assumption that different promoters of the same gene behave 

independently (Skinner et al., 2016), and when experimental methods permit detection of an 

individual promoter’s activity (Gómez-Schiavon et al., 2017), the number of active promoters 

(cells can have more than one active promoter) in a cell can also be incorporated in the CME 

such that the definition of the state becomes 𝒙 = 	 [𝑛,𝑚]9, where	𝑛 is the number of active 

promoters in the cell.  

The probability 𝑃(𝒙, 𝑡) of being in each possible state then becomes:  
&:(𝒙,))
&)

= ∑ 𝑃(𝒙 −	𝒗+ , 𝑡)+ 𝑎+(𝒙 −	𝒗+) − 	𝑃(𝒙, 𝑡)∑ 𝑎+(𝒙)+ ,	 (1.6) 

where 𝑎+ 	is the propensity function such that 𝑎+𝜕𝑡 is the probability that the biochemical 

reaction 𝑘 will happen within the infinitesimal time interval 𝜕𝑡 depending on the rate of the 

reaction, and the stochiometric vector 𝒗+ describes the change in the system state, i.e., the 

change in the number of mRNA and promoters as a result of reaction 𝑘 happening. It follows 

that 𝑎+(𝒙 −	𝒗+) is the probability for the system to transition from state 𝒙 −	𝒗+ to state 𝒙 

through reaction 𝑘 and the summation is over all the possible reactions. Detailed theory and 

a rigorous derivation of CME can be found in (Gillespie, 1992; Kampen, 2007; McQuarrie, 

1967).  

 

For the two-state telegraph model sketched above, the CME can be solved analytically using 

generating functions for when the system is in steady state (Raj et al., 2006; Shahrezaei & 

Swain, 2008b), as well as in the transient state (Iyer-Biswas et al., 2009). The steady state 

distribution has been shown to be the following (Peccoud & Ycart, 1995; Raj et al., 2006; 

Shahrezaei & Swain, 2008b): 

𝑃@𝑚A𝑘0., 𝑘022 , 𝑘) , 𝑘&B =
=,",#

>
-
?
.,"

,#
/

'!

A=,)+,#
8'>A=,)+,#

8
,)**
,#

>

A=,)+,#
8
,)**
,#

8'>A=,)+,#
>
1F1D

+)**
+#

, +)+
+#
+ +)**

+#
+𝑚; +"
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F	,		(1.7) 

where 𝛤(. ) is the gamma function and 1F1 (a, b; z) is the confluent hypergeometric function. 
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While the steady-state mRNA first and second moments are given explicitly by the following 

expressions (Paszek, 2007):  

µ = +)++"
+#B+)**8	+)+C

	,	 (1.8) 

s/ = µ/
+)**

+)+D,8	
0,)**1	,)+3

,#
E
+ µ.	 (1.9) 

Having these moment expressions is useful, but not sufficient to analyse and gain a full picture 

of transcriptional bursting properties. A famous Monte Carlo algorithm known as (Gillespie’s) 

stochastic simulation algorithm (SSA) is often used for numerically generating exact time 

trajectories for mRNA evolution in the system (see Figure 1.4 for a realisation of SSA). The 

trajectories are based on the propensity functions and stoichiometry vectors of the possible 

reaction events, in which after every reaction the system state gets updated according to the 

stoichiometry of that specific reaction, with the assumption that the waiting times between 

events are distributed exponentially (Gillespie, 1977). The probability distributions of mRNA 

number can then be estimated from a sample of generated trajectories. It is noteworthy that 

although the SSA is easy to implement, the need to simulate every individual reaction event 

makes it very slow for large gene networks (more complex models). Therefore, improvements 

to the algorithm in order to speed it up have been established (Y. Cao et al., 2004; Gibson & 

Bruck, 2000; Lok & Brent, 2005; McCollum et al., 2006). In addition, the tau-leaping method 

(Y. Cao et al., 2006; Gillespie, 2007) is sometimes used as an approximate, but more 

computationally efficient, simulation strategy.   

Is it possible to compute the exact solution of the CME? 

In general, the CME can be written as: 

 

           
 

Figure 1.4: Stochastic simulation of gene expression using SSA. Shown are trajectories of 
promoters’ activity and mRNA temporal evolution according to the two-state model, simulated with koff = 0.04 min-1, 
kon =0.02 min-1 and kt=2 min-1, kd=0.01 min-1. 
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𝑑𝑃(𝑿, 𝑡)
𝑑𝑡 = 𝑹(𝜃)𝑃(𝑿, 𝑡) 

where 𝑋 = [𝒙𝟏, 𝒙𝟐, … 𝒙𝑵]9  is a vector of all possible cell states, N is the number of all possible 

states, 𝑃(𝑿, 𝑡) = [𝑃(𝒙𝟏, 𝑡), 𝑃(𝒙𝟐, 𝑡), …𝑃(𝒙𝑵, 𝑡)]9  and  𝑹(𝜃) is the state reaction matrix such 

that 

𝑅HI = P
−Q 𝑎+(𝒙H)							∀𝑖 = 𝑗

+
																																					

	𝑎+(𝒙I)								∀𝑗	such that 𝒙I = 𝒙H − 𝝂+
			0																													otherwise.																														

 

Time evolution of the probability distribution 𝑃(𝑿, 𝑡) is then given by:	 𝑃(𝑿, 𝑡) =

exp[𝑹(𝜃)𝑡] 𝑃J(𝑿), where 𝑃J(𝑿) is specified by initial conditions and ∑ 𝑃J(𝑿) = 1𝑿 . 

When the number of states is small, computing the exponential of 𝑹(𝜃)𝑡, and hence 𝑃(𝑿, 𝑡), 

is possible in MATLAB using a fast matrix exponential function (Al-Mohy & Higham, 2011). 

However, for a system with a large (up to 1000, which is possible for eukaryotes) number of 

mRNA transcripts, and therefore huge matrix 𝑹(𝜃), computing 𝑃(𝑿, 𝑡) becomes time 

consuming. A clever method known as the finite state projection (FSP) algorithm comes to 

the rescue, providing an approximate solution by truncating the state space leaving out highly 

improbable states. A description of the algorithm is presented in (Senecal et al., 2014), 

including two examples based on a model of the Pap epigenetic switch demonstrating the 

application of the method in the biological field. Gómez-Schiavon et al. (Gómez-Schiavon et 

al., 2017) incorporated the FSP method in their work to calculate the post-stimulus 

distributional dynamics of the neuronal activity-inducible gene Npas4. Their approach can be 

generalized and used for calculating exact temporal mRNA distributions of other genes in 

which their expression can be recapitulated by the two-state model described above. 

 

1.4.2.2 Other stochastic models of gene expression  

Despite the common use of the telegraph model described in the previous section, it is 

apparent that this model is an oversimplification of the process and the complex biochemical 

events underlying it. It has yet to incorporate established processes which have been shown 

to affect gene expression, and therefore cell-cell variability, such as chromatin remodelling, 

methylation states of DNA, cell division and mRNA maturation. This led to several studies 

considering modified versions of the telegraph model by integrating some of the 

aforementioned biological processes. Senecal et al. (Senecal et al., 2014) extended the 
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standard two-state model by including a second ON state characterised with a higher 

initiation rate to the other ON state. They verified with experimental data on the early 

response gene c-Fos that this model accounts better for the distribution of nascent mRNA, 

and therefore they presented a model that describes the conversion of nascent mRNAs to 

mature mRNAs with a constant time delay. Mathematically, the probability being in the new 

ON state of the promoter over time is written as an ODE equation that is incorporated in the 

ODE system of two-state model.  

In another study, Skinner et al. (Skinner et al., 2016) built upon this modified model to include 

the effect of cell-cycle and gene copy number differences between cells. They assigned a 

constant time period in which gene replication happens and during this time the gene can 

switch on with a specific rate, followed by dosage compensation at which this switching on 

rate, and therefore transcription, decreases by a calculated fold-change. They validated their 

model with experimental measurements on two mouse genes that control the pluripotency 

of embryonic stem cells, Oct4 and Nanog, and showed that Nanog has slower switching 

kinetics resulting in higher cell-cell variability. Through this model they provided a framework 

to study the effect of cell-cycle on cell-cell variability.  

 

Although the above-mentioned models demonstrated an improvement over the telegraph 

model, their limitation lies in the fact that they can solely be analysed through stochastic 

simulations as their analytical solution remains unknown. Cao et al. (Z. Cao & Grima, 2020), 

on the other hand, presented a more comprehensive model that incorporates dosage 

compensation, replication, cell division, growth-dependent transcription and mRNA 

maturation, with the advantage of providing an analytical solution to the model.  

Another model of gene expression incorporating features of promoter architecture is 

established by Zoller et al., (Zoller et al., 2015). They form a stochastic model that essentially 

looks like the two-state model but with N sequential inactive states reflecting refractory 

periods of silent transcriptional intervals (Cesbron et al., 2015; Harper et al., 2011; Suter et 

al., 2011). 
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1.4.3 Modelling gene expression data through statistical distributions  

Another approach to model gene expression is through describing experimental gene 

expression data distributions using established probability distributions such as the lognormal 

(Bengtsson et al., 2005), Poisson (Sarkar & Stephens, 2021), negative binomial, gamma 

distributions (de Torrenté et al., 2020), or mixture models combining multiple probability 

distributions like the beta-Poisson model (a model of interest to us, as proved to capture 

bimodality featured in scRNA-seq data). The choice of the distribution depends on the nature 

of the data and the assumptions made about the underlying gene expression process. 

Nevertheless, this modelling approach provides a computationally efficient statistical 

framework for quantifying likelihood, spread, and shape of the expression levels across the 

population in various types of gene expression data, including bulk RNA-seq and scRNA-seq, 

providing a global view of gene expression patterns, while incorporating technical noise of 

the data (Anders & Huber, 2010; Love et al., 2014; Svensson, 2020).   

 
Beta-Poisson mixture model 

The formulation of the model is as follows: Let 𝑚 be the observed count of mRNA molecules 

for a gene in a single cell. The beta-Poisson model assumes that 𝑚 follows a Poisson 

distribution, 𝑃(𝑚) = ?.l	l	,

'!
, where the mean parameter l is itself drawn from a beta 

distribution 𝑃(l) = l4.$
	
(,$l)5.$L(M8N)
A(M)A(N)

, with shape parameters 𝛼 > 0 and 𝛽 > 0 (Dattani & 

Barahona, 2017; Smiley & Proulx, 2010).  

In the context of the two-state model, the shape parameters of the beta-Poisson distribution 

can be interpreted as the rates at which the gene’s promoter switches on and off, normalised 

by the mRNA degradation rate (I omit the degradation rate term in the denominator for the 

sake of brevity), and the mean of the Poisson distribution is scaled by the transcription rate. 

Specifically, l|𝑘0., 𝑘022	~	𝐵𝑒𝑡𝑎@𝑘0., 𝑘022B and m|𝑘) , l~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑘) . l) (Vu et al., 2016). It 

follows from that the marginal distribution is equal to: 

𝑃(𝑚; 𝑘)l) = 𝑃(𝑚|𝑘)l) ∗ 𝑃(𝑘)) =
(+"l)-?.,"l

'!
AB+)+8+)**C
A(+)+)AB+)**C

l+)+$,(1 − l)+)**$,, 

which yields to: 

𝑃(𝑚) = 	` 𝑃(𝑚; 𝑘)l)	𝑑l =
𝑘)

'

𝑚! 		
,

J

𝛤@𝑘0. + 𝑘022B
𝛤(𝑘0.)𝛤@𝑘022B

	` l+)+8'$,(1 − l)+)**$,𝑒$+"l	𝑑l
,

J
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        	= +"-

'!
AB+)+8+)**CA(+)+8')

A(+)+)AB+)+8+)**1-C
	1F1b𝑚 + 𝑘0., 𝑚 + 𝑘0. + 𝑘022 , −𝑘)c. (1.10) 

Note that 1F1(𝑎, 𝑏, 𝑥) = exp(𝑥)1F1(𝑏 − 𝑎, 𝑏, −𝑥) (Muller, 2001), which makes equation 

(1.10) equal to equation (1.7). Therefore, the beta-Poisson distribution is equivalent to the 

steady state distribution of the two-state stochastic model. Consequently, it is convenient to 

use the beta-Poisson model as a statistical framework when dealing with scRNA-seq data (Kim 

& Marioni, 2013; Larsson et al., 2019), as it is computationally less expensive than the 

stochastic model and able to reflect the bimodality in genes with slow switching rates, as well 

as long-tailed behaviour in the data distribution (Wills et al., 2013).  

1.4.4 Parameter inference and model fitting  

Determining the biophysical parameters that govern a biological process is crucial for 

understanding the underlying mechanisms driving the biological system. It also plays a pivotal 

role in enhancing the mathematical models employed to describe the process, resulting in 

more accurate predictions of system behaviour, and consequently facilitating better 

experimental designs. 

Within our scope, to understand gene expression variability at single-cell level, it is important 

to study the role of kinetic parameters on fluctuations of number of mRNA transcripts. 

However, it is quite difficult, if not impossible in most cases, to measure these parameters 

directly through experiments. Therefore, parameter inference, estimating unknown 

parameters by fitting observed experimental data to mathematical models, is a prominent 

issue and widely discussed topic in the field (Ashyraliyev et al., 2009; Lillacci & Khammash, 

2010). In mathematical terms, it is an ‘inverse problem’ that involves finding the most likely 

or optimal values for these parameters that best explain or fit the observed data. Although it 

can be challenging for complex models as multiple combinations of parameters can yield 

identical predictions, the estimation process is typically achieved through statistical methods, 

optimization algorithms, or a combination of both like the Expectation-Maximisation (EM) 

method. I discuss some of these methods with a focus on the most relevant ones to the work 

presented in this thesis. 

 

1.4.4.1 Optimization algorithms 

Different optimization methods such as genetic algorithms (Srinivas & Patnaik, 1994), least-

squares fitting (Mendes & Kell, 1998), simulated annealing, and others (Ashyraliyev et al., 
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2008; Kirkpatrick et al., 1983) are widely implemented when fitting model parameters. These 

methods search for the set of parameters that minimizes the distance (error) between the 

model distribution and the experimental data.  

Genetic algorithms 

As the name indicates, this inferring approach mimics the process of natural selection, the 

theory of biological evolution. Essentially it operates based on the principles of selection, 

reproduction, and mutation to iteratively improve a population of candidate solutions and 

find an optimal or near-optimal solution for a given problem (Srinivas & Patnaik, 1994).  

In the scenario of inferring kinetic parameters of gene expression models, given a defined 

objective (fitness) function that measures the error between model distribution and 

experimental data, the genetic algorithm begins with an initial population of potential 

parameter sets. Each set represents a candidate solution. These parameter sets are then 

evaluated based on their fitness, using the objective function. The fittest parameter sets are 

selected for reproduction. 

During reproduction, genetic operators such as crossover and mutation are applied to the 

selected parameter sets. Crossover involves combining genetic information from two or more 

parameter sets to create new offspring with a mix of characteristics. Mutation introduces 

small random changes to the parameter values to explore different regions of the solution 

space. 

The process of selection, reproduction, and mutation are iteratively performed over multiple 

generations. With each iteration, the population evolves, and the fitness of the parameter 

sets improves, until converging to the optimal combination of parameter values that best fit 

the gene expression data (Ashyraliyev et al., 2009; Genetic Algorithms, 2021). 

I use this algorithm in Chapter 2 and 3 to infer parameters of gene expression stochastic 

models. I minimise an objective function given by the average absolute distance between the 

theoretical (CME) and measured cumulative distribution functions (CDFs) across observed 

mRNA counts (,
.
∑ |𝐶𝑀𝐸H.
HO, −	𝐶𝐷𝐹H|), where i’s are unique mRNA counts observed in the 

measured distributions. Several best model fits (50 for example in Chapter 2) are then 

considered to measure the Kaplan-Meier estimator of measured CDF and get a sense of the 

inference spread.  
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1.4.4.2 Bayesian inference approach   

Despite the successful applications of optimization techniques in solving the problem of 

parameter estimation in several biological systems (Ezer et al., 2016; Kim & Marioni, 2013; 

Neuert et al., 2013), they can be computationally prohibitive and perform poorly if data 

includes significant noise (Lillacci & Khammash, 2010). Hence, state-of-the-art methods, such 

as Bayesian methods, are sought to infer kinetic parameters of gene expression models from 

single-cell data. Bayesian inference approach allows computation of the full probability 

distributions of the model parameters. The mathematical framework of this approach is 

based on the famous Bayes theorem, where given a stochastic gene expression model that 

depends on a set of unknown parameters 𝜃 and some observed data set 𝐷; 

𝑃(𝜃|𝐷) = :(P|R):(R)
:(P)

, (1.11) 

where 𝑃(𝐷|𝜃) is the likelihood of having sampled (or simulated if working with synthetic 

data) the observed data given the calculated time-dependent mRNA distributions for model 

parameters 𝜃, 𝑃(𝜃) is the prior probability which is an expression of any prior knowledge and 

beliefs about parameters before observing any data, 𝑃(𝐷) is the probability distribution of  

the observed data which we call the evidence, and 𝑃(𝜃|𝐷) is the posterior distribution: the 

probability distribution of the parameters given the observed data. In practice, computing 

𝑃(𝐷) is often infeasible and Markov Chain Monte Carlo (MCMC) methods, such as the 

Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953) and Gibbs 

sampler (Geman & Geman, 1984), are used to estimate the posterior distribution by sampling 

from the target distribution 𝑃(𝐷|𝜃)𝑃(𝜃), the un-normalised version of the posterior (Suter 

et al., 2011; Zoller et al., 2015). Using the Bayesian approach, Gómez-Schiavon et al. (Gómez-

Schiavon et al., 2017) established a novel computational pipeline (BayFISH) that allows 

inference of kinetic parameters of any stochastic gene expression model from smFISH data 

with quantification of their uncertainty given the data. In following work (Lin & Buchler, 2019), 

they developed and implemented an efficient hybrid Monte Carlo algorithm into BayFISH for 

speeding up the estimation of the posterior distribution.  

 

While a Bayesian inference approach is the most complete method for parameter estimation, 

as it allows estimation of the entire probability distributions of the parameters instead of only 
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a point estimate, it still suffers from being computationally expensive for complex models, 

including multistate gene expression models.  

 

1.4.4.3 Maximum likelihood estimation method 

The underlying principle of the maximum likelihood estimation (MLE) approach is to select 

the set of parameter values that make the observed data most probable under the assumed 

statistical model, i.e., maximizing the likelihood function of the observed data (Rossi, 2018). 

The essential part of the method is defining the likelihood function. 

Given a random sample (a set of observed data) 𝑌,, 𝑌/, … , 𝑌. with density function 𝑓 and 

under assumption of their independence, their joint probability distribution that is governed 

by a set of unknown parameters 𝜃, 𝐿(𝜃) is the following: 

𝐿(𝜃) = 𝑃(𝑌|	𝜃) = 	𝑃(𝑌, = 𝑦,, 𝑌/ = 𝑦/, … , 𝑌. = 𝑦.) = 	∏ 𝑓(𝑦H; 𝜃).
HO, . (1.12)  

Therefore, the likelihood function depends solely on the type of data observed and the 

considered model of the process (Girolami, n.d.). For example, and in relation to the work of 

the upcoming chapters in this thesis, the likelihood function of single-cell data (smFISH and 

scRNA-seq) at several time points, given the model parameters, is a product of multinomial 

distributions, and is given by (Gómez-Schiavon et al., 2017):   

𝑃(𝑌|𝜃) = 	∏ m	n	
S∑ U6

"
6 V!

∏ U,
"!,
	o	∏ [𝑃(𝒙H , 	𝜏))]U7

"X
HO, pY

)OJ , (1.13) 

where 𝑆 is the total number of the data time points, 𝑌) is a vector of the number of cells 

displaying each observed state for sample at time t (the sum of this vector is the total number 

of cells N),	𝒙 is the state of the cell defined by number of mRNA (and if applicable number of 

active promoters), and	𝑃(𝑥H , 	𝜏)), depending on the considered model, can be derived using 

methods described earlier.   

For numerical stability, the natural logarithm of the likelihood function, the log-likelihood 

denoted by 𝑙(𝜃), is usually considered. Therefore, MLE aims to estimate the model 

parameters over the parameter space Θ by solving the problem 𝜃t = argmax
R∈[

𝑙(𝜃) (Haynes, 

2013; Myung, 2003). This can be approached explicitly by setting the derivative of 𝑙(𝜃) to 

zero and solve the resulting equation, or numerically using optimization methods such as 

the profile likelihood approach (Pawitan, n.d.) and EM algorithm (Girolami, n.d.).  
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Larson et al. utilised the profile likelihood approach based on the beta-Poisson model to 

infer transcriptome-wide bursting characteristics using scRNA-seq data (Larsson et al., 

2019). The efficiency of this method, particularly when dealing with large sample sizes, is 

one of its biggest advantages compared to Bayesian inference.  

 

1.4.4.4 Model selection – “All models are wrong, but some are useful” 

A model is a simplification or approximation of reality, driven by the knowledge we have 

about the process we are trying to model. The computational and experimental limitations 

we face and the lack of knowledge in very complex biological phenomena call for ranking the 

available models of the considered phenomenon from most useful to most useless, and 

therefore selecting the model that best explain the phenomenon under the circumstances of 

the study. Different methods are available to carry out the model selection task (Lillacci and 

Khammash, 2010), including several information criteria like Akaike information Criterion 

(AIC), Bayesian Information Criterion (BIC) and the Deviance Information criterion (DIC) which 

have been used successfully within a Bayesian inference framework (Gómez-Schiavon et al., 

2017). However, it has recently been demonstrated that the use of Bayesian evidence 

incorporated with an Importance Sampler of the Harmonic Mean Estimator (IS-HME) (Robert 

and Wraith, 2009) to compute a model evidence could overperform in model selection 

compared to AIC and BIC particularly when relatively small sample size of data (~100 cells per 

time point) is considered (Lin and Buchler, 2019). 

I use the AIC method in Chapter 3 to assess different gene expression model fits and perform 

model selection. Explicitly, the AIC is calculated as follows; if the number of samples, n, is 

large enough: 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛	(𝐿) (1.14) 

If  .
+
< 40: 

𝐴𝐼𝐶 = 2𝑘 − 2 𝑙𝑛(𝐿) + /+(+8,)
.$+$,

 (1.15) 

where 𝐿 is the likelihood of the observed data given model parameters, and 𝑘 is the number 

of parameters. The likelihood is defined by equation (1.13) and calculated by incorporating 

equation (1.10) for a beta-Poisson model, while incorporating the solution of equation (1.6) 

for stochastic models.  
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1.5 Aims and objectives 
Cell-to-cell variability in gene expression, specifically mRNA level, is an intriguing biological 

phenomenon seen in all living organisms. While mathematical modelling and computational 

approaches have been used to understand the gene expression process in the broader 

context, several studies explored the biological mechanisms affecting transcriptional 

variability in isolation using experimental approaches. How individual innate immune cells 

adjust to changes of immune conditions while controlling gene expression patterns remains 

an unresolved question. 

 

This thesis offers a novel understanding of how cellular variability of the innate immune 

system is mechanistically regulated upon facing different immune conditions through 

combining state-of-the-art mathematical modelling with smFISH and scRNA-seq experimental 

approaches. By investigating how transcriptional bursting features (burst size and frequency) 

are modulated in response to stimuli, this work provides a foundation for a more 

comprehensive understanding of the molecular mechanisms underlying the regulation of 

transcription at the single-cell level.  

 

The main aims are:  

• To provide novel understanding of how transcriptional heterogeneity in the TLR 

system is controlled under changes in immune conditions through single-cell 

experiments, and to develop a mathematical model that captures this phenomenon.  

• To mathematically describe the modulation of bursting characteristics in response to 

the immune conditions’ changes, and validate our theory through analysis of 

experimental data, thereby enhancing our understanding of the underlying dynamic 

mechanisms governing transcriptional heterogeneity. 

•  To investigate whether the heterogeneity observed in the innate immune system is 

predominantly driven by stochastic processes or if it is predetermined through 

transcriptional memory. 
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Chapter 2 Characterisation of transcriptional variability in the TLR 
system 

Our understanding of how transcriptional heterogeneity in the TLR system is controlled 

remains incomplete. The initial part of this thesis is focused on addressing this question and 

developing mathematical tools and models that capture and allow analysis of this 

phenomenon. In this chapter, I explore characteristics of transcriptional variability in some 

TLR-immune genes. Single-cell experimental data suggests overall trends between the mean 

and variance of mRNA counts across different immune conditions. I show that these trends 

follow robust linear regression models presenting a solid framework to describe how 

transcriptional variability is constrained. Further, I introduce different stochastic models of 

gene expression describing the expression distributions of two immune genes TNF𝛼 and IL1𝛽 

showing distinct levels of variability. Modulation of transcriptional bursting characteristics 

(burst size and frequency) that underly the linear trends are also calculated under the 

telegraph model regulatory mode. Experimental verifications of these calculations are 

presented.  

 

2.1 Journal paper: Gene-specific linear trends constrain 
transcriptional variability of the Toll-like receptor signaling 
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SUMMARY

Single-cell gene expression is inherently variable, but how this variability is controlled in response to stimu-
lation remains unclear. Here, we use single-cell RNA-seq and single-molecule mRNA counting (smFISH) to
study inducible gene expression in the immune toll-like receptor system. We show that mRNA counts of tu-
mor necrosis factor a conform to a standard stochastic switch model, while transcription of interleukin-1b
involves an additional regulatory step resulting in increased heterogeneity. Despite different modes of regu-
lation, systematic analysis of single-cell data for a range of genes demonstrates that the variability in tran-
script count is linearly constrained by the mean response over a range of conditions. Mathematical modeling
of smFISH counts and experimental perturbation of chromatin state demonstrates that linear constraints
emerge through modulation of transcriptional bursting along with gene-specific relationships. Overall, our
analyses demonstrate that the variability of the inducible single-cell mRNA response is constrained by tran-
scriptional bursting.

INTRODUCTION

Transcription of almost all mammalian genes is regulated by

transitions in their association with active RNA polymerase

complexes. This often results in brief periods of transcriptional

activity and stochastic bursts of mRNA output characterized by

their size and frequency (Raj et al., 2006; Raj and van Oude-

naarden, 2008; Suter et al., 2011). Specific gene responses

may exhibit different levels of heterogeneity, arising from varia-

tions in genome architecture (Dar et al., 2012; Dey et al., 2015;

Nicolas et al., 2018; Zoller et al., 2015) in concert with regulatory

signaling events (Larson et al., 2013; Megaridis et al., 2018;

Wong et al., 2018), through "intrinsic noise" in the stochastic

process as well as extrinsic differences between cells (Elowitz

et al., 2002; Hilfinger and Paulsson, 2011; Sherman et al.,

2015). A recent study (Larsson et al., 2019) demonstrated that

while core promoter elements control burst sizes, regulation

of bursting frequency via enhancer elements defines cell-

type-specific expression variability. Similarly, histone acetyla-

tion can control burst frequency, but not burst size, to regulate

the circadian gene output (Nicolas et al., 2018). It is generally

assumed that single-cell, and thus, population-level responses

to stimulation must be tightly controlled (Paszek et al., 2010;

Stelling et al., 2004), although how this is achieved in the pres-

ence of the inherent noise is not fully understood. Analyses of

gene expression from reporter cells suggest a paradigm where

the noise of gene expression is inversely proportional to the

mean expression level (Dar et al., 2012, 2016). However, these

analyses rarely involve systematic perturbation of the same

gene output and have not been performed on a genome-wide

scale. Consequently, there is currently no clear understanding

of how the variability of specific mRNAs change as a function

of themagnitude of the response to acute stimulation or general

perturbation.

In order to investigate the control of cellular variability, we used

the well characterized toll-like receptor signaling (TLR) system

(Medzhitov, 2007). TLR represents an acute innate defense

mechanism against evolutionary-conserved pathogen-associ-

ated molecular patterns and involves a coordinated production

of hundreds of genes, including pro-inflammatory cytokines
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and chemokines (Bryant et al., 2015). The TLR effector response

requires a fine balance between rapid yet robust immune activa-

tion while preventing out-of-control inflammation driving disease

states (Bradley, 2008; Dinarello, 2011). Population-level studies

suggest a highly constrained model, where the target gene

response is subjected to a tight epigenetic and transcriptional

regulation (Adamik et al., 2013; Escoubet-Lozach et al., 2011;

Hao and Baltimore, 2009; Martin et al., 2020; Meissner et al.,

2013; Oda and Kitano, 2006; Ramirez-Carrozzi et al., 2009;

Tong et al., 2016). In contrast, at the single-cell level, TLR-

dependent gene-expression responses exhibit high variability

(Avraham et al., 2015; Lu et al., 2015; Shalek et al., 2013, 2014;

Xue et al., 2015). This variability is thought to reflect complex

transcriptional regulation, involving dynamic transcription factor

(TF) signaling (Bagnall et al., 2018; Selimkhanov et al., 2014;

Sung et al., 2014) as well as diverse genomic architecture (Hagai

et al., 2018) and quorum licensing (Muldoon et al., 2020). For

example, interferon (IFN) and tumor necrosis factor alpha

(TNF-a)-mediated paracrine signals, which alter the repertoire

of TF activation have been shown to regulate the heterogeneity

of TLR responses (Shalek et al., 2014). However, the mecha-

nisms by which the TLR system controls transcriptional bursting

in order to regulate the heterogeneity of the target gene expres-

sion is not fully understood.

In this study, in order to uncover mechanisms that control

gene-expression variability in the TLR system, we used single-

molecule mRNA and single-cell RNA-seq (scRNA-seq) data ob-

tained via systematic perturbation of individual gene outputs

across immune-relevant conditions (Figure 1A). We specifically

measured and mathematically modeled mRNA count distribu-

tions of TLR-dependent interleukin-1b (IL-1b) and TNF-a. We

demonstrated that in response to 14 different TLR conditions

the variability of the individual mRNA response can be empiri-

cally described by a linear function of the mean. These linear re-

lationships are also present in 204 TLR-regulated genes in the

scRNA-seq dataset from bone marrow dendritic cells (BMDCs)

(Shalek et al., 2014). In the context of the stochastic telegraph

model, we determined the ways in which the linear relationships

constrain the underlying bursting characteristics. Theoretical

predictions were subsequently validated by the analysis of

TNF-a and IL-1b smFISH counts, including additional experi-

mental perturbation of the chromatin state.

RESULTS

Expression of IL-1b and TNF-a mRNAs Exhibit Different
Levels of Cellular Heterogeneity
To obtain insights into the control of cellular variability in the TLR

system, we first characterized gene-expression patterns in

innate immunemacrophages by single-cell transcriptomics (Fig-

ure 1A). We generated single-cell RNA-seq libraries using the C1

Auto Prep System (FluidigmC1) using an established RAW264.7

macrophage cell line (Bagnall et al., 2018; Cheng et al., 2015;

Sung et al., 2014) stimulated with lipid A for 3 h (the main cyto-

toxic component of TLR4 agonist lipopolysaccharides [LPS];

Raetz et al., 2007). After mapping and normalization (Figure S1),

high-confidence genes (171 genes with higher expression and,

hence, lower technical variance; Figure S1F), which were found

to be regulated by lipid A in a previous population-level study

(Bagnall et al., 2015), were clustered using an unsupervised affin-

ity propagation method (Frey and Dueck, 2007). The analysis

yielded 7 distinct major gene clusters and 3 uniform cell clusters

(Figures 1B, S2A, and S2B; Table S1). For example, cluster XVII

comprised 18 most abundant genes, including the effector cyto-

kine TNF-a in addition to chemokines Ccl9 and Cxcl2. Notably,

we found a set of 10 genes that failed to cluster (referred herein

as the ‘‘unclustered gene set’’; Figure 1C). These included the

pro-inflammatory inflammasome-associated cytokines IL-1a

and IL-1b (Martinon et al., 2002) in addition to IL-1rn (inter-

leukin-1 receptor antagonist), which are co-located in mouse

and human genomes (Smith et al., 2004; Taylor et al., 2002).

Other unclustered genes encoded chemokines: Cxcl10, Ccl2,

and Ccl5 and a pro-survival colony-stimulating factor Csf3, a

ligand Jag1 (Jagged1) (Hu et al., 2008), protein kinase (Plk2), a

regulator of TNF-a secretion (Schwarz et al., 2014), and a

membrane DC-stamp protein involved in cell fusion (Yagi

et al., 2005).

Unclustered genes exhibited more variability than genes

belonging to major clusters, while housekeeping genes were

the most homogeneous (Figure S2C). Higher variation was not

solely associated with technical noise as some major cluster

genes have a higher number of mapped reads than the house-

keeping genes (for example, clusters XVII and VII; Figure S2D).

