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In this thesis, we answer several questions relating to semigroup identities and tropical
matrix semigroups. To begin, we look at two finiteness properties: weak permutability
and strong permutability. We show that all tropical matrix semigroups are weakly per-
mutable and that full and upper triangular tropical matrix semigroups are not strongly
permutable for dimensions greater than 1. We then introduce and give a classification
of truncated tropical semirings and fully describe which full matrix semigroups over
truncated tropical semirings are strongly permutable.

Next, we construct minimal and irredundant generating sets for upper triangular
and unitriangular matrix semigroups over commutative semirings. We then give min-
imal and irredundant generating sets for the full matrix semigroup over the tropical
integer semiring for dimensions 2 and 3, showing that the full matrix semigroup is
finitely generated in dimension 2 but not in dimension 3. In addition to this, we
construct finite presentations for upper triangular matrix semigroups over the tropical
integers in every dimension.

Turning towards the growth, we find new bounds on the degree of the polynomial
growth of finitely generated subsemigroups of matrix semigroups over commutative
bipotent semirings. In particular, for matrices over the tropical rational semiring, the
bound of the degree of the polynomial growth is bounded only in the dimension of
matrix semigroup, independent of the number of generators.

We then explore the semigroup identities satisfied by tropical matrix semigroups
and the plactic monoid of rank 4. We find a condition to show that a semigroup
identity is not satisfied by the upper triangular tropical matrix semigroup of dimension
n+ 1, and use this to construct semigroup identities satisfied by the upper triangular
tropical matrix semigroup of dimension n but not by dimension n+1 for all n ∈ N. For
full tropical matrix semigroups, we construct semigroup identities that are satisfied in
dimension p−1 but are not satisfied in dimension p for p prime. For the plactic monoid
of rank 4, we find a new set of semigroup identities satisfied by the monoid, allowing
us to deduce that the plactic monoid of rank 4 generates a different semigroup variety
than the semigroup of upper triangular tropical matrices of dimension 5.

In the final chapter, for all n ∈ N, we construct a faithful representation of the
stylic monoid of rank n by unitriangular tropical matrices of dimension n+1. We then
show that the stylic monoid of rank n satisfies the exact same semigroup identities as
the semigroup of unitriangular tropical matrices of dimension n+1. Next, we consider
involution semigroups, showing that the faithful morphism extends to involution semi-
groups. We show that the stylic monoid of rank n with involution is finitely based if
and only n = 1. Finally, we show that, in contrast to the non-involution case, the stylic
monoid of rank n with involution and the semigroup of unitriangular tropical matrices
of dimension n+ 1 with involution satisfy different involution semigroup identities.
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Chapter 1

Introduction

1.1 Background

Tropical mathematics is a rapidly growing branch of mathematics that focuses on

studying the tropical semiring, T. The tropical semiring is the real numbers, aug-

mented with a −∞ element, with two operations, tropical addition, and tropical mul-

tiplication, which are given by maximum and classical addition respectively. Despite

tropical mathematics being a relatively new area of research, only being introduced in

1962 by Cuninghame-Green [CG62], and in 1978 by Imre Simon [Sim78], it has seen

a large amount of interest [Pin98, Sim88, Sim94].

The tropical semiring has influenced many fields of mathematics including, schedul-

ing [Kri17], optimisation [Kri15], and cryptography [APM21]. However, its most sig-

nificant impact has been in algebraic geometry, where tropical geometry has emerged

as a substantial area of research, with many new developments and applications

[MS21, RGST05, Spe05]. Tropical geometry allows one to construct a “combinatorial

shadow” of an algebraic variety, which retains important combinatorial and geometric

information, providing many tools to understand and study the algebraic variety.

In this thesis, we study the properties of multiplicative semigroups of matrices

over semirings, with a particular emphasis on matrices over the tropical semiring.

An interesting question to ask about a semigroup is, which semigroup identities are

satisfied by the semigroup? A semigroup variety is a class of all semigroups which

satisfy some given set of semigroup identities. So equivalently, we can ask, which

semigroup varieties a semigroup is contained in? One reason these questions are of

8
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significant interesting is due to a key result, Birkhoff’s HSP Theorem, which says the

following.

Theorem 1.1.1 (Birkhoff’s HSP Theorem [Bir35]). A class of semigroups is a semi-

group variety if and only if it is closed under taking homomorphic images, subsemi-

groups, and arbitrary direct products.

This theorem is more general; it can be extended to apply to abstract algebras

rather than just semigroups. However, in this thesis, we mainly only consider varieties

over semigroups so we give the restricted version.

From the above theorem, we can see that for a semigroup of tropical matrices, un-

derstanding the semigroup identities that it satisfies and the variety it generates allows

us to understand the homomorphic images, subsemigroups, and direct products of the

semigroup. In this way, semigroup identities provide us with a means to determine

which semigroups can be faithfully represented by a given tropical matrix semigroup.

Research into the topic of representations, identities, and varieties for tropical

matrix semigroups began in [IM09], in which Izhakian and Margolis showed that the

bicyclic monoid has a faithful semigroup representation by upper triangular matrices

over the tropical semiring [IM09, Theorem 4.4]. This is particularly interesting as the

bicyclic monoid cannot be faithfully represented by matrices over a field. For those

with a background in the representation theory of semigroups, this can be seen as the

full matrix semigroup over any field is semisimple [CP61, Theorem 5.5].

In the same paper [IM09], Izhakian and Margolis also showed that not only is

the bicyclic monoid represented by UT2(T), the monoid of 2 × 2 upper triangular

matrices over the tropical semiring, but the monoid UT2(T) satisfies Adian’s identity

abba ab abba = abba ba abba, which was shown to be satisfied by the bicyclic monoid

by Adian [Adi66, Chapter IV, Theorem 2]. Further, they showed that replacing each

a and b in Adian’s identity with a2 and b2 respectively gives an identity satisfied by

M2(T).

This paper sparked the idea that the multiplicative semigroup of matrices over

the tropical semiring could be used as a carrier for semigroup representations of semi-

groups that cannot be faithfully represented by matrices over any field, like the bicyclic

monoid. Since then there have been many more semigroups and monoids shown to be
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representable by matrices over the tropical semiring, most notably the plactic monoid

of rank n for each n ∈ N [JM21].

The plactic monoid was first described implicitly by Schensted as a way of finding

the maximal length of a nondecreasing subsequence of a given word [Sch61]. Knuth

then found a set of defining relations for the plactic monoid, referred to as the Knuth

relations [Knu70] and subsequently Lascoux and Schützenberger [LS81] carried out a

systematic study of the plactic monoid. Since then, it has been shown to be a relevant

algebraic structure to many different mathematical fields, and as such has been widely

studied [CGM15, HM17, Lop16].

In this thesis, we will only be concerned with plactic monoids of finite rank, that

is, the finitely generated plactic monoids. The plactic monoid of rank n can be defined

in many different ways, the simplest of which is as follows. For n ∈ N, we define the

plactic monoid of rank n, Pn, to be the monoid generated by the set {1, . . . , n} which

satisfies the Knuth relations:

bca = bac for all 1 ≤ a < b ≤ c ≤ n,

cab = acb for all 1 ≤ a ≤ b < c ≤ n.

There also exists a more combinatorial description of the plactic monoid of rank n.

We say a Young diagram is a finite left-aligned array of equally-sized boxes in which

the row above has an equal number or fewer boxes than the row below. Note that

in some research areas, such as representation theory, the rows instead have equal or

more boxes than the row below. However, we give the standard definition used in the

literature on the plactic monoid.

From a Young diagram, we define a semistandard Young tableau to be a Young

diagram with a number from {1, . . . , n} in each box such that the columns are strictly

decreasing from top-to-bottom and the rows are weakly increasing from left-to-right.

Given a Young tableau, the column reading of a tableau is the word obtained by

reading the letters in the tableau, reading the columns from left-to-right and each

column from top-to-bottom. For example,

5
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has the column reading 5314243.

Given a word over the alphabet Σ = {1, . . . , n}, we can use Schensted’s insertion

algorithm [Sch61] on that word to construct the corresponding Young tableau. We

then say the plactic monoid of rank n is the quotient of the free monoid Σ∗ by the

relation ≡ where u ≡ v if and only if u and v construct the same semistandard Young

tableau when Schensted’s insertion algorithm is applied to them. We then define

the multiplication of Young tableaux T and T ′ to be given by applying Schensted’s

insertion algorithm to the concatenation of the column readings of T and T ′.

The study of the semigroup identities satisfied by plactic monoids has only recently

begun. It was shown by Jaszuńska and Okniński [JO11] that the Chinese monoid of

rank 2, which is isomorphic to the plactic monoid of rank 2, satisfied Adian’s identity,

abbaababba = abbabaabba, and Kubat and Okniński [KO15] showed that the plactic

monoid of rank 3 satisfied the semigroup identity uvvuvu = uvuvvu where u and v

are the left and right side of Adian’s identity respectively.

Refocusing on the semigroup of upper triangular matrices over the tropical sem-

iring, independently Okniński [Okn15], and Izhakian [Izh13, Izh16a, Izh16b], found

(different) sets of semigroup identities satisfied by UTn(T) for each n ∈ N. Then,

Daviaud, Johnson, and Kambites [DJK18] found an algorithm to check whether a

semigroup identity is satisfied by UTn(T) running in time polynomial in the length of

the identity and size of the alphabet.

Importantly the identity shown to be satisfied by the plactic monoid of rank 3 by

Kubat and Okniński [KO15], is of a similar form to the identity for UT3(T) found by

Okniński [Okn15], and can be easily shown to be satisfied by UT3(T). This inspired

the question of whether there exists a faithful tropical representation of the plactic

monoid of rank 3 by UT3(T).

This was answered, independently by Izhakian [Izh19] and Cain, Klein, Kubat,

Malheiro, and Okniński [CKK+17], as they found different faithful representations of

the plactic monoid of rank 3 by UT3(T)×UT3(T). However, in both cases, the obvious

generalisation to a representation of the plactic monoid of rank 4 by UT4(T)×UT4(T)

is not faithful. Johnson and Kambites [JM21] produced a faithful representation of

the plactic monoid of rank n for all n ∈ N, by M2n(T). This representation was used

to show that every identity satisfied by the plactic monoid of rank n is satisfied by
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UTn(T) and the plactic monoid of rank n satisfies every identity satisfied by UTd(T)

where d =
⌊
n2

4
+ 1
⌋
. Cain, Klein, Kubat, Malheiro, and Okniński [CKK+17] showed

that the shortest identity satisfied by the plactic monoid of rank n has length greater

than n, and hence no single semigroup identity is satisfied by every plactic monoid of

finite rank. Thus, using the representation of the plactic monoid given by Johnson and

Kambites [JM21], we can deduce that there is no single semigroup identity satisfied

by UTn(T) or Mn(T) for all n ∈ N.

Recently, a number of “plactic-like” monoids have been shown to be representable

by matrices over semirings. Generally, the term “plactic-like” is used for monoids

that are defined by an algorithm that takes a word and constructs some combinatorial

object, where we say that two words over some alphabet are equal in the monoid if they

construct the same combinatorial object when the algorithm is applied to them. For

example, Cain, Johnson, Kambites and Malheiro [CJKM22] found representations for

the following finite rank plactic-like monoids; the hypoplactic monoid; the stalactic

monoid; the taiga monoid; the sylvester monoid; the baxter monoid; and the right

patience sorting monoid.

Initially, the study of the semigroup identities satisfied by semigroups of matrices

over the tropical semiring was restricted to the semigroup of upper triangular matrices

and the full matrix semigroup in dimension 2. However, this has now been extended

to other semigroups of matrices over the tropical semiring, such as unitriangular ma-

trices and the full matrix semigroup. In the unitriangular case, Johnson and Fenner

[JF19] extended the results of Daviaud, Johnson, and Kambites [DJK18] to unitrian-

gular matrices, showing that the semigroup of unitriangular tropical matrices, Un(T),

exactly satisfies semigroup identities in which both sides contain the exact same set of

subsequences of length at most n− 1. For the full matrix semigroup of tropical matri-

ces, Shitov [Shi18] showed that M3(T) satisfied a semigroup identity. Building on this

work, Izhakian and Merlet [IM18], showed that Mn(T) satisfies semigroup identities

for each n ∈ N.

Recently, the study of semigroup identities of tropical matrices has been extended

to matrices over the supertropical semiring, ST, a non-idempotenet generalisation of

T. It was shown, by Izhakian and Merlet [IM22], that for all n ∈ N, UTn(ST) and

UTn(T) generate the same semigroup variety and that Mn(ST) and Mn(T) generate
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the same semigroup variety. However, by Johnson and Fenner [JF19], it is known that

Un(ST) and Un(T) generate different semigroup varieties as the multiplicative identity

elements of ST and T generate non-isomorphic semirings.

1.2 Structure of the Thesis

This thesis develops the theory of representations of semigroups over the tropical sem-

iring by studying properties of semigroups of matrices, including: weak permutability,

strong permutability, presentations, growth, and semigroup identities. To do this we

break down this thesis into 8 chapters, including this introduction, with each chap-

ter investigating a number of these properties that help in understanding representa-

tions over the tropical semiring and the semigroup identities satisfied by semigroups

of matrices over the tropical semiring. The results in Chapters 3 and 4 were pub-

lished together in a paper co-authored with Kambites [AK22], Chapters 5 and 6 were

solo-authored and plan to be submitted to publication, Chapter 7 was published in

a solo-authored paper [Air22], and Chapter 8 was published in a paper co-authored

with Ribeiro [AR23]. In this section we identify the main contributions of the thesis

and the overall structure.

We begin in Chapter 2 by giving the necessary notation and definitions for this

thesis. In Chapter 3, we look at the finiteness properties weak permutability and

strong permutability. These properties are preserved by subsemigroups and homomor-

phic images. Hence, suppose a semigroup of matrices is weakly permutable or strongly

permutable then, if there exists a faithful representation of a semigroup T by the semi-

group of matrices, we must have that T is weakly permutable or strongly permutable

respectively. In the weak permutability case, we show the following.

Proposition. Let S be a commutative bipotent semiring. Then Mn(S) is weakly per-

mutable for all n ∈ N.

Thus, an instant corollary of this is that only weakly permutable semigroups can

be faithfully represented by matrices over any commutative bipotent semiring. For

strong permutability, if we add the additional requirement that the semiring S has

elements of unbounded multiplicative order, then we obtain thatMn(S) is only strongly

permutable in trivial cases.
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Theorem. Let S be a bipotent semiring with elements of unbounded multiplicative

order. Then, the semigroupsMn(S) and UTn(S) are not strongly permutable for n ≥ 2.

The semigroup Un(S) is strongly permutable if and only if n ≤ 2.

The matrix semigroups M1(S) and UT1(S) are isomorphic to the multiplicative

semigroup of S, so if we additionally assume that S is commutative, we obtain that

Mn(S) and UTn(S) are permutable if and only if n = 1. This shows the stark contrast

between weak and strong permutability.

In Chapter 4, we introduce a new class of semirings, truncated tropical semirings,

and give a complete description of when two truncated tropical semirings are isomor-

phic. As discussed above, if S is a commutative bipotent semiring with unbounded

multiplicative order, then we know exactly when Mn(S) and UTn(S) are strongly

permutable. However, the truncated tropical semirings T[x,y] only has unbounded

multiplicative order if x = 0. So, in this section, we completely classify when the

full matrix semigroup over a truncated tropical semiring is strongly permutable, as

summarised in the following theorem.

Theorem. The semigroups Mn(T[x,y]) and UTn(T[x,y]) are strongly permutable if and

only if one of the following holds

(i) n = 1;

(ii) n = 2 and x ̸= 0;

(iii) n ≥ 3 and 0 ̸= 2x ≤ y.

In Chapter 5, we focus on generating sets and presentations. We show that, for

all n ∈ N, UTn(Zmax) is a finitely presented monoid, contrasting to the full matrix

case, where M3(Zmax) is not finitely generated. More generally, we prove the following

theorem.

Theorem. Let S be an infinite commutative anti-negative unital semiring with a zero

and no zero-divisors. Then, the monoid M3(S) is not finitely generated.

It follows from this that if S is an anti-negative semifield with a zero then M3(S)

is finitely generated if and only if S is the two-element boolean semifield.
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In Chapter 6, we look at the growth of finitely generated subsemigroups. We

produce an upper bound on the growth of finitely generated subsemigroups of matrix

semigroups allowing us to deduce that we cannot represent any finitely generated

semigroup with growth greater than the bound. In particular, we consider the case

of finitely generated subsemigroups of Mn(S) where S is a commutative bipotent

semiring, and show the following.

Proposition. Let S be a commutative bipotent semiring and T = ⟨X⟩ be a finitely

generated subsemigroup of Mn(S). If the growth of the multiplicative semigroup gen-

erated by the entries of the matrices in X is bounded above by a polynomial of degree

l ∈ N0, then, the growth function of T is bounded above by a polynomial of degree ln2.

It follows from this that in the case where S = Qmax and T is a finitely generated

subsemigroup ofMn(Qmax), the growth function of T is bounded above by a polynomial

of degree n2.

In Chapter 7, we focus on semigroup identities satisfied by UTn(T), Mn(T), and P4.

To understand the semigroup identities satisfied by a semigroup, it is equally important

to understand the semigroup identities not satisfied by the semigroup. To this end,

we prove a key lemma which allows us to easily construct semigroup identities that

are not satisfied by UTn+1(T). Importantly, the conditions of this lemma are broad

enough that we are able to construct semigroup identities satisfied by UTn(T) which

also satisfy the conditions of the lemma and hence are not satisfied by UTn+1(T).

Therefore, from this, we can deduce that UTn(T) and UTn+1(T) generate different

semigroup varieties for all n ∈ N.

Theorem. For all n ∈ N, there exists an identity satisfied by UTn(T) but not satisfied

by UTn+1(T).

The semigroup identities satisfied by Mn(T) are much less well understood, so we

are unable to prove a theorem as general as above. However, if we only consider matrix

semigroups of prime dimension, we can show that if p is a prime, then Mp−1(T) and

Mp(T) generate different semigroup varieties.

Theorem. Let p be a prime. Then there exists an identity satisfied by Mp−1(T) but

not by Mp(T).
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By a result of Johnson and Kambites [JM21], the variety generated by UT4(T) is

contained in the variety generated by P4 which is contained in the variety generated

by UT5(T). It remains an open question whether UTn(T) and Pn generate the same

semigroup variety.

So, we consider the semigroup identities satisfied by the plactic monoid of rank 4.

In contrast to the techniques used above, we show that P4 generates a different variety

to UT5(T) by finding new semigroup identities satisfied by the plactic monoid of rank

4 which are shorter than those previously known. We can then show that we are able

to construct a semigroup identity of this form which is not satisfied by UT5(T).

Corollary. There exists an identity satisfied by P4 but not satisfied by UT5(T).

Thus, we have shown that the variety generated by P4 is strictly contained in the

variety generated by UT5(T).

Finally, in Chapter 8, we focus on a plactic-like monoid recently introduced, the

stylic monoid [AR22]. We show that the stylic monoid of rank n, styln, can be faithfully

represented by (n + 1) × (n + 1) unitriangular matrices over the tropical semiring

Un+1(T), which provides a complete classification of the semigroup identities satisfied

by styln:

Theorem. For each n ∈ N, styln and Un+1(T) satisfy the exact same set of semi-

group identities, that is, u = v is satisfied by styln if u and v contain the exact same

subsequences of length at most n. Thus, V(styln) ⊊ V(styln+1) for all n ∈ N.