Similarly, unclustered genes do not have appreciably lower

numbers of mapped reads than other genes and, indeed, have

more in many cases. Expression heterogeneity may be related

to physical gene properties (Hagai et al., 2018; Larsson et al.,

2019), for instance, levels of transcriptional bursting have been

linked to the presence of TATA boxes within gene promoters

(Zoller et al., 2015). Indeed, we observe that unclustered genes

exhibit significant enrichment of TATA sites in the promoter re-

gions as well as a strong association between the transcript syn-

thesis rate and variation (Figure S3).

We used quantitative smFISH to validate and accurately

quantify expression patterns of TNF-a, IL-1a, and IL-1b

mRNA in single cells (Figures 1D, 1E, and S4A–S4D). The

average expression of IL-1b (± standard deviation, SD) was

215 ± 230 mRNA molecules for count data combined across

all replicates. 50% of RAW 264.7 cells expressed more than

100 IL-1b mRNA molecules (with some expressing up to

1,000 molecules), while 20% of cells expressed <10 mRNA

molecules (see Figure 1D for the cumulative probability function

and Figure S4B for a histogram of smFISH counts). TNF-a, a

cytokine that plays fundamental but distinct roles during infec-

tion (Adamik et al., 2013; Falvo et al., 2010), exhibited a similar

level of expression on an average (255 ±144 mRNA molecules),

but 90% of cells expressed more than 100 mRNA molecules

(evident of reduced variability). We confirmed that the hetero-

geneous IL-1b expression patterns were seen in primary

bone-marrow-derived macrophages (BMDM) (Figures 1E,

S4C, and S4D), with correlated protein expression (Figures

S4E–S4H) as well as in LPS-stimulated dendritic cells (Shalek

et al., 2014) (Figure S5). There was also a good agreement be-

tween smFISH counts and our scRNA-seq study displaying

similar levels of noise (Figure 1F). Overall, these analyses

demonstrate conserved variability in the TLR system across

cell types and suggest that IL-1b and TNF-a expression may

have different modes of regulation.
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Mathematical Modeling of mRNA Count Data
Distinguishes Regulatory Modes
The heterogeneity of gene expression has typically been charac-

terized in terms of transcriptional bursting, i.e., the process of

intermittent gene activation (So et al., 2011). The characteristics

of the transcriptional burst process, such as burst size and burst

frequency, are defined as the average number of mRNA pro-

duced per gene activation event and the frequency of gene acti-

vation events, respectively (Nicolas et al., 2017). We first used

the sample variance s2 and the mean m of the mRNA distribution

to compute an approximate burst size bm=s
2/m (i.e., the Fano

factor) and burst frequency fm=m/(bm�1) (Nicolas et al., 2017;

Raj et al., 2006; Suter et al., 2011) in order to understand the dif-

ference in TNF-a and IL-1b regulation. In general, these quanti-

ties (referred to here as ‘‘moment estimators’’) are often used

to describe ‘‘burstiness’’ by quantitatively capturing departures

from ‘‘non-bursty’’ (Poissonian) mRNA production (for which

bm = 1 and fm = N) (Nicolas et al., 2017; So et al., 2011; Wong

et al., 2018) (see Figure S6 for general applicability of the

moment estimators). Analysis of the noise level (CV = s/m), burst

A

B C

D E

F

Figure 1. TLR4-Induced Effector Response Exhibit Differential Heterogeneity

(A) Schematic representation of the data analysis pipeline: gene-by-gene single-cell expression data are systematically analyzed across a range of immune-

relevant conditions to understand the modulation of transcriptional bursting characteristics and control of cellular heterogeneity.

(B) scRNA-seq analysis of inducible TLR gene expression in RAW 264.7 cells stimulated with 500 ng/mL of lipid A for 3 h. Heatmap displaying normalized

transcript levels of high confidence genes upregulated in response to lipid A stimulation. Major gene clusters are shown in roman numerals, cell clusters depicted

with Arabic numerals. Arrowheads highlight specific unclustered genes as well as TNF-a.

(C) Heatmap of unclustered gene set from (B). Also shown is the heatmap of TNF-a expression.

(D) smFISH analysis of the cumulative probability distribution of IL-1a, IL-1b, and TNF-amRNA expression in RAW264.7 cells stimulated with 500 ng/mL of lipid A

for 3 h. Count data expressed as log10(mRNA+1) from 447, 718, and 356 cells, pooled across at least three experimental replicates, respectively.

(E) Cumulative probability distribution ofmRNA counts in BMDMs (stimulated as in D). Shown is the analysis of 447, 732, and 322 cells for IL-1a, IL-1b, and TNF-a,

pooled across at least three experimental replicates, respectively.

(F) Variability of IL-1a, IL-1b, and TNF-a expression in scRNA-seq and smFISH data. Shown is the coefficient of variation (CV) calculated for respective genes

across datasets, with SDs between biological replicates (when available).
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Figure 2. Mathematical Modeling Reveals Differential Control of TNF-a and IL-1b Transcription

(A) Differential expression of IL-1b and TNF-amRNA. Shown is the cumulative distribution function of mRNA counts in RAW 264.7 macrophages stimulated with

500 ng/mL of lipid A for 3 h. A total of 718 cells were measured for IL1b, and 356 for TNF-a, and pooled across at least three smFISH experiments, respectively,

and expressed as log10(mRNA+1).

(B) Characteristics of single-cell mRNA expression. Shown is the CV, burst size (bm), and frequency (fm) calculated based on moments of the mRNA count data

from (A) (expressed as mean ± SD from experimental replicates). ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.01).

(C) Distribution of transcription sites is gene dependent. (Left) de-convolved wide-field microscopy image of cells with TNF-a and IL-1b smFISH, revealing Tx

through an aggregation ofmultiplemRNAmolecules in the nucleus (insert). Scale bar represents 5 mm. (Middle) the fraction of cells with 0–4 Tx calculated from (A).

‘‘*’’ denotes a result of the Fisher exact test (p < 0.05) for difference in the Tx site distributions. (Right) the number of nascent mRNA per Tx. Shown are individual Tx

site data, together with the mean and SD of the pooled distribution. ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.01).

(legend continued on next page)
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size (bm), and burst frequency (fm) based on the moments of the

smFISH count distribution (Figure 2A) showed that IL-1b exhibits

more burstiness, i.e., larger relative burst sizes and lower fre-

quency compared with that of the more homogeneous TNF-a

(Figure 2B). On-going IL-1b transcription, visualized via bright

nuclear spots of fluorescence in the smFISH images (Femino

et al., 1998; Skinner et al., 2016; Zenklusen et al., 2008), was

evident in only 20% of cells (Figure 2C). In contrast, up to 75%

of cells possessed at least one TNF-a transcription site (Tx).

There was even an indication of TNF-a transcription immediately

prior to cell division by the presence of >2 Tx sites in a subset of

cells. We also observed more nascent mRNA associated with Tx

sites for IL-1b than TNF-a. This is consistent with more infre-

quent but larger mRNA bursts in comparison to TNF-a. These

characteristics were conserved across different doses of lipid

A stimulation (including in BMDMs; Figures S7 and S8) as well

as time (Figure S9), confirming that IL-1b and TNF-a exhibited

distinct modes of transcriptional bursting.

The classical mathematical description of mRNA production

involves a one-step stochastic telegraph model, where gene ac-

tivity switches randomly between ‘‘off’’ and ‘‘on’’ states, with

only the latter being permissive for mRNA transcription (Raj

et al., 2006; Skinner et al., 2016; Suter et al., 2011; Zenklusen

et al., 2008). The associated kinetic parameters include gene

activation switching ‘‘on’’ and ‘‘off’’ rates (kon and koff, respec-

tively) as well as rates of mRNA transcription and degradation

(kt and kd, respectively); Figure 2D. In this case, bursting param-

eters are directly related to the kinetic parameters of transcrip-

tion (Nicolas et al., 2018). The steady-state burst size is defined

as bk = kt/koff, while bursting frequency is given by fk = 2konkoff/

(kon+koff)/kd (these are referred herein as ‘‘kinetic estimators’’;

Figure S6). In order to apply these stochastic models, we first

investigated the sources of the variability in smFISH count

data, which could either involve intrinsic stochastic fluctuations

(i.e., on-off switching) or extrinsic cell-to-cell differences (Elowitz

et al., 2002; Hilfinger and Paulsson, 2011; Sherman et al., 2015).

We previously found a correlation between the cell size and

mRNA level consistent with an extrinsic noise component (Bag-

nall et al., 2018), but this relationship did not affect mRNA distri-

butions (when compared with cell size-normalized distributions)

and only explained up to 7% of the data (as assessed by a cor-

relation coefficient of a linear fit; Figure S10). Furthermore,

smFISH counts exhibited a key intrinsic noise property, where

noise decreased monotonically (Taniguchi et al., 2010) with

mean expression, rather than approaching a plateau (Fig-

ure S11A). A formal noise decomposition of the TNF-a and IL-

1b dose-response count data (Rhee et al., 2014) showed a domi-

nant contribution from the intrinsic noise with an extrinsic noise

component (Figure S11B). The latter is consistent with the

extrinsic variability due to shared TLR signaling machinery, for

example, signaling dynamics (Muldoon et al., 2020; Wong

et al., 2018, 2019).

Given the dominant role of intrinsic noise, we, therefore, used

a genetic algorithm to fit a family of one-step models (resulting in

50 kinetic parameter sets) to smFISH count distributions using

biological constraints on parameter values (see STAR Methods).

We found that the one-step model was able to recapitulate the

measured TNF-a mRNA distribution in RAW 264.7 cells with an

average gene switching ‘‘on’’ rate of kon = 0.02 min�1 (i.e., equiv-

alent to 50 min ‘‘off’’ time, 1/kon) and a switching ‘‘off’’ rate of

koff = 0.12 min�1 (i.e., equivalent to 8.3 min ‘‘on’’ time, 1/koff; Fig-

ure 2D). The average transcription rate of 16.8 ± 2 mRNA/min

was consistent with the range previously reported for other high-

ly inducible mammalian gene products (Molina et al., 2013;

Schwanh€ausser et al., 2011; Skinner et al., 2016; Suter et al.,

2011) and was inversely correlated with the degradation rate

(Figure S11C). We then used the one-step model to fit the distri-

bution of IL-1b mRNA counts (Figure S11D), assuming a longer

half-life in comparison to TNF-a (Hao and Baltimore, 2009). We

found that the model failed to recapitulate the smFISH distribu-

tion, especially for mRNA counts below 100 molecules. We,

therefore, considered more complex model structures that

incorporate an additional constitutive initiation event, or addi-

tional regulatory step (equivalent to promoter cycling; Harper

et al., 2011; Zoller et al., 2015), consistent with either chromatin

remodeling or combinatorial TF binding driving a single tran-

scription rate (Figure S11D models 2 and 3). These models

were also unable to fit the observed data. Analysis of combined

architectures suggested a model (Figures 2E and S11E) in which

sequential activation and two transcription rates were required

to recapitulate the entire range of mRNA counts. The first step

was characterized by a small gene switching ‘‘on’’ rate ton =

0.008 min�1 (equivalent of 125 min ‘‘off’’ time) and a low tran-

scription output (k0 = 3 ±1.5 mRNA/min); in contrast, the second

step was rapid kon = 0.09 min�1 (11 min ‘‘off’’ time) resulting in a

high transcriptional output (kt = 11.7 ± 4.1 mRNA/min) (see Fig-

ure S11F for the comparison between individual on-off and tran-

scription rates in the fitted family of models). During transcrip-

tional activation, the first slow step is permissive for a second

activation event resulting in a larger burst size and lower bursting

frequency in the model, as compared with those for TNF-a (see

Figure S11G for the estimates of the burst size and frequency

from the models and Figure S11H for sensitivity analyses of

model structures).

Transcriptional Heterogeneity Is Constrained by Gene-
Specific Linear Trends
While our analyses demonstrate different levels of single-cell

gene-expression heterogeneity in the TLR system, a funda-

mental question remains whether, and how, this heterogeneity

is altered in response to stimulation or perturbation (Dar et al.,

2012, 2016). In order to address this question, we systematically

analyzed all smFISH datasets (Figure 3A) comprising the dose-

and time-dependent responses in RAW 264.7 cells and BMDMs

(D) TNF-a transcription conforms to a one-step stochasticmodel. The comparison betweenmeasured and fitted TNF-amRNA distributions at 3 h after 500 ng/mL

lipid A treatment. In black: a Kaplan-Meier estimator of the measured cumulative distribution functions (CDF) (with 95% confidence intervals); and in red: a family

of 50 models fitted to the data. Fitted parameter values (means ± SD) listed on the right.

(E) IL-1b transcription conforms to a two-step stochastic model. The comparison between measured and fitted IL-1bmRNA distributions at 3 h after 500 ng/mL

lipid A treatment for the depicted model. In black: Kaplan-Meier estimator of measured CDF (with 95% confidence intervals); and in red: family of 50models fitted

to the data. Fitted parameter values (means ± SD) listed on the right.
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to lipid A stimulation (Figures S7–S9) as well as additional immu-

nologically relevant conditions (Figure S12). We used a 24-h

interferon g (IFNg) pretreatment before lipid A stimulation, to

mimic Signal Transducer and Activator of Transcription 1

(STAT1)-dependent inflammatory signaling (Bryant et al.,

2015), which reduced IL-1b and increased TNF-amRNAproduc-

tion (in comparison to stimulation with lipid A alone; Figures

S12A and S12B). In turn, pretreatment with prolyl hydroxylase in-

hibitor dimethyloxalylglycine (DMOG), a pharmacological mimic

of Hypoxia Inducible Factor 1a (HIF1a)-dependent hypoxia (Bag-

nall et al., 2014), resulted in an elevated expression of both IL-1b

and TNF-a mRNA. When all smFISH datasets were examined

collectively, we found that the gene-expression variability (repre-

sented as the variance of smFISH counts) across experimental

conditions was constrained by the corresponding mean of the

mRNA counts (Figure 3B). The larger heterogeneity in IL-1b

A B C

D E

F

G

Figure 3. Single-Cell Expression is Constrained by Gene-Specific Linear Trends

(A) Analysis of single-cell variability in TNF-a and IL-1bmRNA expression across 14 smFISH measurements; dose response in RAW 264.7 and BMDM cells; time

course in RAW 264.7 as well as DMOG and IFNg co-stimulation in RAW 264.7 cells.

(B) Mean-variance relationship obtained for smFISH data for IL-1b and TNF-a. Shown is the fitted regression line (with 95% confidence intervals in broken lines),

together with individual data points. Coefficient of determination depicted with R2 and color coded. Fitted equations displayed on the graph.

(C) Visualization of samples across data in (B). Individual data points colored and labeled: green- RAW 264.7 dose-response data; light green, RAW 264.7 time

course data; open circles, RAW 264.7, DMOG, and IFNg co-stimulation data; and brown, BMDM dose-response.

(D) Inference of mean-variance relationships from the scRNA-seq data from (Shalek et al., 2014). BMDCs either untreated or stimulated with TLR2, 3, and 4

ligands for 1, 2, 4, or 6 h. For each TLR-dependent gene in the dataset, mean and variance of read count expression across all conditions are fitted using robust

linear regression.

(E) Analysis of mean-variance relationships in selected TLR-induced genes. Shown are the fitted linear regression lines (with 95% confidence intervals) for

highlighted genes from (Shalek et al., 2014). Different TLR treatments color coded as in (D) (open circles, untreated controls). Coefficient of determination de-

picted with R2.

(F) Linear mean-variance regression trends for 204 high-confidence genes inferred from (Shalek et al., 2014). Highlighted genes depicted in black, trends for IL-1b

and TNF-a in blue and red, respectively.

(G) Distribution of fitted regression slopes from (F) (in log10). Slopes for IL-1b and TN-Fa regression fits highlighted in blue and red lines, respectively.
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expression was reflected in a significant increase in the gradient

of themean-variance relationship (defined as a slope of the fitted

regression line) than that of TNF-a (p value 0.00019). While some

individual conditions showed departures from the fitted linear re-

lationships (arguably more for TNF-a than IL-1b; Figure 3C), both

fits were characterized by a high coefficient of determination (R2

= 0.97 and 0.83, for IL-1b and TNF-a, respectively). The fitted re-

lationships appear to have positive intercepts, which is perhaps

indicative of the limited sample size and might reflect measure-

ment noise, therefore, we treat those as empirical relationships.

In order to establish this relationship in diverse cell types and in

more genes, we took advantage of published single-cell tran-

scriptomics data from BMDCs (Shalek et al., 2014); Figure 3D.

These data included 15 scRNA-seq (each with up to 96 individual

cells) time course measurements (at 0, 1, 2, 4, and 6 h) of acute

responses to PAM (synthetic mimic of bacterial lipopeptides up-

stream of TLR2), PIC (viral-like double-stranded RNA for TLR3),

and LPS ( a component of Gram-negative bacteria upstream of

TLR4), referred herein as the core TLR dataset. TLR pathways

share common regulatory mechanisms, yet, induce distinct

gene-expression patterns (Medzhitov, 2007). For example, the

expression of TNF-a is maintained in response to PAMbut is tran-

sient in response to PIC over the 6-h period (Figures S13A and

S13B). However, in agreement with our smFISH data, we found

that the mean and variance of TNF-a read counts exhibit a close

linear relationship (Figure S13C; coefficient of determination R2 =

0.91). Subsequently, we considered 290 genes that were robustly

induced by LPS stimulation in the dataset, revealing 204 genes

that are described by linear trends with high confidence (as

defined byR2 >0.75; see Figure 3E for examples of specific genes

and Figure 3F for the fitted relationships; Table S3 for all gene-by-

gene fits). The previously observed trends in IL-1b and TNF-a

expression were also present in the BMDC dataset (Figure 3F).

These analyses demonstrate that (1) the variability of mRNA

expression can be empirically described by a linear function of

the mean response; (2) the gene-specific variability can be

defined by the slope of the regression line, constituting a spec-

trum at the genome level (Figure 3G). High variability genes

include chemokines and cytokines, such as CCL17, CCL3, as

well as IL-1a and b, while others, such as TNF-a (and NFKBIA,

an inhibitor of NF-kB signaling) exhibit more homogeneous re-

sponses; (3) response patterns were shared among different

TLR ligands and no difference between treatment-specific

trends were found; (4) linear relationships were generally main-

tained under signaling perturbation involving Golgi inhibition

and in Interferon-alpha receptr chain alpha (INFAR1), Tumour

necrosis factor receptor 1 (TNFR), and STAT1 knockout cells

(Shalek et al., 2014) (see Table S4 for gene-by-gene fits). Howev-

er, the regression fit was altered in a subset of genes (as as-

sessed by the analysis of regression slopes in the core TLR

and perturbation datasets; Figures S13D–S13F), which suggests

that these relationships can be regulated.

Linear Constraints Define Properties of Transcriptional
Bursting
Previous studies suggest a paradigm where transcriptional

bursting constrains stochastic gene-expression programs (Dar

et al., 2016; Sanchez and Golding, 2013). The existence of an

empirical linear relationship between the mean and variance of

the single-cell mRNA response (Figure 3) provides insight into

the regulation of transcriptional bursting. We used the steady-

state approximation for the mRNA moments in the one-step

model (Peccoud and Ycart, 1995; Paszek, 2007; Shahrezaei

and Swain, 2008) and derived theoretical relationships between

model parameters for which the s2 =am relationship holds (Fig-

ures 4A, S14, and S15; STARMethods for derivation and discus-

sion). First, we considered the case of the ‘‘bursty’’ gene-expres-

sion regime, i.e., koff >> kon, when transcription occurs in short

and infrequent bursts. Under these conditions, we theoretically

predicted that bursting characteristics are predetermined by

the empirical mean-variance relationship: (1) burst size is neces-

sarily constant (and equal to the slope of the mean-variance line)

over the range of the mean mRNA response (i.e., burst size bk =

a-1); (2) changes of gene expression are controlled solely by fre-

quency modulation [i.e., fk = m/(a-1)]; and (3) there is a reciprocal

relationship between the burst size and frequency, as the burst

frequency is proportional to the inverse of the burst size (1/a).

Therefore, the larger the burst size, the lower the frequency of

gene expression (and vice versa) to maintain a constant mean-

variance relationship. In a general case, our derivations show

that both burst size and frequency may undergo modulation as

the mean mRNA expression varies. The relative contribution of

the burst size and frequency modulation is related to the koff
value (or koff/kon ratio; Figure S15). For a range of biologically

plausible parameter values (koff < 0.2 min�1 and kon <

0.1min�1, while kt < 30min�1), the higher the koff (or koff/kon ratio),

the smaller are the changes of the burst size in comparison to the

changes of frequency (see Figure 4A for a set of putative genes

with different levels of variability defined via slope a). For

example, for koff > 0.1 (and thus, relatively close to a bursty

regime in the considered parameter ranges), we find 2-fold

more changes of the burst frequency than that of the burst size

(and 5-fold more for highly variable genes, i.e., a < 100). In

turn, koff < 0.02 resulted in a dominant burst size modulation

(especially for low variability genes).

In order to validate our theoretical predictions, we inferred

bursting characteristics in our smFISH data across different im-

mune-relevant conditions. First, using data fromRAW264.7 cells

(to avoid cell-type differences), we fitted one-step models to

measured TNF-a distributions. Consistent with the intrinsic noise

model (Elowitz et al., 2002; Hilfinger and Paulsson, 2011; Sher-

man et al., 2015), TNF-a counts across all conditions fitted nega-

tive binomial distributions (Figure S16). Initially, we assumed a

common half-life across all conditions (using kd = 0.014

mRNA/min estimated for the high-dose 500 ng/mL lipid A treat-

ment; Figure 2), while fitting three remaining parameters (kon, koff,

and kt; Figure S17). Later, all four kinetic parameters were refitted

for a subset of conditions corresponding to lower lipid A doses

(and thus, shorter mRNA half-life; Hao and Baltimore, 2009).

Models summarized in terms of the mean-variance relationship

(using fitted parameters to calculate moments; Figure 4B)

captured most of the variability present in smFISH count data

(with an exception of DMOG, which was subsequently not

considered; Figure S17). Subsequently, we calculated the burst

size and frequency changes along the fitted linear relationship

(Figure 4C). Bursting characteristics were either obtained

directly from fitted parameter values (using kinetic estimators)

or predicted from the fitted regression line based on the fitted
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A

B C D

E F

Figure 4. Linear Constraints Define Properties of Transcriptional Bursting

(A) Reciprocal relationship between burst size and frequency. (Left) a set of considered hypothetical genes characterized by different mean-variance slope a

(such that s2 = am). (Middle) frequency modulation and constant burst size in the bursty regime. (Right) concurrent burst size and frequency modulation as a

function of koff. Calculations performed using Equation 6 for the biologically plausible set of gene activity switching rates, koff < 0.2 min�1 and kon < 0.1 min�1; kd =

0.014 min�1; kt < 30 min�1; and m < 500. Shown are relative frequency and burst size changes (Dbk) over the corresponding range of the mean mRNA, calculated

for each a for koff = 0.01, 0.02, 0.03, 0.05, 0.075, 0.1, 0.2 min�1, respectively. In a broken line moment estimator (i.e., bursty regime), shaded are regions cor-

responding to 1-fold, 2-fold, and 5-fold burst sizes versus frequency modulation.

(B) Variability of the TNF-a expression across data in RAW 264.7 macrophages (dose response, time course, as well as IFNg, IFNg+lipid A, and DMOG+lipid A

perturbation). Displayed is the relationship between sample mean and variance of individual smFISH count data (full red circles) and steady-state mean and

variance (open red circles) based on fitted parameter values (Figure S17). Model outputs calculated for a family of 50models fitted to each data point. Regression

lines fitted to smFISH counts (depicted in black) and steady-state mean and variance calculated for fitted model parameters (depicted in red).

(C) Burst size and frequency modulation of the TNF-a expression. Shown in red are regions calculated for the fitted s2 = 113 m-4249 relationship for biologically

plausible set of gene activity switching rates: koff < 0.2 min�1, and kon < 0.1 min�1; and kd = 0.014 min�1, and kt < 30min-1. Highlighted broken lines correspond to

burst size and frequency changes corresponding to koff = 0.01, 0.09, 0.12, 0.2 min�1. Predicted burst sizes and burst frequencies depicted in black circles (using

Equation 7 and fitted kon/koff and kd rates, from Figure S17), in open circles steady-state estimates using fitted parameter values. The broken red line shows a

(legend continued on next page)
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koff and kon rates (see STAR Methods for derivation and discus-

sion of a general case of mean-variance relationships with a non-

zero intercept). Both approaches demonstrate a concurrent

modulation of TNF-a expression via the burst size and frequency

as a function of mean mRNA expression. The burst size

increased monotonically from ~25 to ~150 molecules across

all conditions, while the burst frequency changed between 1

and 3 (with a minimum predicted for the case of a linear fit with

a non-zero intercept; Figure S15E). When considering only the

subset of conditions for the high-dose lipid A responses (mean

mRNA> 100 and kd = 0.014mRNA/min), the changes of the burst

size were limited to <2-fold. In this case, the frequency modula-

tion becomes dominant in agreement with the theoretical predic-

tion (bursty regime shown by the broken red line; Figure 4C).

Analysis of fitted parameters demonstrates that the modulation

of bursting characteristics across the mean expression was

due to an increase in the ‘‘on’’ rate, and a concurrent decrease

in the ‘‘off’’ rate (Figure S17C).

Our analyses predict a link between the level of expression vari-

ability andburstingcharacteristics, i.e., increasedvariability results

in increased burst size and lower burst frequency (Figure 4A).

Therefore, to compare gene-specific characteristics we fitted IL-

1b smFISH count data in RAW 264.7 cells using the previously

developed two-stepmodel (FigureS18).Given themultistep struc-

tureof the IL-1bmodel,we reverted tomomentestimators (Nicolas

et al., 2017; So et al., 2011). In agreement with our modeling pre-

dictions, the higher variability of IL-1b expression is associated

with quantitatively larger burst size and lower frequency (obtained

via moment estimators) than that of TNF-a (see Figure 4D for rela-

tionshipsusingfittedmodelsandsmFISHcountdata inRAW264.7

cells- Figures S19A andS19B for analysis of all smFISHcounts). In

a general case, both burst size and frequency may undergo mod-

ulation, which is evident from the analysis of the TNF-a regulation

(Figure 4C). Our analyses predict that the contribution of the burst

size modulation decreases as the system converges to the bursty

regime. IL1b transcription exhibits more ‘‘bursty’’ expression in

comparison to TNFa (Figure 2, with toff/ton ~18 for IL1b in the

permissive step and koff/kon~6 for TNFa). We find evidence for

more a dominant frequency modulation of IL1b expression when

compared with transcriptional bursting characteristics inferred

for TNFa (at least for highmRNA expression; Figure 4D). In agree-

ment, the burst size of IL-1bmRNAproduction remained constant

for a wide range of expression (except for small means; see STAR

Methods for discussion of mean-variance with a non-zero inter-

cept). Consistently, the fitted parameter values exhibit changes

in the gene activity switching ‘‘on’’ rates (corresponding to both

regulatory steps) over the whole range of IL-1b mRNA responses

(Figure S18D).

Finally, we used the scRNA-seq dataset in BMDCs (Shalek

et al., 2014) to gain insights into the modulation of bursting char-

acteristics in 323 robustly expressed TLR-dependent genes

(Figures 4E, 4F, and S19B–S19F). We did not make any assump-

tions about the transcriptional regime (since fitting models to

scRNA-seq dataset was not possible due to the lack of absolute

quantification in the sequencing protocol; Shalek et al., 2014),

but instead, we used regression analyses to infer changes of

relative burst size and frequency (described by moment estima-

tors) across gene-specific linear relationships (see Figure S19C

for inference of bursting characteristics for TNF-a; Tables S3,

S4, and S5 for gene-by-gene visualization, including a compari-

son between core TLR and perturbation datasets). Despite the

inherent variability of the scRNA-seq data (which was validated

by remapping a subset of data; Figure S20), we found quantita-

tive changes of burstiness across >130 individual genes consis-

tent with relative burst size and frequencymodulation (Figure 4F).

By comparison of independently fitted relationships, we also

found that the evidence for the predicted reciprocal bursting

characteristics, including a negative correlation between the

burst size and frequency as well as the correlations with the

slope of the fitted mean-variance relationships are present in

the dataset (Figure S19F).

Chromatin Regulates IL-1bExpression viaModulation of
Bursting Characteristics
Given the role of modulation of transcriptional bursting in the

control of the inducible single-cell gene-expression variability,

we sought to investigate the underlying mechanism. Previous

work indicated the involvement of TF signaling, including that

of the nuclear factor kB (NF-kB) in the TLR system in the context

of chromatin regulation (Larson et al., 2013; Nicolas et al., 2018;

Wong et al., 2018). We, therefore, turned our attention to IL-1b

transcription, the two-step structure of which suggests an influ-

ence of the chromatin state. We observed a highly correlated

biphasic mRNA response between IL-1b and IL-1a, whose

genes are located in a single gene cluster in the mouse and hu-

man genome (Smith et al., 2004; Taylor et al., 2002), but not TNF-

a (Figure S21A). We also observed a significant correlation be-

tween the presence of IL-1b and IL1a (but not TNF-a) active tran-

scription sites (Figure S21B). We found that the transcription of

IL-1b and IL-1a not only coincided temporally but also spatially,

as a significant number of Tx sites co-localized, Figure S21C).

Presumably, these genes sharing a local chromatin structure

show a high propensity to be transcribed within a common tran-

scription factory (Jackson, 2003).

The observed temporal and spatial coordination of IL-1b and

IL-1a expression is suggestive of epigenetic mechanisms. A

predicted behavior in the bursty regime based on the fitted regression line. Horizontal dotted line marks a subset of data corresponding to the high-dose lipid A

conditions (3-variable model fits; Figure S17).

(D) Burstiness of the IL-1b and TNF-a mRNA expression. Shown are moments estimates of burst size and frequency for smFISH counts (full circles) and fitted

model distributions (open circles, in blue and red for IL-1b and TNF-a, respectively) for data in RAW 264.7 macrophages (dose response, time course, as well as

TSA, IFNg, and DMOG perturbation; Figures S17 and S18). In broken red and blue lines is the predicted behavior in the bursty regime, based on the regression

lines for fitted models for TNF-a (from B) and IL-1b (from Figure S18C), respectively.

(E) Schematic representation of the combined (core TLR and paracrine signaling perturbation) scRNA-seq datasets from (Shalek et al., 2014).

(F) Burstiness of TLR-induced genes. Shown are relationships for the variance, relative burst size (bm), and relative frequency (fm) as function on the mean read

count inferred from the combined core TLR and perturbation dataset from (Shalek et al., 2014). Displayed are 204, 180, and 132 relationships for variance, relative

frequency, and relative burst size (defined based on the coefficient of determination R2 > 0.75, R2 > 0.7 and R 2> 0.5, respectively) inferred using robust linear

regression (with semi-log transformation for relative burst size). Individual high and low heterogeneity gene fits color coded and labeled.
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transcriptional activator trichostatin A (TSA) was applied to

selectively inhibit the class I and II histone deacetylase (HDAC)

enzymes responsible for genome-wide chromatin accessibility

(Figure 5A) (Vanhaecke et al., 2004). BMDMs pre-treated with

TSA for 1 h prior to 3 h lipid A stimulation exhibited elevated

IL-1b expression, notably, the expression of TNF-a was

completely abolished (Figure 5B). The resulting IL-1bmRNA dis-

tribution was shifted toward higher mRNA counts (in comparison

to the lipid A control) (Figure S22 for the lipid A dose response).

TSA pretreatment significantly reduced the noise of IL-1b

expression and altered burstiness by significantly increasing

the moment estimate of bursting frequency, there was also an

indication of changes in the burst size (Figure 5C). The number

of active Tx sites was increased, consistent with more frequent

A B C

D E F

G H

Figure 5. Modulation of Transcriptional Bursting via Chromatin State
(A) Schematic representation of the treatment protocol: cells exposed to 10 mM TSA for 1 h before 500 ng/mL lipid A treatment.

(B) TSA alters IL-1b mRNA distribution. Cumulative probability distribution of smFISH mRNA counts in BMDMs pre-treated with TSA prior to lipid A stimulation

(+TSA; as in A), or control cells stimulated with lipid A. Shown is the IL-1b levels expressed as log10(mRNA+1) pooled across at least three replicates, from 732

(lipid A) and 305 (lipid A +TSA) cells, respectively.

(C) Characteristics of single-cell mRNA expression. Shown is the CV, bm, and fm calculated based on moments of the mRNA count data from (A) (expressed as

mean ± SD from experimental replicates). ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.05; ns, not significant).

(D) Distribution of Tx in data from (B). Shown is the fraction of cells with 0–2 Tx. ‘‘*’’ denotes a result of the Fisher exact test (p < 0.05) for the difference in the Tx site

distribution.