We then introduce the concept of an involution semigroup and show that we are able

to extend the faithful representation of styln by Un+1(T), to involution semigroups, that

is, there is a faithful morphism from (styln, *) to (Un+1(T), ⋆). However, in contrast to

the semigroup case, we show that for n ≥ 2, (styln, *) and (Un+1(T), ⋆) satisfy different

involution semigroup identities.

Theorem. For each n ≥ 2, there exists an identity satisfied by (styln, *) but not

satisfied by (Un+1(T), ⋆).



Chapter 2

Preliminaries

In this section, we give a basic introduction to semigroups, semirings, and universal

algebra as applied to semigroups and monoids. We write N for the set of natural

numbers excluding 0 and N0 for the natural numbers including 0. For n ∈ N, we write

[n] for the discrete interval N ∩ [1, n], and Sn for the symmetric group on the set [n].

2.1 Semigroups and Semirings

Semigroups and semirings are the fundamental algebraic structure on which this thesis

is based. Both semigroups and semirings have been defined in many different ways

which have evolved over time. Here we give a modern definition of a semigroup which

we use throughout.

Definition 2.1.1. A semigroup (S, ·) is a non-empty set S with an associative binary

operation · on S.

Definition 2.1.2. A monoid is a semigroup (S, ·) with an identity element, that is,

in which there exists a unique 1 ∈ S such that s · 1 = 1 · s = s for all s ∈ S.

Definition 2.1.3. A group is a monoid (S, ·) in which every element has an inverse,

that is, for all s ∈ S there exists a unique s−1 ∈ S such that s · s−1 = s−1 · s = 1.

By the three previous definitions, we can see that semigroups and monoids can

be seen to be generalisations of groups. We will often use concatenation to denote

multiplication in a semigroup.

17
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Similarly to groups, rings have been generalised in many ways, in this thesis we

focus on semirings, which we define in the following way.

Definition 2.1.4. A semiring (S,+, ·) is a set S with two associative binary operations

+ and · such that (S,+) is a commutative semigroup and (S, ·) is a semigroup, and

they satisfy the following distributive property: for all a, b, c ∈ S

a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

Note that this definition of semirings differs from some other definitions of a sem-

iring in the literature, in that we do not require our semirings to have an identity

element or a zero element. However, it is sometimes useful to specify when a semiring

has an identity or a zero.

Definition 2.1.5. We say a semiring (S,+, ·) is unital if (S, ·) is a monoid and say S

has a zero if there exists 0 ∈ S such that 0 · s = s · 0 = 0 and s+ 0 = 0 + s = s for all

s ∈ S.

We denote the identity and zero of S, where they exist, by 1S and 0S respectively.

Definition 2.1.6. A subsemiring is a subset of a semiring closed under addition and

multiplication; note that even if S has zero and/or identity elements, subsemirings are

not required to contain them.

Definition 2.1.7. For a semiring S, we write S∗ = S if S does not have a zero, and

S∗ = S \ {0S} otherwise.

Definition 2.1.8. A semiring (S,+, ·) is commutative if (S, ·) is a commutative semi-

group.

Definition 2.1.9. A semifield (S,+, ·) is a commutative semiring, in which (S∗, ·) is

a group.

As stated above, we do not require semirings to have a zero or an identity element.

However, it is sometimes useful to adjoin a zero or identity element to our semiring.

Definition 2.1.10. Given a semiring S, let S0 be the semiring with a zero obtained by

adjoining a zero if necessary, that is, S0 = S if S has a zero element and S0 = S ∪{0}

otherwise, where 0s = s0 = 0 and s+ 0 = 0 + s = s for all s ∈ S0.
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As in the above definition, it is easy to adjoin a zero to any semiring, however the

same cannot be said for adjoining an identity element. In fact, there exist semirings

in which no identity can be adjoined as every assignment of s + 1 and 1 + s gives a

contradiction. Notwithstanding the impossibility in general of adjoining an identity

element, it is sometimes convenient to introduce “the identity” as a purely notational

device.

Definition 2.1.11. Given a semiring S, let S1 = S if S has an identity element and

S1 = S ∪ {1} otherwise, where 1s = s1 = s for all s ∈ S1 and 1 + s and s + 1 are

undefined for all s ∈ S unless S has a zero, then we define 1 + 0 = 0 + 1 = 1. Note

that this is not a semiring, as addition is only partially defined.

For a semiring S, we write (S01) to denote (S0)1. We now introduce two properties

of semirings which hold in many of the semirings which we discuss throughout this

thesis.

Definition 2.1.12. A semiring S is called anti-negative if for all x, y ∈ S0, x+y = 0S

if and only if x = 0S and y = 0S.

If we restrict to anti-negative semifields rather than semirings, then these are ex-

actly the semifields which are not fields [GJN20, Lemma 2.1].

Definition 2.1.13. A semiring S is called bipotent if for all x, y ∈ S, x+ y ∈ {x, y}.

All bipotent semirings are anti-negative, but the converse is not true even in the

case of semifields, as such, there exist semifields which are not fields and are not

bipotent. We now give some examples of bipotent semirings, which we use heavily

throughout.

Definition 2.1.14. Let T = (R∪{−∞},max,+) be the tropical semifield, that is, the

real numbers augmented with −∞ with binary operations maximum as its addition

and addition as its multiplication.

The tropical semiring admits isomorphic manifestations as the min-plus semifield

(the real numbers augmented with +∞ under minimum and classical addition) and

the max-times semifield (the non-negative real numbers augmented with −∞ under

maximum and classical multiplication).
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Moreover, we define the tropical integer semiring Zmax = T∩ (Z∪ {−∞}) and the

tropical rational semiring Qmax = T ∩ (Q ∪ {−∞}).

Definition 2.1.15. Let B = ({0, 1},max,min) be the boolean semifield, that is, {0, 1}

with binary operations maximum as its addition and minimum as its multiplication.

Note that B is isomorphic to the subsemiring of T given by {−∞, 0}.

Given a semiring, we can define a matrix semigroup. To do this, we take a set of

matrices with entries from the semiring which is closed under matrix multiplication

and take matrix multiplication to be the semigroup operation. We introduce three

main examples of matrix semigroups that can be defined over a semiring which we use

throughout.

Definition 2.1.16. Let S be a semiring. Let Mn(S) denote the semigroup of all n×n

matrices with operation given by matrix multiplication. We call Mn(S) the full matrix

semigroup of n× n matrices over S.

Definition 2.1.17. Let S be a semiring. Let UTn(S) denote the semigroup of n ×

n upper triangular matrices with operation given by matrix multiplication. More

precisely, this is the subsemigroup of Mn(S0), of matrices A with Aij = 0 if i > j and

Aij ∈ S for i ≤ j. We call UTn(S) the matrix semigroup of n × n upper triangular

matrices over S.

Note that here, even if S does not have a zero element we can still define the upper

triangular matrix semigroup over S by using an adjoined zero below the diagonal.

Similarly to how we defined upper triangular matrix semigroups, we can define the

semigroup of unitriangular matrices over semirings with or without an identity or a

zero. We do this by adjoining a zero and an identity to S as we described above.

Note that despite defining over a structure with not all operations defined, enough are

defined in order to compute the matrix multiplication of unitriangular matrices.

Definition 2.1.18. Let S be a semiring. Let Un(S) denote the semigroup of n × n

unitriangular matrices with operation given by matrix multiplication. More precisely,

this is the subsemigroup of Mn(S01), of matrices A with Aij = 0 for i > j, Aij = 1

for i = j, and Aij ∈ S for i ≤ j. We call Un(S) the matrix semigroup of n × n

unitriangular matrices over S. (Note that even when S01 is not a semiring, UTn(S)

still forms a semigroup.)
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2.2 Universal Algebra

We now introduce the definitions relating to words, semigroup identities, and semi-

group varieties, giving a basic introduction to universal algebra as it relates to semi-

groups and monoids.

Definition 2.2.1. Let Σ be a set of letters, we say Σ is an alphabet, and we call a

finite (possibly empty) string of letters in Σ a word.

Definition 2.2.2. Denote the free monoid on Σ by Σ∗, that is, the monoid of all

(possibly empty) words over Σ under concatenation and denote the free semigroup on

Σ by Σ+, that is, the semigroup of all non-empty words over Σ under concatenation.

Here we introduce a number of definitions and notations that we use when referring

to words.

Definition 2.2.3. Let Σ be an alphabet. For u, v ∈ Σ∗ and a ∈ Σ, we write

(i) |u| for the length of u,

(ii) |u|a for the number of times the letter a appears in u,

(iii) u(i) to denote the ith letter of u,

(iv) supp(u) for support of u, that is, the subset of Σ of letters which occur in u,

(v) u is a suffix of v if there exists v1 ∈ Σ∗ such that v1u = v,

(vi) u is a prefix of v if there exists v2 ∈ Σ∗ such that uv2 = v,

(vii) v≤i for the prefix of the first i letters of v,

(viii) u is a factor of v if there exists v1, v2 ∈ Σ∗ such that v = v1uv2,

(ix) u is a subsequence of v if there exist u1, . . . , un ∈ Σ and v′1, . . . , v
′
n+1 ∈ Σ∗

such that u = u1 · · ·un and v = v′1u1v
′
2 · · · v′nunv′n+1 and denote the subsequence

u = u1 · · ·un by its sequence of letters u1, . . . , un.

Definition 2.2.4. Let S be a semigroup and w ∈ {a, b}∗; then for x, y ∈ S, we write

w(a 7→ x, b 7→ y) to denote ϕ(w) where ϕ : {a, b}∗ → S is the semigroup morphism
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defined by sending a 7→ x and b 7→ y. In the case where S = Ω+, for some alphabet

Ω, we write w[a 7→ x, b 7→ y], rather than w(a 7→ x, b 7→ y), to indicate that w[a 7→

x, b 7→ y] is again a word.

Definition 2.2.5. Let u, v ∈ Σ+, such that u ̸= v. We say “u = v” is a (non-trivial)

semigroup identity. The identity u = v is satisfied by a semigroup S, if ϕ(u) = ϕ(v),

for all semigroup morphisms ϕ : Σ+ → S.

The following definition is from universal algebra, but we state it only in the case

of semigroups, as this is the main domain of application in this thesis.

Definition 2.2.6. The class of all semigroups that satisfy a given set of semigroup

identities is called a semigroup variety. We say the semigroup variety generated by a

semigroup S, denoted V(S), is the set of all semigroups that satisfy all the semigroup

identities satisfied by S.

For example, we say that a semigroup S is contained in a variety generated by a

semigroup T , if S satisfies every semigroup identity satisfied by T .



Chapter 3

Permutability of Matrices over

Bipotent Semirings

3.1 Introduction

Recall, a semiring is called bipotent if x + y is always either x or y. Commutative

bipotent semirings appear naturally in many areas of mathematics; for example, the

boolean semiring has important applications in computer science [Gol99], while trop-

ical and related semirings have found applications in areas as diverse as algebraic

geometry, geometric group theory, automata and formal languages, and combinatorial

optimization and control theory [BBRT12, CGQ99, Mik03]. Many of the problems

which arise naturally in these areas involve finite systems of linear (over the semiring)

equations and can therefore be formulated in terms of matrix operations; understand-

ing the structure of matrix algebra over these semirings is thus vital for applications,

and much recent research has been devoted to this topic.

In this chapter, we focus on two algebraic finiteness conditions for semigroups of

matrices over bipotent semirings: weak permutability and permutability. A semigroup

S is called weakly permutable if there exists a k ≥ 2 such for any s1, . . . , sk ∈ S there

exist permutations σ ̸= τ of {1, . . . , k} such that sσ(1)sσ(2) · · · sσ(k) = sτ(1)sτ(2) · · · sτ(k).

A semigroup S is called permutable (or sometimes strongly permutable) if there ex-

ists a k ≥ 2 such for any s1, . . . , sk ∈ S there exists a non-identity permutation σ of

{1, . . . , k} such that sσ(1)sσ(2) · · · sσ(k) = s1s2 · · · sk. We note here a few key facts about

these properties; for a comprehensive introduction the reader is directed to [Okn91,

23
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Chapter 19]. Notice that every strongly permutable semigroup S is weakly permutable

by taking τ to be the identity permutation. Every finite semigroup is clearly strongly

permutable, as is every commutative semigroup. Indeed, weak and strong permutabil-

ity may be thought of as very weak commutativity conditions. It is easy to see that

if a semigroup S is weakly [strongly] permutable then every subsemigroup of S and

every homomorphic image of S is also weakly [strongly] permutable. Permutability

conditions are of interest in general because of connections with polynomial identi-

ties in semigroup algebras [Okn91, Chapter 19], and are lent additional importance

in these particular semigroups by interest in representations over semirings: any per-

mutability condition satisfied by matrix semigroups poses an obstruction to faithfully

representing semigroups not satisfying the condition.

We begin, in Section 3.2, by establishing some structural results about commutative

bipotent semirings which will be useful in our subsequent analysis. These include a

simple classification of the monogenic examples, which may be of independent interest.

In Section 3.3 we proceed to look at weak permutability, proving that every full

matrix semigroup, and hence every matrix semigroup, over a commutative bipotent

semiring is weakly permutable. This fact was first stated by d’Alessandro and Pasku

[dP03] but there is an error (described below) in their proof.

In Section 3.4 we turn our attention to (strong) permutability. If the semiring has

an element of infinite multiplicative order (or more generally, elements of unbounded

multiplicative order) we prove (Theorem 3.4.6) that the full matrix semigroup and

upper triangular matrix semigroups are not strongly permutable in any dimension

greater than 1. This applies in particular to the tropical and many related semir-

ings. On the other hand, semirings with bounded multiplicative order exhibit a range

of behaviours, with apparently similar semirings sometimes differing quite dramati-

cally. Matrix semigroups over chain semirings, which are multiplicatively as well as

additively idempotent, are strongly permutable in all dimensions (Corollary 3.4.10).

This chapter is based on joint work with my supervisor, Mark Kambites [AK22].
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3.2 Commutative Bipotent Semirings

A bipotent semiring admits a natural linear order defined by x ≤ y if and only if x+y =

y, and the distributive laws mean exactly that multiplication respects this order, giving

rise to a totally ordered semigroup. Conversely, every totally ordered semigroup gives

rise to a bipotent semiring, by taking the semigroup operation as multiplication and

defining the sum to be maximum with respect to the order. Bipotent semirings are

thus, at one level, the same thing as totally ordered semigroups, but the two viewpoints

lead naturally to rather different questions; in particular the semiring viewpoint leads

to the study of linear algebra and matrices. Our main interest is in commutative

bipotent semirings, although some of our results will extend to the non-commutative

case.

As discussed previously, some authors insist that a semiring should have a zero

and/or an identity element, but most of our results will not require these. In fact it

is easy to see that any commutative bipotent semiring S without a zero element can

have one “adjoined”, that is, can be embedded in a commutative bipotent semiring

with one extra element 0 which is a zero, S0. On the other hand, the corresponding

statement is not true for identity elements:

Proposition 3.2.1. There exists a commutative bipotent semiring S without identity

which cannot be embedded in any bipotent semiring with identity.

Proof. Let S = {a, b, c} be the commutative bipotent semiring such that c ≥ b ≥ a,

all elements are multiplicatively idempotent, and all non-idempotent products are b.

It is straightforward to verify that the given operations respect the associative and

distributive laws. Now suppose we can embed S in a bipotent semiring with identity

1, and consider where 1 lies in the order. If 1 > b, then a(1 + b) = a1 = a, but by

the distributive law a(1 + b) = a1 + ab = a + b = b giving a contradiction. On the

other hand, if 1 < b, then c(1 + b) = cb = b, but similarly by the distributive law

c(1 + b) = c1 + cb = c+ b = c, giving a contradiction. Thus, we cannot embed S into

a bipotent semiring with identity.

The above proposition can be restated in terms of totally ordered commutative

semigroups and totally ordered monoids as follows.
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Corollary 3.2.2. There exists a totally ordered commutative semigroup that does not

embed in any totally ordered monoid.

This example motivates the natural question to ask when one can adjoin an identity

and obtain a commutative bipotent semoiring.

Question 3.2.3. When can a commutative bipotent semiring S without identity be

embedded in commutative bipotent semiring with identity?

If a ∈ S then we write ⟨a⟩ for the (monogenic) subsemiring of S generated by a

(that is, the intersection of all subsemirings containing a). If S is bipotent then ⟨a⟩

coincides with the multiplicative subsemigroup of S generated by a, in other words,

the set of positive powers of a. The (multiplicative) order of a is defined to be the

cardinality of the set of positive powers of a, which when S is bipotent is the cardinality

of ⟨a⟩.

We will consider in particular the following examples of commutative bipotent

semirings; some of these merit study due to external applications, some arise naturally

in the general theory, and others are included to illustrate the full range of possible

behaviours:

• The tropical (or max-plus) semifield T; it has applications in numerous areas

including biology [BBRT12], control theory [CGQ99] and algebraic geometry

[Mik03].

• The tropical natural number semiring N∗
max is the subsemiring of T consisting of

natural numbers; it has applications in areas such as formal language theory and

automata theory [KLMP04]. The ∗ is used to denote that the semiring does not

contain a zero element.

• The tropical negative natural number semiring N∗
min is the subsemiring of T

consisting of the negative integers. (It is isomorphic to the natural numbers

under minimum and classical addition.)

• For k ∈ N the truncated tropical natural number semiring [k]∗max consists of the

set [k] = {1, . . . , k} with operations maximum and k-truncated addition given

by ab = min(a+ b, k) where + here denotes classical addition.
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• For k ∈ N the truncated tropical negative natural number semiring [k]∗min consists

of the set {−k, . . . ,−1} with operations maximum and (−k)-truncated addition

given by ab = max(a + b,−k). It is isomorphic to [k] under minimum and k-

truncated addition. (Note that [1]∗min and [1]∗max are both trivial and therefore

isomorphic to each other.)

• Any linearly ordered set admits the structure of a commutative bipotent semi-

ring, with maximum as addition and minimum as multiplication. We call these

chain semirings. A prominent example is the 2-element chain semiring, the

boolean semifield, which is isomorphic to the semiring with two elements True

and False with operations “or” and “and”, and has natural applications in logic

and computer science [Gol99].

For any semiring S and n ∈ N, our principal interest is in the structure of UTn(S)

and Un(S) as multiplicative semigroups. Note that M1(S) = UT1(S) is isomorphic

to the multiplicative semigroup of S, while U1(S) is the trivial monoid and U2(S) is

isomorphic to the additive semigroup of S. Note that Mn(S) will typically be neither

commutative nor bipotent (even when S is both).

Lemma 3.2.4. Let S be a bipotent semiring. If an element x ∈ S has finite multi-

plicative order (that is, has finitely many distinct powers) then it has period 1 (that is,

xk = xk+1 for some k ∈ N).

Proof. Let x ∈ S have finite multiplicative order. Then there exist r,m ∈ N such that

xm = xm+r. If r = 1 we are done, so assume r > 1. As S is bipotent we have that

the sum xm + · · · + xm+r−1 = xk for some k between m and m + r − 1. But now by

distributivity and commutativity of addition,

xk+1 = x(xm + · · · + xm+r−2 + xm+r−1)

= xm+1 + · · · + xm+r−1 + xm

= xk.

The following lemma describes all the possible bipotent semirings generated by a

single element:
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Lemma 3.2.5. Let S be a bipotent semiring. If a ∈ S and ⟨a⟩ is the monogenic

subsemiring generated by a, then

⟨a⟩ ∼=



N∗
max if a has infinite order and a < a2;

N∗
min if a has infinite order and a2 < a;

[k]∗max if a has order k ∈ N and a ≤ a2;

[k]∗min if a has order k ∈ N and a2 < a.

Proof. First suppose a ≤ a2. Define a map

ϕ : N∗
max → ⟨a⟩, n 7→ an.

This map is surjective (because of our observation that, in a bipotent semiring, ⟨a⟩

coincides with the multiplicative semigroup generated by a) and preserves multiplica-

tion because of basic properties of powers. Now let n,m ∈ N and suppose without loss

of generality that n ≥ m. Since a ≤ a2 we have ak ≤ ak+1 for all k (because the total

order is compatible with multiplication) and hence am ≤ an (because m ≤ n and the

order is transitive). Therefore

ϕ(max(n,m)) = ϕ(n) = an = an + am = ϕ(n) + ϕ(m).

If a has infinite order then ϕ is injective, and we have shown that it is an isomorphism

from N∗
max to ⟨a⟩.

If a has finite order k then let φ be the restriction of ϕ to the subset [k]. Clearly φ

is a bijection. Since the semiring addition (in other words, the order) on [k]∗max is the

restriction of that on N∗
max, the fact that φ preserves semiring addition follows from

the fact that ϕ does. Now let n,m ∈ N and suppose without loss of generality that

n ≥ m. Then

φ(n+m) = an+m = anam = φ(n)φ(m)

for all n,m ∈ N. The first equality here holds because if n + m ≥ k then an+m = ak,

as a has period 1 by Lemma 3.2.4. Hence, φ is an isomorphism between [k]∗max and

⟨a⟩.

Similarly if a2 ≤ a then we define

ψ : N∗
min → ⟨a⟩, n 7→ a−n.
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Again ψ is surjective. This time for negative integers n ≥ m we use a2 ≤ a to deduce

that a−m ≤ a−n so

ψ(max(n,m)) = ψ(n) = a−n = a−n + a−m = ψ(n) + ψ(m).

and ψ preserves semiring addition. If a has infinite order then ψ is injective and

preserves the semiring multiplication, so it is an isomorphism between N∗
min and ⟨a⟩.

If a has finite order k then an entirely similar argument to that above shows that the

restriction of ψ to −[k] is an isomorphism between [k]∗min and ⟨a⟩.

3.3 Weak Permutability

In this section we briefly consider weak permutability, showing that any semigroup of

matrices over a commutative bipotent semiring always has this property. This result

was first stated by d’Allesandro and Pasku [dP03], but Taylor [Tay17] identified an

error in their proof. The error and its consequences are discussed below. Our proof is,

nonetheless, inspired by their method.

Proposition 3.3.1. Let S be a commutative bipotent semiring. Then Mn(S) is weakly

permutable for all n ∈ N.

Proof. Fix n ∈ N. Let Γn denote the complete directed graph (with loops) on the set

[n]. We identify edges in Γn with pairs in [n] × [n] in the obvious way; in particular

we will index the entries of n× n matrices by edges in Γn.

Let Π denote the set of n × n matrices whose entries are edges from Γn (that is,

pairs from [n] × [n]). Let c = |Π| = n2n2
. Choose k large enough that k! > ck.

Consider a finite sequence of k matrices of size n × n over the semiring S, say

M1, . . . ,Mk. For a permutation σ in the symmetric group Sk, write

Mσ = Mσ(1)Mσ(2)Mσ(3) · · ·Mσ(k).

We must show that there are distinct permutations σ, τ ∈ Sk with Mσ = Mτ .

We define a function π : Sk → Π[k] (where Π[k] denotes the set of functions from [k]

to Π) as follows. For each σ ∈ Sk and each x, y ∈ [n], consider the (x, y) entry of the

matrix Mσ. It follows from the definition of matrix multiplication and the fact S is
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bipotent that there is at least one path p1, . . . , pk of length k from x to y in Γn where

pi are edges in Γn such that this entry is given by

(Mσ)x,y = (Mσ(1))p1(Mσ(2))p2 · · · (Mσ(k))pk . (3.1)

Choose any such path, and for each i ∈ [k] define the (x, y) entry of (π(σ)) (i) to be

the edge pσ−1(i) (that is, the edge indexing the entry of Mi which contributes in the

computation of the (x, y) entry of Mσ). Thus reordering the terms in (3.1) we have

(Mσ)x,y = (M1)(π(σ))(1)x,y(M2)(π(σ))(2)x,y · · · (Mk)(π(σ))(k)x,y

as S is commutative. But this means that Mσ is determined by π(σ).

The domain Sk of π has cardinality k! while the codomain Π[k] of π has cardinality

|Π|k = ck. Since k was chosen such that k! > ck there must be distinct permutations

σ, τ ∈ Sk such that π(σ) = π(τ), which by the previous paragraph means that Mσ =

Mτ .

We now discuss some details of proofs given in [dP03], referring to terminology and

notation as in [dP03]. The mistake in [dP03] lies in the proof of the first part of [dP03,

Proposition 3], where k is taken to be the smallest integer such that αkβ < k!. The

problem is that k was discussed prior to this point, and in fact played an implicit role

in the definition of the set C, the cardinality of which was in turn used to define α and

β. Thus, one is not necessarily free to choose k at this point without also changing α

and β. The claim that one may choose k with αkβ < k! implicitly assumes α and β to

be constant, when in reality they are functions of k and there is no immediate reason

to suppose that αkβ grows more slowly than k!.

We discuss briefly the impact upon the correctness of other results in [dP03]. The

second part of [dP03, Proposition 3] (which establishes the very important result that

finitely generated semigroups of tropical matrices have polynomial growth) is correct,

even though the proof ostensibly employs the same argument as the first part; the

erroneous section of the argument is not required in this part, and the values of α and

β (and hence also of δ and γ) here are independent of k so that the growth bound

obtained really is polynomial in k. The result [dP03, Proposition 4] is claimed to be

proved by “a slight generalisation” of the (erroneous) proof of [dP03, Proposition 3];

we believe a variation on the above proof technique can be used to establish this result,
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but we do not do this here as it is (not being concerned with bipotent semirings) rather

outside the scope of this thesis. The statement of [dP03, Proposition 5] is true: the

main proof given relies on [dP03, Proposition 4] and is therefore incomplete, but the

alternative proof via Gromov’s polynomial growth theorem, outlined in [dP03, Remark

3], is valid.

3.4 Strong Permutability

In this section we turn our attention to the stronger version of permutability. We shall

need the following result, which is trivial where the semiring S has a zero element but

requires slightly more work when it does not. First, recall that for a sequence of k

matrices M1, . . . ,Mk and a permutation σ ∈ Sk, we write Mσ = Mσ(1) · · ·Mσ(k).

Proposition 3.4.1. Let S be a bipotent semiring. If Mn(S) is strongly permutable

then Mm(S) is strongly permutable for all m < n. If UTn(S) is strongly permutable

then UTm(S) is strongly permutable for all m < n.

Proof. Consider first the case of full matrix semigroups. Suppose, with the aim of

obtaining a contradiction, that there is an m < n such that for every k ∈ N there

exist m×m matrices M1, . . . ,Mk such that Mσ ̸= Me for any non-trivial permutation

σ. Fix k and let M1, . . . ,Mk be as given. Let z be the smallest (with respect to the

order on the semiring) entry of any of the matrices M1, . . . ,Mk. For each i let Ni be

the n× n matrix obtained by taking Mi and adjoining n−m rows at the bottom and

n−m columns at the right in which every entry is z.

Now consider the x, y entry of a product Ni1 · · ·Nik for x, y ≤ m. As S is bipotent

this entry is equal to the maximum (with respect to the order in the semiring) across

sequences x = x0, x1, . . . , xk = y of the term:

k∏
j=1

(Nij)xj−1,xj
.

If in such a sequence we have xj > m for some 1 ≤ j < k, then (Nij)xj−1,m ≥ z =

(Nij)xj−1,xj
and (Nij+1

)m,xj+1
≥ z = (Nij+1

)xj ,xj+1
by definition, so we may replace xj

by m in the sequence without reducing the resulting term. Thus, we may assume

the above maximum is attained for a sequence with xj ≤ m for all j, and it follows
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that the top-left m×m submatrix of the product is the product of the corresponding

submatrices in the factors, in other words, the corresponding product of the Mis. In

particular, for any permutation σ the top-left m×m submatrix of Nσ is exactly Mσ.

Thus, Nσ ̸= Ne for any non-trivial permutation σ, which since k was chosen arbitrarily

contradicts the assumption that Mn(S) is permutable.

For the upper triangular case, there exists a surjective homomorphism from UTn(S)

to UTm(S) for m < n by only considering the first m rows and columns. Hence if

UTn(S) is permutable then UTm(S) is permutable for all m < n.

Our next objective is to show that matrix semigroups over a (not necessarily com-

mutative) bipotent semiring with elements of infinite multiplicative order (or more

generally, unbounded multiplicative order) are not, in general, permutable. A key tool

is a result of Okniński [Okn91, Chapter 19, Lemma 22], stating that a finitely gen-

erated inverse semigroup with infinitely many idempotents cannot be permutable. In

particular this means that the bicyclic monoid is not permutable. This will combine

with a representation of the bicyclic monoid by tropical matrices, due to Izhakian and

Margolis [IM09], to yield non-permutability results for tropical matrix monoids, and

then with our classification of the monogenic bipotent semirings (Lemma 3.2.5) to

obtain non-permutability results for matrix monoids over semirings with elements of

infinite order. Some elementary model theory extends these results to semirings with

unbounded order.

Theorem 3.4.2. Mn(N∗
max), Mn(N∗

min), UTn(N∗
max) and UTn(N∗

min) are not strongly

permutable for n ≥ 2.

Proof. Let B = ⟨p, q : pq = 1⟩ be the bicyclic monoid. Recall that every element

of B can be written as qipj for some i, j ∈ N ∪ {0}. By [IM09] there is a semigroup

embedding of B into UT2(T) given by

ρ : B → UT2(T), qipj 7→

i− j i+ j

−∞ j − i

 .

Since the bicyclic monoid is not permutable [Okn91, Chapter 19, Lemma 22] and

subsemigroups of permutable semigroups are permutable, we deduce that UT2(T)

is not permutable. Indeed further, for every k there are upper triangular matrices
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M1, . . . ,Mk ∈ UT2(T) whose diagonal and above-diagonal entries are integers, with

the property that Mσ ̸= Me for every non-trivial permutation σ ∈ Sk.

If we fix an integer λ strictly less then every integer appearing in these matrices,

then the tropically scaled matrices (−λ)M1, . . . , (−λ)Mk clearly also have this prop-

erty. Replacing the −∞ entry of these matrices with the zero element of (N∗
max)

0 yields

a sequence of matrices to show that UT2(N∗
max) is not strongly permutable. Similarly,

tropically scaling M1, . . . ,Mk by the negative of an integer strictly greater than every

entry yields a sequence of matrices for each k showing that UT2(N∗
min) is not strongly

permutable.

It remains to establish the claims for full matrix semigroups. (Note that, since the

semirings here lack zero elements, we do not have a natural embedding of each upper

triangular matrix semigroup into the corresponding full matrix semigroup which would

allow us to immediately deduce the remaining claims.)

Let k > 1 and M1, . . . ,Mk be as above. Choose a very large µ ∈ N, and let

N1, . . . , Nk ∈ Mn(N∗
max) be obtained from M1, . . . ,Mk by scaling tropically by µ, and

replacing the −∞ below the diagonal with 1. Now consider the product Nσ for some

σ ∈ Sk, and in particular the computation of the (x, y) entry for some (x, y) ̸= (2, 1).

A simple calculation shows that, provided µ was chosen large enough, the terms which

do not feature the (2,1) entry of any Ni will all exceed those which do, from which it

follows that (Nσ)x,y = kµ+ (Mσ)x,y. Thus, we conclude that Nσ ̸= Ne. Since k and σ

were arbitrary, this means that Mn(N∗
max) is not strongly permutable.

Finally, tropically scaling the matrices N1, . . . , Nk by a sufficiently negative integer

gives a sequence to show that Mn(N∗
min) is not strong permutable

Lemma 3.4.3. Un(N∗
max) is strongly permutable if and only if n ≤ 2.

Proof. Remark that U1(N∗
max) is trivial while U2(N∗

max) is isomorphic to the (commu-

tative) additive semigroup of the semiring, so both are strongly permutable. There

exists a surjective morphism from Un(N∗
max) to U3(N∗

max) for all n ≥ 3 by mapping to

each matrix to its top-left corner 3 by 3 submatrix, so it suffices to show that U3(N∗
max)

is not strongly permutable.
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So, we define the sequence of matrices B1, B2, . . . , Bm by

Bi =


0 i m

−∞ 0 m+ 1 − i

−∞ −∞ 0


(Note that technically speaking −∞, 0 /∈ N∗

max; the “−∞” and “0” featured here

are technically the zero and identity elements adjoined in (N∗
max)

01 which is used in

the definition of the unitriangular matrix semigroup U3(N∗
max), but because this is

essentially the same as the subsemiring N∗
max ∪ {0,−∞} of T it is clearer to denote

them in this way.) A simple inductive argument shows that for each k,

k∏
i=1

Bi =


0 k m

−∞ 0 m

−∞ −∞ 0


Now, suppose σ ∈ Sm is such that Bσ :=

∏m
i=1Bσ(i) =

∏m
i=1Bi. By the definition of

matrix multiplication, for all j < k we must have

m = (Bσ)1,3 ≥ (Bσ(j))1,2 + (Bσ(k))2,3 = σ(j) +m+ 1 − σ(k)

and hence σ(j) < σ(k). Since σ is a permutation, this can only happen if σ is the

identity permutation. Further, asm was arbitrary no non-trivial permutations preserve

this product for any m ∈ N, so U3(N∗
max) is not strongly permutable.

Lemma 3.4.4. Un(N∗
min) is strongly permutable if and only if n ≤ 3.

Proof. Much as in the previous proof, U1(N∗
min) is the trivial monoid while U2(N∗

min)

is isomorphic to the (commutative) additive semigroup of the semiring, so both are

clearly strongly permutable, and there is a surjective morphism from Un(N∗
min) to

U3(N∗
min) for all n ≥ 3, so it suffices to show that U3(N∗

min) is not strongly permutable.

To this end we define the sequence of matrices C1, . . . , Cm given by

Ci =


0 i−m− 1 −m− 2

−∞ 0 −i

−∞ −∞ 0


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Once again, the −∞ and 0 here are formally speaking the zero and identity elements

in (N∗
min)01. The product of the first k such matrices is inductively seen to be

k∏
i=1

Ci =


0 k −m− 1 −m− 2

−∞ 0 −1

−∞ −∞ 0


Now, if σ ∈ Sm is such that Cσ :=

∏m
i=1Cσ(i) =

∏m
i=1Ci then for all j < k,

(Cσ)1,3 = −m− 2 ≥ (Cσ(j))1,2 + (Cσ(k))2,3 = σ(j) −m− 1 − σ(k)

so that σ(j) < σ(k). Since σ is a permutation, this can only happen if σ is the identity

permutation. Further, as m was arbitrary no non-trivial permutations preserve this

product for any m ∈ N, so U3(N∗
min) is not strongly permutable.

Lemma 3.4.5. Let S be a (not necessarily commutative) bipotent semiring. If S has

an element of infinite multiplicative order, then Mn(S) and UTn(S) are not strongly

permutable for n ≥ 2 and Un(S) is not strongly permutable if and only if n ≥ 3.

Proof. Suppose a ∈ S has infinite order. Then by Lemma 3.2.5 we have that sub-

semiring generated by a is isomorphic to N∗
max or N∗

min. Hence, Mn(S) contains an

embedded copy either of Mn(N∗
max) or of Mn(N∗

min); since neither of these are per-

mutable for n ≥ 2 by Theorem 3.4.2, Mn(S) is not permutable for n ≥ 2. Similarly,

UTn(S) is not permutable for n ≥ 2 using Theorem 3.4.2 and Un(S) is not permutable

if and only if n ≥ 3 using Lemma 3.4.3 and Lemma 3.4.4.

A bipotent semiring (even a commutative one) may have elements of unbounded

finite order, without having an element of infinite order. For example, we shall see

below that the truncated tropical semiring T[0,1] is such a semiring. Some basic model

theory allows us to extend the above result to this case; we direct the reader unfamiliar

with model theoretic techniques to [Kir19], for example.

Theorem 3.4.6. Let S be a (not necessarily commutative) bipotent semiring with

elements of unbounded multiplicative order (that is, such that for all k ∈ N there exists

an x ∈ S such that x has multiplicative order greater than k). Then the semigroups

Mn(S) and UTn(S) are not strongly permutable for n ≥ 2. The semigroup Un(S) is

not strongly permutable if and only if n ≥ 3.
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Proof. Consider the set of first-order sentences in the language of semirings:

L = {xm ̸= xn | m,n ∈ N,m ̸= n}

where x is a variable and xm is shorthand for the product of m copies of x. Since

S has elements of unbounded order, L is finitely satisfiable (every finite subset of L

holds for some x ∈ S) which means that L is a 1-type of S.

By realisability of types (see for example [Kir19, Lemma 23.6]) there exists an

elementary extension of S (a structure containing S and satisfying exactly the same

first-order theory) in which L is satisfiable, that is, in which there is an element x

satisfying all of the sentences in L. Let T be such a structure and x ∈ T such an

element. The axioms for a bipotent semiring are clearly all expressible as first-order

sentences, so the structure T is itself a bipotent semiring. Moreover, since x satisfies

all sentences in L, x is an element of infinite order, and so by Lemma 3.4.5 we deduce

that Mn(T ) is not permutable for all n ≥ 2.

Now suppose for a contradiction that Mn(S) was strongly permutable for some

n ≥ 2. This means there exists an m such that

∀X1, . . . , Xm ∈Mn(S),
∨

σ∈Sm\{1m}

X1 · · ·Xm = Xσ(1) · · ·Xσ(m).

Since matrix multiplication is first-order definable in the language of semirings, this

can clearly be re-expressed as a first-order sentence over S, featuring mn2 universally

quantified scalar variables corresponding to the entries of the m matrices. But T is

elementary equivalent to S, so this sentence also holds in T , which contradicts the fact

that Mn(T ) is not permutable.

Near-identical arguments show that UTn(S) is not permutable for n ≥ 2 and that

Un(S) is not permutable for n ≥ 3. Finally, recall that U1(S) is trivial while U2(S)

is isomorphic to the additive semigroup of S, which is always commutative and hence

strongly permutable.

Recall that M1(S) = UT1(S) is isomorphic to the multiplicative semigroup of the

semiring S. This may be permutable (for example when the semiring is commutative)

or non-permutable (for example when S is a non-commutative free monoid with a

bipotent addition given by the shortlex total ordering).
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Corollary 3.4.7. Let S be a commutative bipotent semiring with elements of un-

bounded multiplicative order. Then Mn(S) (and UTn(S)) are strongly permutable if

and only if n = 1.

Recall that a semifield is a commutative semiring, possibly without zero, where the

non-zero elements form an abelian group with multiplication. In the case of semifields,

we can now give an explicit description of when the matrix semigroups are permutable.

Corollary 3.4.8. Let S be a bipotent semifield. Then Mn(S) and UTn(S) are per-

mutable for n ≥ 2 (and Un(S) is permutable for n ≥ 3) if and only if S is the 2-element

boolean semifield.