(E) Nascent IL-1bmRNA counts (with means and SDs) from 35 (lipid A) and 114 (lipid A +TSA) Tx from (D), respectively. ‘‘*’’ denotes a result of two-sample Mann-

Whitney U test between groups (p < 0.05).

(F) Comparison between the measured and fitted IL-1b mRNA counts across conditions from (B). In black: Kaplan-Meier estimator of the measured CDF (with

95% confidence intervals); and in red: a family of models (50) fitted to the data. (Top) schematics of the fitted transcriptional model.

(G) TSA modulates kinetic parameter rates in the fitted IL-1bmodels. Shown are selected parameter values (with mean and SD) for families of fitted models from

(F). ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.0001, ns).

(H) TSA alters bursting characteristics of IL-1b expression. Shown are the moment estimates (mean and SD) of the burst size and frequency for fitted mRNA

distributions from F. ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.0001).
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activation of transcription following TSA treatment (Figure 5D). In

comparison with the lipid A treatment, each IL-1b Tx site was

also associated with more nascent mRNA (Figure 5E) indicative

of a larger burst size. The differences in bursting characteristics

were maintained across different lipid A doses (when co-treated

with TSA), while the corresponding mean-variance relationships

could not be statistically distinguished (Figure S22G). To quanti-

tatively understand these mRNA expression patterns, mathe-

matical modeling was applied (Figure S23). Consistent with the

previous analyses, a two-step model was required to fit IL-1b

mRNA distributions in both the control (untreated with TSA)

and TSA pre-treated cells (Figure 5F). In comparison to the lipid

A control, the TSA pretreatment was associatedwith quantitative

changes in kinetic parameter rates consistent with chromatin

regulation (Figures 5G and S23B). In the first permissive step,

the gene switching ‘‘on’’ rate was increased (from 0.007 to

0.012 min�1, equivalent of a change in ‘‘off’’ time, from 142 to

83 min, for lipid A control versus lipid A +TSA, respectively)

consistent with more frequent activation. Similarly, in the second

step, TSA treatment also resulted in the increased ‘‘on’’ rate

(from 0.05 to 0.1 min�1, the equivalent of a change in ‘‘off’’

time from 20 to 10 min). No further changes were observed in

other model parameters, although the transcription rate corre-

sponding to the permissive step was reduced following TSA

treatment (Figure S23B). Overall, these changes resulted in a sig-

nificant quantitative increase in the moment estimates of the

burst size and burst frequency following TSA treatment (Fig-

ure 5H). Overall, these suggest that regulation of the chromatin

state may allow concurrent regulation of the burst size and fre-

quency and thus modulation of the IL-1b gene-expression

output .

DISCUSSION

While single-cell responses exhibit substantial cell-to-cell vari-

ability, a fundamental question remains how this variability is

constrained. Here, we considered an endogenous TLR system

with known differential responses to a range of immune-relevant

conditions (Adamik et al., 2013; Escoubet-Lozach et al., 2011;

Hao and Baltimore, 2009; Meissner et al., 2013; Ramirez-Car-

rozzi et al., 2009; Tong et al., 2016). Using our quantitative

smFISH data as well as published scRNA-seq data (Shalek

et al., 2014), we showed that variability in the expression of

TLR-induced genes is constrained by gene-specific trends

over a large range of mRNA expression (Figure 3). This demon-

strates that the stimulation (or perturbation) merely modulates

the variability of mRNA expression as a linear function of its

mean. We further predicted that this theoretically imposes the

constraints on the underlying transcriptional bursting character-

istics in response to stimulation (Figure 4). We also demon-

strated that in the case of bursty mRNA production, the expres-

sion variability (in terms of the mean-variance relationship) is

essentially defined by the burst size, while responses to environ-

mental changes are controlled via frequency modulation. In gen-

eral, we predicted that both burst size and frequency may un-

dergo modulation, with the contribution of the former

increasing as the system departures from the bursty mRNA pro-

duction regime. We validated these predictions using our TNF-a

and IL-1b smFISHmeasurements as well as provided supporting

evidence in a large set of TLR-regulated genes in primary im-

mune cells (Figure 4). Finally, we demonstrated that modulation

of chromatin state may account at least, in part, for the predicted

modulation of transcriptional bursting of IL-1b expression

(Figure 5).

We hypothesized that the observation that empirical mean-

variance relationships are gene-specific, linear, and maintained

over different conditions represent a fundamental property of a

gene regulatory system. Our results imply an inverse relationship

between the mean expression level and noise (Dar et al., 2016),

while providing insight into the regulation of gene expression in

response to stimulation. In agreement with previous work, we

found that higher expression is accompanied by increased

burstiness (Sanchez and Golding, 2013), while different levels

of noise are associated with distinct subsets of parameter values

(Figure S14). While not all the possible combinations of rates are

ever explored in a biological system (Hausser et al., 2019), the

fitted parameter changes (along with mean-variance trends)

are dominated by modulation of gene activity switching rates,

while modulation of transcription rates are associated with low

transcriptional output (Figures S16 and S17). Our results perhaps

reflect a related set of immune conditions used in the study (i.e.,

related ligands, dose-responses, co-stimulation, or generic

chromatin perturbation), essentially affecting a large, well-con-

nected signaling network (Oda and Kitano, 2006). As such, we

found that these signals and conditions only modulate kinetic

parameters of TNF-a and IL-1b transcription, rather than induce

substantial changes in the mode of regulation. Recent analyses

suggest that burst sizes are encoded within core promoters

(Larsson et al., 2019). In fact, promoters of highly variable cyto-

kine and chemokine genes are enriched for TATA boxes (Fig-

ure S3) and are depleted of CpG islands, in comparison to low

heterogeneity TLR-dependent genes (Hagai et al., 2018). In

turn, the frequency may be modulated via histone acetylation

(Nicolas et al., 2018) or TF signaling events (Hagai et al., 2018;

Wong et al., 2018). In the TLR system, the latter is likely related

to the levels of upstream TFs or their activation patterns. For

example, although heterogeneous, the NF-kB system activation

exhibits dose-dependent and temporal regulation (Adamson

et al., 2016; Bagnall et al., 2018; Muldoon et al., 2020; Selimkha-

nov et al., 2014; Sung et al., 2014; Wong et al., 2019), which

might enable the fine-tuning of the underlying transcription and

gene activation rates. It would be intriguing to understand

whether gene-specific trends are sensitive to therapeutic com-

pounds, or, in fact, pathogen stimulation. It would also be rele-

vant to understand the modulation of parameter changes more

broadly, i.e., in transcriptomics data, which in this work we

only analyzed in terms of relative burstiness (Figure 4F). In partic-

ular, the linear mean-variance relationships theoretically imply a

generic reciprocal relationship between the burst size and fre-

quency (Figure 4), which would require further validation using

more gene targets. While computationally feasible (Larsson

et al., 2019), the present scRNA-seq dataset (Shalek et al.,

2014) does not provide quantification of mRNA numbers, which

is required to fit models accurately.

As a key part of this study, we quantitatively characterized the

regulation of the TNF-a and IL-1 cytokines, which encode

distinct roles during inflammatory responses and pathogen

recognition (Lu et al., 2015). The expression of the short-lived
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TNF-amRNA transcript conforms to a simple one-step stochas-

tic model of transcription (Raj et al., 2006; Skinner et al., 2016;

Suter et al., 2011; Zenklusen et al., 2008), consistent with

frequent transcription initiation but limited transcriptional output

per burst (Figures 1 and 2). The transcription of IL-1b is charac-

terized by lower bursting frequency and larger burst sizes

compared with that of TNF-a. This behavior does not conform

to a one-step model, and through mathematical modeling we

showed that an intermediate regulatory step is required to

explain the observed mRNA distributions. While previously

considered complex models involved a promoter cycling step

(Harper et al., 2011; Zoller et al., 2015), in our model, the interme-

diate step is associated with a low transcriptional output. This

model structure is supported by the experimental evidence for

a permissive step due to chromatin regulation. First, we

observed biphasic patterns of IL1a and IL1b mRNA synthesis

(Figure S21, which is also evident in previously published data;

Shalek et al., 2014; Figure S5). Second, we found a marked tem-

poral and spatial correlation between on-going IL-1b and IL1a

transcription (as indicated by the co-localization of active tran-

scription sites observed with smFISH; Figure S21), which likely

underlies an association in the local chromatin structure (Iborra

et al., 1998). Third, the chromatin modulator TSA altered the

IL-1bmRNAdistribution, resulting inmore frequentmRNAbursts

consistent with the two-step model (Figure 5). While elevating IL-

1b expression, TSA treatment completely ablated the expression

of TNF-a mRNA. This suggests that chromatin regulation may

enable cytokine-specific control of the effector responses. In

general, the co-association of multiple genes within common

centers of mRNA synthesis provides an additional layer of regu-

lation for gene expression, in which the combination of genes

within an active factory might contribute synergistically to the

timing, duration, and extent of synthesis from the spatially co-

associated genes (Fanucchi et al., 2013; Li et al., 2012; Schoen-

felder et al., 2010). The specific mechanisms involved in the

regulation of the permissive chromatin states and robust IL-1b

expression are not fully understood, but both cell-specific (e.g.,

heterogeneous signaling events) or cell-extrinsic (e.g., paracrine

signaling) processes affecting TF-activation patterns (Lu et al.,

2015; Shalek et al., 2013, 2014; Xue et al., 2015) might contribute

to this. Howmany genes share complex modes of regulation, or,

in general, whether functionally related genes exhibit co-vari-

ability in their responses is unclear. IL1a and IL1b represent

one example of co-variability. It is currently unknown whether

the heterogeneity of the IL1b gene and protein expression

described here is fundamentally linked to the apparently cell-

specific inflammasome activation as a mechanism to control

cytokine levels in circulation and to minimize inflammasome-

mediated cell death (Daniels et al., 2016). Further studies will

also be required to quantitatively link the underlying TF dy-

namics, epigenetic control, and the target gene transcription,

as well as protein expression and secretion (Junkin et al.,

2016; Lee et al., 2014; Singer et al., 2014).

In summary, the study demonstrates that despite seemingly

noisy responses, the heterogeneity of the single-cell and popu-

lation-level TLR effector responses is defined by fundamental

functional constraints. We propose that the constrained vari-

ability of the TLR-dependent gene response might be a key

element of the antibacterial and inflammatory response and

may constitute a common feature of inducible gene-expression

systems in general.
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MATLAB MathWorks RRID:SCR_001622
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Casava 1.8.3 Illumina http://support.illumina.com/sequencing/

sequencing_software/casava.html
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Paszek (pawel.paszek@manchester.ac.uk )

Material Availability
This study did not generate new materials

Data and Code Availability
The sequencing data generated during this study are available at ArrayExpress under accession no E-MTAB-9219 (https://www.ebi.

ac.uk/arrayexpress/experiments/E-MTAB-9219/). MATLAB and Python codes generated during this study are available via Github

[https://github.com/ppaszek/transcriptionalBursting]. The raw smFISH data including all the image files are too large to upload to

existing public repositories, but these are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
RAW 264.7 male murine macrophages (obtained from ATCC) were cultured in Dulbecco’s modified eagle medium supplemented

with 10% foetal bovine serum (Gibco) and 1% non-essential amino acids as described previously (Bagnall et al., 2015). Cells

were not authenticated. Primary BMDMs were differentiated from bone marrow taken from the hind legs of adult 8-12 weeks

male or female C57BL/6 mice (not involved in other procedures). Isolated cells were disrupted and homogenized by repeating pipet-

ting until no lumps were visible. The cell suspension was then centrifuged at 200 g for 5 min and the resulting pellet re-suspended in

DMEM (supplemented with 100 units/ml penicillin, 100 ug/ml streptomycin (all from Sigma-Aldrich, UK), 10% FCS (Gibco, UK), and

30% L929 cell-conditioned media) and then plated. After 72 h the media were replaced with fresh supplemented media. Cells were

harvested (by washing with cold PBS) on day 6-8 and used for experiments within 24 h.

Reagents
Cells were stimulated with various doses of lipid A Salmonella Minnesota Re595 (VWR), 100ng/ml recombinant mouse interferon-g

(Life Technologies), 0.5mM dimethyloxalylglycine (Sigma-Aldrich) or 10mM Trichostatin A (Sigma-Aldrich). Slide mounting and nuclei

staining was performed using Vectashield mounting medium with DAPI (Vector Laboratories).

METHOD DETAILS

Single-Cell RNA-seq
Single-cell sample collection and preparation was performed using the C1 Fluidigm platform, using the manufacturer’s instruction. A

suspension of appropriately stimulated 1x106 RAW 264.7 cells per ml was prepared in serum-free media and appropriately mixed

with C1 suspension reagent. The resulting cell mixture was then loaded into C1 Single Cell AutoPrep IFCmicrofluidic chip (calibrated

for medium 10-17mm cell sizes). The microfluidic chip was then placed into the C1 Fluidigm system for processing, using the ‘mRNA

Seq: Cell Load’ script. Verification of single-cell capture was performed by wide-field microscopy. Single-cell library construction

was performed using the SMARTer Ultra Low RNA reagent kit (Takara�) for cDNA amplification, followed by the Nextera� XT

DNA Index kit for fragmentation and barcoding of samples (Illumina�). DNA sequencing was performed by paired-end sequencing

(100 + 100 cycles, plus indices) on an Illumina HiSeq2500 instrument.

Single-Molecule RNA-FISH
Custom Stellaris� FISH probes were designed against murine IL1a (NM_010554), IL1b (NM_008361) and TNFa- (NM_013693) cDNA

sequences by utilising the Stellaris� FISH Probe Designer (Biosearch Technologies, Inc., Petaluma, CA). IL1a probes were

conjugated with the Quasar-570 dye. TNFa and IL1b probes were conjugated with either the Quasar-570 dye or Quasar-670 dye

for multiplexing with IL1a probes (see Table S2 for tabulated smFISH counts and probe lists). Cells were plated into 12-well plates

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SoftWoRx 7.0 GE Healthcare https://cdn.gelifesciences.com/

dmm3bwsv3/AssetStream.aspx?

mediaformatid=10061&destinationid=

10016&assetid=17238

Stellaris RNA FISH Probe Designer LGC Biosearch Technologies https://www.biosearchtech.com/support/

tools/design-software/stellaris-probe-designer
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containing sterilised glass cover slips. After adherence, appropriately stimulated cells were fixed and labelled using Stellaris� pro-

tocol, following manufacturer’s instructions (including co-immunofluorescence for protein levels). Samples were imaged using a

DeltaVision (Applied Precision) wide-field microscope with a 60x/N.A.1.42 oil immersion Plan Apo N objective and Sedat Quad filter

set was used. The images were collected using a Coolsnap HQ (Photometrics) camera with a z optical spacing of 0.2 mm.

Immunofluorescence
Cells were plated onto sterile glass coverslips submerged in media, and after adherence stimulated as required. Cells were fixed by

immersion in 4% paraformaldehyde for 15 mins and then washed with PBS. Samples were incubated in the presence of 1:100 anti-

IL1b primary antibody (abcam; ab9722) for 1 h at room temperature, washed and further incubated for 30 mins in the presence of

1:500 secondary antibody (abcam; ab150077) before a final PBS wash. The glass coverslip was then mounted on to a glass slide

ready for imaging. Confocal microscopy was used to visualise anti-IL1b staining. FITC conjugates were excited using a 488 nm laser

line and emitted signal detected after passing through a 505-550 nm bandpass filter, using LSM510 photomultiplier detectors. For

quantitative comparison of fluorescence, all images were taken together using the same detector settings. Fluorescence levels were

quantified using Cell Tracker Version 0.6 (Shen et al., 2006).

Experimental Design
smFISH data are representative of at least 2 biological replicates, scRNA-seq analysis of lipid A stimulated RAW 264.7 cells were

performed using 1 replicate. Data were not randomized, stratified, or blinded for any of the analyses performed in this paper.

Stochastic Modelling of Transcription
CME Description

Temporal mRNA distributions for considered models of transcription are obtained using the Chemical Master Equation (CME)

following approach by (Gómez-Schiavon et al., 2017). In brief, an infinite set of ordinary differential equations (ODEs) describes

the flow of the probability in the biochemical system being in a particular state x and time t, P(x,t) over all possible biochemical re-

actions k into and out of x:

dPðx; tÞ
dt

=
X
k

½akðx� vkÞPðx� vk ; tÞ� akðxÞPðx; tÞ�

akvt denotes the probability that a biochemical reaction kwill occur in the infinitesimal time interval vt, given that the system is in the

state x, vk is a stochiometric vector of reaction k that describes how the system changes when reaction k occurs. In general, CME is

written in the matrix form as

dPðX; tÞ
dt

= RðqÞPðX; tÞ;

where X = ½x1; x2;.xN�T is a vector of all possible cell states, PðX; tÞ= ½Pðx1; tÞ;Pðx2; tÞ;.PðxN; tÞ�T andRðqÞ is a transition ratema-

trix given by:

RijðqÞ=
8<
:

�
X
k

akðxiÞ if i = j

akðxjÞ cj such that xj = xi � vk

0 otherwise:

Time evolution of the probability distribution PðX; tÞ is given by

PðX; tÞ = exp½RðqÞt�P0ðXÞ;
where P0ðXÞ is specified by initial data that should satisfy

P
XP0ðXÞ = 1. PðX; tÞ is calculated using a fast matrix exponential func-

tion implemented in MATLAB by (Al-Mohy and Higham, 2011). All simulations begin with initial data in which no mRNA are present

and both gene alleles in the ‘off’ state. For practical purposes, the total number of mRNA molecules in the system—and hence the

total number of states in the stochastic process—is truncated at M =2000.

In general, RðqÞ depends on both the model structure and the parameters. In this work, we considered a family of four transcrip-

tional models of increasing complexity (as highlighted in Figure S11D). In the simplest model—often called the telegraph model—we

assume two independent alleles for each gene, the activity of which switches randomly between ‘off’ and ‘on’ states, with only the

latter being permissive for mRNA transcription (Raj et al., 2006; Skinner et al., 2016; Suter et al., 2011; Zenklusen et al., 2008). The

associated kinetic parameters include switching ‘on’ and ‘off’ rates (kon and koff, respectively) as well as rates of mRNA transcription

and degradation (kt and kd, respectively). The state of the cell in the telegraph model x ˛ [s, m]T is defined by the number of active

alleles, s and number of mRNA molecules, m. The total number of states is N = 3(M +1), subject to the constrains on the number of

mRNAmoleculesM. A considered variant of the model includes an additional constitutive transcription rate k0, which is incorporated

into the transition matrix (see Figure S11D model 2).

We also consider an extension to the telegraph model that includes an additional regulatory step, which may be considered as a

chromatin opening step that is required for full transcriptional activity. In the extendedmodels, each allele exists in one of three states:
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an inactive ‘off’ state, an intermediate ‘I’ state or an active ‘on’ state. Reversible stochastic transitions (with appropriate rates) occur

between the inactive and intermediate as well as the intermediate and active states (but not directly between inactive and active

states). We further assume that transcription occurs only in the active state (Figure S11D model 3) or in both the intermediate and

active states (i.e. IL1bmodel, Figure S11D model 4). Given the upper bound on the number of mRNA moleculesM, the total number

of states in the extended models is N = 6(M +1).

Model Fitting and Analysis
In order to investigate different regulatory scenarios (Figure S11B), we calculated exact temporal mRNA distributions using the CME

approach as sketched above. A genetic algorithm (GA) was implemented using the ga function in MATLAB and employed to estimate

model parameters, minimising the integrated absolute distance between the theoretical (CME) and measured cumulative distribution

functions (CDFs). CDFswere fitted using fitdist function (with anEpanechnikov kernel function). The best 50model fits from independent

GA runs for each condition (using a population size of 200, elite count of 2, crossover factor of 0.6, and the tournament selection func-

tion). Gene activation rateswere constrained to lie below 0.2min-1, while the degradation rate for TNFa transcriptswas constrained to lie

between 0.006 and 0.07 min (half-life between 10 and 115 mins), while the degradation rate for IL1b transcripts was constrained to lie

between 0.002 and 0.006min (half-life between 115 and ~350mins). This is in an agreement with a short TNFamRNA half-life (up to 1.5

h) in comparison to that of IL1b (stable at the time-scale of a 6 h experiment) measured in macrophages (Hao and Baltimore, 2009). We

assumed two independent alleles per genewith the transcription rate constrained by 30mRNAmin-1 per allele. Rates as high as 2 to 10

mRNA min-1 have been reported for specific genes (Molina et al., 2013; Schwanh€ausser et al., 2011; Skinner et al., 2016; Suter et al.,

2011). In our dataset 10%ofRAW264.7 cells produced in excess of 200mRNA h-1 (and 1% in excess of 400mRNA h-1), which is equiv-

alent to a transcription rate between 1.67 to 3.33mRNAmin-1 per allele assumingconstant production and nodecay.Note that these are

underestimates, as they assume steady production, while our transcription site data indicates intermittent transcriptional initiation.

The CME approach was also used to calculate sensitivity indexes corresponding to 10% parameter changes of the noise level [1-

s10/m10/(s0/m0)], where s0 and m0 correspond to nominal parameter values. Sensitivity indexes were calculated for distributions ob-

tained at 180 mins after stimulation for one-step model for TNFa (Figure 2D), two-step IL1bmodel (Figure 2E) or one-step model re-

fitted to recapitulate heterogeneity of IL1b expression (Figure S11F).

Noise Quantification in Count Data
Single-cell heterogeneity may emerge due to intrinsic stochastic fluctuations (i.e., random on-off switching) and extrinsic differences

between cells (Elowitz et al., 2002; Hilfinger and Paulsson, 2011; Sherman et al., 2015). Therefore, in order to apply stochastic models

of transcription (which assume intrinsic noise), we investigated the sources of the variability in the smFISH count data. Overall, these

analyses suggest that intrinsic noise is a dominant factor in our datasets. In agreement, we show that one-step telegraph models

explain all, but ~ 30% variability in data for TNFa smFISH counts (Figure 4B), while two-step model capture most of the variability

in the IL1b data (Figure S18C).

(1) We demonstrate that count data exhibit intrinsic noise properties:

(i) Noise decreases monotonically with mean m in smFISH data (Figure S11A) as well as in our (Figure S3C) and published

scRNA-seq (Figure S20E).

(ii) In the limit of high m, noise decreases sharply (Figure S11A), rather than approaching a plateau (Taniguchi et al., 2010).

(iii) TNFa smFISH counts (Figure S16) as well as a majority of the scRNA-seq distributions (Figure S20A) fit negative binomial

distributions. Of note, IL1b smFISH counts do not follow negative binomial distribution (Figure S16), since they represent a

more complex model of regulation.

(2) A formal noise decomposition of the TNFa and IL1b dose-response count data (Rhee et al., 2014) shows that contribution of

the intrinsic noise is dominant (across most condition), albeit also highlighted an extrinsic noise component (Figure S11B). To

analyse potential sources of extrinsic noise, we show that

(i) The percentage of variance of TNFa and IL1b smFISH counts explained by cell size (R2 of the linear fit) is <7% (Figure S10B).

(ii) The percentage of variance explained by regressing TNFa against IL1b counts is <20%, but ~41% for IL1a against IL1b

(Figure S21). The former is consistent with extrinsic variability due to shared TLR signalling machinery, for example signal-

ling dynamics (Wong et al., 2018, 2019), while the latter highlight the shared chromatin regulatory step.

(3) Currently, our smFISH datasets include between 102 and 103 individual cells per conditions (up to 18 conditions per probe) and

up to 96 cells in scRNA-seq. In general, larger sample sizes might allow obtaining more accurate estimates of the underlying

probability distribution function and their moments.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of scRNA-seq Data
Demultiplexing of the output data (allowing one mismatch) and BCL-to-Fastq conversion was performed with CASAVA 1.8.3. Reads

were mapped to themus musculus genome (assembly GRCm38.p3, downloaded from Ensembl) using Tophat version 2.011 (Trap-

nell et al., 2009) and assigned to genomic features in the corresponding gtf file using featureCounts in the Subread package (version
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1-4.6). Counts for each gene were normalized to the median counts per cell (Figures S1A and S1B), data is presented as log2(nor-

malised counts+1) following analyses by (Shalek et al., 2013). 61 cells were included in the analysis with more than 2 million counts. A

PCA plot of the normalized counts reveals a relatively uniform distribution of cells with no outliers or apparent overriding trends in the

projection (Figure S1C). Comparison of normalized gene expression counts between two representative single cells shows a rela-

tively strong correlation as observed in Figure S1D. Expression of housekeeping genes displays an almost linear correlation between

these two cells (Spearman rank correlation of 0.94). In contrast, genes whose expression was regulated in response to lipid A, display

far greater variation (Spearman rank correlation of 0.71). Themean of the transcript levels from the single cells were then compared to

previously published population-level data performed under the same experimental conditions (Bagnall et al., 2015). These data were

downloaded, re-mapped and re-normalised (as described here) to ensure parity between the datasets. A strong correlation between

the population-level and single-cell data (r=0.85) was observed, confirming that library preparation preserved overall gene expres-

sion patterns (Figure S1E). As in Shalek et al (Shalek et al., 2013) we analysed the correlation between mean normalized counts

(across all 61 cells) and the variability of these counts. We observe an inverse relationship between the normalized mean counts

and the coefficient of variation (Figure S1F). All the housekeeping genes exhibit extremely low variability across the cells, while

the lipid A responsive genes show far greater variability at comparable expression levels. Subsequently, a stringent cut-off was en-

forced to remove genes with high technical variability, leaving 1941 high-confidence genes. Data was clustered using the affinity

propagation algorithm (Frey and Dueck, 2007); an unsupervised non-parametric method, which provides automated determination

of numbers of clusters. Derived p-values were corrected for multiple testing using the method described by Benjamini and Hochberg

(see Table S1 for normalised read counts and clustering analyses).

Generic Properties of the TLR4 Response
Eukaryotic promotor database (EPD) was used to determine TATA-box enrichment in the clusters displayed in Figure 1B.We observe

significant enrichment of TATA sites in the promoter regions of the highly variable genes that failed to cluster (8 out of 10 genes have

TATA boxes in their promoter regions, Figure S3A). In contrast, we do not find enrichment for TATA boxes in the promotor regions of

the housekeeping genes examined. When comparing the variability in transcript levels of all genes within the (HC) single-cell dataset

with and without TATA boxes, we find there is no statistical difference between the two sets (Figure S3B). In part this may be deter-

mined by the cut-off in transcript levels of high confidence genes, i.e. the HC is by definition less variable. Previously correlation has

been found between variability in transcript level andmRNA half-life in a single cell study examining a variety of rat andmouse tissues

(Dueck et al., 2015). A plot of the variability in expression levels of genes within this dataset and previously publishedmRNA half-lives

(Schwanh€ausser et al., 2011) reveals a limited negative correlation between half-life and heterogeneity, perhaps due to the fact that all

recorded half-lives are large (e.g., >4 h, Figure S3B). Yet, there is a strong association between mRNA abundance (and transcript

synthesis rate) and variation, indicative of a generic relationship between abundance and noise.

smFISH Quantification
Raw images were deconvolved using the SoftWoRx 7.0 software (GE Healthcare). Spot counting for mature and nascent mRNA was

performed with FISH-Quant v2d (Mueller et al., 2013). The total cell area was calculated by extracting the number of pixels and pixel

size in each drawn cell boundary. The nuclear area was calculated by applying the MATLAB function ‘greythresh’ to the maximum

projection of the deconvolved DAPI signal. Pixel areas for each nuclear mask were extracted and scaled to the actual pixel sizes. For

cell size normalisation, each individual mRNA count was scaled via the ratio of the average nuclear area of the population and nuclear

area of the cell (Figure S10).

Point Estimators of Transcriptional Bursting
Transcriptional burst size and burst frequency are defined as the average number of mRNA produced per gene activation event, and

the frequency of gene activation events, respectively (Nicolas et al., 2017). In the case of the one-step telegraph model, these are

directly related to the kinetic parameters of transcription (Nicolas et al., 2018). When accounting for two independent alleles of a

gene, in the steady-state burst size is defined as bk=kt/koff, while bursting frequency is given by fk=2konkoff/(kon+koff)/kd (we refer to

these as kinetic estimators). Alternatively, estimators based on the sample variance s2 and the mean m of the mRNA distribution

(referred to here as moment estimators) such that the burst size (bm=s
2/m) and burst frequency [fm=m/(bm-1)] are sometimes used

(Nicolas et al., 2017; Raj et al., 2006; Suter et al., 2011; Wong et al., 2018). In general, moment estimators are used to describe bursti-

ness, i.e. quantitative departure from a non-bursty (Poissonian) mRNA production (where bm=1 and fm=N) (Nicolas et al., 2017; So

et al., 2011; Wong et al., 2018). To evaluate the difference between estimators we define an error function:

Error =
kinetic parameters estimate�moment estimate

kinetic parameters estimate

Given expressions for the steady-state mRNA moments in the telegraph model (Peccoud and Ycart, 1995; Paszek, 2007; Shah-

rezaei and Swain, 2008), when accounting for two alleles we have that

m =
2konkt

kdðkoff + konÞ (Equation 1)
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s2 =
m

2

2 koff

kon

�
1+ ðkoff + konÞ

kd

� (Equation 2)

In this work, we usemoment estimators calculated either for smFISH and scRNA-seq data or for theoretical mRNA distributions (at

any arbitrary time) obtained from the CME. For application of the one-step telegraph model we utilise kinetic parameter estimators.

Therefore, errors in the steady-state may be expressed as

berror = 1� koff
2

kdðkoff + konÞ+ ðkoff + konÞ2
� koff

kt
; (Equation 3)

ferror = 1� ðkoff + kon + kdÞðkoff + konÞ
koff

2
: (Equation 4)

In general, the error associated with moment estimators depends on specific parameter values and the error in the bursting

frequency is independent from the transcription rate kt. As already well established in the literature (Nicolas et al., 2017), in the

‘bursting’ regime, corresponding to short and infrequent activation events, i.e. koff>>kon and kd>>koff, errors resulting from moment

estimators are negligible (given that in general kt>>koff), Equations 3 and 4. In this case both errors converge to 0, and thus

moment estimators are as accurate as kinetic parameter estimators. In order to understand the generic suitability of moment es-

timators, we calculated errors associated across a wide range of parameter values using the fitted TNFa model (Figure S6). In the

physiological parameter range, i.e. kon<0.1 min�1 and koff <0.2 min-1, and assuming kt<30 mRNA/min-1, both errors are con-

strained (ferror<1 and berror<1) for koff>kon (Figure S6A). In the case of TNFa, where koff/kon is equal to 6, the errors due to approx-

imation via moment estimators are ~30% (see also Figure S11G). These errors substantially increase when koff/kon ~1, but are in-

dependent of transcription rate (at least above 5 mRNA/min, Figure S6B). Both errors also depend on the mRNA half-life, but

within the physiological range, i.e. kd<0.01 min-1 the corresponding changes are limited (for koff/kon >3). While kinetic estimators

define bursting characteristics only at the steady-state, the moment estimators can be calculated at any time (Figure S6C). Tem-

poral relationships (calculated based on theoretical distribution at 1, 3 and 6h) converge to the steady-state approximation

(Figure S6A).

Modulation of Transcriptional Bursting
We theoretically calculated relationships between parameters of the telegraph model that satisfy empirically observed linear mean-

variance relationships. We assume that the sample mean and variance of the gene expression distribution follows a general

linear trend,

s2 = am+ s0: (Equation 5)

Under steady-state assumption, i.e. by using Equations 1 and 2, with s0=0, this relationship corresponds to

kt = ða� 1Þðkoff + kon + kdÞ
�
1 +

kon
koff

�
; (Equation 6)

whereas in general (a0s0):

koff konk
2
t

kdðkd + koff + konÞðkoff + konÞ2
+ ð1�aÞ konkt

kdðkoff + konÞ �
s0

2
= 0: (Equation 7)

The above equations define the relationship between kinetic parameters that satisfy linear constraints. Equation 6 describes a sur-

face in the three-dimensional (koff ;kon;kt) parameter space on which the s2 =am relationship holds. We plot this surface, as well as

bursting characteristics on the surface for a=100 and a=10 (corresponding to genes with different level of variability) for biologically

plausible set of parameters, i.e. koff<0.2 min-1 and kon<0.1 min-1, while assuming kd =0.014 min-1 (i.e., fitted TNFa degradation rate)

and kt<30 min-1 (Figures S14A–S14C).