Proof. Since S is a bipotent semiring we have that every element has infinite order or

period 1 by Lemma 3.2.4. However, S is a semifield, so the non-zero elements form

a group with multiplication so the only possible elements of period 1 are the identity

and the zero if there is one. Thus, non-identity, non-zero elements are of infinite

order. Therefore if S is not the 2-element boolean semifield, it must have an element

of infinite order and thus by Theorem 3.4.6 (or Lemma 3.4.5), Mn(S) and UTn(S) are

not permutable for n ≥ 2 and Un(S) is not permutable for n ≥ 3. If B is the 2-element

boolean semifield then Mn(B), UTn(B), and Un(B) are finite and hence permutable for

all n ∈ N.

Theorem 3.4.9. Suppose S is a (not necessarily commutative or bipotent) semiring

with the following property: for every finite subset X ⊆ S, there exists a homomor-

phism to a finite semiring of order bounded by a function in the size of X such that

each element of X occupies its own singleton kernel class. Then Mn(S) is permutable

for all n ∈ N.

Proof. Let k be such that for every subset X of S with |X| = n2, there is a homo-

morphism from S to a finite semiring of size at most k such that each element of X

occupies its own singleton kernel class. Let m = kn
2

+ 1, and suppose

Σ = A1A2 · · ·Am =


x1,1 . . . x1,n

...
. . .

...

xn,1 . . . xn,n


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for some A1, . . . , Am ∈ Mn(S). Taking X = {x1,1, . . . , xn,n}, by assumption we may

choose a semiring homomorphism ϕ mapping S into a semiring F of cardinality at

most k, such that each xi,j occupies its own singleton kernel class. From this semiring

homomorphism, we define a semigroup homomorphism ψ mapping Mn(S) into Mn(F )

where

(ψ(A))i,j = ϕ(Ai,j) for all i, j.

Notice that, since the entries of Σ each occupy their own singleton ϕ-kernel class, Σ

occupies its own singleton ψ-kernel class. Since F has cardinality at most k, Mn(F ) has

cardinality at most kn
2
< m, so there must exist distinct i and j with ψ(Ai) = ψ(Aj).

Let σ ∈ Sm be the transposition swapping i and j. Then clearly

ψ(Aσ(1) · · ·Aσ(m)) = ψ(Aσ(1)) . . . ψ(Aσ(m)) = ψ(A1) · · ·ψ(Am) = ψ(Σ),

which since Σ occupies its own singleton ψ-kernel class means that

Aσ(1) · · ·Aσ(m) = Σ = A1 · · ·Am,

as required to show that Mn(S) is permutable.

Recall that we say a binary relation ∼= on a semiring is a congruence if ∼= is an

equivalence relation and if a ∼= b and c ∼= d together imply that ac ∼= bd and a+c ∼= b+d.

Corollary 3.4.10. Let S be a chain semiring (that is, a totally ordered set with op-

erations maximum and minimum). Then Mn(S) is permutable for all n ∈ N.

Proof. Let X be a finite subset of S. Define a binary relation ≡ on S by a ≡ b if

and only if a and b either (i) are equal or (ii) are not in X and lie above exactly

the same elements of X. Recalling that S is totally ordered, it is easy to see that

≡ is an equivalence relation with at most 2|X| + 1 classes (being the singleton sets

containing elements of X, and the open order intervals above, below and between

elements of X), in which each element of X occupies its own equivalence class. Further,

it can be readily seen that ≡ is a congruence. Hence, by the usual first isomorphism

theorem for semirings, the natural morphism S → S/ ≡ satisfies the conditions of

Theorem 3.4.9.



Chapter 4

Truncated Tropical Semirings

In this chapter, we introduce truncated tropical semirings. For x, y ∈ R with 0 ≤ x <

y, the truncated tropical semiring T[x,y] consists of the real interval [x, y] augmented

with 0 and −∞ with operations maximum and y-truncated addition given by ab =

min(a+ b, y) where + here denotes classical addition. These semirings are a new class

of semirings which have not as of yet been well studied, but have many interesting

properties. For example Kambites [Kam22] showed that while UTn(T[0,1]) is locally

finite for all n ∈ N, the variety generated by UTn(T[0,1]) is not locally finite for any

n ∈ N, that is, each variety contains a finitely generated infinite semigroup.

These semirings came about as an infinite generalisation of truncated tropical natu-

ral number semirings [k]∗max, (sometimes augmented with a zero or identity adjoined).

These latter semirings have been very well studied, for example [1]∗max with a zero

adjoined is isomorphic to the boolean semiring.

In the first section of this chapter, we give a brief introduction to truncated tropical

semirings, and then go on to give a complete classification of all isomorphisms between

truncated tropical semirings. In the next section, we turn our attention back to strong

permutability, where it transpires that the full matrix semigroups can be strongly

permutable in all dimensions (Theorem 4.2.2), only in dimension 1 (Corollary 4.2.1)

or, interestingly, only in dimensions 1 and 2 (Theorem 4.2.6). Similar results are

obtained for the monoids of upper triangular and upper unitriangular matrices.

This chapter is based on joint work with my supervisor, Mark Kambites [AK22].

39
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4.1 Classification of Truncated Tropical Semirings

To avoid confusion with classical operations, which we shall also need, we use the

symbols ⊕ and ⊗ to denote the addition (maximum) and multiplication (truncated

addition) operations in a truncated tropical semiring. The symbol + and juxtaposi-

tion will be used for standard arithmetic addition and multiplication of real numbers,

respectively. We begin by observing that there are a number of isomorphisms between

semirings in this class:

Theorem 4.1.1. Let y > x ≥ 0. Then

T[x,y]
∼=



T[0,1] if x = 0;

T[1,2] if x > 0 and y ≤ 2x;

T[1,2.5] if x > 0 and 2x < y < 3x;

T[1, y
x
] if x > 0 and y ≥ 3x.

The semirings T[0,1],T[1,2],T[1,2.5] and T[1,y] for y ≥ 3 are pairwise non-isomorphic.

Proof. If x = 0, we define the map ϕ : T[0,y] → T[0,1] by

ϕ(−∞) = −∞ and ϕ(z) =
z

y
for z ∈ [0, y].

Using the fact that classical multiplication distributes over classical addition, and that

y > 0 implies that ϕ is order preserving, it can be easily seen that ϕ is an isomorphism.

If x > 0 and y ≤ 2x, we define the map ϕ : T[x,y] → T[1,2] by

ϕ(−∞) = −∞, ϕ(0) = 0, and ϕ(z) =
z − x

y − x
+ 1 for z ∈ [x, y].

Now, for a, b ∈ [x, y], we have that

ϕ(a) ⊗ ϕ(b) = min

(
a− x

y − x
+ 1 +

b− x

y − x
+ 1, 2

)
= 2 = ϕ(a⊗ b)

as a, b ≥ x. Moreover, as y−x > 0, ϕ is order preserving. Hence, it can be easily seen

that ϕ is an isomorphism.
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If x > 0 and 2x < y < 3x, we define a piecewise linear map ϕ : T[x,y] → T[1,2.5] by

ϕ(z) =



z−2x
2(y−2x)

+ 2 if 2x ≤ z ≤ y

z−(y−x)
2(3x−y)

+ 1.5 if y − x < z < 2x

z−x
2(y−2x)

+ 1 if x ≤ z ≤ y − x

0 if z = 0

−∞ if z = −∞

Now, for a ∈ [y − x, y] and b ∈ [x, y], we have that

ϕ(a) ⊗ ϕ(b) = 2.5 = ϕ(y) = ϕ(a⊗ b)

as ϕ(a) ≥ 1.5 and ϕ(b) ≥ 1. Finally, if a, b ∈ [x, y − x] then

ϕ(a) ⊗ ϕ(b) = min

(
a− x

2(y − 2x)
+ 1 +

b− x

2(y − 2x)
+ 1, 2.5

)
= min

(
(a+ b) − 2x

2(y − 2x)
+ 2,

y − 2x

2(y − 2x)
+ 2

)
=

min(a+ b, y) − 2x

2(y − 2x)
+ 2

= ϕ(a⊗ b)

as a ⊗ b ≥ 2x. Moreover, as y − 2x > 0 and 3x − y > 0 this implies that ϕ is order

preserving, and hence it can be easily seen that ϕ is an isomorphism.

If x > 0 and y > 3 then we define a map ϕ from T[x,y] to T[1, y
x
] by

ϕ(−∞) = −∞, ϕ(0) = 0, and ϕ(z) =
z

x
for z ∈ [x, y].

Using the fact that classical multiplication distributes over classical addition, and that

x > 0 implies that ϕ is order preserving, it can be easily seen that ϕ is an isomorphism.

It remains to show that T[0,1],T[1,2],T[1,2.5] and T[1,y] for y ≥ 3 are pairwise non-

isomorphic. We can see that T[0,1] is not isomorphic to any of the others, as it is

the only one with unbounded multiplicative order. Similarly, T[1,y] has no elements of

multiplicative order 3 if and only if y ≤ 2 (for y > 2 consider 1 + y−2
3

), so T[1,2] is not

isomorphic to the others. For T[1,2.5], note that T[1,y] has no elements of multiplicative

order 4 if and only if y ≤ 3 (for y > 3 consider 1+ y−3
4

), so T[1,2.5] can not be isomorphic

to any of the others apart from perhaps T[1,3].
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For a contradiction, suppose that T[1,2.5] is isomorphic to T[1,3] and let ϕ : T[1,2.5] →

T[1,3] be an isomorphism. As ϕ is order-preserving, we have that ϕ(1) = 1 and ϕ(2.5) =

3. Similarly, as ϕ preserves the semiring multiplication, we can conclude that

ϕ(2) = ϕ(1) ⊗ ϕ(1) = 2 and ϕ(1.5) ⊗ 1 = ϕ(1.5) ⊗ ϕ(1) = ϕ(2.5) = 3

and hence ϕ(1.5) ≥ 2 = ϕ(2) contradicting that ϕ is order-preserving. Hence, T[1,3]

and T[1,2.5] are not isomorphic.

Finally, suppose z ≥ y ≥ 3 and let ϕ : T[1,y] → T[1,z] be an isomorphism. From the

fact that ϕ is a morphism and the definition of multiplication in the two semirings,

we have ϕ(a + b) = ϕ(a) + ϕ(b) for all a, b with a + b ≤ y, and ϕ(1) = 1. Hence,

ϕ(2) = ϕ(1 + 1) = ϕ(1) + ϕ(1) = 2, and for 1 ≤ x ≤ y − 1,

ϕ(x) = ϕ(x+ 1 − 1) = ϕ(x+ 1) − ϕ(1) = ϕ

(
x+ 1

2

)
+ ϕ

(
x+ 1

2

)
− 1.

We show by a simple inductive argument using this fact that ϕ(1 + 2−n) = 1 + 2−n

for all n ∈ N ∪ {0}. Indeed, the base case is the fact that ϕ(2) = 2, while if the claim

holds for some n then taking x = 1 + 2−n we have x+1
2

= 1 + 2−(n+1). Hence by the

above ϕ(1 + 2−n) = 2ϕ(1 + 2−(n+1)) − 1, so

ϕ(1 + 2−(n+1)) =
1

2
(ϕ(1 + 2−n) + 1) =

1

2
(1 + 2−n + 1) = 1 + 2−(n+1)

and the claim holds for n+ 1.

Note that for any a, b with a+ b ≤ 1 if ϕ(1 + a) = 1 + a and ϕ(1 + b) = 1 + b then

ϕ(1 + a+ b) = ϕ(1 + a) +ϕ(1 + b)−ϕ(1) = 1 + a+ b. By another simple induction, we

deduce that ϕ fixes all finite sums of negative powers of 2 (in other words, all dyadic

rationals) in the interval [1, 2]. Since the dyadic rationals are dense in the order, it

follows that ϕ fixes everything in the interval [1, 2].

Finally, since ϕ preserves the multiplication in T[1,y] and y < z, it preserves all

finite sums which sum to y or less. Since every element in [1, y] is a finite sum of

values in [1, 2], it follows that ϕ is the identity function on [1, y]. Since it is surjective,

this means that y = z.

Here, we defined the truncated tropical semirings on non-negative intervals, how-

ever, you can equally define truncated tropical semirings on non-positive intervals. So

we pose the following question.
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Question 4.1.2. Let x, y ∈ R with x < y ≤ 0. Is there a similar classification for

T[x,y]?

4.2 Permutability of Matrices over Truncated

Tropical Semirings

Recall that, Mn(T[x,y]) is weakly permutable for all n ∈ N by Proposition 3.3.1. Thus,

in this section, we look at strong permutability and illustrate some of the “wilder”

behaviour which is possible in commutative bipotent semirings, by studying truncated

tropical semirings.

To begin we observe that, as a consequence of our earlier results, there are examples

of such semirings for which matrix semigroups are not permutable in any rank greater

than 1:

Corollary 4.2.1. The semigroup Mn(T[0,1]) is permutable if and only if n = 1.

Proof. The semigroup M1(T[0,1]) is commutative and therefore strongly permutable.

For n > 1, it is easy to see that T[0,1] has elements of unbounded multiplicative order

(indeed, for any j ∈ N the element 1/j has order j), so Mn(T[0,1]) is not strongly

permutable by Theorem 3.4.6.

By Theorem 4.1.1, we can now always take truncated tropical semirings to be either

of the form T[0,1] or T[1,z] for z = 2, 2.5 or z ≥ 3. Corollary 4.2.1 gives a full description

of when the matrix semigroups Mn(T[0,1]) are permutable, so we now focus on matrix

semigroups of form Mn(T[1,z]) for some z = 2, 2.5 or z ≥ 3.

Theorem 4.2.2. Mn(T[1,2]) is strongly permutable for all n ∈ N.

Proof. We shall show that T[1,2] satisfies the hypothesis of Theorem 3.4.9. Let X =

{x1, . . . , xk} be a finite subset of T[1,2] and X ′ = X∪{0,−∞}. Define a binary relation

≡ on T[1,2] by a ≡ b if and only if a and b either (i) are equal or (ii) are not in X ′ and

lie above exactly the same elements of X ′. It is easy to see that ≡ is an equivalence

relation with at most 2|X| + 3 classes, in which each element of X lies in a singleton

equivalence class.
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We must now show that ≡ is a congruence. As T[1,2] is commutative, we only

have to show that ≡ is a left congruence. Let x, y ∈ T[1,2] and x ≡ y, so x and y lie

above exactly the same elements of X ′. Clearly, if a = 0 or a = −∞, we have that

a ⊗ x ≡ a ⊗ y and a ⊕ x ≡ a ⊕ y. Moreover, if x = y, we have that a ⊗ x ≡ a ⊗ y

and a ⊕ x ≡ a ⊕ y. Hence, as 0,−∞ ∈ X ′, we can assume that a, x, y ≥ 1, and thus

a⊗ x = 2 = a⊗ y.

Further, if a ≥ max(x, y) then a ⊕ x ≡ a ≡ a ⊕ y and if a ≤ min(x, y), then

a ⊕ x ≡ x ≡ y ≡ a ⊕ y. On the other hand, if a lies between x and y in the order

then since x and y lie above the same elements of X ′, we have that a, x, y, a⊕ x and

a ⊕ y all lie above exactly the same elements of X ′, giving that a ⊕ x ≡ a ⊕ y. Thus

we conclude that ≡ is a congruence.

Hence, by the usual first isomorphism theorem for semirings, the natural morphism

T[1,2] → T[1,2]/≡ satisfies the conditions of Theorem 3.4.9, and Mn(T[1,2]) is strongly

permutable for all n ∈ N.

The rest of this section treats the remaining truncated tropical semirings, that is,

those of the form T[1,z] with z > 2. These will give examples of semirings S such that

M2(S) is strongly permutable, but Mn(S) is not strongly permutable for all n ≥ 3.

We use the notation ⌈z⌉ to denote the smallest integer greater than or equal to z ∈ R.

We shall say that a semigroup S is k-permutable if for every s1, . . . , sk ∈ S there exists

a non-trivial permutation σ ∈ Sk such that sσ(1)sσ(2) · · · sσ(k) = s1s2 · · · sk. Note that

if a semigroup S is k-permutable then S is j-permutable for all j ≥ k.

Lemma 4.2.3. For z > 2, let P and P ′ be subsemigroups of M2(T[1,z]) given by

P =


 0 a

−∞ b

 : a, b ∈ T[1,z]

 and P ′ =


0 −∞

a b

 : a, b ∈ T[1,z]

 .

Then P and P ′ are both (2 ⌈z⌉ + 5)-permutable.

Proof. Transposing matrices is a semigroup anti-isomorphism between P and P ′, so it

suffices to prove that P is (2 ⌈z⌉ + 5)-permutable.

Let m = 2 ⌈z⌉+ 5 and let X1, . . . , Xm ∈ P . If (Xt)2,2 = −∞ for any t > 2 then, as

Xt is a right zero of P , and we have that X1X2 · · ·Xm = X2X1 · · ·Xm. Thus we may

assume (Xt)2,2 ̸= −∞ for all t > 2.



4.2. PERMUTABILITY OF TRUNCATED TROPICAL SEMIRINGS 45

If (Xt)1,2, (Xt+1)1,2 = −∞ for some t < m then as diagonal matrices commute, we

have X1 · · ·XtXt+1 · · ·Xm = X1 · · ·Xt+1Xt · · ·Xm. Therefore, we may assume either

(X2)1,2 ̸= −∞ or (X3)1,2 ̸= −∞. Combined with the assumption from the previous

paragraph, this implies we may assume that (X1 · · ·Xm)1,2 ̸= −∞.

If (Xt)2,2, (Xt+1)2,2 = 0 for some t < m then, because 2 × 2 unitriangular matri-

ces commute, we have X1 · · ·XtXt+1 · · ·Xm = X1 · · ·Xt+1Xt · · ·Xm. Hence, we may

assume that among every pair of every two consecutive matrices (except perhaps the

first three) there is a matrix Xt with (Xt)2,2 ≥ 1. Since m = 2 ⌈z⌉ + 5 this means

we have (X1 · · ·Xm−2)1,2 = z and (X1 · · ·Xm−2)2,2 ∈ {z,−∞}. In both of these cases

X1 · · ·Xm−2 acts as a left zero for all matrices M with M2,2 ̸= −∞. But we assumed

(Xt)2,2 ̸= −∞ for t > 2, so we have

X1 · · ·Xm = X1 · · ·Xm−2Xm−1Xm = X1 · · ·Xm−2XmXm−1.

Thus P , and hence also P ′, is (2 ⌈z⌉ + 5)-permutable.

Lemma 4.2.4. Let A0 ∈ M2(T[1,z]) and m be the minimum finite entry of A0 (or

m = z if A0 if all entries are −∞). Let k ≥ 17(16 ⌈z⌉+45). Then for all A1, . . . , Ak ∈

M2(T[1,z]), either

(A0A1 · · ·Ak)i,j ̸= m for all i, j

or there exists a non-trivial σ ∈ Sk such that

A0A1A2 · · ·Ak = A0Aσ(1)Aσ(2) · · ·Aσ(k)

Proof. Consider a product A0A1 . . . Ak. If m = z, then every entry of A0 is either z or

−∞. There are 16 matrices in M2(T[1,z]) in which every entry is either z or −∞ and

they form an ideal of M2(T[1,z]). As k ≥ 3 · 16 = 48, by the pigeonhole principle, there

exist 0 ≤ k1, k2, k3 ≤ 48 such that A0 · · ·Aki = M for i = 1, 2, 3 for M ∈ M2(T[1,z])

with every entry being either z or −∞. Finally, note that

A0 · · ·Ak1(Ak2+1 · · ·Ak3−1)(Ak1+1 · · ·Ak2)Ak3 · · ·Ak = M

and hence, we have found a non-trivial σ ∈ Sk which preserves the product.

Now, suppose m ̸= z. If no entry of the product is equal to m we are done.

Moreover, as M2(T[m,z] \ {0}) is an ideal of M2(T[1,z]) for all m ∈ [1, z], we may
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suppose every truncated product A0A1 . . . Ap with 0 ≤ p ≤ k has at least one entry

equal to m.

By the pigeonhole principle there exists a sequence of indices 0 ≤ i0 < · · · < in ≤ k

where n =
⌈
k
4

⌉
− 1 such that each product matrix A0A1 · · ·Aij has an m in the same

position. If this is the (1,2) or the (2,1) position then note that swapping the rows

of A0 swaps the rows of the product A0A1 · · ·At for all t ≤ k. Therefore if σ is a

permutation that does not change the product, then σ will also preserve the product

obtained by swapping A0’s rows. Hence, we can assume that the m’s are in the (1,1)

or (2,2) position. Moreover, by relabelling the rows and columns if necessary, we can

assume without loss of generality that A0A1 · · ·Aij has m in the (1,1) position for all

0 ≤ j ≤ n.

Now consider the matrices defined by

B = A0 · · ·Ai0 and Bj = Aij−1+1 · · ·Aij

for 1 ≤ j ≤ n. Any permutation of this sequence which does not change the product

clearly yields a permutation of the original sequence which does not change the prod-

uct, so it is enough to seek a non-trivial permutation of this sequence. We define the

truncated products Πt := BB1 · · ·Bt for 0 ≤ t ≤ n. By the assumption of the previous

paragraph, we have (Πt)1,1 = m for all 0 ≤ t ≤ n.

First we consider any Bi whose entries are all either 0 or −∞. There are only 16

distinct matrices of this form, so if more than 16 of the Bi have this form then the same

matrix would appear twice in the sequence, resulting in a non-trivial permutation that

preserves the product. Otherwise, since n =
⌈
k
4

⌉
− 1 > 17(4 ⌈z⌉+ 11) the Bi contain a

subsequence of 4 ⌈z⌉ + 11 consecutive matrices not of this form, say Bp, . . . , Bq where

q − p = 4 ⌈z⌉ + 10.

We now define five subsets of M2(T[1,z]):

P =


 0 a

−∞ b

 : a, b ∈ T[1,z]

 , P ′ =


0 −∞

a b

 : a, b ∈ T[1,z]

 ,

T =


0 a

0 b

 : a, b ∈ T[1,z]

 , U =


−∞ a

0 b

 : a, b ∈ T[1,z]

 ,

V =


0 c

a b

 : a, b, c ∈ T[1,z]

 .
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We shall show that the sequence Bp, . . . , Bq contains 2 ⌈z⌉ + 5 consecutive matrices

either all in P or all in P ′. From this it will follow by Lemma 4.2.3 that there is a

permutation of the sequence which preserves the product, as required.

Note that P, P ′, T ⊆ V . For p ≤ t ≤ q − 1, we have that (Πt)1,1 = (Πt+1)1,1 = m.

So, if (Πt)1,2 = −∞, then in order to ensure (ΠtBt+1)1,1 = (Πt+1)1,1 = m we must

have (Bt+1)1,1 = 0, that is, Bt+1 ∈ V . Similarly, if (Πt)1,2 = m, then Bt+1 ∈ P, T or

U . Otherwise, (Πt)1,2 > m and we have that Bt+1 ∈ P .

If the matrices Bp, . . . , Bp+2⌈z⌉+4 are all in P ′ then we are done. Otherwise, choose

t with p ≤ t ≤ p+ 2 ⌈z⌉ + 4 such that Bt /∈ P ′. Since (Πt−1)1,1 = m and Πt = Πt−1Bt,

this means that (Πt)1,2 ̸= −∞.

Now because (Πt)11, (Πt)1,2 ≥ m and Bt+1 lies in P , T or U with (because of

the assumption that the entries of Bt+1 are not all 0 and −∞) either (Bt+1)1,2 ≥ 1

or (Bt+1)2,2 ≥ 1, we have that (Πt+1)1,2 > m and of course by definition we have

(Πt+1)1,1 ≥ m. Continuing by induction we deduce that (Πi)1,2 > m for all i with

t+ 1 ≤ i ≤ q. By the remarks in the last paragraph but one, this means that Bj ∈ P

for all t + 2 ≤ j ≤ q, which means the matrices Bt+2, . . . , Bt+1+2⌈z⌉+5 are all in P , as

required.

Theorem 4.2.5. Let z > 2. Then M2(T[1,z]) is strongly permutable.

Proof. Consider a product of matrices A1 · · ·An for n ≥ 17(4 ⌈z⌉+ 1)(16 ⌈z⌉+ 45) and

let mt be the smallest finite entry in the product of the first t matrices Πt = A1 · · ·At.

(If all entries of Πt are −∞, we define mt = z). Note that m1 ≤ · · · ≤ mn as M2(T[x,z]\

{0}) is an ideal of M2(T[1,z]) for all x ∈ [1, z]. Further, let k1 = 1 and k2, . . . , ks be all

the indices such that mkj−1 < mkj . For a contradiction, suppose that there does not

exist a non-trivial permutation σ ∈ Sn such that A1 · · ·An = Aσ(1) · · ·Aσ(n). Then, by

letting A0 = Πkj−1
and applying Lemma 4.2.4 to A0Akj−1+1 · · ·An, we have that s > 1

and kj − kj−1 < 17(16 ⌈z⌉+ 45) for all j > 1 as there is no permutation preserving the

product A1 · · ·An by assumption.

We aim to show that s ≤ 4 ⌈z⌉+ 1, so suppose s ≥ 5. Then, for any 1 ≤ j < s− 4,

consider the five values mkj < mkj+1
< mkj+2

< mkj+3
< mkj+4

and suppose mkj+4
̸= z.

It is easy to see that each of these five values is either an entry of the matrix Πkj , or

else exceeds mkj by at least 1. Since there are not five distinct entries in Πkj we

must therefore have mkj+4
≥ mkj + 1 or mkj+4

= z. Thus, as 0 ≤ mt ≤ z for all
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t, we have that s ≤ 4 ⌈z⌉ + 1. So as n ≥ 17(4 ⌈z⌉ + 1)(16 ⌈z⌉ + 45) we have that

kj − kj−1 ≥ 17(16 ⌈z⌉ + 45) for some 2 ≤ j ≤ s, giving a contradiction. Therefore,

M2(T[1,2]) is strongly permutable.

Theorem 4.2.6. Let z > 2. Then Mn(T[1,z]), UTn(T[1,z]), and Un(T[1,z]) are strongly

permutable if and only if n ≤ 2.

Proof. If n ≤ 2 thenM2(T[1,z]) is strongly permutable by Theorem 4.2.5 and UTn(T[1,z])

and Un(T[1,z]) are strongly permutable as they are subsemigroups of Mn(T[1,z]). For

the direct implication it suffices, by Proposition 3.4.1, to show that U3(T[1,z]) is not

permutable. We do this by a variation of the method used to prove Lemma 3.4.3

above.

Choose ε with 0 < ε < z − 2. For a fixed m, we define a sequence of unitriangular

matrices B1, B2, . . . , Bm by

Bi =


0 1 + i

m
ε 2 + ε

−∞ 0 1 + ε− i−1
m
ε

−∞ −∞ 0


By induction the product of the first k such matrices is given by

k∏
i=1

Bi =


0 1 + k

m
ε 2 + ε

−∞ 0 1 + ε

−∞ −∞ 0


Now, suppose σ ∈ Sm is such that Bσ :=

∏m
i=1Bσ(i) =

∏m
i=1Bi. By the definition of

matrix multiplication, for all j < k we must have

2 + ε = (Bσ)1,3 ≥ (Bσ(j))1,2 + (Bσ(k))2,3 = 2 + ε+
ε

m
(σ(j) − σ(k) + 1)

and hence σ(j) < σ(k). Since σ is a permutation this means σ is the identity permu-

tation. Further, as m was arbitrary U3(T[1,z]) is not strongly permutable, and hence

UT3(T[1,z]) and M3(T[1,z]) are also not strongly permutable.

In Theorem 3.4.6, we showed that if S is a bipotent semiring with elements of

unbounded multiplicative order, then M2(S) and UT2(S) are not strongly permutable.

On the other hand, T[1,z] with z > 1 is an example of a bipotent semiring with

bounded multiplicative order and by Theorem 4.2.2 and Theorem 4.2.6, M2(T[1,z])
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and UT2(T[1,z]) are strongly permutable. So, we pose the question of whether this is

true for all bipotent semirings with bounded multiplicative order.

Question 4.2.7. Let S be a bipotent semiring with bounded multiplicative order. Is

UT2(S) strongly permutable? Is M2(S) strongly permutable?



Chapter 5

Generating Sets and Presentations

of Tropical Matrices

Constructing minimal and irredundant generating sets for semigroups is a widely stud-

ied area of research, see for example [AABK13, GR05]. This is related to the classical

problem of calculating the rank of a semigroup, that is, the minimum cardinality of

a generating set for a semigroup. This important invariant of a semigroup has again

been widely researched, see for example [BGS19, Hui05].

Recently, there has been research into constructing minimal generating sets for

matrix monoids, particularly semigroups of matrices over tropical semirings. East,

Jonušas and Mitchell [EJM20] found generating sets for 2 × 2 full matrix monoids

over the min-plus natural number semiring, the max-plus natural number semiring,

the truncated tropical natural number semirings, and the truncated tropical nega-

tive natural number semirings. Subsequently, Hivert, Mitchell, Smith, and Wilson

[HMSW21] found minimal generating sets for several submonoids of the monoid of

boolean matrices and showed that the generating sets given in [EJM20] are minimal.

In this chapter, we construct minimal and irredundant generating sets for monoids

of upper triangular and unitriangular matrices over commutative semirings and the

monoid of 2 × 2 matrices over certain semifields. We have a particular focus on the

tropical integer semiring, showing that the monoid of 3 × 3 matrices over the tropical

integers is not finitely generated. Moving to monoid presentations, we show that the

monoid of n×n upper triangular matrices over the tropical integer semiring is finitely

presented for all n ∈ N.

50
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In addition to this introduction, this chapter comprises 4 sections. In Section 5.1,

we introduce some notation and definitions that we use throughout the rest of this

chapter.

In Section 5.2, we describe minimal and irredundant generating sets of the monoid

of upper triangular matrices over a unital commutative semiring with a zero, showing

that the monoid UTn(Zmax) is finitely generated for all n ∈ N. We then consider

unitriangular matrices, describing the minimal and irredundant generating sets for

the monoid of unitriangular matrices over a commutative semiring with a zero, and

showing that Un(Zmax) is not finitely generated for n ≥ 2.

In Section 5.3, we turn our attention to full matrix monoids, first looking at the

2 × 2 full matrix monoid M2(Zmax), showing that M2(Zmax) is finitely generated, and

constructing a minimal and irredundant generating set. Then, we look at the 3 × 3

full matrix monoid M3(S) over a semiring S and show that if S is an anti-negative

semifield with a zero then M3(S) is finitely generated if and only if S is finite. We use

this to show that M3(Zmax) is not finitely generated. We then explicitly construct a

minimal and irredundant generating set for M3(Zmax) and show that the subsemigroup

of M3(Zmax) consisting of the matrices that can be expressed as products of regular

matrices, is 4-generated.

In Section 5.4, we show that for all n ∈ N, UTn(Zmax) is finitely presented by show-

ing that every word in the generators can be rewritten into a normal form over a finite

alphabet. We then use this finite presentation to give a different finite presentation

for UTn(Zmax) using the minimal and irredundant generating set found in Section 5.2.

5.1 Preliminaries

For a semigroup S, X ⊆ S is a (semigroup) generating set for S, if for all s ∈ S,

there exists x1, . . . , xm ∈ X such that s = x1 · · ·xm. For a group G, X is a group

generating set for G if X ∪ X−1 ∪ {1G} is a (semigroup) generating set for G, where

X−1 = {x−1 : x ∈ X}. We say a generating set X for S is minimal if |X| ≤ |Y | for

any other generating set Y for S and say an element x ∈ X is irredundant if X \{x} is

not a generating set for S. If every x ∈ X is irredundant then we say X is irredundant.

Moreover, we say S is minimally generated by X if X is a minimal generating set for
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S and say S is irredundantly generated by X if X is an irredundant generating set

for S. More generally, we say a set X is minimal with a given property if X has the

property and |X| ≤ |Y | for any other set Y that has the property, and say a set is

irredundant with a given property if X has the property and no proper subset of X has

the property. We remark that, for a generating set X for S, if X is minimal and finite

then X is irredundant and if X is infinite and irredundant then X is minimal. Thus, in

practice, it is often useful to discuss minimal generating sets in the finitely generated

case and, if they exist, irredundant generating sets in the infinitely generated case.

We call x ∈ S a unit of a monoid S if there exists x−1 ∈ S such that xx−1 =

x−1x = 1S . Let U(S) be the subgroup of S containing all units in S; we call U(S)

the group of units of S. Define a non-unit x ∈ S to be prime if for every product

x = uv, exactly one of u or v is a unit. For a monoid S, let J be Green’s J -relation,

that is, the equivalence relation on S defined by x J y if and only if SxS = SyS. For

a ∈ S, denote the J -class containing a by Ja and say J is a prime J -class if every

element of J is prime. It is easy to see that every generating set of S must contain a

representative from each prime J -class of S.

For a unital semiring (S,+, ·), let U(S) be the group of units of (S, ·). For a

semiring S with a zero 0S, we say x ∈ S is additively invertible if there exists y ∈ S

such that x+y = 0S and define V (S) to be the subset of additively invertible elements

of S, i.e. the group of units of (S,+). It is easy to see that for all x, y ∈ V (S) and

z ∈ S, x + y ∈ V (S) and zx, xz ∈ V (S). Note that V (S) is a (possibly non-unital)

ring and V (S) = S if and only if 1S ∈ V (S). Recall that, we say S is anti-negative if

for all x, y ∈ S, x + y = 0S if and only if x, y = 0S. Thus, S is anti-negative if and

only if V (S) = {0S}.

Finally, we standardise some notation for specific matrices. Let S be a semiring

with a zero, then we let In ∈ Un(S) be the matrix with 1S on the diagonal and 0S

everywhere else. Moreover, if S is unital, then In ∈ UTn(S) ⊆Mn(S). Let λ ∈ S, then

for 1 ≤ i ≤ n, we let Ai(λ) ∈ UTn(S) be the diagonal matrix with 1S on the diagonal

apart from λ as the (i, i)th entry, and, for 1 ≤ i < j ≤ n, let Eij(λ) ∈ UTn(S) be the

matrix where all diagonal entries are 1S, (Eij(λ))ij = λ, and all other entries are 0S.

For convenience, we sometimes write Eij to denote Eij(1S). Recall that we denote the

subsemiring of tropical integers by Zmax = T ∩ (Z ∪ {−∞}).
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To begin, we introduce two lemmas which we require for the following two sections.

Lemma 5.1.1. Let S be a unital commutative semiring and x, y ∈ S. Then, xy is a

unit if and only if x and y are units.

Proof. If xy is a unit, then xyt = 1S for some t ∈ S. Then, by commutativity,

x(yt) = 1S = (yt)x and y(xt) = 1S = (xt)y, so x and y are units. If x and y are units,

then xs = sx = 1S and yt = ty = 1S for some s, t ∈ S. Thus,

xy(ts) = xs = 1S = ty = (ts)xy

and hence, xy is a unit.

Lemma 5.1.2. Let S be a unital commutative semiring with a zero and X ∈ S where

S = Mn(S), UTn(S), or Un(S). If X J In in S, then X is a unit in S.

Proof. If X J In, then there exists A,B ∈ S such that AXB = In. The main theorem

in [RS84] states that if S is a unital commutative semiring with a zero then, if PQ = In

then QP = In for P,Q ∈Mn(S). Hence XBA = BAX = In, and thus X ∈ U(S).

5.2 Generating Sets for Upper Triangular and Uni-

triangular Matrix Monoids

In this section, we produce minimal generating sets for monoids of upper triangular

matrices over commutative unital semirings with zeros and monoids of unitriangular

matrices over commutative semirings with zeros. If an irredundant generating set

exists, the given minimal generating sets will be irredundant. We also provide a more

detailed form of the generating sets when we restrict to look at matrices over anti-

negative semirings and anti-negative semifields.

5.2.1 Upper Triangular Matrix Monoids

To begin, we need the following lemma, which tells us when an upper triangular matrix

over a commutative unital semiring with a zero is invertible.

Lemma 5.2.1. Let S be a commutative unital semiring with a zero and n ∈ N. Then,

X ∈ UTn(S) is invertible in UTn(S) if and only if Xii ∈ U(S) for 1 ≤ i ≤ n and

Xij ∈ V (S) for 1 ≤ i < j ≤ n.
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Proof. By [LW16, Theorem 3.2] and [LW16, Theorem 4.2], we can see thatX ∈ UTn(S)

is invertible in Mn(S) if and only if X2
11 · · ·X2

nn ∈ U(S) and
∑n

k=1XkiXkj ∈ V (S) for

all 1 ≤ i < j ≤ n. Thus, if X ∈ UTn(S) is such that Xii ∈ U(S) for 1 ≤ i ≤ n and

Xij ∈ V (S) for 1 ≤ i < j ≤ n, then X is invertible in Mn(S).

So, suppose X ∈ UTn(S) is invertible in Mn(S), then by Lemma 5.1.1, we have

that Xii ∈ U(S) for 1 ≤ i ≤ n. We can see that Xij ∈ V (S) by induction. Note that,

for all j > 1,
∑n

k=1Xk1Xkj = X11X1j as X is upper triangular. Thus, X1j ∈ V (S) as

X11X1j ∈ V (S). So, for induction, suppose Xij ∈ V (S) for all i < l.

Now,
∑n

k=1XklXkj = XllXlj +
∑l−1

k=1XklXkj as X is upper triangular. Thus,

XllXlj ∈ V (S) and hence Xlj ∈ V (S) as
∑l−1

k=1XklXkj ∈ V (S) by the inductive

hypothesis. Therefore, Xij ∈ V (S) for 1 ≤ i < j ≤ n.

We now need to show that the inverse of X in Mn(S) lies in UTn(S). Let Y be the

inverse of X, then XY = In. Suppose Y /∈ UTn(S) and let i be the maximum such

that there exists j < i with Yij ̸= 0S. Then choose j < i such that Yij ̸= 0S. Now,

XiiYij = (XY )ij = (In)ij = 0S

where the first equality holds as Xik = 0S for all k < i and Ykj = 0S for all k > i by

the maximality of i. Thus, Yij = 0S as Xii ∈ U(S) and hence is not a zero-divisor.

This gives a contradiction, so Y ∈ UTn(S).

Theorem 5.2.2. Let S be a commutative unital semiring with a zero and n ∈ N. Let

X be a minimal semigroup generating set for the group of units of UTn(S), Ω ⊆ S be a

minimal set such that U(S)(Ω ∪ V (S)) generates (S,+), and Y ⊆ S be a minimal set

such that Y ∪U(S) generates (S, ·). Then, the monoid UTn(S) is minimally generated

by X ∪ E(Ω) ∪ A(Y ) where

E(Ω) = {Eij(ω) : ω ∈ Ω, 1 ≤ i < j ≤ n}, and

A(Y ) = {Ai(y) : y ∈ Y, 1 ≤ i ≤ n}.