To maintain a linear mean-variance relationship the system can move freely between different (koff ; kon; kt) parameter

values, which results in modulation of both burst size and frequency. In the case of bursty expression regime, i.e. koff>>kon
(for koff>>kd) it follows from Equation 6 that bk=a-1 and fk=m/(a-1). Therefore, burst size is necessarily constant (and equal to

the slope of the mean-variance line for large a) over the range of mean mRNA response, while changes of gene expression

are controlled solely by frequency modulation. If the system is not in the bursty regime, the extent of burst size and fre-

quency modulation is related to the activation rate koff (or in general koff/kon ratio, Figure S15). Based on the (koff, kon, kt)

parameter surfaces, the relationship between bursting frequency and relative change of the burst size was calculated for

a range of regression slopes from a=10 to 200, (Figures S15A and S15B). We find that the larger koff, the smaller are

changes of the burst size, and in turn the larger are changes of the bursting frequency over the corresponding change

of mean mRNA expression (Figure 4A).
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When the systemapproaches a bursty regime, i.e. koff>>kon the changes of burst size become negligible (Figure S15C). In this case,

moment estimators provide an accurate description of the bursting characteristics for the one-step telegraph model (i.e., for a>>1

moment and kinetic estimators are the same).

The generic case of non-zero intercept, i.e. s2= am+s0 is considered in Equation 7, where parameter regions consist of two roots of

the quadratic equation (see Figures S14D andS14E). One of these roots overlaps with the solution of Equation 6 (the case of non-zero

intercept), while the second, associatedwith a small transcription rate (Figure S14E) disappears as s0/0. In the bursty regime, Equa-

tion 7 can be re-arranged as

fkb
2
k + ð1�aÞfb� s0 = 0:

Given that m=fb, we have that

bk = ða� 1Þ+ s0

m

fk =
m

bk

:
(Equation 8)

Equation 8 show that for s0s0 the burst size is a non-monotonic function of the mean m that diverges as m tends to zero. When

m>>0 the burst size tends asymptotically to the constant value bk = ða � 1Þ, so that the description is equivalent to using moment

estimators, in the sense that the burst size is predetermined by the slope of the mean-variance line. Of note, for s0>0 burst size rela-

tionship has a minimum for m=s0/(a-1)] and burst size monotonically increase (and vice versa for s0<0, Figures 4C and 4D). In this

case, the description is equivalent to using moment estimators, such that the burst size is predetermined by the slope of the

mean-variance line, and constant in the case of the zero intercept, i.e. bm=s
2/m=a +s0/m, while for a>>1, bm= bk. In addition, the fre-

quency undergoes modulation as a function of the mean, i.e. fm=m/(bm-1)=m/[(a-1)+s0/m=fk ].

The comparison betweenmoment (and kinetic estimators) is depicted in Figure 4C (in the case of a non-zero intercept for the fitted

TNF-a smFISH data). The burst and frequency relationships are predicted based on coefficients of the linear mean-variance relation-

ships (Figure 4B). In the case of IL1b (where the complexity of the model prevents analytical solutions), we use moment estimators

based on the fitted smFISH dataset (Figure S18C). We find that while frequency changes are predicted accurately, the burst size is

predicted accurately only for large means (Figure 4D). We find that specifically in the case of positive intercept (e.g., in the case of

IL1b) the simple relationship does not reproduce the non-constant behavior at lowmRNA levels. For the analyses of scRNA-seq data-

sets (Figures 4F and S19) we therefore fitted individual relationships separately (i.e. mean-variance, mean- burst-size, mean-fre-

quency, etc.), rather than compare data with relationships predicted by the mean-variance line [Equation 8]. However, we then

demonstrate that characteristics predicted by the theory are present in the fitted data, specifically there is a reciprocal relationship

between burst size and frequency across considered genes (Figure S19F).

Intuitively, mean-variance relationships are expected to have zero intercepts. However, in both smFISH and scRNA-seq datasets

we find evidence for both negative and positive intercepts. In the case of TNFa (negative intercept, Figure 4C), theoretical predictions

of burst size and frequency based on the regression fit are consistent with fitted data and indeed predict a minimum in frequency

changes. We find that in RAW 264.7 cells, there is always a basal (and substantial) expression of TNFamRNA in unstimulated cells,

which perhaps contributes to this behaviour (i.e. no true zero in the system). In general, fitted intercepts have relatively small values

(comparing to the overall variance) and tend to be positive. This suggests elevated level of variance consistent with measurement

noise (especially for small means). We accept that only a limited amount of data is available to be fitted per condition, thus individual

fitsmay be affected by specific values of individual or groups of points.We consider thesemean-variance relationships are empirical,

and treat them as such in the manuscript.

Burstiness in Genomics Data
Inference of mean-variance relationship was performed using a dataset from BMDCs incorporating 29 scRNA-seq experiments

(each corresponding to a single Fluidigm C1 experiment with up to 96 cells) on the response time-course (at 0, 1, 2, 3 and 6 h) as

well as additional perturbations such as treatment with IFNb, inhibition of paracrine secretion (chemical or physical on chip) or

cell knockout for IFNR1 in and STAT1 expression (Shalek et al., 2014). We considered 812 genes that were induced by at least

two-fold (compared to unstimulated cells) at the population level at any time point during the LPS stimulation [as identified in (Shalek

et al., 2014)]. Visual inspection of the data revealed outliers in the linear regression fit, therefore, outlier removal method with Maha-

lanobis distance was used (with 0.05 threshold for outlier detection) (Finch, 2012). After removing low abundant genes (maximum

mean expression <100 read counts) this resulted in 290 genes for the core TLR dataset (time-course) and 323 for the combined data-

set (including perturbations). Bursting characteristics (based onmoment estimators) for individual data points were fitted using linear

regression and power functions (in semi log scale) when appropriate and presented as smooth curves. Robust regression (excluding

data points with corresponding fitted residuals > 1.5,sresiduals) was used to either remove noisy data (as expected in the scRNA-seq

measurement) or individual datapoints that did not affect the overall trend. Equations, fitted parameters, corresponding correlation

coefficients and highlighted outliers are included in the Tables S3, S4, and S5. Fitting protocols were implemented in Python using R

kernel, individual gene graphs were produced in MATLAB R2014a.

In order to validate estimates from scRNA-seq data, raw BAM dataset from Shalek et al. corresponding to LPS stimulation at 4h

was downloaded and re-mapped using Picard Tools to remove duplicate reads (http://broadinstitute.github.io/picard/). Mapped
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data was normalised to read counts per million and compared with the original dataset (Figure S20). Specifically, for the set of LPS-

dependent genes characterised by linear mean-variance relationships, mean and variance, as well as relative burst size and fre-

quency (based on moment estimators) were calculated. In addition, chi-squared goodness-of-fit tests was performed to determine

whether count data (in each dataset) follow negative binomial distribution. p-values were adjusted using Benjamini-Hochberg pro-

cedure for false discovery rate, genes with <10 non-zero reads (out of 95 captured cells) were not considered.

Statistical Analyses
Data are described by the sample mean and standard deviation (SD). Sample size are provided ion figure legends. All statistical an-

alyses were performed in GraphPad Prism 8 or MATLAB. Data were checked for normality with the D’Agostino-Pearson omnibus

test. When normal, parametric tests were performed (t-test, standard one-way ANOVA); otherwise, non-parametric tests are used

(Mann-Whitney, Kruskal-Wallis ANOVA). Tukey’s or Dunn’s correction for multiple comparisons was applied, respectively. Contin-

gency tables were assed with Fisher exact tests. MATLAB’s chi2gof chi-squared goodness-of-fit test was performed between count

distributions and respective negative binomial distributions with parameters estimated from the data (using fitdist function). Benja-

mini and Hochberg method was used for multiple comparison adjustment in genomics data. Significance was defined for p-value

(and adjusted p value, when relevant) <0.05. Details of all statistical tests are provided in the corresponding figure legends.
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Figure S1. Variability within the scRNA-seq data, related to Figure 1. A. Total read counts 

across 64 cells before normalisation. 61 cells with read counts >2x106 selected for subsequent 

analysis. B. Box-plots displaying the distribution of expression levels (in log2 scale) of 

housekeeping genes across single cells post normalisation by median count per cell (x10). C. 

PCA plot displaying variability between single-cell expression levels post normalisation. D. 

Normalized gene expression counts between two representative single cells. Shown is the 

smooth scatter plot, including lipid A response (in yellow), housekeeping genes (in red) and 

A B

C D

E F
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other high confidence (HC) genes (in blue). Spearman rank coefficient indicates correlation 

between all genes between two cells. E. Comparison between transcript levels from population-

level (from [1]) and mean of single cells. Shown is the smooth scatter plot, including lipid A 

response (in yellow), housekeeping genes (in red) and other genes (in blue). Spearman rank 

coefficient indicates correlation between all genes in the population (from [1]) and mean of 

single cells. F. Smooth scatter plot of standard deviation (SD) vs. mean normalized data. High 

confidence (HC) gene set defined for the expression level above cut-off line of 

log2(counts+1)=5. Spearman rank coefficient indicates correlation between SD and mean 

normalized data (for all genes). Genes colour-coded as in D.  
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Figure S2. Clustering analysis of scRNA-seq data on lipid A-stimulated RAW 264.7 

macrophages, related to Figure 1. A. Principal component analysis (PCA) of gene clusters 

from Fig. 1B. Shown are the first two principal components (PC1 vs. PC2). B. Principal 

component analysis of cell clusters identified in Fig. 1B. C. Violin plots displaying coefficient 

of variation (CV) of normalised transcript levels across gene clusters. D. Violin plots displaying 

mean normalized transcript levels across gene clusters.  
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Figure S3. Physical properties of genes contribute to variation in gene expression 

measured in scRNA-seq data, related to Figure 1. A. Enrichment of TATA boxes the 

upstream regions of genes from clusters in Fig. 1B. B. Boxplot displaying coefficient of 

variation of genes with and without (proximal to) TATA-boxes (within the HC group).  C-E. 

Coefficient of variation of individual genes against mean normalised transcript levels (C), 

mRNA half-life (D) and rate of transcription (E) (values taken from [2]). Shown are smooth 

scatter plots, including lipid A response (in yellow), housekeeping genes (in red) and other high 

confidence (HC) genes (in blue). Correlation coefficients calculated for all genes, assessed as 

statistically significant (p-val <0.001) according to Spearman rank correlation test. 
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Figure S4. Analysis of TNFa, IL1a and IL1b expression, related to Figure 1. A. smFISH 

analysis of IL1a, IL1b and TNFα mRNA expression in RAW 264.7 cells. Shown are maximum 

intensity projections from deconvolved wide-field microscopy image z-stacks of representative 

cells stimulated with 500ng/ml lipid A for 3 h. mRNA transcript shown in orange, DAPI nuclear 

staining depicted in blue. Scale bar 10 µm. B. Distribution of mRNA counts from A. Shown 

are histograms for the IL1a, IL1b and TNFa abundances expressed as log10(mRNA+1) across 

at least three replicates, from 447, 718 and 356 cells, respectively. C. smFISH analysis of IL1a, 

IL1b and TNFα mRNA expression in BMDM cells. Shown are maximum intensity projections 

from deconvolved wide-field microscopy image z-stacks of representative cells stimulated with 

500ng/ml lipid A for 3 h. mRNA transcript shown in orange, DAPI nuclear staining depicted 

in blue. Scale bar 10 µm. D.  Histogram of mRNA counts in BMDMs (from C). Shown is 

analysis of 142, 732 and 322 cells for IL1a, IL1b ad TNFa across three replicates, respectively. 

E. Immunostaining of IL1b protein expression in RAW 264.7 macrophages. Shown are 

confocal microscopy images of cells treated with 500 ng/ml of lipid A for 3 h (or untreated). 

IL1b protein shown in green, DAPI nuclear staining depicted in blue. Scale bar 20 µm. F. 

Cumulative probability distribution of IL1b protein from A. Shown is analysis of 104 and 316 

of untreated and lipid A-treated cells across three replicates, respectively. G. Dual smFISH and 

immunostaining analysis of IL1b mRNA and protein levels. Shown are deconvolved wide-field 
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microscopy images of representative RAW 264.7 cells stimulated with 500 ng/ml of lipid A for 

3 h. mRNA transcript shown in orange (left panel), protein in green (right panel), DAPI nuclear 

staining depicted in blue. Scale bar 10 µm. H. Correlation between IL1b mRNA and protein 

levels in cells from C. Shown are individual cell counts depicted with circles, in black a 

nonlinear regression fit (with a coefficient of determination R2).  
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Figure S5. Analysis of IL1a and IL1b expression in mouse bone marrow derived dendritic 

cells, related to Figure 1. Heat maps displaying single cell expression of IL1a and IL1b across 

cells. Transcript levels measured as transcripts per million (tpm) were downloaded from the 

supplementary data from (Shalek et al., 2014).  Expression levels are shown at 1, 2, 4 and 6 

hours after LPS stimulation.   
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Figure S6. Comparison of point estimators of transcriptional bursting parameters, 

related to Figure 2. A. Fractional errors of moment estimators as a function of kinetic 

parameters. Shown are simulations using parameters of the fitted TNFa telegraph model 

(kon=0.02 min-1, koff=0.12 min-1, kt=16.8 mRNA/min, kd=0.014 min-1) for systematic changes 

of individual parameter values (kon, koff and kt, while retaining values of other). In colour lines, 

theoretical moment estimators using exact temporal mRNA distributions at 1, 3, 6 h; in broken 

lines steady-state errors given by Eqs (3) and (4). B. Steady-state burst size and frequency 

errors as a function of the ‘burstiness’. Errors calculated for the parameters of the fitted TNFa 

model (kon=0.02 min-1, koff=0.12 min-1, kt=16.8 mRNA/min, kd=0.014 min-1) for systematic 

changes of transcription (kt) and degradation (kd) rates. ‘burstiness’ defined as koff/kon ratio and 
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simulated by changing koff rate (as highlighted), while maintaining kon constant. C. Estimates 

of burst size and frequency for the fitted TNFa model at different time points (kon=0.02 min-1, 

koff=0.12 min-1, kt=16.8 mRNA/min, kd=0.014 min-1). In broken lines are steady-state estimates 

using fitted kinetic parameters. 
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Figure S7. Dose-dependent regulation of IL1b and TNFa transcription in RAW 264.7 

cells, related to Figure 2. A. Cumulative distribution function of mRNA counts in RAW 264.7 

macrophages either untreated (U) or stimulated with 10, 100 and 500 ng/ml of lipid A for 3 h. 

240, 208, 188 and 718 cells measured for IL1b, and 240, 208, 188 and 356 for TNFa, pooled 

across at least three smFISH experiments, respectively and expressed as log10(mRNA+1). B. 

Individual cell mRNA counts from A [with mean (and SD) per condition]. A nonparametric 

one-way ANOVA with Tukey’s correction for multiple comparisons between groups 

summarised with ****- p-value <0.0001, ***- p-value <0.001, ** p-value <0.01, * p-value 

<0.05, NS- not significant. C. Coefficient of variation (CV), as well as moment estimators of 

burst size (b) and frequency (f) for mRNA count distributions from A.  D. Distribution of 

transcription sites (Tx) in data from A. Shown is the fraction of cells with 0-4 transcription 

sites. E. mRNA abundance is correlated with the presence of transcription site. Shown are the 

IL1b and TNFa mRNA counts as a function of Tx number for cells stimulated with 500 ng/ml 

of lipid A (data from A). ‘*’ denotes a statistical test (p-val<0.05) for a one-way ANOVA with 

Tukey’s correction for multiple comparisons. 
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Figure S8. Dose-dependent regulation of IL1β and TNFα transcription in BMDMs, 

related to Figure 2. A. Cumulative distribution function of IL1b and TNFa mRNA counts in 

BMDMs either untreated (U, 0 ng/ml) or stimulated with 10, 100 and 500 ng/ml of lipid A for 

3 h. 47, 276, 324 and 732 cells measured for IL1b, and 27, 149, 126 and 322 for TNFa, pooled 

across at least three smFISH experiments, and expressed as log10(mRNA+1). B. Individual cell 

mRNA counts from A. Shown are individual cell counts together with mean (and SD) per 

condition. Nonparametric Mann-Whitney U test for pairwise comparisons between groups 

summarised with ****- p-value <0.0001, ***- p-value <0.001, ** p-value <0.01, * p-value 

<0.05, NS- not significant. C. Characteristics of single cell mRNA expression. Shown is the 

coefficient of variation (CV) as well as moment estimators of burst size (b) and frequency (f) 

for mRNA count distributions from A. D. Distribution of transcription sites (Tx) in data from 

A. Shown is the fraction of cells with 0-4 transcription sites. E.  IL1b and TNFa mRNA counts 

as a function of Tx number for cells stimulated with 500 ng/ml of lipid A (data from A). ‘*’ 

denotes a statistical test (p-val<0.05) for one-way ANOVA with Tukey’s correction for multiple 

comparisons. 
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Figure S9. Variability of temporal IL1b and TNFa mRNA expression, related to Figure 

2. A. Cumulative distribution function of mRNA counts in RAW 264.7 cells either untreated (0 

h) or treated with 500 ng/ml lipid a for 1, 2 or 3 hours. Data pooled across at least three smFISH 

experiments and expressed as log10 (mRNA+1). B. Individual cell mRNA counts in RAW 264.7 

cells either untreated (0 h) or stimulated with 500 ng/ml of lipid A for 1, 2 and 3 h. 240, 253, 

338 and 718 cells measured for IL1b, and 240, 253, 338 and 356 for TNFa, across at least three 

smFISH experiments, respectively. A nonparametric one-way ANOVA with Tukey’s correction 

for multiple comparisons between groups summarised with ****- p-value <0.0001, ***- p-

value <0.001, ** p-value <0.01, * p-value <0.05, NS- not significant. C. Characteristics of 

single cell mRNA expression. Shown is the coefficient of variation (CV) as well as moment 

estimators of burst size (b) and frequency (f) for mRNA count distributions from A.  D. 

Distribution of transcription sites. Shown is the distribution of transcription sites in data from 

A. Shown is the fraction of cells with 0-4 transcription sites.  
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Figure S10. Effect of nuclear size on the smFISH count distribution, related to Figure 2. 

A. Smooth histogram of the nuclear area of RAW 264.7 and BMDM cells treated with 500 

ng/ml lipid A for 3 h (data from Figs 1 and S8). Mean nuclear size and standard deviation (SD) 

displayed. B and C. Correlation between mRNA levels and the nuclear size. Shown are scatter 

plots across RAW 264.7 (B) and BMDM (C) cells stimulated with 500 ng/ml lipid A for 3 h 

(from data in Figs 1 and S8), with fitted regression line and fraction of variance explained by 

the nuclear size (correlation coefficient R2). D. Cumulative probability distribution of the IL1a, 

IL1b and TNFa mRNA counts expressed as log10 (mRNA+1). Shown is the comparison 

between raw and cell size-normalized mRNA counts. Size-normalisation performed by scaling 

individual mRNA counts via the ratio of the average nuclear area in the population and nuclear 

size of particular cell.  
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Figure S11.  Mathematical model fits of TNFa and IL1b, related to Figure 2. A. Analysis 

of noise in the TNFa and IL1b smFISH counts. Show is h2=CV2 as a function mean mRNA 

expression (in log10 scale) combining all experimental conditions in this work (i.e., lipid A 

dose-response in RAW 264.7 and BMDM cells, time-course in RAW 264.7 and perturbations). 

B. Decomposition of noise in the TNFa and IL1b mRNA numbers; extrinsic noise (in black) 

versus intrinsic noise in TNFa (red) and IL1b (blue) levels calculated for the lipid A dose-

response data (Fig. S8). Right: Schematic diagram of the noise decomposition. Trunk noise 

represents extrinsic variability between cells (potentially due to TLR signalling or generic 

transcriptional machinery), branch noise corresponds to gene specific intrinsic noise. C. 

Schematics of TNFa model shown alongside distribution of the fitted TNFa model parameters. 

Shown is a scatter plot matrix (with corresponding histograms) of individual 50 model fits from 

Fig. 2D (smFISH mRNA distribution at 3 h after 500 ng/ml lipid A stimulation in RAW 264.7 

cells). D. IL1b transcription conforms to a two-step stochastic model. Top: Considered models 

of IL1b transcription: 1) one-step model with inducible transcription (kt); 2) one-step model 

with a basal transcription (k0); 3) basic two-step model; 4) two-step model. (Bottom) Shown is 

the comparison between measured and fitted IL1b mRNA distributions (3 h after 500 ng/ml 

lipid A treatment for the four different models in RAW 264.7 cells). In black: Kaplan-Meier 

estimator of measured CDF (with 95% confidence intervals), in red: a family of 50 models 

fitted to the data. E. Distribution of the fitted two-step model parameters from Fig. 2E (smFISH 

mRNA counts at 3 h after 500 ng/ml lipid A stimulation in RAW 264.7 cells). Shown is a scatter 

plot matrix (with histograms) of 50 individual model 4 fits (from B). F. IL1b model involves a 

combination of high and low transcription rates. Shown is the scatter plot of fitted transcription 

rates (kt, k0) for a family of 50 fitted models from Fig. 2E. (Right) Relationship between ton/toff 

rates (in yellow) and kon/koff rates (in green). G. Estimates of bursting characteristics for the 

fitted family of TNFa and IL1b models. Shown is the comparison between moment estimators 

for smFISH counts (from Fig. 2A), fitted distributions obtained with the model fits (from Fig. 

2D and E) and estimates from based on fitted parameters values (for TNFa). H. Sensitivity 

analyses of different model structures. Shown is the local sensitivity analysis for the noise level 

(s/µ) for the one-step TNFa and two-step IL1b models (as in Fig. 2D and E, respectively) as 

well as one-step model refitted to recapitulate mean and higher variance of IL1b expression 

(kon=0.005 min-1, koff=0.05 min-1, kt=10 mRNA/min, kd=0.003 min-1). Sensitivity indexes 

calculated for 10% individual parameter changes. 
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Figure S12. Perturbation of TNFa and IL1b gene expression by co-stimulation, related to 

Figure 3. A. smFISH analysis of TNFa and IL1b mRNA in response to co-stimulation with 

lipid A and DMOG or IFNg. RAW 264.7 cells stimulated with 500 ng/ml of lipid A for 3 hours. 

For co-stimulation, cells were pre-treated with DMOG (0.5 mM) and IFNγ (100 ng/ml) for 24 

hours before the treatment with lipid A. As a control, cells were stimulated with DMOG (0.5 

mM) or IFNγ (100 ng/ml) for 27 hours. Nonparametric one-way ANOVA with Tukey’s 

correction for multiple comparisons between lipid A-treated and co-stimulated groups 

summarised with ****- p-value <0.0001, **- p-value <0.01, ns- not significant. B. Cumulative 

distribution function of mRNA count data from A. C. Coefficient of variation (CV) for mRNA 

count data from A. ‘**’ denotes significance <0.002 for a nonparametric one-way ANOVA with 

Tukey’s correction for multiple comparisons. D. Distribution of transcription sites. Shown is 

the distribution of transcription sites in data A. Shown is the fraction of cells with 0-4 

transcription sites.  
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Figure S13. Analysis of TLR gene expression response heterogeneity in BMDCs, related 

to Figure 3. A. Schematic representation of the core TLR signalling network. B. Temporal 

TNFa expression patterns are treatment specific. Shown are cumulative distribution functions 

of TNFa read counts across different treatments [untreated (U), LPS, PAM and PIC, as 

indicated on the graph). Distributions estimated from the scRNA-seq data from (Shalek et al., 

2014). C. The inferred linear regression trend (with 95% confidence intervals) for TNFa from 

[3] Differential TLR stimulation colour-coded as in A, highlighted are specific measurement 

times.  Coefficient of determination depicted with R2. D. Schematic representation of TLR 

paracrine signalling pathways. BMDC either stimulated with core TLR treatments, or perturbed 

using generic (e.g. Golgi inhibitors) and specific paracrine signalling modulators, e.g. using 

INFAR1, TNFR and STAT1 knockout cells. E. Effect of paracrine signalling perturbation on 

the fitted mean-variance regression trends. Shown is the fold-change of the regression slopes 

fitted for core TLR dataset vs. set of signalling perturbations (in log2) for 195 high confidence 

genes (defined by R2>0.75 for both regression fits). Fold-change levels depicted in grey scale 

(as indicated on the graph). F. Fitted mean-variance relationships for selected genes from D. 

Data points corresponding to core TLR and perturbation indicated with red and open circles, 

respectively. Gene-specific regression slopes are statistically different (p-value <0.05) as 

assessed with a Student t-test.  
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Figure S14.  Linear mean-variance relationships constrain parameters of transcription, 

related to Fig. 4. A. Three-dimensional (𝑘!"" , 𝑘!#, 𝑘$) parameter surface on which the s2=aµ 

relationship holds. Calculation performed using Eq. (6) for biologically plausible set of gene 

activity switching rates, koff<0.2 min-1 and kon<0.1 min-1, while assuming kd =0.014 min-1 

(corresponding to fitted TNFa mRNA degradation rate) and kt<30 min-1. Shown are 

relationships for a=100 and a=10, as highlighted on the graph. B. Burst size and burst 
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frequency as function of the mean mRNA response calculated for the kinetic parameter values 

given by surface from A. In different colours are the feasible parameter ranges (blue for a=100, 

red for a=10), thin lines correspond to koff=0.01, 0.02, 0.05, 0.1, 0.2 min-1. C. Bursting 

characteristics as a function of kinetic parameter values given by surface from A. In different 

colours are the feasible parameter ranges (blue for a=100, red for a=10), thin lines correspond 

to koff=0.01, 0.02, 0.05, 0.1, 0.2 min-1. D. Three-dimensional (𝑘!"" , 𝑘!#, 𝑘$) parameter surface 

on which the s2=aµ-a0 relationship holds. Calculation performed using Eq. (7) for a=113 and 

a0=4249 (corresponding to the fitted TNFa relationship) for biologically plausible set of gene 

activity switching rates, koff<0.2 min-1 and kon<0.1 min-1, while assuming kd =0.014 min-1 and 

kt<30 min-1. Highlighted lines correspond to koff=0.01, 0.02, 0.05, 0.1, 0.2 min-1. E.  Kinetic 

parameter values as a function of mean mRNA expression given by surface in D. 
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Figure S15.  Reciprocal relation between the burst size and frequency, related to Fig. 4. 

A. Changes of burst size and frequency across the underlying range of mean mRNA expression. 

Calculation performed using Eq. (6) for biologically plausible set of gene activity switching 

rates kon<0.1 min-1, while assuming kd =0.014 min-1 (corresponding to fitted TNFa mRNA 

degradation rate), kt<30 min-1 and µ<500. Fife putative genes are considered, each with a 

different regression slope (a, in different colour lines). Shown are relative frequency and burst 

size changes per a, corresponding to koff=0.1 min-1. In broken lines are the moment estimators 

(i.e., ‘bursty’ regime). B.  Analysis of absolute burst size and frequency from B as a function 

of koff/kon ratio. Colour coding as in A. Calculations performed for koff=0.1 and 0.01 min-1. 
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Figure S16. Negative binomial fits of the measured IL1β and TNFa mRNA distributions, 

related to Fig 4. A. Comparison between negative binomial fit (in red) and measured mRNA 

distributions (depicted with different colour dots) across all smFISH datasets. B. Fitted 

negative binomial parameters (r and p) across different conditions. P-values denote result for 

a chi-squared test for the smFISH count distribution following negative binomial with 

respective parameters. N/A denotes cases when the test cannot be performed (due to low count 

levels) or measurement is not obtained.   
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Figure S17. Model analysis of TNFa distributions, related to Figure 4. A. The comparison 

between measured and fitted TNFa mRNA distributions across all experimental conditions in 

RAW 264.7 cells (including dose- and time-response as well as perturbations). In black: 

Kaplan-Meier estimator of measured CDF (with 95% confidence intervals), in red: a family of 

50 two-step models fitted to the data. Subset of conditions fitted assuming fixed kd (three 

variable fits). * denotes data collected at 1 or 2 h, but fitted at 3 h after stimulation. B. Summary 

of fitted parameter values (mean and standard deviation, SD) from A. C. Parameter values as 
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a function of the fitted mean mRNA expression per condition (using theoretical steady-state 

levels). D. Estimates of variability and bursting characteristics for the fitted TNFa models. 

Shown is the comparison between moments and moments estimators for smFISH counts (in 

black) and mRNA distributions obtained with the model fits (with open circles). Also shown 

are estimators based on fitted kinetic parameter rates (in red). Characteristics represented as 

function of the corresponding mean values. Regression lines fitted to mean-variance data for 

smFISH counts (solid line) and steady-state mean/variance calculated for fitted model 

parameters (broken line, with the corresponding equation displayed). 
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Figure S18. Model analysis of IL1b distributions, related to Figure 4. A. The comparison 

between measured and fitted IL1b mRNA distributions across all experimental conditions in 

RAW 264.7 cells (including does and time-response as well as perturbation). In black: Kaplan-

Meier estimator of measured CDF (with 95% confidence intervals), in red: a family of 50 two-

step models fitted to the data. B. Summary of fitted parameter values (mean and standard 

deviation, SD) from A. Models were fitted assuming fixed kd (except of 500 ng/ml lipid A 

stimulation). C. Mean-variance relationship for the fitted family of IL1b models. Shown is the 
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comparison between moments for smFISH counts and mRNA distributions obtained with the 

model fits (with SDs). Regression lines fitted to smFISH counts (full circles) and 

mean/variance calculated for fitted model distributions (open circles with the corresponding 

equation displayed).  D. Parameter values as a function of the fitted mean mRNA expression 

per condition.  
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Figure S19. Analysis of transcriptional bursting using moment estimators, related to 

Figure 4. A. Schematic representation of immune-modulating pathways used to assay TNFa 

and IL1b mRNA expression. B. Moment estimators of transcriptional bursting in the smFISH 

dataset. Shown are individual data points and fitted relationships (in blue and red for IL1b and 

TNFa, respectively) for smFISH data (dose-response, time-course, as well as IFNg and DMOG 

perturbation for BMDMs and RAW 264.7 macrophages). Power functions used to fit burst size 

(otherwise linear regression was applied). Coefficient of determination depicted with R2 

(colour coded for the respective gene). C. Schematic representation of the TLR and paracrine 
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signalling pathways. D. Transcriptional bursting of TNFa in the 26 scRNA-seq datasets in 

BMDCs from [3]. Shown is the fitted relationships combining core TLR (in red circles) and 

perturbation (in open circles) datasets using relative moment estimators (based on read counts). 

Coefficient of determination depicted with R2. E. Fitted relationships for the variance and noise 

of TLR-induced genes, for the combined core TLR and perturbation dataset from [3]. Left: 

Relative frequency-variance relationship for the 112 genes (defined by Spearman correlation 

coefficient R2>0.5) obtained using robust linear regression fit (with intercept). Middle: Relative 

burst size-variance relationship for the 189 genes (defined by Spearman correlation coefficient 

R2>0.68) obtained using robust power series fit (log10(s2)=p1+p2× µ p3). Right: Mean-noise 

(CV2) relationship for the 180 genes (defined by Spearman correlation coefficient R2>0.70) 

obtained using robust curve fitting (CV2=p1× µ p2). F. Reciprocal relationship between variance, 

burst size and frequency in the fitted bursting characteristics (from Fig. 4F). Shown are 

pairwise scatter plots between fitted regression coefficients (as depicted on the left panel).  
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Figure S20. Validation of scRNA-seq measurements, related to Figure 4. A. Comparison 

between single cell distributions from (Shalek et al., 2014). LPS stimulation at 4h dataset and 

dataset obtained after re-mapping with Picard Tools (http://broadinstitute.github.io/picard/). 

Shown are cumulative distributions for 204 LPS-regulated genes from Fig. 3D, highlighted in 

red are high variability genes, in green IL1b. Shown are also fractions of genes (after removing 

low abundant genes), distribution of which does not fit negative binomial (as highlighted with 

chi-squared goodness-of-fit test p-values adjusted with Benjamini-Hochberg procedure for 

false discovery rate). B. Comparison between bursting characteristics for 204 LPS-regulated 

genes from A, in single cell distributions from (Shalek et al., 2014) and dataset obtained after 

re-mapping with Picard Tools. Characteristics presented in log10 scale, in black identity line. 
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Figure S21.  IL1a and IL1b mRNA expression is coordinated in single cells at common 

transcription sites, related to Figure 5. A. Correlation for IL1b vs. TNFa (top, in red) and 

IL1b vs. IL1a (bottom, in blue) mRNA counts. Shown are scatter plots of individual cell data 

(together with a cubic spline fit and a Spearman rank correlation r). RAW 264.7 and BMDM 

cells stimulated with 500 ng/ml of lipid A for 3 h. B. Correlation between transcription sites. 

Shown are the proportions of the co-activated transcription start sites for IL1b vs. TNFa (top) 

and IL1b vs. IL1a (bottom) for data in B. Shown also is a p-value for a chi-square test for the 

independence of Tx site occurrences between genes. C. Spatial analysis of IL1a and IL1b 

transcription. Deconvolved wide-field microscopy images of single cell smFISH mRNA counts 

for IL1b vs. IL1a. Circles indicate spatial coordination of transcription for data from A. Pie 

chart shows the proportion of spatially coordinated transcriptional sites for all cells in A 

exhibiting a common IL1b and IL1a Tx site (with a p-value for a chi-square test for 

independence).  
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Figure S22.  TSA modulation of IL1β mRNA distribution across lipid A dose-response, 

related to Figure 5. A. Shown are cumulative distribution plots of IL1β mRNA in BMDM 

cells pre-treated with TSA for 1 h (+TSA) or control group (-TSA) before stimulation with 

different lipid A doses for an additional 3 h. B. Individual cell mRNA counts data from A. 