Moreover, if X , Ω and Y are irredundant then UTn(S) is irredundantly generated by

X ∪ E(Ω) ∪ A(Y ).

Proof. If a ∈ U(S) then Ai(a) ∈ ⟨X⟩ as Ai(a) is invertible by Lemma 5.2.1. If

a ∈ S \ U(S), then we can write a = x1 · · ·xs for some x1, . . . , xs ∈ Y ∪ U(S).
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Thus, Ai(a) = Ai(x1) · · ·Ai(xs) and hence each Ai(a) is generated by matrices from

A(Y ) ∪ ⟨X⟩. Thus, we can generate Ai(a), for all a ∈ S and 1 ≤ i ≤ n.

Fix a ∈ S. Since U(S)(Ω ∪ V (S)) generates (S,+) we can write a =
∑m

t=1 ltbt

where lt ∈ U(S) and bt ∈ Ω ∪ V (S). For all i < j, it is straightforward to verify that

Eij(a) =
m∏
t=1

Ai(lt)Eij(bt)Ai(l
−1
t )

and if bt ∈ V (S), then by Lemma 5.2.1, Eij(bt) ∈ ⟨X⟩, and thus each of these factors

is in E(Ω) ∪ ⟨X⟩. Further, define, for 1 ≤ i ≤ n,

Eii(a) = Ai(a).

Then, Eij(a) for all a ∈ S and 1 ≤ i ≤ j ≤ n can be expressed as a product of matrices

from the given sets. Now, note that for any M = (mij) ∈ UTn(S),

M =
n−1∏
l=0

n−1∏
k=l

En−k,n−l(mn−k,n−l).

Therefore, every matrix in UTn(S) can be expressed as the product of matrices from

the given sets.

We show this generating set is minimal by contradiction. Suppose that there exists

a generating set Γ for UTn(S) such that |Γ| < |X ∪E(Ω)∪A(Y )|. Let Γ1 ⊆ Γ be the set

of all units in Γ. As any product containing a non-unit is a non-unit by Lemma 5.1.2,

Γ1 generates the group of units of UTn(S). Therefore, as X is a minimal generating

set for the group of units, we have that |X | ≤ |Γ1|, and hence |Γ\Γ1| < |E(Ω)∪A(Y )|.

Let T = ⟨X ∪ E(Ω)⟩ and Γ2 ⊆ Γ \ Γ1 be all the matrices in Γ \ Γ1 that are also in

T . It can be easily seen that T is the set of all matrices where all the diagonal entries

are in U(S). Thus, we can see that XY ∈ T if and only if X ∈ T and Y ∈ T by

considering the diagonal entries with Lemma 5.1.1. Thus, ⟨Γ1 ∪ Γ2⟩ = T . We show

that |Γ2| ≥ |E(Ω)|, by showing that in order to generate every Eij(x) with x ∈ S\V (S)

and i < j, we need at least |E(Ω)| elements not in Γ1.

Suppose
∏m

t=1Nt = Eij(x) for some x ∈ S\V (S), i < j, and N1, . . . , Nm ∈ UTn(S).

It follows from Lemma 5.1.1 that (Nt)hh ∈ U(S) for all t and all h, since
∏m

t=1(Nt)hh =

(
∏m

t=1Nt)hh = (Eij(x))hh = 1S. Let k < l such that (k, l) ̸= (i, j). Then,

(
m∏
t=1

Nt)kl =
∑

(i0,...,im)

m∏
s=1

(Ns)is−1,is = (Eij(x))kl = 0S.
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where the sum ranges over k = i0 ≤ · · · ≤ im = l. Thus, for all 1 ≤ t ≤ m,

(N1)kk · · · (Nt−1)kk(Nt)kl(Nt+1)ll · · · (Nm)ll ∈ V (S)

and hence, (Nt)kl ∈ V (S) as (Nt)hh ∈ U(S) for all 1 ≤ h ≤ n.

Now, consider the (i, j) entry of
∏m

t=1Nt = Eij(x), then

x =
∑

i=i0≤···≤im=j

(N1)i0,i1(N2)i1,i2 · · · (Nm)im−1,im .

By the previous paragraph, (Nt)il,il+1
∈ V (S) if il < il+1 and (il, il+1) ̸= (i, j). So, we

can split this sum in products that contain an entry from V (S) and those that do not.

Let t1, . . . , tm′ be all the indices such that (Ntα)ij ∈ S \ V (S) when 1 ≤ α ≤ m′, and

recalling that for a, b ∈ V (S) and c ∈ S, a+ b, ca, ac ∈ V (S), x may be expressed as

x = v +
m′∑
α=1

gtα(Ntα)ij

for some v ∈ V (S) and gtα ∈ U(S). (Since diagonal entries of all Nt have been shown

to be units.)

Therefore, to generate Eij(x) for all x ∈ S \ V (S), it is necessary to find a set

X ⊆ S such that for all x ∈ S, there exists v ∈ V (S), g1, . . . , gmx ∈ U(S), and

x1, . . . , xmx ∈ X for some mx ∈ N0 such that x = v +
∑mx

t=1 gtxt.

Thus, U(S)X ∪V (S) generates (S,+) and hence, by the definition of Ω, |X| ≥ |Ω|,

as U(S)(X ∪ V (S)) = U(S)X ∪ V (S). Moreover, as we have to generate Eij(x) for

all x ∈ S \ V (S) and i < j, we get that |Γ2| ≥ n
2
(n − 1) · |Ω| = |E(Ω)|, and hence

|Γ3| < |A(Y )|, where Γ3 = Γ \ (Γ1 ∪ Γ2).

For each s ∈ S \ U(S) and 1 ≤ i ≤ n, Ai(s) /∈ ⟨Γ1 ∪ Γ2⟩, so consider a product∏m
t=1Nt = Ai(s). Then

(
m∏
t=1

Nt)ii =
m∏
t=1

(Nt)ii = s and (
m∏
t=1

Nt)hh =
m∏
t=1

(Nt)hh = 1S

for all 1 ≤ h ≤ n with h ̸= i. Thus, (Nt)hh ∈ U(S) for all t and h ̸= i. Therefore, in

order to generate each Ai(s) for s ∈ S \U(S) we need to find a set Λ such that for all

s there exist λ1, . . . , λms ∈ Λ such that s = gλ1 · · ·λms for some g ∈ U(S).

However, Y is the minimal set such that Y ∪ U(S) generates (S, ·), so |Λ| ≥ |Y |.

Moreover, as we need to generate Ai(s) for all s ∈ S \ U(S) and for all 1 ≤ i ≤ n, we
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get that |Γ3| ≥ n|Y | = |A(Y )|, giving a contradiction. Thus, |Γ| ≥ |X ∪E(Ω)∪A(Y )|

and hence the given set minimally generates UTn(S).

Assume X ,Ω and Y are irredundant. By Lemma 5.1.2, in UTn(S), any product

containing a non-unit is a non-unit. Thus, all the elements of X are irredundant in

the given generating set for UTn(S).

Suppose for a contradiction, Eij(ω) is redundant for some i < j and ω ∈ Ω. Then,

in order to generate Eij(ω), we have that there exists v ∈ V (S), g1, . . . , gmω ∈ U(S),

and x1, . . . , xmω ∈ Ω\{ω} for somemω ∈ N0 such that ω = v+
∑mω

t=1 gtxt by above. This

gives a contradiction as Ω is an irredundant set such that U(S)(Ω ∪ V (S)) generates

(S,+).

Now, suppose that Ai(y) is redundant for some y ∈ Y . Then, in order to generate

Ai(y), we have that, there exist g ∈ U(S) and λ1, . . . , λmy ∈ Y \ {y} such that

s = gλ1 . . . λmy by above. This gives a contradiction as Y is an irredundant set such

that Y ∪U(S) generates (S, ·). Thus, UTn(S) is minimally and irredundantly generated

by X ∪ E(Ω) ∪ A(Y ).

Let S be semiring with a zero, we define the function diag : Sn → UTn(S) by

diag(x) = A1(x1) · · ·An(xn) where x = (x1, . . . , xn) ∈ Sn. We remark that diag is an

injective homomorphism.

Corollary 5.2.3. Let S be a commutative unital anti-negative semiring with a zero

and n ∈ N. Let X be a minimal generating set for (U(S)n, ·) and Ω ⊆ S be a minimal

set such that U(S)Ω generates (S∗,+), and Y ⊆ S be a minimal set such that Y ∪U(S)

generates (S, ·). The monoid UTn(S) is minimally generated by diag(X)∪E(Ω)∪A(Y )

where

diag(X) = {diag(x) : x ∈ X},

E(Ω) = {Eij(ω) : ω ∈ Ω, 1 ≤ i < j ≤ n}, and

A(Y ) = {Ai(y) : y ∈ Y, 1 ≤ i ≤ n}.

Moreover, if X, Ω and Y are irredundant then UTn(S) is irredundantly generated by

diag(X) ∪ E(Ω) ∪ A(Y ).

Proof. V (S) = {0S}, so by Lemma 5.2.1, the invertible elements of UTn(S) are the

diagonal matrices with entries in U(S). Therefore the group of units of UTn(S) is



58 CHAPTER 5. GENERATING SETS AND PRESENTATIONS

isomorphic to U(S)n and hence minimally generated by diag(X). Moreover, as S is

anti-negative, a set I minimally (and irredundantly) generates (S∗,+) if and only if

I ∪ {0S} minimally (and irredundantly) generates (S,+).

Corollary 5.2.4. Let S be an anti-negative semifield with a zero and n ∈ N. Let X

be a minimal generating set for ((S∗)n, ·). The monoid UTn(S) is minimally generated

by diag(X) ∪ E(1S) ∪ A(0S) where

diag(X) = {diag(x) : x ∈ X}, E(1S) = {Eij : 1 ≤ i < j ≤ n}, and

A(0S) = {Ai(0S) : 1 ≤ i ≤ n}.

Moreover, if X is irredundant then UTn(S) is irredundantly generated by diag(X) ∪

E(1S) ∪ A(0S).

Proof. As U(S) = S∗, we may take Ω = {1S} and Y = {0S} in Corollary 5.2.3.

Corollary 5.2.5. Let n ∈ N. The monoid UTn(Zmax) is minimally and irredundantly

generated by A(1) ∪ {−1 · In} ∪ E(0) ∪ A(−∞) where

A(1) = {Ai(1) : 1 ≤ i ≤ n}, E(0) = {Eij : 1 ≤ i < j ≤ n}, and

A(−∞) = {Ai(−∞) : 1 ≤ i ≤ n}.

Recall that 1 ̸= 1Zmax = 0 ̸= 0Zmax = −∞ and that −1 · In is the diagonal matrix

with −1 on the diagonal and −∞ elsewhere.

Proof. For 1 ≤ i ≤ n, let ai ∈ Zn be the element with 1 in the ith coordinate

and 0 elsewhere, and b ∈ Zn be the element with −1 in every coordinate. Clearly,

Ai(1) = diag(ai) and −1 · In = diag(b).

As Zmax is an anti-negative semifield, by Corollary 5.2.4, it suffices to show that

{a1, . . . , an, b} forms a minimal and irredundant generating set for (Zn, ·) where ·

is the semiring multiplication of (Z∗
max)

n, that is, coordinate-wise addition. It is

clear that this is a generating set for (Zn, ·). To see that it is minimal, observe

that |{a1, . . . , an, b}| = n + 1 and Zn is minimally n + 1 generated as a semigroup

[BGS19, Corollary 4.3], so {a1, . . . , an, b} is a minimal generating set. Moreover, as

{a1, . . . , an, b} is finite and minimal, it is irredundant.
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5.2.2 Unitriangular Matrix Monoids

Recall that, by the way we defined unitriangular matrices, we are free to consider

unitriangular matrices over non-unital semirings. However, in this process, we work

with matrices over a structure that is no longer a semiring. Thus, to proceed, we need

analogous results to Lemma 5.1.2 and Lemma 5.2.1, which work for unitriangular

matrices over non-unital semirings.

Lemma 5.2.6. Let S be a commutative semiring with a zero and n ∈ N. Then, for

X ∈ Un(S), the following are equivalent

(i) X is invertible in Un(S),

(ii) X J In,

(iii) Xij ∈ V (S) for 1 ≤ i < j ≤ n.

Proof. Clearly, (i) implies (ii). To see that (ii) implies (iii), let T = S × N0 be the

Dorroh extension of S by N0 [Gol99, p.3], where the operations on T are

(r, n) + (r′, n′) = (r + r′, n+ n′) and (r, n)(r′, n′) = (nr′ + n′r + rr′, nn′)

where nr =
∑n

i=1 r for n ∈ N0 and r ∈ S where 0r = 0S. Then, T is a commutative

unital semiring with a zero (0, 0) and identity (0, 1). Thus, S is a subsemiring of T

as S ∼= S × {0}. Moreover, if we identify the identities of S1 and T , then Un(S) is a

subsemigroup of Un(T ).

If X J In in Un(S), then X J In in UTn(T ) so, by Lemma 5.1.2, X is a unit in

UTn(T ). Therefore, by Lemma 5.2.1, Xij ∈ V (T ) for 1 ≤ i < j ≤ n. However, by

treating S as a subsemiring of T , it can be seen that V (T ) = V (S) as the only element

in N0 with an multiplicative inverse is 0. Thus, Xij ∈ V (S) for 1 ≤ i < j ≤ n.

Finally, to see (iii) implies (i), remark that by Lemma 5.2.1, X is invertible in

UTn(T ). Now, it suffices to show that the inverse of X lies in Un(S). So, let Y be the

inverse of X in UTn(T ), then XY = In. Then, for all 1 ≤ i ≤ n,

Yii = XiiYii = (XY )ii = (In)ii = 1S.

Therefore, Y ∈ Un(S).
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Theorem 5.2.7. Let S be a commutative semiring with a zero and n ∈ N. Let X be a

minimal semigroup generating set for the group of units of Un(S). Let Ω be a minimal

set such that Ω ∪ V (S) generates (S,+). The monoid Un(S) is minimally generated

by X ∪ E(Ω) where

E(Ω) = {Eij(ω) : ω ∈ Ω, 1 ≤ i < j ≤ n}.

Moreover, if X and Ω are irredundant then Un(S) is irredundantly generated by X ∪

E(Ω).

Proof. Fix a ∈ S. Since Ω ∪ V (S) generates (S,+) there exists b1, . . . , bm ∈ Ω ∪ V (S)

such that a = b1 + · · ·+ bm, and hence, for i < j, Eij(a) = Eij(b1) · · ·Eij(bm) and each

of these factors is either in ⟨X ⟩ by Lemma 5.2.6, or in E(Ω). Thus, Eij(a) for any

a ∈ S and i < j, can be expressed as a product of matrices from X ∪E(Ω). Now, note

that for any A = (aij) ∈ Un(S),

A =
n−1∏
l=1

n−l∏
i=1

Ei,n+1−l(ai,n+1−l)

where Eij(0S) = In ∈ ⟨X⟩. Therefore, Un(S) is generated by the given sets of matrices.

We show that this is a minimal generating set by contradiction. Suppose that there

exists a generating set Γ for Un(S) such that |Γ| < |X ∪E(Ω)|. Let Γ = Γ1 ∪Γ2 where

Γ1 is the set of all units in Γ. By Lemma 5.2.6, in Un(S) any product containing a

non-unit is a non-unit, so Γ1 generates the group of units of Un(S). Therefore, as X

is a minimal generating set for the group of units, we have that |Γ1| ≥ |X | and hence

|Γ2| < |E(Ω)|.

Suppose
∏m

t=1Nt = Eij(x) for some x ∈ S \V (S), i < j, and N1, . . . , Nm ∈ Un(S).

Let k < l such that (k, l) ̸= (i, j). Then,

(
m∏
t=1

Nt)kl =
∑

(i0,...,im)

m∏
s=1

(Ns)is−1,is = (Eij(x))kl = 0S.

where k = i0 ≤ · · · ≤ im = l. Thus, for all 1 ≤ t ≤ m,

(N1)kk · · · (Nt−1)kk(Nt)kl(Nt+1)ll · · · (Nm)ll = (Nt)kl ∈ V (S)

as (Nt)hh = 1S for all 1 ≤ h ≤ n.
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Now, consider the (i, j) entry of
∏m

t=1Nt = Eij(x), then

x =
∑

i=i0≤···≤im=j

(N1)i0,i1(N2)i1,i2 · · · (Nm)im−1,im .

By the previous paragraph, (Nt)il,il+1
∈ V (S) if il < il+1 and (il, il+1) ̸= (i, j). So, we

can split this sum in products that contain an entry from V (S) and those that do not.

Let t1, . . . , tm′ be all the distinct values such that (Ntα)ij ∈ S \ V (S) where 1 ≤

α ≤ m′, and recalling that for a, b ∈ V (S) and c ∈ S, a + b, ca, ac ∈ V (S), x may be

expressed as

x = v +
m′∑
α=1

(Ntα)ij

where v ∈ V (S).

Therefore, to generate Eij(x) for all x ∈ S \ V (S), it is necessary to find a set X

such that for all x ∈ S, there exists v ∈ V (S) and x1, . . . , xmx ∈ X such for some

mx ∈ N0 such that x = v +
∑mx

t=1 xt.

Thus, X ∪ V (S) generates (S,+) and hence, by the definition of Ω, |X| ≥ |Ω|.

Moreover, as we have to generate Eij(x) for all x ∈ S \ V (S) and i < j, we get that

|Γ2| ≥ n
2
(n − 1) · |Ω| = |E(Ω)| giving a contradiction. Thus, |Γ| ≥ |X ∪ E(Ω)| and

hence the given set minimally generates Un(S).

Assume X and Ω are irredundant. Then, by Lemma 5.2.6, in Un(S) any product

containing a non-unit is a non-unit. Thus, all the elements of X are irredundant in

the given generating set for Un(S).

Now, suppose that Eij(ω) is redundant for some i < j and ω ∈ Ω. Then, in order

to generate Eij(ω), we have that there exists v ∈ V (S) and x1, . . . , xmω ∈ Ω \ {ω} for

some mω ∈ N0 such that ω = v +
∑mω

t=1 xt by above. This gives a contradiction as Ω

is an irredundant set such that Ω ∪ V (S) generates (S,+). Thus, Un(S) is minimally

and irredundantly generated by X ∪ E(Ω).

Corollary 5.2.8. Let S be a commutative anti-negative semiring with a zero and

n ∈ N. Let Ω be a minimal generating set of (S∗,+). The monoid Un(S) is minimally

generated by {In} ∪ E(Ω) where

E(Ω) = {Eij(ω) : ω ∈ Ω, 1 ≤ i < j ≤ n.}

Moreover, if Ω is irredundant then Un(S) is irredundantly generated by In ∪ E(Ω).
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Proof. The group of units of Un(S) is {In}, since V (S) = {0S}. Moreover, as S is

anti-negative, a set X minimally (and irredundantly) generates (S∗,+) if and only if

X ∪ {0S} minimally (and irredundantly) generates (S,+).

Corollary 5.2.9. Let n ∈ N. The monoid Un(Zmax) is minimally and irredundantly

generated by {In} ∪ E(Z) where

E(Z) = {Eij(z) : z ∈ Z, 1 ≤ i < j ≤ n}.

Proof. Recall that Zmax is a bipotent semiring, that is, max(x, y) ∈ {x, y} for all

x, y ∈ Zmax. Thus, the minimal and irredundant generating set for (Z,max) is Z.