Shown are data for 47, 276, 324 and 732 control (-TSA) as well as 46, 204, 110 and 305 (+TSA) 

for 0, 10, 100 and 500 ng/ml of lipid A, respectively. Results of the pairwise Mann-Whiney U 

tests summarised with ****- p-value <0.0001, ***- p-value <0.001, NS- not significant. C. 

Noise, burst size and frequency characteristics derived from data in B. D. Distribution of 

transcription sites observed in smFISH images from A. E. IL1b  mRNA counts as a function 

of Tx site number for cells for 500 ng/ml lipid A dose. ‘*’ denotes a statistical test (p-val<0.05) 

for one-way ANOVA with Tukey’s correction for multiple comparisons. F. Quantification of 

nascent mRNA across lipid A dose-response from data in D. Shown is comparison across 0, 7, 

52 and 35 (-TSA) as well as 0, 19, 35 and 114 (+TSA) transcription sites for 0, 10, 100 and 500 

ng/ml of lipid A, respectively. Results of the pairwise nonparametric Mann-Whiney U tests 

summarised with ****- p-value <0.0001 and ***- p-value <0.001. G. Mean-variance 

relationship obtained for smFISH data for IL1b  from A. Shown are the fitted regression lines 
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(with 95% confidence intervals in broken lines) together with individual data points. In blue 

cells pre-treated with TSA, in black lipid A treatment alone. 
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Figure S23. Characteristics of the fitted family of models for BMDM data, related to 

Figure 5. Distribution of the model parameters fitted to smFISH mRNA data at 3 h after 500 

ng/ml lipid A stimulation in BMDM cells (in combination with TSA treatment, as in Fig. 5). 

Shown are parameters of 50 individual fits for one-step (A) and two-step (B) models 

summarised using a box plot (with mean ± SD in red). Fit quality summarised with green ticks 

and red crosses. 
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Chapter 3 Global characterisation of transcriptional variability in the 
TLR system and through evolution 

In this chapter, I verify the linear trends and their underlying transcriptional bursting 

characteristics on a large-scale in the TLR system. Using a mathematical analysis approach 

based on inference of mean-variance linear relationships on an available scRNA-seq dataset, 

I establish global regulatory mechanisms of burst size and frequency to maintain controlled 

cell-to-cell variability in immune genes expression. Through stochastic modelling I show that 

increased level of variability is associated with greater complexity in transcriptional regulatory 

networks, and in this case the commonly used telegraph model of gene expression is not 

enough to capture the highly noisy transcriptional output. Next, I move onto exploring the 

transcriptional variability trait in the TLR system through evolution across different species; is 

transcriptional variability constrained in the same manner across different species? Is the 

level of variability of a gene conserved through evolution? Do transcriptional bursting 

characteristics patterns change during evolution? These are some of the questions answered 

in this paper. 

 

3.1 Journal paper: Variability of the innate immune response is 
globally constrained by transcriptional bursting  

 
 
  



Variability of the innate immune
response is globally constrained
by transcriptional bursting

Nissrin Alachkar1, Dale Norton1, Zsofia Wolkensdorfer1,
Mark Muldoon2 and Pawel Paszek1*
1Division of Immunology, Immunity to Infection and Respiratory Medicine, Lydia Becker Institute of
Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health
Science Centre, University of Manchester, Manchester, United Kingdom, 2Department of Mathematics,
University of Manchester, Manchester, United Kingdom

Transcription of almost all mammalian genes occurs in stochastic bursts, however
the fundamental control mechanisms that allow appropriate single-cell responses
remain unresolved. Here we utilise single cell genomics data and stochastic
models of transcription to perform global analysis of the toll-like receptor
(TLR)-induced gene expression variability. Based on analysis of more than
2000 TLR-response genes across multiple experimental conditions we
demonstrate that the single-cell, gene-by-gene expression variability can be
empirically described by a linear function of the population mean. We show
that response heterogeneity of individual genes can be characterised by the slope
of the mean-variance line, which captures how cells respond to stimulus and
provides insight into evolutionary differences between species. We further
demonstrate that linear relationships theoretically determine the underlying
transcriptional bursting kinetics, revealing different regulatory modes of TLR
response heterogeneity. Stochastic modelling of temporal scRNA-seq count
distributions demonstrates that increased response variability is associated with
larger and more frequent transcriptional bursts, which emerge via increased
complexity of transcriptional regulatory networks between genes and different
species. Overall, we provide a methodology relying on inference of empirical
mean-variance relationships from single cell data and new insights into control of
innate immune response variability.

KEYWORDS

transcriptional bursting, burst size, burst frequency, stochastic transcription, telegraph
model, innate immunity, toll-like receptor, scRNA-seq inference

Introduction

Transcription of almost all mammalian genes occurs in bursts, during brief and random
periods of gene activity. The patterns of temporal mRNA production in a single cell, and the
overall mRNA (and protein) distribution in cellular populations, are controlled by
transcriptional bursting, namely, via the modulation of burst size and burst frequency (Raj
et al., 2006; Suter et al., 2011; Molina et al., 2013). The innate and adaptive immune responses
exhibit extreme variability at the single cell level, in comparison to other tissue systems (Shalek
et al., 2013; Shalek et al., 2014; Hagai et al., 2018), where only subsets of cells produce specific
effector molecules, and thus are able to respond to pathogen (Avraham et al., 2015; Iakovlev
et al., 2021). This apparent level of variability poses a fundamental systems biology question;
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how do robust immune responses emerge from this heterogeneous
transcriptional bursting process?

Recent advances have demonstrated key insights into regulation
of transcriptional bursting. In general, the bursting kinetics are gene-
specific and subject to regulatory control via cellular signalling events
(Suter et al., 2011; Larson et al., 2013; Megaridis et al., 2018; Wong
et al., 2018; Bass et al., 2021) as well as genome architecture and
promoter sequences (Dar et al., 2012; Dey et al., 2015; Zoller et al.,
2015; Hagai et al., 2018; Ochiai et al., 2020; Einarsson et al., 2022). For
example, core promoters control burst sizes, while enhancer elements
modulate burst frequency to define cell-type specific (Larsson et al.,
2019) or circadian gene expression outputs (Nicolas et al., 2018).
Coordinated gene activity has also been shown to regulate mRNA
outputs as a function of spatial position during development (Zoller
et al., 2018; Hoppe et al., 2020; Wang et al., 2020) as well as temporal
immune responses (Robles-Rebollo et al., 2022). The resulting cell-to-
cell variability is a consequence of the stochastic processes governing
signalling and transcription (Elowitz et al., 2002), but also reflects
extrinsic differences between individual cells (Spencer et al., 2009;
Adamson et al., 2016; Phillips et al., 2019; Shaffer et al., 2020) or
variability of the pathogen in the context of the innate immune
response (Avraham et al., 2015). With individual genes exhibiting
different levels of stimuli-induced heterogeneity, we are still lacking
general understanding of how transcription is regulated at the single
cell level.

Toll-like (TLR) receptor signalling constitutes one of the
fundamental, evolutionarily conserved innate immune defence
mechanisms against foreign threats (Gay et al., 2014; Bryant et al.,
2015), yet exhibits substantial cell-to-cell variability (Shalek et al., 2013;
Shalek et al., 2014; Lu et al., 2015; Xue et al., 2015; Hagai et al., 2018).
We recently demonstrated that this overall TLR response to
stimulation (or in general perturbation) is constrained through
gene-specific transcriptional bursting kinetics (Bagnall et al., 2020).
By utilising single molecule Fluorescent in situ Hybridisation
(smFISH), we established that the overall mRNA variability is
linearly constrained by the mean mRNA response across a range of
related stimuli. Variance (and in fact higher moments) of the mRNA
distributions have been also shown to be constrained by the mean
response in the developing embryo (Zoller et al., 2018). These analyses
suggest that complex transcriptional regulation at a single cell level may
be globally characterised by mean-variance relationships of gene-
specific mRNA outputs, providing new ways to characterise
response variability. While quantitative smFISH provides important
insights, this approach is often limited by the number of genes, which
can be investigated (Raj et al., 2008; Zenklusen et al., 2008; Larson et al.,
2013; Lee et al., 2014; Gomez-Schiavon et al., 2017; Bagnall et al., 2018;
Bagnall et al., 2020; Bass et al., 2021), therefore further analyses of
global gene expression patterns (Larsson et al., 2019; Ochiai et al., 2020)
are required to fully understand the underlying regulatory constraints.

Here we utilise scRNA-seq data on innate immune phagocytes
stimulated with common TLR ligands, lipopolysaccharides (LPS) of
Gram-negative bacteria upstream of TLR4 and viral-like double-
stranded RNA (PIC) for TLR3 (Hagai et al., 2018) to investigate
the control of single cell gene expression heterogeneity of the innate
immune responses. We analyse 2,338 TLR-response genes and
demonstrate that they globally follow empirical linear mean-
variance relationships, exhibiting a genome-wide spectrum of
response variability levels characterised by the slope of the

relationship. We show that linear relationships define different
modes of individual-gene response modulation with majority of
the genes undergoing frequency modulation to TLR stimulation.
Mathematical modelling of scRNA-seq count distributions using
dynamic stochastic telegraph models of transcription of varied
complexity levels, demonstrates that increased response variability
is associated with larger and more frequent transcriptional bursts,
which emerge via increased regulatory complexity. Finally, we show
that linear mean-variance relationships capture evolutionarily
differences in response variability across pig, rabbit, rat, and mouse
and predict transcriptional bursting modulation between species.
Overall, our data demonstrate the utility of empirical mean-
variance relationships in providing new insights into control of
transcriptional variability in the innate immune response.

Results

TLR-induced mRNA responses exhibit linear
mean-variance trends

To globally investigate the control of transcriptional bursting in
the TLR system relationships we used existing scRNA-seq data from
mouse phagocytes either untreated or stimulated with LPS and PIC
for 2, 4 and 6 h (Hagai et al., 2018). The dataset contains unique
molecular identifier (UMI) mRNA counts for 53,086 cells and
16,798 genes across 20 experimental conditions including
replicates, of which 2,338 genes were identified as TLR-
dependent (see Figure 1A for correlation of sample mean and
variance across all datasets, and Materials and Methods for data
processing). While in general, there is a nonlinear relation between
the variance and mean response, in agreement with other analyses
(Taniguchi et al., 2010; Dar et al., 2016), the relative variability in the
data (captured by a coefficient of variation, i.e., standard deviation
normalised by the mean) decreases as the level of response increases
(Supplementary Figure S1A). We previously showed that the gene-
specific variability can be defined by the slope of the mean-variance
relationship (Bagnall et al., 2020). To test this phenomenon globally,
for each of the 2,338 TLR-inducible genes, the sample mean (μ) and
variance (σ2) relationship was fitted using robust linear regression
(σ2 � αμ + α0), yielding 2,133 genes with a significant regression
slope (p-value < 0.05, Figure 1B). Of those, 1,551 (66% of all TLR-
inducible genes) genes, referred here as high confidence genes, were
characterised by coefficient of determination R2 > 0.6 (Figure 1C, see
also Supplementary Table S1 for list of genes and fitted
relationships). Overall, the distribution of fitted slopes across the
high confidence genes varied over 3 orders of magnitude, with
1,067 genes (69% of high confidence genes) characterised by slope
α > 1 and 627 (40%) α > 3, indicative of predominant non-
Poissonian transcription (where one would expect α = 1 and
α0 � 0) (Figure 1D). 61 genes (4%) were characterised by α >
5 and 28 (2%) by a α > 10, highlighting genes with the highest
level of expression variability (across a range of TRL responses,
Supplementary Figure S1B). Among the high variability genes (α >
5) we found C-C motif chemokine ligands (Ccl) 2, 3, 4, 5, 17; C-X-C
motif ligands (Cxcl) 9 and 10, as well as cytokines including
Interleukin 1 α (IL1a), IL1b, IL10, IL12b and Tumour Necrosis
Factor α (Tnfa) (see Figure 1E for individual gene fits). The most
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variable gene in the dataset was the immunoglobulin subunit Jchain
with α = 1,372 (Supplementary Figure S1B), substantially more than
the 2nd most variable Ccl5 (α = 72). While the range of the mRNA
output among high confidence genes varies over 3 orders of
magnitude (Supplementary Figure S1C), we found that LPS
induced more robust activation than PIC in terms of average
expression (Figure 1F). The range of the response significantly
correlated with the slope of mean-variance relationships across
the 1,551 confidence genes (Spearman’s rank correlation r = 0.47,
Supplementary Figure S1D). This suggests, that at least in part, the

slope of the relationship and thus the heterogeneity of individual
gene is related to the amplitude of the stimuli-induced response.

Patterns of transcriptional bursting
modulation underlie TLR response
heterogeneity

Having established the linear relationships relating the gene-
specific transcriptional variability to mean expression, we sought to

FIGURE 1
TLR-induced transcriptional variability is linearly constrained. (A). Overall variability in the scRNA-seq dataset (Hagai et al., 2018). Shown is the scatter
plot of the samplemean (μ) and variance (σ2) calculated for 2340 TLR-dependent genes across 20 experimental conditions. Data points corresponding to
Jchain, Ccl5 and Nfkbia highlighted in yellow, red, and green, respectively. Broken line indicates μ = σ2 line. (B). Schematic description of the fitting
protocol. (C). Histogram of coefficient of determination (R2) for 2,133 gene fits characterised by a significant regression slope (p-value < 0.05). R2 =
0.6 broken line corresponds to the high confidence gene cut-off. (D). Distribution of the fitted regression slopes for the 1,551 high confidence gene set.
Histogram of the fitted slopes shown on the left. Number of genes with different slope range shown on the right. (E). Fitted mean-variance relationships
for a subset of genes. Shown are the individual datapoints (LPS, PIC and unstimulated) as well as fitted regression line with a fitted equation (* denotes
statistically significant intercept, p-value < 0.05) and the coefficient of determination (R2). (F). Mean mRNA counts across treatments (LPS, PIC) and time
(0, 2, 4, 6 h) for the 1,551 high confidence genes.
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FIGURE 2
Mean-variance relationships constrain transcriptional bursting characteristics. (A). Theoretical burst size and frequency characteristics. (Left)
Simulated mean variance relationships with positive (in blue, α = 20, α0 = 100) and negative (in red, α = 20, α0 = −100) intercepts, respectively. (Middle &
Right) Derived burst size and frequency modulation schemes for corresponding parameter values calculated using moment estimators. A special case of
α = 20, α0 = 0 is shown in broken line. (B). Global modulation of transcriptional busting. Shown is the comparison between fitted mean-variance
relationship and derived theoretical burst size and frequency modulation schemes vs. experimental data. Shown is distribution of relative root mean
square error (RRMSE) of 1,551 high confidence genes (C). Modulation schemes forCd44, Pfn1, Eif6 and Cxcl10 genes. Shown is the comparison between
theoretical relationships based on fitted mean-variance relationships (in red) and corresponding estimates from data (open circles). Equations for fitted
mean-variance relationships highlighted in the top left panel, respectively.
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study global properties of transcriptional bursting underlying these
trends. We used moment estimators of the underlying scRNA-seq
count distributions to calculate bursting characteristics, such that
burst size bs = σ2/μ (i.e., the Fano factor) and burst frequency bf = μ/
bs (Nicolas et al., 2017). These estimators rely on the moments of the
mRNA distributions to quantify ‘burstiness’ as a departure
‘nonbursty’ Poissonian mRNA production, characterised by bs =
1 and bf =∞ (Raj et al., 2006; Suter et al., 2011; Nicolas et al., 2018;
Wong et al., 2018). Given the empirical linear constraint,
σ2 � αμ + α0, the burst size and burst frequency become
analytical functions of the mean mRNA expression such that bs
= α0/µ + α and bf = µ2/(α0+αμ) (Figure 2A). In a special case when α0
= 0, burst size is constant (independent of the mean expression µ)
and equal to the slope of the mean-variance line α, while the
frequency increases linearly with µ and is proportional to 1/α
(Bagnall et al., 2020). However, the overall behaviour does
depend on the intercept (see Supplementary Figure S1E for
sensitivity analyses); for α0>0, the burst frequency converges
monotonically to μ/α (i.e., the limiting case for α0 = 0), while the
burst size converges to α (from∞ at µ = 0) as the mean expression μ

increases (Figure 2A in blue). For α0<0 (Figure 2A, in red), the
relationship can only be defined for µ>|α0|/α, such that burst size
increases monotonically (and converges to α), while the burst
frequency has a local minimum for μ* = 2|α0|/α equal to 4|α0|/α

2,
eventually converging to the limiting case μ/α.

We calculated the theoretical bursting modulation schemes for
the 1,551 high confidence genes and compared these to the moment
estimators of the burst size and frequency from the data (Figure 2B).
We found that the average relative root mean square error (RRMSE,
see methods) of the mean-variance fit in relation to data was 0.07% ±
0.02%, where 1,431 genes had an error smaller than 0.1%. In
comparison, the average error for the burst size modulation was
0.08% ± 0.03% (with 1,281 genes having an error smaller than 0.1%),
while the average error for the burst frequency modulation was
0.07% ± 0.1% (with 1,389 genes having an error smaller than 0.1%).
Given their empirical nature, the predicted theoretical trends are in
good agreement with the changes of burst size and frequency
observed in the data. Profilin 1 (Pnf1) and Cd44 are example
genes characterised by intercept α0<0, while the genes encoding
eukaryotic translation initiation factor 6 (Eif6) and Cxcl10 had α0>0
(Figure 2C). Jchain is an example of a gene with a good mean-
variance fit, but one of the poorest fit in terms of bursting frequency,
which might be due to limited sample size and its profound
variability. Of the 1,551 high confidence genes, 430 genes had a
significant intercept (p-value < 0.05) in the regression fit, with
414 characterised by negative and 16 positive intercepts
(Supplementary Figure S1F). While intuitively zero intercept is
expected (i.e., no expression in untreated conditions), these in
part reflect the empirical nature of these trends and the limited
sample size, especially for those genes where α0 is small (in relation
to variance), for example, Cxcl10 (Figure 2C). However, many genes,
including Pnf1 and Eif6 exhibit substantial basal expression in
untreated cells (Bass et al., 2021), resulting in either elevated or
reduced variability (in relation to true zero) being captured via non-
zero intercept in the regression fit (Bagnall et al., 2020).

Gene-specific bursting exhibits different
modes of response modulation

The linear mean-variance relationships reflect the constrained
changes of burst size and burst frequency required to regulate
response variability as shown in their derived analytical functions
of the mean mRNA expression. To understand the modulation of
transcriptional bursting, we first calculated fold changes of burst
size vs. burst frequency across the range of mean expression
calculated for individual response genes (Figure 3A). We found
that 1,015 out of the 1,551 high confidence genes exhibit 2 times
more fold changes in burst frequency than burst size. This suggests
a predominant frequency modulation, in agreement with recent
analyses of LPS-induced macrophages (Robles-Rebollo et al.,
2022). However, we also found 48 genes exhibiting fold changes
in burst size 2 times more than burst frequency, while
389 exhibited comparable modulation of both burst size and
burst frequency. To study the transcriptional bursting
modulation more systematically, we derived an analytical
relationship between the burst size and frequency (independent
of the mean mRNA expression) based on the linear constrains
(Figure 3B). The general relationship is given by bf = α0/(bs(bs-α)),
where α0 can take positive or negative values. When α0>0, we have
an inverse relationship between the burst size and frequency, which
asymptotically approaches zero, as the burst size approaches
infinity. It is also worth mentioning that, in this case, the
function is undefined for values of burst size smaller than or
equal to α (Figure 3B, in blue), reflecting a biological limit of
burst size and frequency for genes following this modulation trend.
We found that 315 genes (out of the 1,551 high confidence genes)
exhibited such an inverse relationship, with all genes exhibiting
higher frequency than burst size modulation (see Figure 3C for
specific genes and Figure 3D and Supplementary Table S2 for
global analysis). For the case when α0<0, linear constrains define a
non-monotonic relationship between the burst size and frequency
on the interval (0,α) with a local minimum at bs* = α/2, and
frequency diverging to infinity as burst size tends towards α or is
close to 0 (Figure 3B, in red). From the case α0<0, three patterns of
bursting modulation can be distinguished; the burst frequency and
size exhibit either inverse relationship, where the frequency
increases and burst size decreases (for bs < bs*) or concurrent
increases (bs > bs*). In addition, we define a U-shape relationship
where the inverse or concurrent relationship is possible
(i.e., bs max> b*s and bs min < b*s , per gene), but changes occur only
close to the minimum of the function (such that bs ≈ bs*), unlike
other relationships. This mode allows greater burst size
modulation (in 218 of 767 genes) comparing to other modes
(19 genes, Figures 3C, D). We found that out of the 1,236 genes
characterised by α0<0, most genes (999) exhibited predominant
frequency modulation following either a U-shape or a concurrent
relationship. It is worth mentioning that all 7 genes confirming an
inverse trend showed predominant burst size modulation. Overall,
these analyses demonstrate different modes of the transcriptional
bursting modulation of TLR-stimulated genes, albeit with
predominant regulation via burst frequency.
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FIGURE 3
LPS-induced gene expression undergoes different modes of transcriptional bursting. (A). Relative changes of burst size and burst frequency. Shown
is the relative fold change of burst size and frequency calculated across the individual range of mean expression for 1,551 high confidence genes (in blue
circles). Identity line depicted in black, two-fold change highlighted in red. (B). Theoretical relationship between burst size and frequency. (Left) Simulated
mean variance relationships with positive (in blue, α = 20, α0 = 100) and negative (in red, α = 20, α0 = −100) intercepts, respectively. (Right) Burst size
and frequency modulation schemes for corresponding parameter values calculated using moment estimators. A special case of α = 20, α0 = 0 shown in
broken line. (C). Modulation of burst size and frequency across a range of individual genes. Shown are inverse relationship (α0 > 0) in blue aswell as inverse,
U-shape and concurrent relationships (α0 < 0). Relationship predicted from linear constraints in solid lines and corresponding estimates from
experimental data in open circles. U-shape numerically defined as maximum burst size value > α/2 andminimum burst size value < α/2 across conditions.
(D). Prevalence of different modulation schemes across 1,551 high confidence genes. Definition of the mode as in C, dominant modulation defined by
absolute difference in the burst size vs. frequency changes across the respective range of mean expression (as in A).
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FIGURE 4
TLR response variability is associated with regulatory complexity. (A). Schematic representation of the 2-state and 3-state models of transcription.
(B). Comparison between the fitted and measured mRNA counts distributions. Shown are cumulative probability distribution of data (in green) vs. the
corresponding 2-state and 3-state stochastic model fits (in red and blue, respectively) for representative condition for Eif6 (PIC, 4h, replicate 3) and Ccl2
(LPS, 2h, replicate 2) genes. (C). Analysis of transcriptional bursting across high coverage genes and conditions fitted by 2-state vs. 3-state models.
Shown is the comparison between best fit 2-state and 3-state models in terms of mean mRNA expression, variance, burst size and frequency from
experimental data. Best fit defined by AICbest model<0.5AIC2nd best (from Supplementary Figure S3B). Burst size and frequency calculated per condition
using moment estimators. Statistical significance assessed with Mann-Whitney test (** p-value < 0.01, **** p-value < 0.0001). (D). Relationship between
slope of the mean-variance relationship and fraction of 3-state model fits for high coverage genes. Fraction of 3-state model fits per gene defined by the
number of conditions with AIC3-state model<AIC2-state over all conditions per gene. Broken line indicates 0.5, r denotes Spearman correlation coefficient.
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Increased response variability is associated
with complex transcriptional regulation

The distribution of fitted regression slopes varying over 3 orders
of magnitude demonstrate a wide range of response variability
among individual TLR-induced genes (Figure 1D). While we
have demonstrated that individual genes exhibit different modes
of transcriptional bursting characteristics to regulate responses to
stimulation, we wanted to understand the control of variability in
the system more mechanistically. A well-established mathematical
description of mRNA production involves a 2-state telegraph model
(Figure 4A), where gene activity changes randomly between “off”
and “on” states, with mRNA transcription occurring in the “on”
state (Raj et al., 2006; Zenklusen et al., 2008; Suter et al., 2011;
Nicolas et al., 2018). The associated parameters are gene activity
rates (kon and koff) as well as rate of mRNA transcription (kt) and
degradation (kd) (Nicolas et al., 2018). Although the 2-state
telegraph model has been widely used in the past to model
mRNA count data, more complex structures are often required
to capture additional complexity associated with multiple regulatory
steps, combinatorial promoter cycling and transcriptional initiation
(Harper et al., 2011; Zoller et al., 2015). We previously showed that
heterogenous Il1β mRNA transcription requires more regulatory
steps than that of Tnfα (Bagnall et al., 2020). We therefore
hypothesised that TLR response variability is linked with the
complexity of the transcriptional regulation. To test this
hypothesis, we introduced a 3-state stochastic model, which
assumes sequential promoter activation between “off”,
“intermediate” and “on” states, equivalent to promoter cycling
(Harper et al., 2011; Zoller et al., 2015), with transcription
occurring in the “intermediate” (I) state as well as in the “on”
state, characterised by 5 transition rates (ton, toff, kon, koff and kc),
2 transcription rates (kti and kt), and a degradation rate kd
(Figure 4A).

We first used a profile likelihood approach (Vu et al., 2016;
Larsson et al., 2019) to fit the measured scRNA-seq count
distributions assuming steady state kinetics of the 2-state model
(the so called Beta-Poisson model) for the 1,551 high confidence
genes, each across 20 treatment datasets (Supplementary Table S3).
Values of kinetic parameters were inferred for 7,804 of
31,020 datasets (~25% across 1,519 genes), which in general
corresponded to genes characterised by larger expression, in
comparison to those that failed to fit (Supplementary Figure
S2A). The fitted parameter values (kon, koff and kt, expressed in
units per degradation half-life) varied over 3 orders of magnitude
across all genes and datasets (Supplementary Figure S2B). In general,
gene inactivation rates (koff) were greater than activation rates (kon)
(Supplementary Figure S2C), consistent with intermittent
transcriptional kinetics (Suter et al., 2011; Dar et al., 2012;
Larsson et al., 2019). While the Beta-Poisson model explicitly
assumes a steady-state (and does not make any assumptions
about mRNA half-life), we wanted to account for the underlying
dynamical stochastic processes and corresponding temporal mRNA
production and decay (Gomez-Schiavon et al., 2017). However, it
was not computationally feasible to fit all genes across all scRNA-seq
datasets, we therefore identified on a subset of 99 high confidence
genes for which at least 10 datasets were fitted using a Beta-Poisson
model (Supplementary Figure S2D). Of these, 96 had an existing

measurement of mRNA half-life (which is required for dynamical
model fitting) in LPS-stimulated bone marrow derived macrophages
(Hao and Baltimore, 2009; Kratochvill et al., 2011) or other cell
models (Maurer et al., 1999; Raghavan et al., 2002; Park et al., 2004;
Sharova et al., 2009; Kambara et al., 2014; Payne et al., 2014; Martin
et al., 2017; Zainol et al., 2019) (see Supplementary Table S3 for
specific values). The resulting 96 high coverage genes included 51 of
100 most variable genes (as defined by the fitted regression slope)
and 60 of 100 most expressed genes including chemokine family
Ccl5, Ccl4, Ccl3, Ccl2 as well as IL1b and TNFa (Supplementary
Figure S2D–F, see Supplementary Table S3 for a list of genes and
fitted relationships).

We used a genetic algorithm to fit dynamical 2-state and 3-state
stochastic models across 20 individual datasets (LPS and PIC
stimulation at 0, 2, 4, 6 h time-course across replicates) for the
96 high coverage genes (seeMaterial andMethods).We then applied
the Akaike information criterion (AIC) (Akaike, 1973)
incorporating the penalty for model complexity, to select the
simplest (i.e., best fit) model that accurately fitted the measured
mRNA distributions per condition, noting that the lower AIC value
corresponds to the better model fit. In general, we found that Beta-
Poisson model, the least constrained model, fitted better than
dynamical models (805 out of 1,210 conditions (i.e., treatment
and replicates) favoured Beta-Poisson model based on their AIC
values, Supplementary Figure S3A, B). The more constrained
dynamical 2-state model provided a best fit for 170 conditions,
while the 3-state model best captured 235 conditions (and 30 and 57,
respectively when using a more stringent criterion of two-fold AIC
change, Supplementary Figure S3B). When comparing 2-state with
3-state model directly and assuming a two-fold AIC change between
the twomodels, there were 141 out of 1,507 conditions that favoured
the 2-state model, while the opposite was true for 266 conditions (see
Supplementary Figure S3C for other thresholds). For example, 2-
state model recapitulated PIC-treated Eif6mRNA count distribution
(at 4 h) better than a 3-state model, as reflected by the AIC2-

state<AIC3-state, this to some extent reflects the fact that although
generally more accurate, the 3-state model is also more difficult to fit
by the genetic algorithm. In turn, the 3-state model better
recapitulated the LPS-treated Ccl2 distribution (at 2 h) spanning
almost over 3 orders of magnitudes (Figure 4B). The number of 2-
state-and 3-state model fits was not strongly related to the treatment,
time point or in fact biological replicates, although LPS had
155 conditions more fitted with 3-state than 2-state model
(Supplementary Figure S3D).

The 141 2-state model fits were characterised by kon = 0.02 ± 0.01
min-1 (half-time of 35 min) on average, and off rates averaging koff =
0.74 ± 0.25 min-1 (half-time of 1 min), with average transcription
rate kt = 1.23 ± 4.44 mRNA min-1, indicative of ‘bursty’ kinetics
(Supplementary Figure S4A). The ‘on’ rate showed significant
positive correlation with the variance of the corresponding count
distributions (r = 0.48), demonstrating that a faster ‘on’ switch
contributes towards increased response variability. The 266 3-state
model fits were also characterised by relatively slow average ‘on’ rates
(ton = 0.036 ± 0.13 min-1 and kon = 0.33 ± 0.32 min-1) in relation to
the ‘off’ rates (toff = 0.74 ± 0.26min-1, koff = 0.44 ± 0.36min-1 and kc =
0.50 ± 0.36 min-1, Supplementary Figure S4B). The mRNA count
variance was correlated positively with ton rate (i.e., transition to
intermediate state, r = 0.33) as well as with transcription rates in ‘on’
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FIGURE 5
Evolutionary control of TLR response variability. (A). Schematic representation of response variability during evolution for putative species A and (B).
Shown are mean variance relationships corresponding to slopes (α1 and α2 = kα1) and the predicted burst size (B) and frequency (F)modulation schemes
for corresponding parameter values calculated using moment estimators. (B). Histogram of the slope ratio k calculated for the 169 orthologue genes
across all pairwise comparisons between mouse, rat, rabbit and pig. k = max (α1,α2)/min (α1,α2), where α1 and α2 denote slopes of the fitted mean-
variance relationships for each pair of species per gene. (C). Modulation schemes for Cxcl10 and Cbx8 genes. Shown is the comparison between
theoretical relationships based on the fitted mean-variance relationships (in solid lines, colour-coded by species) and corresponding moment estimates
for burst size and frequency from experimental data (circles). (D). Analysis of burst size and frequency for divergent and non-divergent mouse and pig
TLR-response genes. Shown are box plots of average burst size and mean-normalized frequency per gene stratified into divergent (αmouse> 2αpig or
αpig>2αpig) and complementary non-divergent groups (31, 15 and 123 orthologue genes, respectively). Statistical significance assessed with a paired
Wilcoxon test (**** p-value < 0.0001, *** p-value < 0.001, ns not significant). (E). Change of variability between species is associated with regulatory

(Continued )
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and ‘intermediate’ states (r > 0.4). In comparison to the 2-state
model, the transcription rate in the ‘on’ state was significantly higher
(kt = 7.63 ± 13.05 mRNA min-1) indicative of larger burst sizes
(Supplementary Figure S4C, D).

We then asked if the level of variability is linked with the model
complexity. We found that scRNA-seq count distributions fitted
with the 3-state model were characterised by greater variability than
those corresponding to the 2-state model (see Figure 4C;
Supplementary Figure S4D for less stringent model selection
thresholds). In agreement, the 3-state-model fits were associated
with significantly larger burst size and lower burst frequency than
that of the 2-state model fits, consistent with more heterogenous
bursting kinetics across the relevant conditions. Finally, we analysed
model selection across individual high coverage genes rather than
corresponding conditions; we found the fraction of conditions
explained by one model changes between individual genes (e.g.,
3-state model fitted 3 out of 20 for Eif6, 10 out of 20 for Ccl5 and all
conditions for Vcam1 Figure 4D). Our interpretation of this is that
as the mRNA responses increase, a more complex regulatory
structure is required to capture the underlying distribution. We
found that, for the high coverage genes, the fraction of conditions
explained by the 3-state model correlated well (r = 0.56, p-value <
0.0001) with the slope of mean-variance relationship, and thus
response heterogeneity (Figure 4D). Overall, this demonstrates
that while increased heterogeneity involves larger and infrequent
bursts (in comparison to homogenous responses), this is underlined
by increased complexity of the transcriptional regulatory network.

Linear relationships capture evolutionary
changes of response variability

Previous work highlighted the relationship between
evolutionary response divergence of innate immune genes and
their cell-to-cell variability, with highly divergent genes exhibiting
more variability (Hagai et al., 2018). However, the changes in
patterns of transcriptional bursting during evolution is still
poorly understood. We proposed that by comparing the linear
mean-variance relationships across species, the variations in
transcriptional bursting patterns that develop through evolution
could be better understood. Specifically, if the evolutionary changes
in response variability can be captured by a fold-change k in the
slope of the relationship, then the increased variability is predicted to
be due to increased burst size and reduced burst frequency by a
factor k, respectively (Figure 5A).

The relationship between the mean and variance of the single
cell mRNA counts was studied in data for four mammalian species
from Hagai et al. (2018): mouse, rat, pig, and rabbit, in cells either
untreated or treated with LPS or PIC for 2, 4 and 6 h (see methods
and Supplementary Table S4 for species specific number of
conditions per gene ranging from 12 to 21). We found that from

the 2,338 LPS response genes, a subset of 218 genes with one-to-one
orthologues showed response to treatment in all four species
(Supplementary Figure S5A). 78% of fitted mean-variance
relationships for the 218 genes were characterised by R2 > 0.6,
including 102 genes in all four species and 169 in at least three
species. To characterise the divergence in response variability we
performed species pairwise comparison between the fitted
regression slopes of the 169 genes subset (Supplementary Table
S5). Out of this subset 21 genes including chemokines Ccl2, Ccl4,
Ccl5 and Cxcl10 (Figure 5B; Supplementary Figure S5B), had all
6 possible pairwise comparisons showing significant differences,
indicating divergence in TLR response variability between each of
the two species. 5 significant FDR values (difference in three out of
four species) were obtained for 49 genes including chemokines
Ccl20, Ccl3, MMP9 (Supplementary Figure S5B) and cytokines
Il1a, Il10 and Il27 indicating significant differences in response
variability. On the other hand, no significant differences were
obtained between any of the four slopes in 7 genes, including a
transcriptional repressor Chromobox Protein Homologue 8 (Cbx8,
Figure 5B). In agreement, a distribution of slope ratios calculated
across all pairs of species for the 169 genes (Figure 5C and
Supplementary Table S6) revealed 49 pairs with k > 5 and
258 pairs with k > 2, indicating substantial changes of the
response variability between species, including the chemokine
and cytokine genes. Conversely, 54% of slope ratios (549 out of
total 1,014 genes) were smaller than 1.5, indicative of conserved
variability. The inflammatory chemokines were shown previously to
rapidly evolve in mammals and other vertebrates with clear
differences in expression between closely related species (Nielsen
et al., 2005; Haygood et al., 2010). Moreover, gene duplication of the
CC chemokine ligands can result in different copy numbers of these
genes between individuals (Nomiyama et al., 2010), further
increasing the divergence in expression. Importantly, our analyses
specifically capture changes of response variability and suggest a
statistical relationship of these changes with the generic evolutionary
divergence (see Materials and Methods) of gene expression response
(Supplementary Figure S5C).

To validate the predicted changes in transcriptional bursting
during evolution (Figure 5A), we first calculated the theoretical
modulation schemes for all the 169 evolutionary genes across species
and compared these to the moment estimators of the burst size and
frequency from the data (Supplementary Figure S5D). We found
that the average RRMSE of the mean-variance fit in relation to data
was 0.06% ± 0.05% across all species, where 90% genes had an error
smaller than 0.1%. In comparison, the average error for the burst size
predictions was 0.08% ± 0.05%, while the average error for the burst
frequency predictions was 0.05% ± 0.04%. The predicted theoretical
trends are in good agreement with the observed changes of burst size
and frequency. For example, Cxcl10 exhibits concurrent changes of
the burst size and frequency, the level of which is determined by the
slope of the relationships, while Cbx8 exhibits the same modulation

FIGURE 5 (Continued)
complexity. Top: Schematic representation of the hypothesis. Bottom: Relationship between the slope ratio (αA/αB) estimated for 146 pairwise
comparisons between 28 fitted orthologue genes for mouse, rat, rabbit and pig; and the corresponding ratio between species A and B of the number of
conditions per gene with 3-state model fitting better than 2-state model. Absolute difference in AIC of the two models was used for model selection.
Shown is the Spearman correlation coefficient r and a p-value for r > 0.
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across species (Figure 5C). In addition, our predictions of species-
specific modulation scheme are based not only on the slope α, but
also the mean-variance intercept, which we previously showed may
affect the bursting relationships (Figure 2A and Supplementary
Figure S1E). We therefore investigated if the difference of the
slopes alone is sufficient to predict modulation of bursting
characteristics across species (Figure 5A). We stratified the
169 orthologous genes into divergent and non-divergent subsets,
with the divergence threshold defined by a 2-fold change in the slope
of the mean-variance relationships. The divergent subset included
31 genes exhibiting higher slope in mouse, and 15 in pig
(Supplementary Figure S5E). We found that divergent genes,
associated with increased response variability, exhibited
significantly higher average burst sizes (as calculated across all
corresponding conditions) and reciprocally lower normalised
burst frequency when compared between the two species
(Figure 5D). In contrast, the non-divergent genes showed no
significant differences in the burst size or normalized frequency,
as predicted by the linear constraints. Interestingly, we also observed
significant differences in the average expression between the
divergent genes group, opposing to the non-divergent group
(Supplementary Figure S5F).

We then asked if the increased variability in gene expression
between species was associated with changes of regulatory
complexity (Figure 5E). Following previous methodology, we
selected 28 orthologue genes from the subset of 96 of high
coverage genes in mouse and used a genetic algorithm to
recapitulate scRNA-seq count distributions with dynamical 2-
state and 3-state models (see Materials and Methods and
Supplementary Table S6 for details of the analysis). We then
calculated the fold change in the number of conditions (per
gene) fitted with 3-state models across all pairwise comparisons
of the four species. We found that this fold change correlated
(Spearman’s r = 0.41, p < 0.0001) with the ratio of the slopes
between the corresponding linear relationships, such that the
transition to a higher slope was associated with increased
number of 3-state model fits across corresponding conditions
(Figure 5E). Overall, this demonstrates that evolutionary
increases in TLR response variability are associated with
increased regulatory complexity, resulting in larger and less
frequent transcriptional bursting kinetics.

Discussion

Transcription is inherently a stochastic process leading to
heterogeneity in cell-to-cell mRNA levels, which has been studied
from the inception of systems biology (Paulsson, 2004). The most
recent advances suggest the existence of fundamental constraints
governing the heterogeneity of gene expression, which rely on the
scaling between the variance and mean of the mRNA response
distribution (Dar et al., 2016; Zoller et al., 2018). In particular, we
previously developed an approach relaying smFISH a comparative
analyses of noise across many immune-related conditions
(i.e., treatments, doses and times, etc.), which showed that the
overall mRNA variability is linearly constrained by the mean
mRNA response across a range of immune-response stimuli
(Bagnall et al., 2020). However, these approaches were typically

limited by the number of genes considered, not allowing to
generalise the observations to the genome-wide scale. Here,
utilising an existing scRNA-seq data on the evolutionary-
conserved innate immune signalling (Hagai et al., 2018), we
perform global analysis of the TLR gene expression response
variability and underlying transcriptional bursting. We
demonstrate that cell-to-cell variability can be empirically
described by a linear function of the population mean across a
genome. Based on this, we develop a methodology, relying on
statistical modelling of linear mean-variance relationships from
single-cell data, that provides a simple yet meaningful way to
understand regulation of cellular heterogeneity. We demonstrate
that (1) The response heterogeneity of a gene can be defined as the
slope of the mean-variance line across >1,500 individual response
genes. High variability genes include chemokines and cytokines such
as CCL family, while other functional genes are more homogenous,
in agreement with previous work (Hagai et al., 2018). (2) The
changes in heterogeneity between species can be described by the
change in the slope of the corresponding mean-variance lines,
providing insights into the evolutionary control of TLR response
variability. (3) The linear relationships determine the underlying
transcriptional bursting kinetics, revealing different regulatory
modes in response to stimulation and through evolution. (4)
Application of dynamical stochastic models of transcription
demonstrates a link between the variability and the regulatory
complexity, with complexity facilitating heterogeneity via larger
and less frequent transcriptional bursting kinetics.

While, in general the available sequencing data are subject to
measurement noise (Luecken and Theis, 2019), and often restricted
by the number of data points available, the mean-variance
relationships fitted 1,551 genes - 66% of total 2,338 TLR-
inducible genes in primary murine phagocytes across
20 experimental datasets (Figure 1). In comparison, out of the
218 genes with one-to-one orthologues between mouse, rat,
rabbit and pig, 78% fitted mean-variance relationships despite the
number of datapoints being limited to 12 (Figure 5). Fit quality was
reflected in the low mean squared errors between the fitted trends
and data, providing good support for the observed phenomenon.
We found that 430 relationships (out of 1,551 murine fits) were
characterised by statistically significant intercept (α0). While
intuitively zero intercept is expected (i.e., no expression in
untreated conditions), for some genes, this may reflect the
empirical nature of these trends, especially for those with small
intercept (in relation to variance), for example, Cxcl10 (Figure 2C).
However, we found that many genes with non-zero intercept fits
were associated with substantial basal expression in untreated cells,
which was also observed previously for the more quantitative
smFISH data (Bagnall et al., 2020). Basal expression of the
related gene targets has been shown to exhibit different bursting
kinetics and mode of regulation from the inducible expression (Bass
et al., 2021), which in part may explain the fitted non-zero intercepts
for a subset of genes. For α0 = 0, linear constraints essentially imply
that the burst size must be constant (and equal to the slope of the
mean-variance line), while the frequency undergoes modulation
with the populationmean changes in response to stimulation. This is
in general agreement with recent analyses demonstrating a role of
frequency in regulation of LPS-induced macrophages (Robles-
Rebollo et al., 2022) or stimulation (Larson et al., 2013; Fukaya
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et al., 2016; Nicolas et al., 2017; Hoppe et al., 2020; Luo et al., 2022).
However, the presence of non-zero intercepts in linear fits extends
the variety of modulation schemes, including a subset of genes
exhibiting burst size modulation (Figure 3). For instance, a positive
intercept is associated with an inverse relationship between
the burst size and frequency, while a negative intercept may
imply concurrent burst size and frequency changes. As with
the mean-variance relationships, the predicted modulation
schemes are generally in good agreement with the data in terms
of the mean-squared error. Notably, we demonstrate that our
methodology can be extended to capture evolutionary
differences between species. While gene expression divergence
between species has been previously measured in terms of the
population response (Nourmohammad et al., 2017), the slope of
the linear relationships captures the specific differences in TLR
response variability through evolution (Figure 5). We demonstrate
that the evolutionary change of the variability can be described as a
ratio k between the slopes of the corresponding mean-variance fits,
which theoretically implies reciprocal scaling of the burst size and
frequency also by k. Analysis of the 218 TLR orthologue genes
indeed demonstrates that responses of divergent genes are
controlled by reciprocal changes of burst size and frequency,
while non-divergent genes show the same characteristics across
species. Interestingly, we found that within each pair of species,
divergent genes exhibited different changes of variability
suggesting complex evolutionary traits (e.g., 31 genes exhibiting
higher variability in mouse than in pig, and 15 in pig vs. mouse).
Our current analyses also suggest that the slope of the mean-
variance relationship, at least in part is related to the amplitude of
the gene response (Supplementary Figure S1D), suggesting that
more inducible genes exhibited increased variability. It would be
important to better understand how variability of particular
response genes evolved between different species, in the context
of their sequence dissimilarities (Nielsen et al., 2005; Haygood
et al., 2010; Nomiyama et al., 2010; Einarsson et al., 2022) as well as
epigenetic (Lind and Spagopoulou, 2018) and signalling
components (Brennan and Gilmore, 2018) of the TLR signalling
between species.

We used stochastic models of transcription to better
understand regulation of transcriptional bursting (Figure 4).
A typical representation involves a 2-state telegraph model,
where gene activity changes randomly between “off” and “on”
states, facilitating mRNA transcription (Raj et al., 2006;
Zenklusen et al., 2008; Suter et al., 2011; Nicolas et al., 2018).
However, more complex structures are often used to capture
complexity associated with multiple regulatory steps,
combinatorial promoter cycling and transcriptional initiation
(Harper et al., 2011; Rybakova et al., 2015; Zoller et al., 2015;
Yang et al., 2022). We hypothesised that TLR response
variability is linked with the complexity of the transcriptional
regulation. We introduced a 3-state stochastic model, which
assumed a sequential activation between “off”, “intermediate”
and “on” states, equivalent to promoter cycling (Harper et al.,
2011; Zoller et al., 2015). First, we used a computationally
efficient Beta-Poisson model, a steady-state approximation of
the 2-state telegraph model, which has previously been used to fit
scRNA-seq distributions (Larsson et al., 2019; Luo et al., 2022).
However, this model does not take into account the dynamical

nature of the process (measurements at 0, 2, 4 and 6 h) and the
mRNA half-life with many genes peaking early after stimulation
(Hao and Baltimore, 2009). We therefore used a genetic
algorithm to fit the theoretical temporal count distributions at
specific times to the measured scRNA-seq data using the
dynamical 2-state and 3-state models. Based on the Beta-
Poisson fits, we selected 96 high coverage murine response
genes (and 28 orthologue genes for species analyses), which
have existing estimates of mRNA half-life in LPS-stimulated
bone marrow derived macrophages (Hao and Baltimore, 2009;
Kratochvill et al., 2011) or other cell models. Our current
understanding of TLR signalling suggest that due to
endotoxin resistance and desensitisation (Buckley et al., 2006;
Morris et al., 2014; Kalliara et al., 2022), the regulatory network,
and thus model structures and parameters, are time-varying
(Wang et al., 2018). For example, previous work show that
stability of TLR target genes are regulated in response to
stimulation, and also may vary between treatments (Hao and
Baltimore, 2009). However, due to limited availability of the data
as well as substantially increased computational complexity
when considering non-stationary processes (Shand and Li,
2017), we did not incorporate those effects in our models. In
general, the measurement of relevant half-lives over times-scales
of different stimulation protocols would allow more accurate fits
and ultimately better understanding of the influence of time-
varying parameters in the system in the future. In our current
fitting protocols we treated each data time-point (and replicate)
separately, which also allowed more efficient algorithm
implementation to fit 1,507 mouse, and 1,079 orthologue
conditions. We then used the AIC method (Akaike, 1973) to
compare the models considered, including a penalty for
complexity, and select the one that fitted the measured
mRNA distributions most accurately. The results
demonstrated that a large subset of genes and conditions
fitted a dynamical 3-state model better than the 2-state
model. We found that the fraction of conditions explained by
the 3-state model correlated well (r = 0.56, p-value < 0.0001)
with slope of the mean-variance relationship, and thus response
heterogeneity, for the high coverage murine genes (Figure 4).
Similarly, the increased complexity was associated with
evolutionary changes of response variability between species
(Figure 5). In general, we found that increased regulatory
complexity facilitated larger response variability through
increased burst sizes and reduced frequency of transcriptional
bursting (Figure 4D), while scRNA-seq count variance exhibited
correlations with transcription rates and ‘on’ rates. A better
understanding of the relationships, and in particular
mechanistic basics for controlling gene-specific
slopes (i.e., response variability) as well as their sensitivity
to pharmacological perturbation and infection and disease
state, will require further detailed investigations (Robles-
Rebollo et al., 2022). Nevertheless, we believe that our
methodology, relying on the inference of mean-variance
relationships, provides new insight into regulation of single-
cell variability of innate immune signalling and will be
applicable to other gene expression systems, including
prominent stochastic regulation of adaptive immunity (de la
Higuera et al., 2019; Iakovlev et al., 2021).
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Materials and Methods

Analysis environment

Computational analysis was performed using Python v3.8.2 in a
64-bit Ubuntu environment running under Windows Subsystem for
Linux (WSL) 2 and using the conda v4.8.3 package manager.
Relevant packages were NumPy v1.19.1 (Van Der Walt et al.,
2011), pandas v1.0.5 (Reback et al., 2020), Scanpy v1.5.1 (Wolf
et al., 2018), scikit-learn v0.23.1 (Pedregosa et al., 2011), SciPy v1.4.1
(Virtanen et al., 2020) and statsmodels v0.11.1 (Seabold and
Perktold, 2010) for processing and Matplotlib v3.2.1 (Hunter,
2007) and seaborn v0.10.1 (Waskom et al., 2020) for
visualisation. Robust linear regression models and Benjamini-
Hochberg false discovery rate (FDR) correction was performed in
statsmodels. Coefficient of determination (R2) scores were
calculated using the metrics module of scikit-learn.

Acquisition and processing of mRNA count
data

mRNA count data associated with the study by Hagai et al. (2018)
were downloaded from the Array Express database, in particular, the
E-MTAB-6754.processed.2.zip file to obtain the UMI counts of bone
marrow-derived mononuclear phagocytes from mouse, rat, pig and
rabbit. Phagocytes were either untreated (0 h) or stimulated with LPS
for 2, 4 and 6 h, resulting in 12 scRNA-seq datasets per species. In
addition, phagocytes from mice and rat were also treated with PIC at
2, 4 and 6 h. Notably, the dataset contains no UMI counts for PIC
stimulation at 6 h for mouse 1 but has two for mouse 2 (labelled 6 and
6A).When collating the counts, the missing replicate for mouse 1 was
disregarded and the PIC 6A time point—assumed to be a technical
replicate—was excluded. Therefore, 20 datasets (referred as
conditions herein) for the mouse, 21 datasets for the rat,
12 conditions for the pig and the rabbit dataset were considered
for each gene (see Supplementary Table S4). The UMI counts were
median scaled per cell using the normalize_total function of Scanpy
and subsequently used for fitting mean-variance relationships and
bursting modulation. Integer values, referred to as “mRNA counts” in
this work were used for mathematical model fitting (see Github
repository for data normalisation, UMI normalisation (Grün et al.,
2014) and extraction of mRNA count distributions). Gene IDs, gene
symbols and the descriptions of the genes were obtained from the
Ensembl Release 103 database of the four studied species: Mus
musculus (mouse), Rattus norvegicus (rat), Sus scrofa (pig) and
Oryctolagus Cuniculus (rabbit) using the BioMart web tool (Yates
et al., 2020). Hagai et al. (2018) defined a set of 2,336 LPS-responsive
genes based on differential expression in response to LPS stimulation
with FDR-corrected p-value < 0.01 and existing orthologues in rabbit,
rat and pig. Il1b and Tnf were added to this list—as well characterised
TLR-response genes from the study of Bagnall et al. (2020)–resulting
in a set of 2,338 LPS response genes with 46,740 conditions overall.
Similarly, the responsive genes from the three other species were also
determined. 2,586 rat genes, 1892 pig genes and 859 rabbit genes
showed differential expression upon LPS stimulus. 218 one-to-one
orthologue genes were found to be responsive in all species, these
genes formed the analysis subset.

Fitting theoretical bursting characteristics

The sample mean (μ) and variance (σ2) of mRNA counts
were calculated for the measured mRNA count distribution for
individual response genes across conditions. The mean-
variance relationships (σ2 � αμ + α0) were fitted using robust
linear regression, using a Huber M-estimator with a tuning
constant of 1.345, across all relevant conditions. A model’s fit
was considered successful if the slope (α) was statistically
significant based on FDR-adjusted p-value < 0.05, and it
provided a good overall fit (unweighted R2 > 0.6). FDR-
adjusted p-value < 0.05 was also calculated for the intercept
(α0). Assuming linear constraints of mRNA mean and variance,
theoretical bursting characteristics were analytically derived,
using moment estimators; burst size bs = α0/µ + α, burst
frequency bf = µ2/(α0+αμ) and bf = α0/(bs(bs-α)). Relative root

mean square error, �
�������������������������∑N

i�1(experimental datai−model datai)2
N∑N

i
(model datai)2

√
, where N

denoted the number of datapoints, was used to compare
theoretical predictions and experimental data. Relative fold
change was used to calculate the level of burst size and
frequency modulation in the measured data, across all the
conditions per gene:

burst sizemodulation per gene � max bs −min bs

min bs
,

burst frequencymodulation per gene � max bf −min bf

min bf

Comparison between burst size and burst frequency
modulation was quantified as the ratio of the two
quantities, i.e., modulation ratio � burst frequencymodulation

burst sizemodulation .

Pairwise comparison of the slopes of the
mean-variance regressions

The differences in the mean-variance relationships of a gene
between species were measured by pairwise comparisons between
the slopes. A Student’s t-test was performed to determine whether
the two slopes are statistically significantly different, or not. The
following formula was used to calculate the t-statistic values:

tstatistic � slope1 − slope2���������������
SEslope1

2 + SEslope2
2

√ , d.o.f. � n1 + n2 − 4

SEslope represents the standard error of the value of the slope in the
fitting of the robust linear regression model on the data. The degrees
of freedom (d.o.f.) is dependent on the number of data points used to
create the two linear regression lines compared (n1 and n2,
respectively). p-values were determined using the cumulative
distribution function of the relevant t distribution. As the four
slopes were compared pairwise, six p-values were calculated per
gene. p-values were corrected by the Benjamini-Hochberg
procedure. Two slopes were deemed significantly different if the
false discovery rate (FDR) corrected p-value was below 0.05. Subset
of genes with different number of significant FDR-corrected
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p-values were compared using a measure of evolutionary response
divergence, such that response divergence = log[1/3 × ∑j(log[FC
pig] − log[FC glirej])

2], with j =(1,2,3) corresponding to 3 glires
(mouse, rat and rabbit) and FC is the fold change in response to LPS
stimulation per gene (Supplementary Table S4 in (Hagai et al.,
2018)).

Inference of Beta-Poisson model

Inference of Beta-Poisson model parameters (kon, koff and kt)
from individual scRNA-seq count distributions was performed
using the profile-likelihood txburstML script (Larsson et al.,
2019) downloaded from GitHub (version
1844c47be5f1ad2104cf15d425889768ec45df8b). Conditions that
txburstML did not mark as “keep” (indicating convergence) were
discarded. Genes with a least 10 fitted conditions per mouse (out of
20) and rat (out of 21) as well at least 6 in the pig and rabbit (out of
12) were included in the high coverage gene sets.

Modelling and inference of dynamical
models of transcription

Theoretical temporal mRNA distributions for considered models of
transcription were obtained using the Chemical Master Equation (CME)
following our previous approach (Bagnall et al., 2020). In brief, the time
evolution of the probability distribution over mRNA counts P(X, t), is
given by P(X, t) � exp[R(θ)t]P0(X), where R(θ) is a transition rate
matrix describing flow of probability between different states, where a
state is defined by the number of mRNA in the cell at time t and the
transcriptional states of the gene’s alleles.P0(X) is specified by initial data
such that ∑XP0(X) � 1. P(X, t) is calculated using a fast matrix
exponential function implemented in MATLAB by (Al-Mohy and
Higham, 2011). All simulations begin with initial conditions of no
mRNA and both gene alleles being in the ‘off’ state. R(θ) depends on
model structure and the parameters. In this work, we considered a
stochastic telegraph model—with two independent alleles per gene, the
activity of which switches randomly between ‘off’ and ‘on’ states, with the
latter being permissive for mRNA transcription (Raj et al., 2006;
Zenklusen et al., 2008; Suter et al., 2011; Skinner et al., 2016). The
associated kinetic parameters include switching ‘on’ and ‘off’ rates (kon
and koff, respectively) as well as rates of mRNA transcription and
degradation (kt and kd, respectively). We also considered an extended
model including an additional regulatory step, such that each allele exists
in one of three states: an inactive ‘off’, an intermediate ‘I’ or an active ‘on’.
Reversible stochastic transitions (with appropriate rates) occur between
the inactive and intermediate (ton and toff), the intermediate and active
states (kon and koff), as well as direct transition between active and inactive
states (kc). We further assume that transcription occurs only in the
intermediate and active states (kti and kt, respectively).

A genetic algorithm (GA) was implemented using the ga function in
MATLAB and employed to estimate model parameters. We minimised
an objective function given by the average absolute distance between the
theoretical (CME) and measured cumulative distribution functions
(CDFs) across observed mRNA counts per condition
(1/n∑n

i�1|CMEi − CDFi|), where i’s are unique mRNA counts
observed in the measured distributions (for those with total unique

counts n > 1). CDFs were calculated using empirical cumulative
distribution function (ecdf). The best of 10 model fits from
independent GA runs for each condition (using a population size of
100, elite count of 2, crossover factor of 0.6, 20 generations and the
tournament selection function) was retained. Gene activation/
inactivation rates were constrained between 0 and 1 min-1,
transcription was constrained between 0 and 50 mRNA counts min-1

per allele, which is the same order of magnitude to previous estimates
(Schwanhausser et al., 2011; Suter et al., 2011;Molina et al., 2013; Skinner
et al., 2016).MurinemRNAhalf-lives (defines as t1/2 = log(2)/kd, where kd
is a degradation rate) were obtained from literature, when available from
LPS-stimulated bonemarrow derivedmacrophages (Hao and Baltimore,
2009; Kratochvill et al., 2011) or other cell models (Maurer et al., 1999;
Raghavan et al., 2002; Park et al., 2004; Sharova et al., 2009; Kambara
et al., 2014; Payne et al., 2014; Martin et al., 2017; Zainol et al., 2019).
Murine half-lives were also used when fitting orthologue genes.

Akaike’s Information Criterium (AIC) was used to asses model
fits and perform model selection (Akaike, 1973). AIC � 2p −
2 log[L(Θ|X)] where log [L(Θ|X)] is the log-likelihood function
of the fitted mRNA count distribution given measured data X

defined as L � ((∑j
Yj)!∏k
Yk!

)∏N

i�1[P(xi, t)]Y with Yt being a vector of

the number of cells displaying each observed state at time t (the sum
of this vector is the total number of cells N), and p corresponds to
number of parameters in the model; resulting in a penalty for higher
complexity. Models with AIC larger than Q3+1.5(Q3-Q1), where
Q1 and Q3 are the first and third quartiles of the AIC distribution
per model across genes were removed to account for unsatisfactory
GA fits. As a result, out of 1,507 mouse, and 1,079 orthologue (pig,
rat and rabbit) conditions, 1,210 and 981 that fitted 2- and 3-state
models were retained, respectively.

Statistical analyses

Statistical analysis was performed using GraphPad Prism 8 software
(version 8.4.2). The D’Agostino-Pearson test was applied to test for
normal (Gaussian) distribution of acquired data. Two-sample
comparison was conducted using non-parametric Mann Whitney
test. For analyses of variance Kruskal-Wallis ANOVA with Dunn’s
multiple comparisons test was performed. Coefficient of determination
(R2) was used to assess regression fits; Spearman correlation coefficient r
was used to test association between other variables.
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Figure S1. Analysis of the variability in the TLR responses. A. Fitted regression lines for 

the 1,551 high confidence genes, shown are genes with different range of the slope a. 

Highlighted in different colours are fits for the individual genes. Broken line indicates µ=s2 

line.  B. Histogram of the measured mRNA response range for the 1,551 high confidence genes.  

C. Effect of the slope (left) and intercept (right) of the mean-variance relationship on the burst 

size and burst frequency modulation. Shown are simulated burst size and frequency modulation 

schemes for a range of a and a0 (as indicated on the graph). D. Modulation schemes for Jchain 

gene. Shown is the comparison between theoretical relationships based of fitted mean-variance 

relationships (in red) and corresponding estimates from data (open circles). Equation for fitted 

mean-variance relationships highlighted in the top left panel, respectively. E. Relationship 

between the slope (a) and in the intercept (a0) across fitted 1,551 high confidence genes.  
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Figure S2.  Inferred kinetic parameter rates for two-state telegraph model using Beta-

Poisson model. A. Comparison between the 1551 high confidence genes across all conditions 

that either fit or do not fit the Beta-Poisson model. B. Histogram of fitted kon, koff and kt across 

7704 conditions for 1,519 high confidence genes. Inference performed using profile likelihood 

of the Beta-Poisson model. Parameters units are expressed per degradation half-life C. 

Relationship between inferred kon vs. koff rates (left) and kon vs. kt (right) across parameters from 

A. Rates for Il12, Nfkbia and Ccl5 highlighted in different colours. Identity line depicted with 

a broken line. D. Histogram of the number of inferred conditions across 1,159 high confidence 

genes. Broken line highlights the threshold for at least 10 conditions fitted per gene. E. 

Histogram of the fitted regression slopes for the 96 high coverage gene set. F. Fitted regression 

lines for the 96 high coverage genes. Highlighted in colour are fits for the individual genes of 

interest. Broken line indicates µ=s2 line.   

 



 
Figure S3. Analysis of stochastic models of transcription. A. Comparison between the fitted 

and measured scRNA-seq count distributions for few gene examples. Shown are cumulative 

probability distribution of data (in green) vs. the corresponding Beta-Poisson, 2-state and 3-
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state model fits (in blue, red and violet, respectively) for Adm (LPS, 2h, replicate 1), Il1a (PIC, 

2h, replicate 1), Cd40 (LPS, 4h, replicate 1) and Il7r (0h, replicate 2) genes. Ratios of respective 

AICs between models highlighted on top. B. Summary of comparing Beta-Poisson, 2-state and 

3-state model fits across the high coverage genes and conditions. Best models defined either 

by AIC smaller (in white) or 2-fold smaller (in black) than the next best model. C. Summary 

of 2- and 3-state model fits across a range of thresholds T= AIC2-state/AIC3-state for the fitted 96 

high coverage genes across all conditions. D. Relationships between the number of Beta-

Poisson, 2-state and 3-state model fits for the 96 high coverage genes across all conditions. 

Best fit model defined by AICbest model<AIC2nd best. 

 



 
Figure S4. Model-based analysis of transcriptional bursting.  A. Summary of 2-state model 

fits defined for 173 conditions such that AIC2-state<0.5AIC3-state (as in Fig. 4C). Shown is the 

distribution of fitted kon (min-1) and koff  (min-1) rates as well as Spearman correlation coefficient 
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r with mRNA variance. B. Summary of 3-state model fits defined for 275 conditions such that 

AIC3-state<0.5AIC2-state (as in Fig. 4B). Shown is the distribution of fitted rates as well as 

Spearman correlation coefficient r with mRNA variance (and between selected rates). C. 

Comparison between fitted transcription rates for 2-state and 3-state models (as in A and B, 

respectively). Statistical significance assessed with Kruskall-Wallis test with Dunn’s 

correction for multiple comparisons (* p value<0.05, *** p value <0.001). D. Analysis of 

transcriptional bursting across high coverage genes and conditions fitted by 2-state vs 3-state 

models. Shown is the comparison between best fit 2- and 3-state models in terms of mean 

mRNA expression, variance, burst size and frequency. Best fit defined by AICbest model<AIC2nd 

best (from Fig. S3C). Burst size and frequency calculated per condition using moment 

estimators. Statistical significance assessed with Mann-Whitney test (* p value<0.05, **** p 

value <0.0001, ns- not significant). 



 
Figure S5. Analysis of transcriptional bursting across species. A. Schematic diagram of 

data analysis; 169 orthologue genes exhibiting good mean-variance fits (R2>0.6) statistically 

tested for differences in the slope of the linear fit. Right: Venn diagram of TLR response 
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orthologue genes in at least one of the species studied by Hagai et al. (2018). B. Fitted mean-

variance relationships for a subset of orthologue genes across species. Shown is the comparison 

between the fitted mean-variance relationships (in solid lines, colour-coded by species) and 

corresponding data (circles). C. Evolutionary response divergence across orthologue gene 

subsets defined by the number of statistically significant FDRs between fitted regression slopes 

across four species (as in Table S2). Statistical significance assessed using ordinary ANOVA 

with Dunnett’s correction for multiple comparisons (*** p-val<0.001, * pval<0.05, ns – not 

significant). D. Global modulation of transcriptional busting across species. Shown is the 

comparison between fitted mean-variance relationship and theoretical burst size and frequency 

modulation schemes vs. relationships derived from data. Shown is a violin plot of relative root 

mean square error (RRMSE) of 169 orthologue genes. E. Histogram of the slope ratio 

(amouse/apig) for the 169 orthologue genes between mouse and pig. amouse and apig denote slopes 

of the fitted mean-variance relationships for each pair of species per gene. F. Analysis of 

divergent and non-divergent mouse and pig TLR-response genes. Shown are box plots of 

average mRNA expression per gene stratified into divergent (amouse> 2apig or apig>2apig) and 

complementary non-divergent group (31, 15 and 123 orthologue genes, respectively). 