5.3 Full Matrix Monoid Generating Sets

We now move on to finding generating sets of full matrix monoids over anti-negative

semifields. In particular, we look at the monoids of matrices over the tropical semiring

of dimensions 2 and 3 and provide minimal and irredundant generating sets for them.

We define two functions which we use throughout the rest of this section. Let S

be an anti-negative semiring with a zero and no zero-divisors and B be the Boolean

semiring. Define ψ : S → B to be the map that sends 0S to 0 and all non-zero

elements to 1. Then, define ϕn : Mn(S) → Mn(B) to be the map that sends A to

ϕn(A) where ϕn(A)ij = ψ(Aij). For all n ∈ N, ψ and ϕn are surjective morphisms and

hence the cardinality of a minimal generating set for Mn(S) is at least the cardinality

of a minimal generating set for Mn(B).

5.3.1 2 × 2 Full Matrix Monoids

First, we consider the minimal generating sets for the semigroup of all 2 × 2 matrices

over an anti-negative semifield S such that x ≤ y or y ≤ x for all x, y ∈ S∗.

For a semiring S, we say a matrix M ∈Mn(S) is a monomial matrix if it has exactly

one entry from S∗ in each row and column, and say M has underlying permutation of

σ ∈ Sn if Mij ∈ S∗ if and only if j = σ(i) for all 1 ≤ i ≤ n. Moreover, we say M is the

permutation matrix of σ ∈ Sn if M has underlying permutation of σ and Mij = 1S

if and only if j = σ(i) for all 1 ≤ i ≤ n. We denote the group of units of Mn(S) by

GLn(S).
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To continue we require the following proposition which gives equivalent conditions

to a matrix being invertible in Mn(S) when S is a commutative anti-negative unital

semiring with a zero.

Proposition 5.3.1 (Corollary 3.3 [Tan13]). Let S be a commutative anti-negative

unital semiring with a zero. Then, the following statements are equivalent.

(1) A is invertible in Mn(S).

(2)
∑

σ∈Sn
A1σ(1) · · ·Anσ(n) ∈ U(S) and AijAik = 0 for all i, j, k ∈ [n] with j ̸= k.

(3)
∑

σ∈Sn
A1σ(1) · · ·Anσ(n) ∈ U(S) and AijAkj = 0 for all i, j, k ∈ [n] with i ̸= k.

We now apply the previous proposition to the case where S has no zero-divisors.

Lemma 5.3.2. Let S be a commutative anti-negative unital semiring with a zero and

no zero-divisors. Then, the invertible matrices of Mn(S) are exactly the monomial

matrices in which every non 0S entry is in U(S).

Proof. First note that monomial matrices in which every non 0S entry is in U(S)

satisfy the conditions of Proposition 5.3.1 and hence are invertible. So, now suppose

that X ∈ Mn(S) is invertible. Then, by Proposition 5.3.1(2–3), we can see that

XijXik = 0 = XjiXki for all 1 ≤ i, j, k ≤ n with j ̸= k. Thus, as S has no zero-

divisors, X has at most one non 0S entry per row and column. Finally, observe that,

by Proposition 5.3.1(2), X must have at least one non 0S entry per row and column

and every non 0S is in U(S).

Lemma 5.3.3. Let m ≥ 1 and X = {x1, . . . , xm} be a minimal group generating set

for Zm. Then X ∪ {x0} where x0 = x−1
1 · · · x−1

m is a minimal semigroup generating set

for Zm.

Proof. Note that Zm is minimally generated as a semigroup by a set of cardinality

m + 1 [BGS19, Corollary 4.3], so it suffices to generate x−1
i as products of x0, . . . , xm

for 1 ≤ i ≤ m. Observe, for all 1 ≤ i ≤ m,

x0 · · ·xi−1xi+1 · · · xm = x−1
1 · · ·x−1

m x1 · · ·xi−1xi+1 · · ·xm = x−1
i

as Zm is commutative. Thus, X is a minimal generating set for Zm.
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For the following theorem, we introduce the notation that for a semiring S and

x, y ∈ S, x ≤ y if and only if there exists t ∈ S such that t + x = y. We remark that

this agrees with the usual order of Z in Zmax and is the reverse of Green’s J -preorder

in the additive monoid of S.

Theorem 5.3.4. Let S be an anti-negative semifield with a zero such that for all

x, y ∈ S∗, x ≤ y or y ≤ x. Let X be a minimal (semigroup) generating set for (S∗, ·)

with x0 ∈ X. If (S∗, ·) is non-trivial, we can choose X such that x−1
0 ∈ ⟨X \ {x0}⟩.

Then, the monoid M2(S) is minimally generated by the matrices:

A =

0S x0

1S 0S

 , B(x) =

 x 0S

0S 1S

 for all x ∈ X \ {x0},

C =

0S 0S

0S 1S

 , and D =

1S 1S

1S 0S


Proof. First, we show that if (S∗, ·) is non-trivial we can find a minimal generating

set X for (S∗, ·) with x0 ∈ X such that x−1
0 ∈ ⟨X \ {x0}⟩. As S is an anti-negative

semifield, every element but 0S and 1S has infinite multiplicative order [GJN20, Lemma

2.1(ii)]. Thus, if |X| = m for some m ∈ N, then (S∗, ·) is a finitely generated torsion-

free abelian group and therefore isomorphic to Zm−1, as Zm−1 is m-generated as a

semigroup [BGS19, Corollary 4.3]. For m ≥ 2, by Lemma 5.3.3, we can choose X be

a minimal generating set such that x−1
0 ∈ ⟨X \ {x0}⟩. If m = 1, then (S∗, ·) is trivial

and if X is infinite, then let X ′ be a minimal generating set for (S∗, ·) and x0 = 1S.

Then, X = X ′ ∪ {x0} is a minimal generating set for (S∗, ·) with the property that

x−1
0 = 1S ∈ ⟨X ′⟩.

When (S∗, ·) is non-trivial, there exists y1, . . . , ys ∈ (X \{x0}) such that y1 · · · ys =

x−1
0 . Thus, B(x−1

0 ) = B(y1) · · ·B(ys) and when (S∗, ·) is trivial, A2 = B(x−1
0 ) = I2.

Thus, we can therefore generate,

F =

0S 1S

1S 0S

 = B(x−1
0 )A and B(x0) =

x0 0S

0S 1S

 = AB(x−1
0 )A.

For all x ∈ S∗, there exist z1, . . . , zt ∈ X such that x = z1 · · · zt and hence B(x) =

B(z1) · · ·B(zt). Therefore, B(x) can be expressed as the product of generators as each

B(zi) is a generator or can be expressed as a product of generators. Moreover, pre-

multiplying any matrix X by F swaps the rows and post-multiplying by F swaps the
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columns, so in order to prove we can generate every matrix as a product of the given

matrices, it suffices to express each matrix up to rearranging rows and columns.

Observe that,0S 0S

0S 0S

 = CFC, and

0S 0S

x 0S

 = CFB(x) for all x ∈ S∗.

Thus, from the given matrices, we are able to generate any matrix containing three

or four 0S entries. For the case where a matrix contains one or two 0S entries, let

x, y, z ∈ S∗, then0S 0S

x y

 = CFB(y)DB(y−1x),

0S x

0S y

 = B(x)FB(y)DFC,

0S x

y 0S

 = B(x)FB(y), and

0S x

y z

 = B(x)FB(z)DFB(z−1y).

Hence, every matrix with at least one 0S entry can be expressed as a product of

matrices from the given matrices.

Finally, for a, b, c, d ∈ S∗,a b

c d

 =

 1S 1S

db−1 ca−1

B(b)FB(a),

So, it suffices to express, for all x, y ∈ S∗,
(
1S 1S
x y

)
as a product of matrices with at

least one 0S entry. Without loss of generality, we may suppose y ≤ x as if x ≤ y, then

we can multiply by F on the right to swap to x and y in
(
1S 1S
x y

)
. So, as y ≤ x, there

exists t ∈ S such that t+ y = x and1S 1S

x y

 =

0S 1S

y y

y−1t 0S

1S 1S

 .

Thus, the above matrix, and hence all matrices with no 0S entries, can be expressed

as a product of matrices which contain at least one 0S entry. Hence, all matrices can

be generated by the given matrices.

Now, we show that the given generating set is minimal. The invertible matrices

are the monomial matrices with entries in S∗, by Lemma 5.3.2. Let perm : GL2(S) →

(S∗, ·) be the surjective morphism that maps A to A1,σ(1)A2,σ(2) where σ is the underly-

ing permutation of A. By assumption, (S∗, ·) is minimally generated by |X| elements,



66 CHAPTER 5. GENERATING SETS AND PRESENTATIONS

so GL2(S) is minimally generated by at least |X| matrices as there exists a surjective

morphism from GLn(S) to (S∗, ·). However, GL2(S) is generated by the |X| matrices

A and B(x) for x ∈ X \ {x0}, so these matrices minimally generate GL2(S). More-

over, in M2(S), any product containing a non-invertible matrix is not invertible by

Lemma 5.1.2, hence any minimal generating set for M2(S) must contain a generating

set for GL2(S).

If X is infinite, then the generating set is minimal as every generating set has to

contain at least |X| = |X|+2 elements. If X is finite, then for a contradiction, suppose

there exists a generating set Γ of size |X| + 1 for M2(S). By above |X| elements of Γ

are in GL2(S). Let Γ′ be all the elements of Γ in GL2(S) and Γ \ Γ′ = {γ}. Consider

ϕ2(Γ), this is a generating set for M2(B) as ϕ2 is a surjective morphism. Moreover, as

ϕ2(Γ
′) generates GL2(B) which is generated by ϕ2(A), we can see that ϕ2(A)∪ϕ2(γ) is

a generating set for M2(B). However, this gives a contradiction as M2(B) is minimally

generated by 3 matrices [HMSW21]. Therefore, M2(S) is minimally generated by these

|X| + 2 matrices.

We can now apply the above Theorem to Zmax, by noting that for all x, y ∈ S∗,

x ≤ y or y ≤ x.

Corollary 5.3.5. The monoid M2(Zmax) is minimally generated by the matrices:

A =

−∞ −1

0 −∞

 , B =

 1 −∞

−∞ 0

 ,

C =

−∞ −∞

−∞ 0

 , and D =

0 0

0 −∞


Proof. X = {−1, 1} is a generating set for (Z,+) such that (−1)−1 = 1.

5.3.2 3 × 3 Full Matrix Monoids

In this section, we focus on semigroups of 3 × 3 matrices and show that M3(S) is not

finitely generated when S is an infinite anti-negative semifield with a zero. We then

construct an (infinite) minimal and irredundant generating set for M3(Zmax).

For matrices X, Y ∈ Mn(S), we say that X is a permutation of Y if X can be

obtained by permuting the rows and permuting the columns of Y . Equivalently, X =

PY P ′ for some permutation matrices P, P ′ ∈Mn(S).
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In order to show that M3(Zmax) is not finitely generated, we show that for any

infinite commutative anti-negative unital semiring S with a zero and no zero-divisors,

we can find an infinite set of matrices which are all prime in M3(S) and each one is

contained in a different J -class of M3(S).

Lemma 5.3.6. Let S be a commutative anti-negative unital semiring with a zero and

no zero-divisors. For s ∈ S∗, let

Xs =


0S 1S s

1S 0S 1S

1S 1S 0S

 .

Then Xs is prime in M3(S), and if Xt J Xs for some t ∈ S∗ then t = s or ts = 1S.

Proof. Note that ϕ3(Xs) is prime in M3(B) [DCG80, Theorem 1], so if AB = Xs,

for some A,B ∈ M3(S), then ϕ3(A) or ϕ3(B) is a unit in M3(B). Suppose ϕ3(A)

is a unit in M3(B). Hence, ϕ3(A) is a permutation matrix by Lemma 5.3.2 and so,

A is a monomial matrix. Suppose that A is not a unit, then A has a non 0S, non-

invertible entry by Lemma 5.3.2. Thus, some row of AB is a scaling of a row of B by

a non-invertible element of S. However, each row of Xs contains a 1S entry, giving

a contradiction by Lemma 5.1.1. Therefore, A is a unit. If ϕ3(B) is a unit a dual

argument holds, since each column of Xs contains a 1S entry. Hence, Xs is prime in

M3(S).

Suppose Xs J Xt for some s, t ∈ S, then UXsV = Xt where U, V ∈ GL3(S) as Xt

is prime. We may write U = PD and V = D′P ′ for permutation matrices P and P ′

and diagonal matrices with entries in U(S), D and D′ by Lemma 5.3.2. Suppose P

and P ′ are the permutation matrix of σ and τ respectively for some σ, τ ∈ S3. Then,

for 1 ≤ i ≤ 3, the (σ−1(i), τ(i)) entry of UXsV is given by

Pσ−1(i),iDi,i(Xs)i,iD
′
i,iP

′
i,τ(i) = 0S

as (Xs)i,i = 0S. Therefore, (Xt)σ−1(i),τ(i) = 0S, but (Xt)i,j = 0S if and only if i = j, so

τ = σ−1 and P ′ = P−1.

Thus, PDXsD
′P−1 = Xt. Moreover, for i ̸= j and (i, j) ̸= (1, 3),

Pi,σ(i)Dσ(i),σ(i)(Xs)σ(i),σ(j)D
′
σ(j),σ(j)P

−1
σ(j),j = (Xt)ij = 1S (5.1)
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and for (i, j) = (1, 3),

P1,σ(1)Dσ(1),σ(1)(Xs)σ(1),σ(3)D
′
σ(3),σ(3)P

−1
σ(3),3 = (Xt)13 = t. (5.2)

Suppose σ = 1S3 , then by (5.2) D11sD
′
33 = t. In order to satisfy the equalities

(5.1), we have that

D11 = (D′)−1
22 = D33 = (D′)−1

11 = D22 = (D′)−1
33 .

Thus, s = t by (5.2).

If σ ̸= 1S3 , then taking i = σ−1(1) and j = σ−1(3) in (5.1) gives D11sD
′
33 = 1S,

whilst (5.2) gives Dσ(1),σ(1)D
′
σ(3),σ(3) = t, so s, t ∈ U(S). Since (σ(1), σ(3)) ̸= (1, 3) and

is not of the form (h, h).

If σ = (1, 2, 3), then

D11 = (D′)−1
22 = D33 = (D′)−1

11 = t−1D22 = t−1(D′)−1
33 ,

as D22D
′
11 = t by (5.2). If σ = (1, 3, 2), then

D11 = (D′)−1
22 = t−1D33 = t−1(D′)−1

11 = t−1D22 = t−1(D′)−1
33 ,

as D33D
′
22 = t by (5.2). Thus, if σ ̸= 1S3 is an even permutation, D11sD

′
33 = t−1s = 1S,

so s = t.

If σ = (1, 2), then

D11 = (D′)−1
22 = D33 = (D′)−1

11 = D22 = t(D′)−1
33 ,

as D22D
′
33 = t by (5.2). If σ = (1, 3), then

D11 = (D′)−1
22 = D33 = t(D′)−1

11 = tD22 = t(D′)−1
33 ,

as D33D
′
11 = t by (5.2). If σ = (2, 3), then

D11 = t(D′)−1
22 = tD33 = t(D′)−1

11 = tD22 = t(D′)−1
33 ,

as D11D
′
22 = t by (5.2). Thus, if σ is an odd permutation, D11sD

′
33 = ts = 1S.

Therefore, if Xt J Xs, then t = s or ts = 1S.

Theorem 5.3.7. Let S be an infinite commutative anti-negative unital semiring with

a zero and no zero-divisors. Then, the monoid M3(S) is not finitely generated.
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Proof. Let S̃ be an infinite subset of S such that if x ∈ S̃ and x−1 exists and x−1 ̸= x,

then x−1 /∈ S̃. Consider the matrices Xs for s ∈ S̃ where

Xs =


0S 1S s

1S 0S 1S

1S 1S 0S

 .

By Lemma 5.3.6, we have that Xs is prime for all s ∈ S̃. Moreover, if s−1 exists and

s ̸= s−1, then s−1 /∈ S̃, so JXt ∩ JXs = ∅ for any s ̸= t ∈ S̃.

Thus, as any generating set for M3(S) must contain a matrix J -related to Xs for

each s ∈ S̃, M3(S) is not finitely generated.

We remark that anti-negative semirings with a zero and no zero-divisors, are exactly

the trivial ring and the semirings attained from adjoining a zero to a semiring. Hence,

we have the following immediate corollary.

Corollary 5.3.8. Let S be an infinite commutative unital semiring. Then M3(S
0) is

not finitely generated

Corollary 5.3.9. The monoid M3(Zmax) is not finitely generated.

Lemma 5.3.10. Let S be a commutative anti-negative unital semiring with a zero

and no zero-divisors, and X = {x1, x−1
1 , x2, . . . , xm} be a generating set for (U(S), ·).

Then, for n ≥ 2, GLn(S) is generated by the following matrices:

A = A1(x1) · P(1,...,n−1), B = A1(x
−1
1 ) · P(1,...,n)

and A1(x) for x ∈ X \ {x1, x−1
1 }

where Pσ, for σ ∈ Sn, is the permutation matrix of σ.

Recall Ai(x) is the diagonal matrix where the (i, i) entry is x and all other diagonal

entries are 1S.

Proof. Clearly An−1 = A1(x1) · · ·An−1(x1). Now, remark that for all 1 ≤ i ≤ n − 1,
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Ai(x
−1
1 )P(1,...,n) = P(1,...,n)Ai+1(x

−1
1 ). Hence, we have

Bn−2An−1B = (A1(x
−1
1 )P(1,...,n))

n−2A1(x1) · · ·An−1(x1)B

= P n−2
(1,...,n)An−1(x

−1
1 ) · · ·A2(x

−1
1 ) · A1(x1) · · ·An−1(x1)B

= P n−2
(1,...,n)A1(x1)B

= P n−2
(1,...,n)A1(x1)A1(x

−1
1 )P(1,...,n)

= P n−1
(1,...,n).

Therefore, (Bn−2An−1B)n−1 = P(1,...,n) as (n−1)2 ≡ n2−2n+1 ≡ 1 mod n. Moreover,

B(Bn−2An−1B)A = A1(x
−1
1 )P(1,...,n)P

n−1
(1,...,n)A1(x1)P(1,...,n−1)

= A1(x
−1
1 )A1(x1)P(1,...,n−1)

= P(1,...,n−1).

Finally, note that

P−2
(1,...,n)P(1,...,n−1)P(1,...,n) = P(1,2).

Thus, as Sn can be generated by the permutations (1, 2) and (1, . . . , n) [Rot12, Exercise

2.9(iii)], every permutation matrix can be expressed as a suitable product of A and B.

Furthermore,

Ai(x1) = P(1,i)AP
n−2
(1,...,n−1)P(1,i), Ai(x

−1
1 ) = P(1,i)BP

n−1
(1,...,n)P(1,i)

and Ai(x) = P(1,i)A1(x)P(1,i) for x ∈ X \ {x1, x−1
1 }.

Thus, Ai(x) for x ∈ X and 1 ≤ i ≤ n can be generated by the given set of matrices.

Hence, as each diagonal matrix can be expressed as a product using the matrices

Ai(x) for x ∈ X and 1 ≤ i ≤ n, they can be generated by A, B, and A1(x) for

x ∈ X \ {x1, x−1
1 }.