Statistical significance assessed with a paired Wilcoxon test (**** p-val<0.0001, *** p-val 

<0.001, ns not significant).  

 

  



Table S1. Fitted mean-variance relationships for the mouse TRL response genes. 

Table S2. Modulation of transcriptional bursting across 1,551 mouse high confidence genes. 

Table S3. Modelling of scRNA-seq count distributions. 

 

Species Number of cells Total number 

of genes 

Genes showing 

expression 

Number of 

conditions 

Mouse 53086 22048 16798 20 

Rat 50185 22277 16780 21 

Pig 23469 21607 15602 12 

Rabbit 34528 19293 14480 12 

 
Table S4. Number of phagocyte cells and genes measured in each single cell in the four 

species. Only the genes showing expression under at least one condition were studied 
 



Number of 

significant 

FDR values 
Genes 

6 
Car4, Ccl2, Ccl4, Ccl5, Cxcl10, Ehd1, F3, Ier3, Ifit2, Ifnb1, Inhba, N4bp1, 

Nampt, Nlrp3, Parp9, Sema3c, Serpinb2, Slamf7, Tagln2, Tnfaip3, Tnfsf15 

5 

Adora2a, Arrdc3, Atad1, Cblb, Ccl20, Ccl3, Ccrl2, Cflar, Cmpk2, Csrnp1, 

Fam105a, Hmgcs1, Ifi44, Il10, Il1a, Il27, Il4ra, Irf1, Mef2c, Mmp3, Mmp9, 

Mxd1, Nabp1, Nfkbiz, Nrp2, Nub1, Parp11, Pik3ap1, Pim1, Rab32, Rasgef1b, 

Rel, Rnd1, Rnf19a, Sdc4, Serpinb8, Slamf1, Slc46a3, Snx10, Socs1, Srgn, Stat3, 

Tcf7l2, Tfec, Tnfaip6, Tnfsf10, Ttc39b, Txnip, Zc3hav1 

4 

A230050P20Rik, Acsl1, Cd274, Cd40, Cd53, Cdkn2c, Cxcl9, Cxcr4, Dusp2, 

Fas, Fgd4, Fmr1, Lpxn, Manf, Marcks, Mov10, Nbr1, Nr3c1, Olr1, Plekho1, 

Ppa1, Ppp1r15a, Psma6, Rgs10, Samsn1, Slc17a5, Slc29a3, Slc37a2, Tiparp, 

Tnip1, Tra2a, Trim25, Ulk1, Vcan, Ypel3 

3 

Amacr, Arl5b, Atp10a, Birc3, Ccng2, Coprs, Gmnn, Hbegf, Hhex, Icam1, Jak2, 

Mafb, Mb21d1, Mical1, Mxd4, Nfkbia, Nmi, Npc1, Nr1d2, Nr4a3, Pcgf5, Plk2, 

Pnrc1, Rnd3, Rnf19b, Sh3pxd2b, Smarca2, Tdrd7, Tfdp2, Traf3ip2, Trim26, 

Uap1, Wars, Xrn1 

2 
Baz1a, Ccdc34, Gmpr, Nfkb2, Nfkbib, Plekhm1, Prkag2, Rybp, Skil, Tmem51, 

Uqcc3, Xpc 

1 
Csrp2, Fam98c, Frmd4b, Gtf2i, Ldlrap1, Lpar6, Mapk6, Rasa2, Rragd, St6gal1, 

Top1 

0 Arhgap4, Camk2g, Cbx8, Crot, Hdac5, Tmbim6, Uri1 

 

Table S5. Pairwise comparison of the slopes of the mean-variance regression lines was 

performed between each two species. The table shows the number of significant FDR values 

(<0.05) obtained for each of the 169 orthologue genes studied. 

 

Table S6. Analysis of TLR response variability across species. 

 



 
 

 46 

Chapter 4 Transcriptional variability as a heritable trait 

In this chapter, I explore whether cells can retain a memory of their transcriptional state 

through cell division, leading to persistent variations in gene expression over time across 

several generations. Heritability measure of a gene is defined by the variability between 

clonal population compared to parental population variability, with the coefficient of 

variation used as the measure of population variability.  

Through analysis of bulk and single-cell RNA-seq data across clonal macrophage populations, 

I reveal heritable TLR-dependent and -independent genes and explore the differences in their 

transcriptional regulation across clones. The fundamental question behind this work is 

whether our treatment of gene expression as a stochastic process is accurate or whether we 

need to attune the commonly used models to consider some deterministic aspects of the 

process in order to formulate more realistic models of transcriptional activity.   

 

4.1 Journal paper: Single-cell gene expression patterns of the Toll-
like receptor signalling are heritable traits 
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Abstract
Activation of innate immunity at the single-cell level is a heterogenous process; however the origins of this variability -
fundamentally linked to the control of immune responses - remain unknown. Here we combine classical fluctuation tests
with genomic approaches to understand heritability of single-cell gene expression patterns in the evolutionarily conserved
toll like receptor (TLR) system. Using population-level RNA-seq, we measured variability between clonal populations
of immortalised Bone Marrow Derived Macrophages and showed that over multiple cell divisions approximately 7% of
TLR4-dependent (and 15% of upregulated) genes, including immune cytokine and effector genes, exhibited transcriptional
heritability. In contrast, 2% of TLR4-independent genes exhibited heritability, albeit with a higher level, suggesting different
timescales of transcriptional memory. To validate population-level analyses and better understand inter-clone differences,
we used single-cell RNA sequencing (scRNA-seq) and assayed mRNA distributions of clonal and parental populations to
TLR4 stimulation. We found that individual heritable genes maintained response heterogeneity, which mathematically can
be attributed to frequency modulation of transcriptional bursting across clonal populations. Overall, we demonstrate a
prevalent long-term TLR-mediated transcriptional heritability and provide a theoretical basis for control of variability in
heritable transcriptional traits.

Introduction
In mammals the cellular defence system against foreign
threats involves the evolutionarily conserved toll-like re-
ceptor (TRL) system [1]. Paradoxically, the activation of
TLR signalling is inherently a heterogenous process with
target genes exhibiting a substantial transcriptional variabil-
ity at the single cell level [2]. As a consequence, specific
effector molecules like Tumour Necrosis Factor α (TNFα), In-
terleukin 1β (IL1β) or type I interferons (IFN-I) are produced
by small (and often non-overlapping) subsets of genetically
identical innate immune cells [3–6]. The response hetero-
geneity of TLR signalling is evolutionarily conserved across
species [7] suggesting an important and beneficial role dur-
ing immune response of inflammation [8]. However, the
fundamental question regarding the nature of this hetero-
geneity - whether single cell innate immune responses are
stochastic or predetermined - has not been fully elucidated.

The single-cell TLR-mediated transcriptional response
is thought to reflect cell-intrinsic and extrinsic signalling
events, including activation of key transcription factors such
as Nuclear Factor κB (NF-κB) [9–13], as well as paracrine sig-
nalling, epigenetic regulation and the biology of the pathogen,
among many factors [3, 5, 14, 15]. Two genetically identical
cells may behave differently because they could be in differ-
ent states [16–19] or be subject to stochastic fluctuations
in their local environment [20, 21]. Transcriptional noise
has been predominately attributed to the process of tran-
scriptional bursting, i.e., random changes of gene activity

resulting in stochastic transcription events across different
cell types and tissues [22–28], including in the context of
immune signalling [4, 15, 29–31]. However, recent analy-
ses demonstrate that non-genetic heterogeneity, such as
responses of rare precocious cells, persist for generations
in dividing populations, thus revealing long-term transcrip-
tional memory [16, 32, 33]. In the context of the TLR system,
NF-κB signalling has been shown to exhibit correlated dy-
namical responses not only over one or few cell divisions
[17, 34] but over days and months in clonally-derived popu-
lations [35]. Our previous data also demonstrates that bipha-
sic TRL4-dependent expression of IL1β and IL1α, located in
the same gene cluster, is highly correlated and subject to
epigenetic control [4]. Furthermore, in the TLR system, her-
itable fates determine the early IFN-I responses [6], while
heritable receptor expression regulates “all-or-nothing” ac-
tivation patterns [34]. This suggests that transcriptional
heritability plays important roles in determining the overall
heterogeneity of the immune cell population responding to
TLR stimulation.

In order to distinguish between heritable and non-herita-
ble variability in TLR-dependent transcription, we used
MemorySeq [16], an application of the classical Luria-Delbr-
ück fluctuation test [36], to assay the responses of clonal
populations of immortalised Bone Marrow Derived Macrop-
hages (iBMDMs). We found that after approximately 15 cell
divisions, 7% of TLR-dependent genes (86 out of 1251), in-
cluding a number of immune chemokine and cytokine genes,
exhibited heritable expression patterns. In contrast, only 2%

1
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Figure 1: Schematic representation of heritable and non-heritable gene expression in clonal and mixed populations assayed via MemorySeq
and scRNA-seq. (Top) Heritable gene expression: Stimuli-induced transcription of a hypothetical gene (in purple) is maintained in clonal populations,
while some additional fluctuations may occur through consecutive divisions. Populations exhibit wide distributions of MemorySeq bulk samples and large
inter-clone variability in the underlying scRNA-seq mRNA distributions. (Middle) Non-heritable gene-expression: Stimuli-induced transcription of a
hypothetical gene (in purple) fluctuates randomly in clonal populations. Populations exhibit narrow MemorySeq and overlapping scRNA-seq distributions.
(Bottom) Mixed cell controls exhibit narrow distributions related to sampling/technical noise.

of TLR-independent genes (228 out of 10367) exhibited heri-
tability. Single-cell RNA sequencing (scRNA-seq) of 8 clonal
and 4 parental populations demonstrated that individual
heritable genes maintained linear mean and variance rela-
tionships across clonal populations, which can be attributed
to reciprocal transcriptional bursting modulation. Overall,
our study demonstrates that single-cell innate immune re-
sponses are heritable and provides a theoretical basis for
transcriptional control of heritable genes.

Results
MemorySeq reveals heritable TLR-dependent and -
independent gene expression patterns

To understand transcriptional heritability in the TLR sig-
nalling system we used a combination of genomic approach-
es relying on the fluctuation test of clonal isogenic popu-
lations [36]. If a cell’s ability to produce a specific gene
expression response (e.g., a rare high expressing cell) is her-
itable and persist over multiple cell divisions, populations

will exhibit large inter-clone variability, such that some pop-
ulations express a gene with high penetrance (i.e., in ma-
jority of cells), while others do not. However, if a gene’s
expression fluctuates rapidly, responses of clonal popula-
tions become identical (subject to measurement error) after
few cell divisions, equivalent to that of parental cells (Fig-
ure 1). The inter-clonal variability (in comparison to parental
cells) has been used as a measure of heritability in previous
bulk RNA-seq (MemorySeq) analyses [16], however incor-
porating scRNA-seq approaches may provide more insights
by measuring the whole mRNA distributions in each clone.

To measure heritability in TLR-induced gene expression,
we used Fluorescent-Activated Cell Sorting (FACS) to gener-
ate MemorySeq clones from isogenic iBMDMs; each clonal
population was generated from a single cell grown to ap-
proximately 100,000 cells over 15-16 days. To control for
technical and sampling noise we sequenced a matching
number of parental iBMDM cells, which were seeded into
100,000 populations (referred herein as “mixed populations”)
and subjected to the same experimental protocol. Prior to
bulk RNA sequencing, clonal and mixed populations were
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Figure 2: MemorySeq reveals heritable gene expression in TLR system A. Schematic representation of MemorySeq experiment. Individual iBMDMs
cells were FACS-sorted and seeded into in separate wells to grow for a ∼16 days (reaching ∼100,000 cells). 43 MemorySeq clones as well as matching 43
mixed population controls were stimulated with Lipid A for 3 h before RNA sequencing. In addition, experiment involved 10 untreated mixed control samples.
Coefficient of variation across clonal and mixed samples was used to identify heritable genes. B. The number of genes identified as TLR-dependent (up- and
down-regulated) and TLR-independent using mixed populations. C. CV versus mean expression levels for the TLR-dependent (left) and TLR-independent
genes (right). Each dot represents average expression value for a gene across its clonal (in pink) and mixed samples (in turquoise). D. CV of mixed versus
clonal samples for the 11618 genes from MemorySeq experiment. Red line corresponds to CVclonal = 2.5 CVmixed. E. Number of heritable genes. (Left)
histogram of the FCCV (fold change CV of clonal samples vs. CV of mixed samples) for the 11618 genes. Broken red line corresponds to the heritability fold
change threshold = 2.5, 314 genes passed this threshold. (Right) number of heritable genes identified as TLR-dependent (up- and down-regulated) and
TLR-independent. F. Examples of heritable (top and middle rows) and non-heritable (bottom) genes. Shown are distributions of expression levels for clonal
(in pink) and mixed samples (in turquoise) from MemorySeq. The value of FCCV between clonal and mixed is stated under the gene’s name.

stimulated for 3h with 500 ng/ml of lipid A, the dominant cy-
totoxic component of lipopolysaccharides of Gram negative
bacteria [37].

We started with 96 samples (45 stimulated clonal popula-
tions, 45 stimulated and 10 unstimulated mixed populations),
but following library preparation, sequencing, and quality
control, we obtained 41 stimulated MemorySeq clones, as
well as 43 stimulated and 10 untreated mixed populations
(Figure 2A). The principal component analyses (PCA) demon-
strated an excellent separation between conditions (except
of one clonal sample which was subsequently removed, Fig-
ure supplement 1) with high coverage of at least 500,000
reads per sample (average of 2,9 million reads). Differential
expression analysis of mixed cell populations showed that
expression of 1251 genes were significantly affected by lipid
A (of which 443 up-regulated and 808 down-regulated, re-
ferred to as TLR-dependent), while the expression of 10367
genes were not affected by the treatment (referred to as

TLR-independent genes set, Figure 2B).
We used coefficient of variation (CV, i.e., standard devia-

tion normalized by the mean of read counts) to measure vari-
ability of expression across individual genes. We found that
higher gene expression was associated with reduced vari-
ability, while a subset of genes exhibited larger inter-clone
variability than that of the technical noise (i.e., CV calculated
across mixed populations, Figure 2C). We defined transcrip-
tional heritability using a threshold of 2.5-fold change in CV
(FCcv) between MemorySeq clones and mixed population
controls (consistent with a previous study [16]) (Figure 2D)
and found 314 heritable genes in the dataset (Figure 2E). Of
the genes identified as heritable, 86 were TLR-dependent (in-
cluding 68 of upregulated genes, 7% and 15%, respectively),
while 228 heritable genes (2%) were TRL-independent (see
Table S1 for respective gene lists and Figure 2F for example
genes).

Genes identified as heritable in our assay did not gener-
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Figure 3: scRNA-seq analysis of heritability. A. Schematic representation of scRNA-seq experiment, involving 8 MemorySeq clones and 4 mixed
populations stimulated with lipid A for 3 h. Analysis of CV across clonal samples versus stimulated mixed samples was carried out to identify heritable
immune genes using 3-fold change threshold, which were subsequently compared to MemorySeq data. B. Sensitivity analysis of heritability index FCCV.
Shown is the analysis of false-positive and false-negative errors in identification of heritable genes in scRNA-seq data, given MemorySeq inference, as
a function of different FCCV levels (2, 2.5 and 3). C. Histogram of the heritability index (FCCV) of clonal vs. mixed samples for the 5702 genes in both
scRNA-seq and MemorySeq datasets. Broken red line corresponds to FCCV = 3, yielding 1256 genes identified as heritable. D. Pie chart showing the
number of genes identified as heritable in both experiments (grey), MemorySeq but not scRNA-seq (in blue), scRNA-seq but not MemorySeq (brown),
as well as non-heritable in both experiments (in white). E. Number TLR-dependent (up- and down-regulated) and -independent genes simultaneously
identified as heritable and non-heritable in both MemorySeq and scRNA-seq experiments. F. Coefficient of variation versus average of mean expression
levels across samples for the 73 genes identified as heritable in both MemorySeq and scRNA-seq experiments (left) and the 4396 non-heritable genes (right).
Each dot represents average expression value for a gene across the means of its clonal samples (in pink) and mixed samples (in turquoise). G. Examples
of heritable (top and middle rows) and non-heritable (last row) genes from E. Shown are scRNA-seq gene expression distributions for clonal (in pink)
and mixed (in turquoise) populations. FCCV highlighted next to the gene’s name. H. Comparison between FCCV of TLR-dependent and -independent 73
heritable genes. Statistical significance assessed with Mann-Whitney test (* p-value<0.05).
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ally match previously identified resistance-associated her-
itable genes in non-phagocytic cell lines [16, 18], but were re-
lated to innate immune processes represented by macrophag-
es. Heritable TLR-dependent genes included inflammatory
chemokines (Cxcl2, Ccl2, Ccl3, Ccl7) and cytokines (Tnfα,
Il6, Il1β, Csf1 and Csf2) (Figure 2F), as well as their cognate
receptors (Cclr2 and Tnfr2). Nlrp3, the critical component of
the inflammasome [38], as well as key inflammatory media-
tor COX-2 encoded by PTGS2 gene [39] were also identified
as heritable.

In terms of the TLR signalling circuitry [40], the key
NF-κB family members (Rel, RelB, NFKB1, NFKB2), genes
encoding their inhibitory κB proteins (NFKBIA, NFKBIB and
NFKBIE), cognate receptors (including TLR1, 2, 3, 6, 7, 9) as
well as downstream inhibitory ^𝛽 kinases (IKBK, IKBKG) did
not pass heritability threshold. However, we found evidence
for heritability of the inducible TNFAIP3 gene encoding a
dual-function deubiquitinase and E3 ligase enzyme A20, crit-
ical in controlling multiple key aspects of NF-κB signalling
responses [17, 41–43].

No heritability was identified for members of the Janus
kinase (JAK)-Signal Transducer and Activator of Transcrip-
tion (STAT) system [44], including STAT1, 2, 3, 5 and 6, JAK1,
2 and 3, and type I and II interferon receptors (expression
of which was independent of TLR stimulation). In contrast,
the inducible suppressor of cytokine signalling 3 (SOCS3)
gene, a known feedback-inhibitor of JAK-STAT signalling
[40], was identified as heritable.

In terms of TLR-induced interferon signalling, previously
associated with heterogenous innate immune responses [5,
14], the production of interferon (IFNB1) was not heritable
and the expression of interferon regulatory factors (IRF3, 7, 8,
9) was not heritable, with a notable exception of IRF1, a gene
that plays multiple roles in the controlling of innate immune
responses [45]. The heritable TLR-independent genes found
to be involved in extracellular matrix interactions (ITGA5, 6,
7, 8) [46], the antibacterial complement system (C1ac, C1qb,
C1qa, C1ra), as well as many immune mediators, including
those involved in macrophage differentiation and signalling
(see Table S2 for ontology analysis).

scRNA-seq demonstrates distinct inter-clone distribu-
tions of heritable genes

Bulk analyses of MemorySeq clones identified over 300
genes that passed the heritability threshold, thus suggest-
ing that single-cell TLR-responses are heritable. To validate
these analyses, we used scRNA-seq approaches to directly
measure mRNA distributions across individual clonal cells
and compare against bulk-cell MemorySeq data. We em-
ployed a multiplexing protocol (see Methods) to simultane-
ously assay responses of 8 rederived MemorySeq clones and
4 mixed populations; both stimulated with lipid A for 3 h
(Figure 3A). Following quality control, we obtained a total
of 9166 single cells, on average 764 (± standard deviation of
166) per population with a median of approximately 56,000
unique molecular identifiers (UMIs) per cell on average
across different populations (and median of∼6,900 genes per
cell and total ∼20,000 genes detected). t-distributed stochas-

tic neighbour embedding (t-SNE) showed that individual
clonal and mixed cells clustered together (Figure supplement
2). We found that these cells can be broadly stratified by
the cell cycle stage, with 69% of cells corresponding to the
longest G1 (Gap 1) stage (Figure supplement 3A and B). We
also found that 10% of cells were in the synthesis (S) stage,
while remining cells were in the G2M stage (defined as a
combined Gap 2 and mitotic phase), consistently with pre-
viously measured cell cycle distributions [47]. Notably, the
cell cycle distribution was homogenous across the different
scNRA-seq populations (Figure supplement 3C).

Based on the scRNA-seq distributions we calculated ex-
pression averages across the different populations and iden-
tified 5794 genes that were robustly expressed in the dataset,
of which 5702 genes that were also expressed in the Mem-
orySeq dataset. Consistently with previous analyses, we
then calculated heritability index FCcv (the ratio of the CV
between the clonal and mixed populations, respectively)
for all 5794 (Table S3). Distribution of FCcv demonstrated
many genes with substantial inter-clone variability, thus
potentially heritable, in the subset of 5702 genes (Table S4).

While the scRNA-seq data captured entire mRNA dis-
tributions across samples (in contrast to sample averages
provided by bulk-cell MemorySeq), statistical inference can
be generally affected by the limited sample size (i.e., 8 and 4
scRNA-seq vs. >40 MemorySeq samples, respectively). To
mitigate against potential sampling errors, we tested dif-
ferent heritability thresholds in relation to reproducibility
between the datasets. We found that 3-FCcv threshold in the
scRNA-seq analysis reduced the number of false-negative
genes (i.e., genes found heritable in more robust Memory-
seq, but not in scRNA-seq) to approximately 20%, while
allowing the number of false-positives (i.e., genes not heri-
table in Memory-seq, but identified as heritable in scRNA-
seq) to increase (Figure 3B). This yielded 1256 genes in the
scRNA-seq dataset that passed the heritability threshold
(Figure 3C), with 73 genes being identified as heritable in
both datasets (Figure 3D). This included 16 genes, which
were TLR-dependent (including 14 upregulated by lipid A),
as well as 57 genes that were TLR-independent (Figure 3E).
Overall, there was a 78% (total of 5702 genes) agreement be-
tween the two datasets in terms of the number of heritable
(73) and non-heritable (4396) genes. Individual genes’ CVs
demonstrated much higher inter-clone variability for the
heritable genes, in comparison to mixed controls, and sub-
stantially higher to that of non-heritable genes (Figure 3F).
The individual mRNA distributions were also consistent with
the analyses based on heritability index; mixed cell distribu-
tions showed a large degree of overlap between the samples
for all genes, with great similarities to clonal distributions of
non-heritable genes, while clonal distributions of heritable
genes showed variations in the shape or mode (Figure 3G).

Among the heritable TLR-dependent genes identified in
both datasets were Tnfrsf1b, Il1rn, Csf1 as well as Nlrp3 in-
volved in acute immune responses, while TLR-independent
genes included CD36, among others (Figure 3G, see also
Table S5 for list of all heritable genes). Interestingly, we
found that there was a significant difference in the heri-
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Figure 4: Heritability analysis of Cd36. A. Distributions of Cd36 expression for clonal (in pink) and mixed samples (in turquoise) from MemorySeq (left)
and scRNA-seq (right). Displayed on the graph is the value of FCCV between clonal and mixed populations. B. Representative immunostaining analysis of
Cd36 protein expression in iBMDMs. Cells plated and grown on imaging dish for 2 days before staining. Scale bar 100 µm. Image representative of two
replicates.

tability index between the TLR-dependent and independent
genes (Figure 3H), suggesting that TLR-dependent genes
on average exhibit less memory (which is highlighted by
reduced variability between individual mRNA distributions,
Figure 3G).

TLR-independent Cd36, encoding platelet glycoprotein
4, is involved in bacterial recognition and phagocytosis in
macrophages [48]. Cd36 was characterised by one of the
highest heritability indexes (FCcv=9.8) in MemorySeq data
and scRNA-seq (FCcv=3.6). The individual mRNA distribu-
tions showed large inter-clone variability (Figure 4A). A sub-
set of four clonal distributions were almost identical with
that of the mixed populations, characterised by long tails,
indicative of the presence of a small subset of high express-
ing cells in the population. The remaining four distributions
showed more symmetrical probability density functions,
which centred around higher expression values, suggesting
that majority of cells (or at least a much higher proportion
than that of other populations) express Cd36 in those pop-

ulations. These were likely derived from low proportion of
high expressing cells present in parental populations. To
better validate these analyses, we used immunostaining to
measure Cd36 protein expression in population of iBMDMs.
Cells were seeded in low density and grown for 2 days,
such that daughter and granddaughter cells were spatially
colocalised on the imaging dish. Immunostaining demon-
strated that Cd36 exhibited a range of protein expression
levels across population, with relatively rare high express-
ing cells (Figure 4B). Importantly, we found that these high
expressing cells tend to co-localise together, consistent with
transcriptional heritability (Figure 4B).

Overall, our scRNA-seq and immunostaining analyses
confirm heritability of gene expression profiles observed by
MemorySeq approaches.
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Clonal populations maintain expression variability of
heritable genes

The fundamental trait of transcriptional heritability is that
mRNA distributions exhibit increased inter-clone variability
compared to that of the mixed cell populations. While the
latter corresponds to the technical noise associated with the
scRNA-seq assay, the differences between mRNA distribu-
tions across clonal populations may fundamentally capture
the differences between clone-specific regulatory events.
We therefore investigated if patterns of heritable gene ex-
pression share common response characteristics across dif-
ferent populations. We previously demonstrated that TLR-
response genes exhibit linear relationships between mean
and variance of the mRNA distributions across a range of
ligands, doses, times, and cell systems [4, 31]. This relation-
ship demonstrates that while cells adjust their mean mRNA
response to changes of stimulus, they simultaneously main-
tain the overall cell-to-cell variability level. Consequently,
the heterogeneity of a particular gene response, i.e., vari-
ance normalised by the mean expression, is constant and
defined by the slope of the regression line. Given this no-
tion of transcriptional variability control, we therefore asked
if transcriptional heterogeneity of heritable genes exhibit
similar behaviour.

First, we analysed the dispersion of the mRNA mean
and variance across clonal and mixed cell populations. We
found that the 73 heritable genes exhibited significantly
higher dispersion compared to that of non-heritable genes
(measured as a fold change of the centroid distance between
clonal and mixed populations, Figure 5A). In the case of non-
heritable genes or mixed cell populations, the dispersion
was generally small, consistent with overlapping mRNA
distributions, subject to technical noise. To uncover patterns
in the dispersion across clonal populations of heritable genes,
we applied regression analyses to test if the variance of
mRNA distributions is a linear function of the mean response.
We found that 1543 out of the 4396 non-heritable genes (35%)
could be fitted with a linear mean-variance relationship
when pooling together all mixed and clonal samples per gene
(as determined by significant regression slope, p-val<0.05).
Only a subset of 465 genes (11%) exhibited a high confidence
fit (coefficient of determination, 𝑅2 > 0.6, Figure 5B). On the
other hand, 50 out of the 73 heritable genes (68%) were fitted
with a linear regression (p-val<0.05) with 42 (57%) passing
high confidence threshold (𝑅2 > 0.6, Figure 5B, also see
Table S6 for list of genes).

We subsequently asked whether two different linear
relationships, one for clonal populations and another for
mixed populations, can be fitted, testing whether different
populations exhibit different noise control. However, we
could only statistically distinguish fitted regression slopes
for 3 (5% of total) heritable and 51 (<1%) non-heritable genes
across clonal and mixed populations (Figure 5C). Given the
inherent noise and limited sample size of the data, these
analyses suggest that lack of heritability could be inter-
preted by clonal populations having similar characteristics
in terms of the moments of the mRNA distribution to that
of the parental cells (see Figure 5D for example relationships

for Nfkbia, Nfkbib, Cd47 and Junb genes). In contrast, while
heritable genes exhibit different mRNA distributions across
different populations, they maintain the overall response
variability (as defined by the constant mean-variance rela-
tionship for all mixed and clonal samples, see Figure 5E for
example genes). We interpret this behaviour by suggesting
that transcriptional heritability corresponds to positioning
clonal populations onto the gene-specific mean-variance
line away from the point corresponding to the moments of
the parental population. In this context, as populations loose
transcriptional heritability, they collapse to parental popula-
tions on the linear relationship (e.g., Il1rn in general exhibits
less dispersion than highly heritable Cd36, Figure 5E).

Finally, we wanted to understand differences in tran-
scriptional regulation of heritable genes across different
cell populations. In general, transcriptional heterogeneity
has been predominantly attributed to the process of tran-
scriptional bursting, i.e., random changes of gene activity
permissive for transcription [49]. In this process, the burst
size (i.e., how many mRNAs per ‘on’ period) and frequency
(i.e. how often in ‘on’ state) control the mRNA output of
individual cells, and thus the heterogeneity of the cell popu-
lation [50]. The moments of the mRNA distributions can be
used to determine burst size and frequency, such that burst
size 𝑏𝑠 = 𝜎2/` (i.e., the Fano factor) and burst frequency
𝑏 𝑓 = `/𝑏𝑠 , to quantify the departure from ‘non-bursty’
Poissonian mRNA production, characterised by 𝑏𝑠 = 1 and
𝑏 𝑓 = ∞ [22, 23, 30, 51]. We have previously shown that
linear-mean variance relationships constrain transcriptional
bursting by reciprocal modulation of burst size and burst
frequency as the function of the mean mRNA response. In
particular, given that 𝜎2 = 𝛼` + 𝛼0, bursting characteristics
can be derived such that burst size 𝑏𝑠 = 𝛼0/` + 𝛼 and burst
frequency 𝑏 𝑓 = 𝛼0/(𝑏𝑠 (𝑏𝑠 − 𝛼)) [4, 31].

We applied this theory on our heritable genes and found
that the heritable gene expression patterns show a similar
phenomenon, that is, the location on the mean-variance
line corresponds to different, but theoretically predictable,
transcriptional bursting characteristics (see Figure 5F for the
predicted and observed modulation of transcriptional burst-
ing across mean-variance lines for example genes). In this
case, parental populations exhibit similar bursting character-
istics to each other, while individual clones exhibit different
transcriptional bursting characteristics resulting in unique
gene expression patterns. Interestingly, we observed that
differences between individual clones were predominantly
associated with changes of burst frequency rather than burst
size (Figure 5G), suggesting that the former is the underlying
control parameter.

The phenomenon of transcriptional bursting involves
stochastic regulation, which implies independent regulation
of individual genes. In practice, groups of genes may exhibit
co-fluctuations, indicative of shared transcriptional regu-
lation such as upstream transcription factors or common
control through general regulatory networks [16]. Having
identified a set of TLR-dependent and independent herita-
ble genes, we therefore tested if the expression of herita-
ble genes co-fluctuates. If a particular clonal population
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Figure 5: Heritable genes maintain response heterogeneity A. Dispersion in the moments of the mRNA distribution between heritable and non-
heritable genes. Shown is the comparison of fold change in centroid distance of clonal samples to that of mixed samples for heritable and non-heritable
genes. Statistical significance between groups is assessed with Mann-Whitney test (**** p-value <0.0001). B. Histogram of coefficient of determination
(𝑅2) for the 1543 non-heritable (left) and 50 heritable (right) mean-variance linear fits characterised by a significant regression slope (p-value < 0.05).
𝑅2 = 0.6 (broken line in red) corresponds to the high confidence gene cut-off. 42 heritable genes (57%) passed this cut-off compared to 465 non-heritable
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regression line across all populations. F. Burst size and frequency modulation along the linear relationships for genes in E. Moment estimators of burst size
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calculated based on the fitted mean-variance relationship. G. Relative change of burst size and burst frequency across 73 heritable genes. Shown are
individual changes defied as (max-min)/min across genes with population mean and standard deviation. Statistical significance between groups is assessed
with paired Wilcoxon test (**** p-value <0.0001).
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or single cell has a high abundance of a specific heritable
gene, then the abundance of co-fluctuating transcript will
be correlated. We therefore calculated pairwise Pearson’s
correlation coefficients between the expression of all 73 her-
itable genes across MemorySeq and scRNA data. We found
evidence for blocks of co-regulated genes, which exhibited
high correlations, both in MemorySeq as well as in more
noisy scRNA-seq (Figure supplement 4A). In general, all
TLR-dependent genes, except for Napedpld exhibited high
cross-correlations, likely reflecting robust stimuli-induced
activation of these genes (Figure supplement 4B). However,
we also detected groups of co-fluctuating TLR-independent
genes (Figure supplement 4C), which included genes in-
volved in the complement system (C1qc and C1qb) as well as
a number of transmembrane proteins (Cd36, Cd33, Cd200r4)
among others. Overall, these analyses demonstrate an addi-
tional layer of regulation enabling co-regulation of heritable
genes.

Discussion
The activation of the innate immunity is an inherently het-
erogenous process, with genetically identical cells exhibit-
ing different ability to produce key inflammatory mediators
[11, 47] and ultimately to control the pathogen [14, 52, 53].
Previous work suggested that immune signalling involves
stochastic regulation [4, 8, 29, 30, 54, 55], however some
seemingly stochastic responses can be explained by epi-
genetic control [34], cell cycle state [47], as well as cel-
lular [17, 56] and population context [57]. Recent analy-
ses suggest that gene expression patterns can be generally
inherited through dividing cells across many generations
[16] [32]. Here we used genomic approaches to investi-
gate whether single-cell transcriptional responses of the
evolutionarily-conserved TLR system exhibit transcriptional
heritability. We used MemorySeq [16], an assay relying
on comparisons between responses of clonal populations,
and demonstrated that 7% of TLR-dependent genes (and
15% of upregulated genes), including a number of immune
cytokines and chemokines, exhibited heritable expression
patterns.

Transcriptional heritability has been generally described
as a transient phenomenon [6, 16, 32] with the clonal char-
acteristics eventually converging to that of parental cells. In
this work we focused on long-term heritability, associated
with approximately 15-16 cell divisions due to feasibility
of the genomic approaches. We found that the heritability
index (the ratio of inter-clone variability to that of mixed cell
populations) is generally lower in TLR-dependent genes com-
pared to TLR-independent genes, suggesting that immune
response in macrophages is generally more transient. For ex-
ample, TLR-independent genes Chchd10, Cd36 and cd200r4
include ‘high’ and ‘low’ clones across different populations,
while TLR-dependent genes exhibit less distinct patterns
in the scRNA-seq data (Figure 3G). These constitutively ex-
pressed genes, however, contribute to the overall immune
responses by controlling various aspects of cell signalling.
For example, heterogenous and heritable expression of Cd36

might be related to individual-cell rate of phagocytosis and
pathogen control [48]. Given the transient nature of heri-
tability, it is however likely that many more TLR-regulated
genes described in this work exhibit heritable expression, but
this heritability disappears after just a few cell divisions. Pri-
mary bone marrow-derived and tissue-resident macrophage
lineages undergo proliferation inflammatory responses [58],
suggesting that patterns described here might contribute
substantially to control of innate immune responses in vivo.
Similarly, heritable traits might contribute to innate immune
memory, i.e., ability of cells to retain memory of prior in-
fections to produce robust responses upon reinfection [59].
One intriguing possibility is that cells that deal well with
pathogens and survive an infection are more likely to prolif-
erate and pass on their heritable gene expression to manage
subsequent infections.

Our scRNA-seq data surprisingly demonstrates that in-
dividual clones maintain variability of the heritable gene
expression. We show that while an individual population
of clones exhibits a different level of expression to parental
(i.e., ‘mixed’) populations, the overall variance of the mRNA
response is linearly constrained by the mean mRNA level.
Under this relationship, noise characteristics in clonal pop-
ulations diverge from that of the parental cells, with the
latter forming a single point (subject to technical noise) on
the gene’s mean-variance line. One interpretation of this
phenomenon is that clonality can be interpreted with depar-
ture from the “noise equilibrium” represented by parental
cells, with individual genes returning to this equilibrium
at different timescales. We showed that individual clones
differ in their transcriptional bursting characterising, which
overall are constrained by the gene-specific mean-variance
relationship [4, 31]. In fact, we demonstrate that differ-
ences between individual clonal populations can be predom-
inately attributed to the frequency modulation. Previous
work suggests that clonality and heritability are associated
with long-term epigenetic control [6], including chromatin
accessibility [60] and methylation states [61, 62]. While
the invariant mean-variance relationship is likely to be a
property of the gene specific encoding of burst kinetics by
promoters and enhancer elements [27, 28], how heritable
expression is mechanistically controlled in individual cells
and groups of co-fluctuating genes remains unclear. Fre-
quency modulation was previously associated with changes
of histone acetylation [22], and in general distal regulatory
elements in DNA which controlled cell-type specific expres-
sion [27]. Recently, single cell TLR-dependent expression
was linked to frequency modulation via cohesin-mediated
promoter-enhancer coupling [15]. While genes involved in
the cohesin complex formation (SMC1, SMC3, SCC1, SCC3)
[63] are not heritable in our data, this and other epigenetic
mechanisms provide avenues for future studies. While cur-
rent models of transcriptional bursting assume stochastic
activation of transcription in homogenous immune cell pop-
ulations [4, 29–31], existence of heritable gene expression
patterns require new modelling approaches, which will need
to also account for transitions between transient heritable
states.
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Overall, this work demonstrates that the acute innate
immune gene expression responses of the TLR system are
heritable over multiple generations and provide a theoretical
basis for this pthenomenon.

Materials and Methods
Cell lines and culture

Immortalised bone marrow derived macrophages (iBMDMs)
[64] were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) high glucose with sodium pyruvate and sodium
bicarbonate (Sigma-Aldrich D6429) supplemented with 10%
heat inactivated foetal bovine serum (FBS; Gibco 10500064).
All incubations were done at 37◦C 5% CO2 and all cell han-
dling under laminar air flow unless otherwise stated.

Preparation of clonal populations

FACS was used to sort single iBMDMs into prewarmed
DMEM+FBS in 96 well plates and incubated to generate
clonal populations. To reduce clumping during growth from
single cells, cells were dispersed by gently reverse pipetting
on days 5 and 8. When cells were 60-80% confluent (day
12-14) clonal populations were transferred to 6 well plates
and grown until reached 100,000-200,000 cells per plate (day
15-16) for subsequent experiments.

Lipid A stimulation

Lipid A diphosphoryl from Salmonella enterica serotype
Minnesota Re595 (Sigma-Aldrich L0774) stock was prepared
at 500mg ml-1 in 50% DMSO and stored at -20◦C until use.
Clonal or mixed populations in 6 well plates at approxi-
mately 50% confluence were stimulated with lipid A at a
final concentration of 500 ng ml−1 for 3h. Unstimulated con-
trols were treated with an equivalent volume of 50% DMSO
for 3h.

MemorySeq library construction, sequencing, and dif-
ferential expression analysis

43 stimulated clonal populations, 43 stimulated mixed pop-
ulations and 10 unstimulated mixed populations were pre-
pared. Cells were harvested by scraping and stored in RNAla-
ter (Invitrogen AM7020) for stable storage. Cells were pel-
leted by centrifugation and RNAlater removed prior to RNA
extraction with the RNeasy Plus mini kit (Qiagen 74136)
according to the manufacturer’s instructions. RNA was
stored at -80◦C. Total RNA was submitted to the Genomic
Technologies Core Facility (GTCF). Quality and integrity of
the RNA samples were assessed using a 4200 TapeStation
(Agilent Technologies) and then libraries generated using
the Illumina® Stranded mRNA Prep. Ligation kit (Illumina,
Inc.) according to the manufacturer’s protocol. Briefly, to-
tal RNA (typically 0.025-1ug) was used as input material
from which polyadenylated mRNA was purified using poly-
T, oligo-attached, magnetic beads. Next, the mRNA was
fragmented under elevated temperature and then reverse

transcribed into first strand cDNA using random hexamer
primers and in the presence of Actinomycin D (thus im-
proving strand specificity whilst mitigating spurious DNA-
dependent synthesis). Following removal of the template
RNA, second strand cDNA was then synthesized to yield
blunt-ended, double-stranded cDNA fragments. Strand
specificity was maintained by the incorporation of deoxyuri-
dine triphosphate (dUTP) in place of dTTP to quench the
second strand during subsequent amplification. Following
a single adenine (A) base addition, adapters with a corre-
sponding, complementary thymine (T) overhang were lig-
ated to the cDNA fragments. Pre-index anchors were then
ligated to the ends of the double-stranded cDNA fragments
to prepare them for dual indexing. A subsequent PCR am-
plification step was then used to add the index adapter
sequences to create the final cDNA library. The adapter
indices enabled the multiplexing of the libraries, which were
pooled prior to clustering on a flow-cell from a High-Output
NextSeq 500/550 v2.5 kit. The loaded flow-cell was then
paired-end sequenced (76 + 76 cycles, plus indices) on an
Illumina NextSeq500 instrument. Finally, the output data
was demultiplexed and BCL-to-Fastq conversion performed
using Illumina’s bcl2fastq software, version 2.20.0.422.

Unmapped paired-reads of 74bp from an Illumina NextS-
eq500 sequencer were interrogated using a quality control
pipeline consisting of FastQC v0.11.3
(http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and FastQ Screen v0.13.0 (https://www.
bioinformatics.babraham.ac.uk/projects/fastq_
screen/). The reads were trimmed to remove any adapter
or poor quality sequence using Trimmomatic v0.39 [65];
reads were truncated at a sliding 4bp window, starting 5’,
with a mean quality <Q20, and removed if the final length
was less than 36bp. Additional flags included: ’ILLUMINAC-
LIP:./Truseq3-PE-2_Nextera-PE.fa:2:30:10 SLIDINGWINDO-
W:4:20 MINLEN:36’.The filtered reads were mapped to the
mouse reference sequence (mm10/GRCm38) from the UCSC
browser [66], using STAR v2.7.7a [67]. The genome index
was created using the comprehensive mouse Gencode vM25
gene annotation [68] applying a read overhang (–sjdbOverh-
ang 75). During mapping the flags ‘–quantMode GeneCoun-
ts’ was used to generate read counts into genes.Normalisation
and differential expression analysis was performed using
DESeq2 v1.30.1 [69] on R v4.0.4. Log fold change shrink-
age was applied using the lfcShrink function along with the
"apeglm" algorithm [70].

Following mapping and analyses we retained all but 2
clonal samples with a depth of at least 500,000 reads per
library (2.9 million reads per sample on average). One sample
was removed due to poor coverage, while another (sample
18) was subsequently removed because it clustered with
mixed cell populations, see Figure supplement 1 for the
principal component analysis (PCA).

scRNA-seq single cell isolation, library construction
and sequencing

8 stimulated clonal populations and 4 stimulated mixed pop-
ulations were prepared. Cells were harvested by scraping
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then clonal populations were labelled prior to pooling ac-
cording with the 10x genomics 3’ CellPlex kit according to
the manufacturer’s instructions for >80% viable cells (proto-
col 1 document number CG000391). Library preparation and
sequencing was performed by the University of Manchester
Genomic Technologies Core Facility. Gene expression and
Cell Multiplexing libraries were prepared from Cell Multi-
plexing Oligo labelled cells using the Chromium Controller
and Single Cell 3’ Reagent Kits v3.1 (10x Genomics, Inc.
Pleasanton, USA) according to the manufacturer’s proto-
col (CG000388 Rev B). Briefly, nanoliter-scale Gel Beads-in-
emulsion (GEMs) were generated by combining barcoded
Gel Beads, a master mix containing cells, and partitioning
oil onto a Chromium chip. Cells were delivered at a limiting
dilution, such that the majority (90-99%) of generated GEMs
contain no cell, while the remainder largely contain a single
cell. The Gel Beads were then dissolved, primers released,
and any co-partitioned cells lysed.

Primers containing an Illumina TruSeq Read 1 sequenc-
ing primer, a 16-nucleotide 10x Barcode, a 12-nucleotide
unique molecular identifier (UMI) and a 30-nucleotide poly-
(dT) sequence were then mixed with the cell lysate and a
master mix containing reverse transcription (RT) reagents
along with primers containing an Illumina Nextera Read
1, a 16-nucleotide 10x Barcode, a 12-nucleotide UMI and a
capture sequence. Incubation of the GEMs yielded barcoded
cDNA from poly-adenylated mRNA and barcoded DNA from
the Cell Multiplexing Oligo Feature barcode. Following incu-
bation, GEMs were broken, and pooled fractions recovered.
The cell barcoded cDNA was then purified from the post
GEM-RT reaction mixture using silane magnetic beads and
amplified via PCR to generate sufficient mass for library
constructions. The amplified cDNA molecules for 3’ Gene
Expression were separated from those for Cell Multiplexing
library construction by size selection. For the 3’ Gene Expres-
sion library enzymatic fragmentation and size selection were
then used to optimize the cDNA amplicon size. Illumina P5,
P7, i7 i5 sample indexes, and TruSeq Read 2 sequence were
added via end repair, A-tailing, adaptor ligation, and PCR
to yield final Illumina-compatible sequencing libraries. For
the Cell Multiplexing library P5, P7, i7 i5 sample indexes
and Nextera Read 2 were added via PCR to amplified DNA
from Cell Multiplexing Oligo Feature Barcodes to yield final
Illumina-compatible sequencing libraries.

Single Cell 3’ libraries comprised standard Illumina paired-
end constructs flanked with P5 and P7 sequences. The 16 bp
10x Barcode and 12 bp UMI were encoded in Read 1, while
Read 2 was used to sequence the cDNA fragment in 3’ Gene
Expression libraries while read 2N was used to sequence
the DNA from Cell Multiplexing Feature barcode. Sample
index sequences were incorporated as the i7 and i5 index
read. Paired-end sequencing (28:90) was performed on the
Illumina NovaSeq 6000 platform. The .bcl sequence data
were processed for QC purposes using bcl2fastq software
(v. 2.20.0.422) and the resulting .fastq files assessed using
FastQC (v. 0.11.3), FastqScreen (v. 0.14.0) and FastqStrand (v.
1.11.1) prior to pre-processing with the CellRanger pipeline.

scRNA-seq data processing, cell filtering and cell cycle
assignment

The 10x Genomics Cell Ranger pipeline (v7.0.0) was used to
process raw sequencing data. The base call (BCL) files pro-
duced by the sequencer were demultiplexed and converted
to FASTQ files using “cellranger mkfastq”. The gene expres-
sion and multiplexing capture FASTQ files were processed
using “cellranger multi” and mapped against the pre-built
Mouse reference package from 10X Genomics (mm10-2020-
A) to generate the per-sample gene-cell barcode matrix. The
single-cell data were processed in R environment (v4.1) fol-
lowing the workflow documented in Orchestrating Single-
Cell Analysis with Bioconductor [71]. Briefly, for each sam-
ple, the HDF5 file generated by Cell Ranger was imported
into R to create a SingleCellExperiment object. A combina-
tion of median absolute deviation (MAD), as implemented
by the “isOutlier” function in the scuttle R package (v1.4.0)
and exact thresholds was used to identify and subsequently
remove low quality cells before data integration. Cell cycle
phase classification was performed using the "cyclone" func-
tion and pre-trained classifiers from the scran R package
(v1.22.1) and obtained the predicted phase for each cell.

scRNA-seq data integration, visualisation, and cell clus-
tering

The “multiBatchNorm” function from the batchelor R pack-
age (v1.10.0) was used to re-compute the log-normalized
expression values of the combined single-cell data. Mu-
tual nearest neighbours (MNN) approach available from the
batchelor R package was used to perform batch correction
on top 2000 highly variable genes. Then, the first 50 dimen-
sions of the MNN low-dimensional corrected coordinates
were used as input to produce the t-stochastic neighbour
embedding (t-SNE) projection using the “runTSNE” function
from the scatter R package (v1.22.0) respectively.

Heritability analysis

Heritability index was defined as the ratio of coefficient of
variations (CV) of the log2 (read counts+1) in the clonal and
mixed samples, respectively. In the MemorySeq analysis this
index was calculated for 11619 genes with a total number of
read counts >100 across all samples. In the scRNA-seq, the
index was calculated based on average UMIs per sample for
5702 genes that were also expressed in MemorySeq (genes
with at least one clonal sample with log10 (UMIs) > 1 were
considered expressed, with total of 5794 genes passing the
threshold). Cut-offs of 2.5 and 3 for MemorySeq and noisier
scRNA-seq data, respectively, were applied to define heri-
table genes. Ontology analysis was performed in Enrichr
[72, 73]. For each pair of 73 heritable genes identified in
both MemorySeq and scRNA-seq datasets, we calculated
the Pearson correlation coefficient between their expression
across all samples (clonal and mixed). Correlation matrices
were represented as heatmaps with the same order of genes
(as per MemeorySeq).
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Regression analysis

The mean-variance relationships (𝜎2 = 𝛼` + 𝛼0) were fitted
using the “lmrob” function from the robustbase R package
(version 0.95-1) ensuring robust linear regression. A model’s
fit was considered successful if the slope (𝛼) was statisti-
cally significant based on p-value < 0.05, and it provided
a good overall fit (coefficient of determination 𝑅2 > 0.6 ).
Assuming linear constraints of mRNA mean and variance,
theoretical transcriptional bursting characteristics were an-
alytically derived, using moment estimators of mRNA count
distributions; burst size 𝑏𝑠 = 𝛼0/` + 𝛼, burst frequency
𝑏 𝑓 = `2/(𝛼0 + 𝛼`) and 𝑏 𝑓 = 𝛼0/(𝑏𝑠 (𝑏𝑠 − 𝛼)), as previ-
ously described [4, 31]. Student’s t-test was performed to
determine whether the two slopes are significantly different.

Centroid dispersion

The centroid-based distance was calculated for heritable and
non-heritable genes as follows: First the centroid point co-
ordinates were computed (𝑥𝑐 , 𝑦𝑐) =

( 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 ,

1
𝑛

∑𝑛
𝑖=1 𝑦𝑖

)
,

where 𝑥 and 𝑦 are mean and variance, respectively and 𝑛

is the number of points (samples). Second, the distance be-
tween each point and the centroid was calculated using the
Euclidean distance formula 𝑑𝑖 =

√︁
(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2.

The overall dispersion was then measured by computing
the average between the points and the centroid 1

𝑛

∑𝑛
𝑖=1 𝑑𝑖 .

Finally, the fold change ratio between clonal and mixed
populations were calculated.

Analysis of Cd36 expression

104 iBMDM cells were seeded in the 35 mm glass-bottom
imaging dish (Griner Bio One) and incubated over 2 days
to spatially segregate dividing cells. Cells were fixed with
5 ml of 4% Paraformaldyhde/PBS and incubated at room
temperature for 15 mins, and subsequently permeabilised
with 250µl of 0.1% triton X-100 PBS for a 4 mins. 100µl of the
anti-mouse Cd36 antibody (Bio-Rad, MCA2748, clone MF3)
diluted in blocking buffer 1:100 was added and incubated
for 20 mins in room temperature. 100 µl of the secondary
goat antibody (Biolegend) diluted in blocking buffer 1 in a
100 was added and incubated for 20 mins. Z-stack tile scan
images were taken on Zeiss LSM 880 confocal microscope.
Median filter with 5x5 tile-scan with 12 Z-slices was applied
and maximum intensity projection images were collected.

Statistical Analyses

Statistical analysis was performed using GraphPad Prism 9
software. Data was tested for normality using D’Agostino-
Pearson test. Two-sample comparisons were conducted us-
ing non-parametric Mann Whitney test.

Data Availability
Generated sequencing data have been deposited in the Ar-
rayExpress database at EMBL-EBI under accession number
E-MTAB-11041 (https://www.ebi.ac.uk/biostudies/

arrayexpress/studies/E-MTAB-11041) and E-MTAB-
13014 (https://www.ebi.ac.uk/biostudies/
arrayexpress/studies/E-MTAB-13014). Supplementary ta-
bles can be found at (https://github.com/nalachkar/
MemorySeq-paper.git).
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Supplementary materials

Figure supplement 1: Analysis of MemorySeq cell populations. Shown is a PCA analyses of stimulated 42 clonal (SC, stim_clonal), 43 mixed (SM,
stim_mixed) and unstimulated mixed population (UM, unstim_mixed). Variance explained by each principal component highlighter in the axis label. In
black samples with a coverage between 0.5 and 1 million reads. Sample 18SC was removed from subsequent analyses.
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Figure supplement 2: Analysis of the scRNA-seq populations. A. t-SNE plot for clonal and mixed cells grouped together. B. t-SNE plots of individual
clonal (C1 to C8) and mixed (M1 to M4) cells.
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Figure supplement 3: Cell cycle analysis of the scRNA-seq populations. A. t-SNE plot for clonal and mixed cells grouped together, with the inferred
cell cycle stage superimposed on to the graph (in different colours). B. Distribution of cell cycle stages across individual clonal (C1 to C8) and mixed (M1 to
M4) cells. C. t-SNE plots of individual clonal (C1 to C8) and mixed (M1 to M4) cells, with the corresponding cell cycle stage.
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Figure supplement 4: Heritable genes exhibit co-fluctuations. Shown are Pearsons’s correlation heatmaps for all pairs of 73 heritable genes in both
MemorySeq (left) and scRNA-seq datasets (right). A. Correlation heatmap of all heritable genes. B. Correlation heatmaps of up-regulated heritable genes.
C. Correlation heatmaps of TLR-independent heritable genes. Heatmaps for scRNA-seq data displayed with ordering of the MemorySeq correlation matrix.
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Chapter 5 Discussion 

In this thesis, I have developed novel mathematical methodologies, led by experimental data, 

to quantitatively characterise transcriptional heterogeneity and the behaviour of its 

underlying bursting characteristics in the TLR system. Through this work, various stochastic 

models of gene expression were formulated, different experimental techniques and statistical 

analysis tools were used, and new concepts regarding heritability of variability were 

introduced. All of which contributed to a deeper understanding of the complex nature of gene 

expression and its variability and provided new perspectives for its quantitative description. 

In this chapter I outline how the aims set forth in the introduction have been successfully 

accomplished, and discuss limitations of the work, in addition to potential avenues for future 

research in the field. 

 

The aims were achieved as follows: 

Characterisation of transcriptional heterogeneity in the TLR system 

Transcriptional responses of two important immune genes, TNFα and IL1β, were examined 

under immune-relevant stimulus using smFISH data. The analysis revealed different levels of 

cell-to-cell variability for these two genes, with IL1b exhibiting higher variability than TNFa 

across conditions. To further explore their regulatory differences, I developed two stochastic 

models with varying levels of complexity and showed that mRNA counts of TNFα conform to 

a standard stochastic switch model, while transcription of IL1β requires an additional 

regulatory step reflecting increased heterogeneity. This suggested that heterogeneity can be 

gene-specific and controlled by certain transcriptional mechanisms. To test this hypothesis, I 

checked for and established gene-specific linear relationship between the mean and variance 

of TNFα and IL1β  mRNA responses to the different conditions, reflecting a fundamental 

characteristic of the gene regulatory system (Dar et al., 2016). This was confirmed further for 

more genes using scRNA-seq data. I also showed that this constrained variability arises from 

constrained modulation of transcriptional bursting. Under the assumption of a two-state 

model, I derived an analytical function that describes a relationship between model 

parameters that follows from the mean-variance linear function, defining a three-

dimensional (𝑘022 , 𝑘0., 𝑘)) parameter space (assuming 𝑘&  is known) on which the system can 

maintain the mean-variance relationship by constrained modulation in both burst size and 
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frequency kinetics. I verified my results by examining TNFα and IL1β bursting characteristics 

and their kinetics using smFISH data.  

 

More questions for consideration emerged from this study; are these findings global if more 

immune genes are considered? Are the linear constraints limited to pathogen-like stimulus, 

and specifically the set of conditions used in our study (Oda & Kitano, 2006b), or do they hold 

under therapeutic compounds conditions too? The failure of the two-state model to 

adequately reflect the high variability of IL1β expression suggested that the level of 

transcriptional variability is related to the complexity of transcriptional regulation 

mechanisms. What are these complex molecular mechanisms resulting in high levels of 

variability? And do genes that exhibit similar variability levels share the same complex 

regulatory modes? Chapter 3 addresses some of these questions while further studies are 

required to link some already existing knowledge about regulatory mechanisms (Junkin et al., 

2016; Shalek et al., 2013a; Singer et al., 2014; Xue et al., 2015).  

 

Nevertheless, this chapter provided evidence that seemingly heterogeneous gene expression 

is controlled and provided a mathematical framework to accurately characterise the 

underlying mechanisms driving this heterogeneity. In addition, due to the importance of TNFα 

and IL1β in regulating the innate immune system, the dynamical models established for them 

in this thesis can be utilized in other immune research studies. 

 

Characterisation of transcriptional bursting modulation in the TLR system 

Utilising existing scRNA-seq data, I investigated whether the control of transcriptional 

bursting in the TLR system is a global property. Analysis of > 2000 TLR-response genes across 

different experimental conditions revealed that 66% of the genes show gene-specific 

invariant cellular variability levels across the different conditions, i.e., the changes in sample 

mean of these genes due to change in stimulus yielded to equal proportional changes in 

sample variance. This result confirmed that characterising variability in the TLR system by 

linear mean-variance trends using linear regression models is an effective approach to 

understand constraints of cellular variability. The analysis further confirmed that gene-

specific response variability is a global trait, identified by the slope of the mean-variance 

relationship. Next, I explored the properties of transcriptional bursting underlying the global 
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gene-specific mean-variance trends. I derived from the linear relationship analytical functions 

describing burst size and frequency changes with changes in mean mRNA response based on 

their definitions using moment estimators (mean and variance). The derived functions tell us 

that burst size is a multiplicative inverse of the mean mRNA, converging to the slope value as 

mean increases, which is why in some cases burst size can be used as a measure of variability 

level, and that burst frequency converges quickly to the mean scaled by the inverse of the 

slope. Experimental data showed strong agreement with the theory, validating the theoretical 

results further.   

 

Although I present burst size and frequency as functions of the mean expression, biologically 

the mean is the result of both the burst size and the frequency dynamics. Therefore, I sought 

to study the behaviour of burst size and frequency independently of the mean. Deriving 

frequency behaviour as a function of burst size uncovered three different regulatory modes, 

with overall modulation in the system being dominated by frequency changes. Analysis of the 

experimental data confirmed the defined regulatory modes. This suggests that the control of 

variability is a result of an interplay between different molecular regulatory factors including 

core promoters (which have been established to control burst size modulation), and enhancer 

elements (which are associated with the control of frequency modulation) (Larsson et al., 

2019). It would be intriguing to verify this on the genes considered in this study and establish 

regulatory mechanisms and promoter properties that shape the gene-specific slope and 

hence gene expression patterns. Once this is done, the results can be incorporated into the 

mathematical model to deliver a more complete picture of the process.  

In addition, the analysed genes exhibited a broad spectrum of variability levels, as evidenced 

by the diverse range of slope values observed. This, combined with the findings from chapter 

two that employed different stochastic models to describe TNF-α and IL-1β, suggested that 

the mechanistic control of variability varies depending on its magnitude. I hypothesised that 

a high level of variability is associated with a heightened degree of transcriptional regulation 

complexity. 

To test this hypothesis, I utilised a 3-state stochastic model that incorporates sequential 

promoter activation, akin to promoter cycling (Zoller et al., 2015), in addition to the simple 2-

state model. I fitted a set of 96 genes and determined which model fits best for each condition 

of the genes using AIC. I found that not only were the bursting characteristics of conditions 
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better fitted with the 3-state model significantly different from those better fitted with the 2-

state model, but there was also a positive correlation between the probability of a gene 

conforming to a 3-state model and an increase in slope, confirming my hypothesis.  

I also investigated the control of variability through evolution and provided evidence that 

mean-variance linear trends serve as a valuable tool to capture and understand the 

evolutionarily changes in response variability.  

 

One challenge I encountered during the modelling phase of the research was selecting the 

optimal method for parameters estimation. The genetic algorithm employed in this study has 

the potential drawback of premature convergence, where the algorithm converges too 

quickly without fully exploring the entire parameter space, especially in the case of a more 

complex model, leading to a poor fit. A Bayesian inference approach remains the most robust 

and reliable method to infer model parameter.  While tools for inferring parameters from 

scRNA-seq data using a Bayesian inference framework are currently limited, there is 

promising ongoing work in this area (Breda et al., 2021). 

 

One potential avenue for improving this research is to explore models that incorporate time-

dependent parameters. By allowing parameters to vary over time (Dattani & Barahona, 2017), 

we can gain a more comprehensive understanding of the regulation of cellular variability 

upon perturbations, providing a more accurate representation of the underlying biological 

processes. It is reasonable to say, however, that with this approach, computational challenges 

would arise, and much more accurate and reliable dynamic data would be required.  

 

Heterogeneity observed in the innate immune system is a heritable trait – challenging the 

dogma of stochastically regulated transcription  

Using bulk and single-cell RNA-seq datasets, I uncovered heritability of single-cell expression 

patterns, particularly rare expression events, in the TLR system, presenting a novel 

perspective on the stochastic nature of gene expression. This finding challenges the 

commonly used stochastic model of gene expression, the telegraph model, and opens new 

avenues for understanding the intricacies of gene regulation and thereby heterogeneity 

control mechanisms.  
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Analysis of MemorySeq data unveiled the intriguing phenomenon that certain TLR-dependent 

genes possess the capability to pass on their non-genetic expression fluctuations across 

multiple generations through cell division. This was further supported by additional analyses 

using complementary scRNA-seq and immunostaining approaches. This work aligns with the 

few recent studies that provided evidence of transcriptional memory for responses of rare 

cells in different cell lines to the ones used here (Phillips et al., 2019; Shaffer et al., 2020). 

Subsequently, I proposed the hypothesis that the differences observed between clonal 

populations of heritable genes are indicative of variations in clone-specific transcriptional 

control. To test this hypothesis, I investigated whether there are similarities in the 

transcriptional characteristics among clonal populations of heritable genes. Based on the 

framework of the mean-variance relationship, the noise characteristics observed in clonal 

populations were found to deviate from each other and those of the parental cells. The 

parental cells were represented as a single point on the gene's mean-variance line, subject to 

technical noise. However, the clonal populations displayed a divergence from this point and 

a dispersion within the clones, while still conforming to a linear model. It follows from my 

previous work in chapters two and three (Alachkar et al., 2023; Bagnall et al., 2020) that they 

have clone-specific predictive bursting characteristics, indicating variations in the 

mechanisms controlling heterogeneity among different clones. The defined measure of 

heritability in the study indicates that this trait is not simply binary but instead transiently 

dynamic, as reflected in genes exhibiting a spectrum of heritability levels, which are most 

likely contingent upon the timescale of cell division. Therefore, I predict that once genes pass 

the timescale of transcriptional memory, they converge back towards the parental 

populations on the mean-variance linear relationship while showing similar bursting 

characteristics. Supporting evidence of this came from the analysis of non-heritable genes, 

where clonal populations displayed comparable noise characteristics to the parental 

populations.  

 

Analysis of transcriptional bursting further revealed that the primary determinant of the 

differences observed among individual clonal populations is frequency modulation rather 

than burst size modulation. Different controlling mechanisms of frequency modulation have 

been established, including epigenetic factors (Larsson et al., 2019; Nicolas et al., 2018). In 

particular, frequency modulation associated with single-cell TLR-dependent expression has 
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been shown to be controlled through cohesin-mediated promoter-enhancer coupling 

(Robles-Rebollo et al., 2022). On the other hand, transient heritability has been demonstrated 

to be associated with long-term epigenetic control (Van Eyndhoven et al., 2023). Investigating 

the findings of these studies experimentally on the heritable genes identified here would 

contribute to our understanding of the underlying mechanisms behind the regulation of 

heterogeneity and its heritability trait. 

 

The dynamic aspect of the heritability trait remains unexplored here, and an important future 

addition to this work would involve the use of real-time RNA imaging techniques, such as 

CRISPR-Cas13 systems (Yang et al., 2019), in live cells. By investigating the dynamical 

behaviour of heritability across several generations of dividing cells, not only would we gain 

valuable insights into the regulatory mechanisms underlying cellular variability at a temporal 

level, but also refine our understanding of the control of immune responses in the TLR system. 

Furthermore, the findings of this study highlight the necessity for a different mathematical 

modelling approach that goes beyond the currently accepted stochastic models in the field. 

It is evident that there are deterministic factors involved in the regulation of heterogeneity, 

and these factors should be incorporated into the dynamical models of gene expression. 

Recent studies presented some tools regarding this task (Saint-Antoine et al., 2022; Van 

Eyndhoven et al., 2023) by providing a model that accounts for reversable switching between 

cell-states (defined by responsive or not). Improving these tools to account for different cell 

states (representing different heritability levels) and integrating them with data from dynamic 

imaging to infer the switching rates would ultimately present a more comprehensive model 

that captures a closer approximation of the biological phenomenon. 

Overall, this study has provided a novel perspective on transcriptional heterogeneity, and 

paved the way for future research, both in the biological and mathematical domains.  

 

In conclusion, the findings presented in this thesis strongly support the speculated concept 

that cellular variability plays a crucial role in immune responses, particularly during 

inflammation. The newfound understanding of the underlying mechanisms of this variability 

presented here does not only advance our knowledge of gene expression in general but also 

provides deeper insights into the functioning features of the immune system. These results 

have the potential to be integrated into existing models of the TLR system and, more broadly, 
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the innate immune system. By incorporating this knowledge, we can enhance our 

understanding of immune responses and potentially develop more effective strategies for 

therapeutic interventions in various immune-related disorders. 

 

Overall, while this work has made significant contributions to our understanding of 

transcriptional heterogeneity and its regulation, there is still much to be explored in the field. 
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