Finally, by Lemma 5.3.2, every invertible matrix is a monomial matrix in which

every non 0S entry is in U(S). Therefore, each invertible matrix, and hence every ma-

trix in GLn(S), can be expressed as diagonal matrix with entries from U(S) multiplied

by a permutation matrix.

Corollary 5.3.11. Let n ≥ 2. The group GLn(Zmax) is minimally generated (as a

semigroup) by the following matrices:

A = A1(1) · P(1,...,n−1) and B = A1(−1) · P(1,...,n)
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where Pσ, for σ ∈ Sn, is the permutation matrix of σ.

Proof. By Lemma 5.3.10, A and B generate GLn(Zmax). To show minimality, observe

that GLn(Zmax) is non-abelian for n ≥ 2 and hence not 1-generated. Thus, A and B

minimally generate GLn(Zmax).

Lemma 5.3.12. Let n ≥ 2. The submonoidM ⊆Mn(Zmax) generated by the following

matrices contains UTn(Zmax):

A = A1(1) · P(1,...,n−1), B = A1(−1) · P(1,...,n), E12, and A1(−∞).

where Pσ, for σ ∈ Sn, is the permutation matrix of σ.

Proof. If we are able to generate the generators from Corollary 5.2.5 from the given

matrices, we are done. First, −1 · In, A1(1), . . . , An(1) can be generated as they are

units in Mn(Zmax) and A and B generate GLn(Zmax) by Corollary 5.3.11. So, it

suffices to show that we can generate Ai(−∞) for 1 ≤ i ≤ n and Eij for 1 ≤ i < j ≤ n.

Observe that,

Ai(−∞) = P(i1)A1(−∞)P(1i), and Eij =


P(j2)E12P(2j) if i = 1,

P(21j)E12P(2j1) if i = 2,

P(i1j2)E12P(2j1i) if 2 < i < j.

Thus, as Pσ ∈ GLn(Zmax) for all σ ∈ Sn, UTn(Zmax) ⊆M .

Theorem 5.3.13. The monoid M3(Zmax) is minimally and irredundantly generated

by the following matrices:

A = A1(1) · P(1,2), B = A1(−1) · P(1,2,3), E12, A1(−∞), and

Xi =


−∞ 0 i

0 −∞ 0

0 0 −∞

 for i ∈ N0

where Pσ, for σ ∈ S3, is the permutation matrix of σ.

Proof. Consider the following matrices:

A′ =


0 −∞ −∞

−∞ −∞ −1

−∞ 0 −∞

 , B′ =


0 −∞ −∞

−∞ 1 −∞

−∞ −∞ 0

 ,
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C ′ =


0 −∞ −∞

−∞ −∞ −∞

−∞ −∞ 0

 , D′ =


0 −∞ −∞

−∞ 0 0

−∞ 0 −∞

 .

By Lemma 5.3.10, A and B generate GL3(Zmax). So, as A′, B′, Pσ ∈ GL3(Zmax) for

all σ ∈ S3, they can be generated by the given matrices. Hence, C ′ and D′ can also be

generated as C ′ = P(1,2)A1(−∞)P(1,2) and D′ = P(1,3,2)E12P(1,3). By considering the

second and third rows and columns of A′, B′, C ′, and D′, we get a generating set for

M2(Zmax) by Lemma 5.3.5, as these matrices are block diagonal and the (1, 1) entry of

each matrix is 0. Hence, by multiplying by A1(x) for x ∈ Zmax, we can generate any

block diagonal matrix with a 1×1 block and then a 2×2 block, as A1(x) ∈ GL3(Zmax)

when x ∈ Z. Moreover, as permutation matrices are in GL3(Zmax), we can generate

any permutation of this matrix.

If a matrix has at least four −∞ entries then it contains a row and column with

at least two −∞ entries. Thus, every matrix with at least four −∞ entries is either a

permutation of an upper triangular matrix, which can be generated by Lemma 5.3.12,

or a block diagonal matrix with a 2 × 2 block, which can be generated by the above

argument.

Next, we show that we can generate all matrices with three −∞ entries. It suffices

to check up to permutation of the rows and columns. Moreover, as AT , BT , (E12)
T and

A1(−∞)T have more than four −∞ entries and XT
i = P(1,3)XiP(1,3), we can see that

the transposes of the generators can be generated and hence, we only have to check

we can generate all matrices up to transposition.

Note that, for a, b, c, d, e, f, g ∈ Zmax,


a b c

d e f

−∞ −∞ g

 =


0 −∞ c

−∞ 0 f

−∞ −∞ g




a b −∞

d e −∞

−∞ −∞ 0

 .

Thus, as the above matrix can be expressed as a product of matrices with at least

four −∞ entries, any matrix with at least two −∞ entries in the same row or column

can be generated. For the final matrix with three −∞ entries, we can assume some
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entries are 0 by multiplying by a diagonal matrix.
−∞ a b

c −∞ d

e f −∞

 =


a −∞ −∞

−∞ d −∞

−∞ −∞ e




−∞ 0 b− a

c− d −∞ 0

0 f − e −∞

 .

We split this matrix into two cases, first if x+ y + z = i ≥ 0, then
−∞ 0 x

y −∞ 0

0 z −∞

 =


0 −∞ −∞

−∞ i− x −∞

−∞ −∞ z

Xi


−z −∞ −∞

−∞ 0 −∞

−∞ −∞ x− i

 ,

and if x+ y + z = −i ≤ 0, then
−∞ 0 x

y −∞ 0

0 z −∞

 =


−∞ −∞ 0

−∞ −x −∞

z −∞ −∞

Xi


−∞ −∞ x

−∞ 0 −∞

−z − i −∞ −∞

 .

Thus, we have now shown that we can generate all matrices with at least three −∞

entries.

Now, let a, b, c, d, e, f, g ∈ Z and x ∈ Zmax and split into two cases. If a+ e ≥ b+d,

then 
a b c

d e −∞

f x g

 =


0 b− e −∞

−∞ 0 −∞

−∞ −∞ 0



a −∞ c

d e −∞

f x g

 ,

and if b+ d ≥ a+ e, then
a b c

d e −∞

x f g

 =


0 a− d −∞

−∞ 0 −∞

−∞ −∞ 0



−∞ b c

d e −∞

x f g

 .

We have already shown that we can generate all matrices with two −∞ entries in the

same row or column. By taking x = −∞ above, we can see that we can generate all

matrices with two −∞ entries in different rows and columns as they are expressible

as the product of matrices with at least three −∞ entries. Taking x ∈ Z shows that

we can express any matrix with one −∞ entry as the product matrices with at least

two −∞ entries and therefore a product of the given matrices.
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Finally, for matrices without −∞ entries, we may scale the columns so that the

top row only contains 0 entries. So, we only need to consider matrices of the form
0 0 0

a b c

d e f


where a, b, c, d, e, f ∈ Z. Further, we may rearrange the columns to assume a ≤ b, c

and e ≤ f . Now, observe that if d ≤ e, then
0 0 0

a b c

d e f

 =


0 −∞ −∞

a b c

d e f




0 0 0

−∞ 0 −∞

−∞ −∞ 0


as a ≤ b, c, and d ≤ e ≤ f . If e ≤ d, then

0 0 0

a b c

d e f

 =


0 −b −d

c 0 −∞

f −∞ 0



−∞ −∞ 0

a b −∞

d e −∞


as a − b ≤ 0 and e − d ≤ 0. Thus, as every matrix in the products above contains a

−∞ entry we can generate every matrix without −∞ entries. Therefore, every matrix

can be expressed as a product of the given matrices.

To show that this generating set is irredundant, note that ϕ3(A), ϕ3(B), ϕ3(E12),

ϕ3(A1(−∞)), and ϕ3(X0) provide a generating set for M3(B) as ϕ3 is a surjective

morphism and ϕ3(Xi) = ϕ3(X0) for all i ∈ N0. However, M3(B) is minimally and

irredundantly generated by 5 matrices [HMSW21, Table 1]. Thus, A, B, E12, and

A1(−∞) are irredundant. Now, note that each Xi is in a different prime J -class by

Lemma 5.3.6, and as any generating set for M3(Zmax) must require each at least one

representative from each, all the Xi matrices are irredundant.

Therefore, all matrices in the generating set are irredundant, so the generating set

is irredundant. The generating set is minimal by Corollary 5.3.9.

For a semigroup S, we say x ∈ S is regular if there exists y ∈ S such that xyx = x.

In 1968, Devadze [Dev68] showed that the size of minimal generating sets for Mn(B)

grows at least exponentially as n→ ∞. However, Kim and Roush [KR77] showed that

there exists a semigroup generated by four matrices from Mn(B) which contains all
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regular matrices in Mn(B). The following corollary shows that a similar result holds

for Mn(Zmax) when n ≤ 3.

Corollary 5.3.14. The submonoid of M3(Zmax) generated by the following matrices:

A = A1(1) · P(1,2), B = A1(−1) · P(1,2,3),

E12, and A1(−∞)

contains all regular matrices in M3(Zmax).

Proof. By the proof of Theorem 5.3.13, the matrices J -related to some Xi are exactly

those with one −∞ entry in each row and column. We can see this as every matrix

with this property is generated by multiplying Xi by units, and any matrix J -related

to Xi has this property as each Xi is prime in M3(Zmax) by Lemma 5.3.6. Moreover, in

the proof of Theorem 5.3.13, matrices J -related to some Xi are not used to generate

any matrix not J -related to some Xj. Thus, we can use the matrices above to generate

every matrix not J -related to Xi for some i ∈ N0.

We show that every matrix J -related to Xi is not regular. By Lemma 5.3.6, each

Xi is prime in M3(Zmax), hence every matrix J -related to Xi is prime. Let M J Xi

for some i ∈ N0, so in particular M is prime. Suppose M is regular, then there exists

Y such that MYM = M . Hence, YM is an idempotent, and as M is prime, YM is

a unit. Thus, YM = I3, giving a contradiction by Lemma 5.1.2, as M /∈ GL3(Zmax).

Therefore, the submonoid of M3(Zmax) generated by A, B, E12, and A1(−∞) contains

all regular matrices in M3(Zmax).

We now pose the question whether the theorem proved by Kim and Roush [KR77]

is again true when applied to Mn(Zmax) rather than Mn(B).

Question 5.3.15. Is it the case that the matrices in the statement of Lemma 5.3.12

generate all regular matrices of Mn(Zmax)?

5.4 A Presentation for Upper Triangular Tropical

Matrices

Presentations, especially finite presentations, are an important tool in the study of

semigroups. In particular, they enable us to construct semigroup representations, as
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if one has a finite presentation of a semigroup, then we can define a representation

of the semigroup by only defining the representation on the generators and verifying

that the set of relations hold on these generators.

So far this chapter has been devoted to constructing minimal and irredundant

generating sets for matrix monoids. Specifically, in Section 5.2.1, we established that

UTn(Zmax) is finitely generated. In this section, we construct a finite presentation

of the monoid UTn(Zmax) for all n ∈ N using the minimal generating set given in

Corollary 5.2.5.

Let Σ be an alphabet and R ⊆ Σ∗×Σ∗ be a set of relations. A monoid presentation

is defined to be the ordered pair ⟨Σ | R⟩. We say that a monoid S is presented by

⟨Σ | R⟩ if S = Σ∗/ρR where ρR is the smallest congruence on Σ containing R. In other

words, S is isomorphic to the free monoid of Σ subject to the relations given in R. We

say S is finitely presented if there exists finite Σ and finite R such that S presented

by ⟨Σ | R⟩.

We begin by constructing a finite presentation for UTn(Zmax) using a generat-

ing set of cardinality n(n+5)
2

. We remark that this is not a minimal generating set for

UTn(Zmax), as Corollary 5.2.5 establishes that UTn(Zmax) is minimally and irreducibly

generated by a generating set of cardinality n(n+3)
2

+ 1. Nonetheless, using this presen-

tation allows for more concise proofs, and we can then use this presentation to show

that a different presentation with a minimal generating set is also a presentation for

UTn(Zmax).

To construct our first presentation, we define the alphabet Ωn = {ak, a−1
k , ck, dij :

1 ≤ k ≤ n, 1 ≤ i < j ≤ n}, and consider the following relations over Ωn for

1 ≤ i < j ≤ n and 1 ≤ k, l ≤ n:

aiaj = ajai (C1)

cicj = cjci (C2)

c2k = ck (C3)

d2ij = dij (C4)

alck = ckal (C5)
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akdij = dijak i, j ̸= k (C6)

ckdij = dijck i, j ̸= k (C7)

dijdst = dstdij j ̸= s < t ̸= i (C8)

dijdjt = djtdijdit j < t (C9)

dijaidij = aidij (C10)

dijajdij = dijaj (C11)

aiajdij = dijaiaj (C12)

akck = ck (Z1)

cidij = ci (Z2)

dijcj = cj (Z3)

aka
−1
k = ε (I1)

a−1
k ak = ε (I2)

where ε is the empty word in Ω∗
n. Define R′ to be the collection of all these relations.

Note that ak and ck commute with all the generators apart from dik or dkj.

Throughout the rest of this section, we will use S to denote the monoid presented

by ⟨Ωn | R′⟩, recall that this is the quotient of Ω∗
n by the smallest congruence on Ωn

containing the relations R′. We now aim to show that S is isomorphic to UTn(Zmax).

In order to do this, we require a number of technical lemmas.

We begin by showing that we are able to deduce a number of relations involving

a−1
k for 1 ≤ k ≤ n from the relations in R′, and hence are satisfied by S.

Lemma 5.4.1. The following relations are satisfied by S. For 1 ≤ i < j ≤ n, and

1 ≤ k, l ≤ n:

a−1
l ak = aka

−1
l (S1)

a−1
i a−1

j = a−1
j a−1

i (S2)

a−1
l ck = cka

−1
l (S3)

a−1
k di,j = di,ja

−1
k i, j ̸= k (S4)

a−1
i a−1

j di,j = di,ja
−1
i a−1

j (S5)
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di,ja
−1
i di,j = di,ja

−1
i (S6)

di,ja
−1
j di,j = a−1

j di,j (S7)

a−1
k ck = ck (S8)

Proof. We show that these relations are satisfied by S by using (I1) and (I2) with the

relations from R′.

(S1): a−1
l ak =S a

−1
l akala

−1
l =S a

−1
l alaka

−1
l =S aka

−1
l by (I1), (C1) and (I2).

(S2): a−1
i a−1

j =S a
−1
j aja

−1
i a−1

j =S a
−1
j a−1

i aja
−1
j =S a

−1
j a−1

i by (I2), (S1) and (I1).

(S3): a−1
l ck =S a

−1
l ckala

−1
l =S a

−1
l alcka

−1
l =S cka

−1
l by (I1), (C5) and (I2).

(S4): a−1
k di,j =S a

−1
k di,jaka

−1
k =S a

−1
k akdi,ja

−1
k =S di,ja

−1
k by (I1), (C6) and (I2).

(S5): a−1
i a−1

j di,j =S a
−1
i a−1

j di,jajaia
−1
i a−1

j =S di,ja
−1
i a−1

j by (I1), (C1), (C12) and (I2).

(S6): di,ja
−1
i di,j =S di,jaja

−1
j a−1

i di,j =S di,jajdi,ja
−1
j a−1

i =S di,ja
−1
i by (I1), (S5) and

(C11).

(S7): di,ja
−1
j di,j =S di,ja

−1
j a−1

i aidi,j =S a−1
j a−1

i di,jaidi,j =S a−1
j di,j by (I2), (S5) and

(C10).

(S8): a−1
k ck =S a

−1
k akck =S ck by (Z1) and (I2).

Note that a−1
k commutes with all the generators except dik or dkj. For each k ≤ n,

let Ωk,n = {ai, a−1
i , ci, di,j : i ≤ k, 1 ≤ i < j ≤ n} ⊆ Ωn and observe that Ωn,n = Ωn.

Lemma 5.4.2. Let k ≤ n and w ∈ Ω∗
k−1,n. Then, wak =S akw1, wa

−1
k =S a

−1
k w2, and

wck =S ckw3 for some w1, w2, w3 ∈ Ω∗
k−1,n.

Proof. Let l ∈ {1,−1}, to show walk =S a
l
kv for some v ∈ Ω∗

k−1,n, note that

(i) aia
l
k =S a

l
kai, for all i < k by (C1) and (S1),

(ii) a−1
i alk =S a

l
ka

−1
i , for all i < k by (S1) and (S2),

(iii) cia
l
k =S a

l
kci for all i < k by (C5) and (S3),
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(iv) di,ja
l
k =S akd

l
i,j for all all i < j ̸= k with i < k by (C6) and (S4).

(v) di,kak =S di,kakaia
−1
i =S akaidi,ka

−1
i for all i < k by (I1), (C1), and (C12),

(vi) di,ka
−1
k =S di,ka

−1
k a−1

i ai =S a
−1
k a−1

i di,kai for all i < k by (I2), (S2), and (S5).

Hence, using these rules, we can permute alk to the left of w, possibly introducing

copies of ai and a−1
i with 1 ≤ i < k. Thus, wak =S akw1 and wa−1

k =S a
−1
k w2 for some

w1, w2 ∈ Ω∗
k−1,n.

To show wck =S ckw3 for some w3 ∈ Ω∗
k−1,n, note that

(i) di,kck =S ck for all i < k by (Z3),

(ii) aick =S ckai for all i < k by (C5),

(iii) a−1
i ck =S cka

−1
i for all i < k by (S3),

(iv) cick =S ckci for all i < k by (C2),

(v) di,jck =S ckdi,j for all i < j ̸= k with i < k by (C7).

Hence, we can permute ck to the left of w, removing any di,k with i < k in w. Thus,

we have that wck =S ckw3 for some w3 ∈ Ω∗
k−1,n

Lemma 5.4.3. Let k ≤ n and w ∈ (Ωk−1,n ∪ {ak, a−1
k })∗. Then, for each h with

k < h ≤ n, there exists w′ ∈ Ω∗
k−1,n and m ∈ Z such that wdk,h =S a

m
k dk,hw

′.

Proof. Since w ∈ (Ωk−1,n ∪ {ak, a−1
k })∗ we can write w = am1

k u1a
m2
k u2 · · · amt

k where

mi ∈ Z and ui ∈ Ω∗
k−1,n. Applying Lemma 5.4.2 then gives w =S a

m
k v

′ where m ∈ Z

and v′ ∈ Ω∗
k−1,n.

Now, note that we have the following equalities hold in S.

(i) aidk,h =S dk,hai for all i < k by (C6),

(ii) a−1
i dk,h =S dk,ha

−1
i for all i < k by (S4),

(iii) cidk,h =S dk,hci for all i < k by (C7),

(iv) ds,tdk,h =S dk,hds,t for all s < t ̸= k with s < k by (C8),

(v) ds,kdk,h =S dk,hds,kds,h for all s < k by (C9). (i.e for all ds,k ∈ Ωk−1,n.)
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Hence, for some w′ ∈ Ω∗
k−1,n,

wdk,h =S a
m
k v

′dk,h =S a
m
k dk,hw

′

as we are able use the above rules to permute all letters in v′ to the right of the dk,h,

possibly introducing some ds,h ∈ Ωk−1,n with 1 ≤ s < k.

Finally, we can show that S is isomorphic to UTn(Zmax).

Theorem 5.4.4. UTn(Zmax) is finitely presented by ⟨Ωn | R′⟩.

Proof. Recall, we define S to be the monoid presented by ⟨Ωn | R′⟩. To show that

UTn(Zmax) is isomorphic to S and hence presented by ⟨Ωn | R′⟩, we first show that

each w ∈ S has a normal form in Ω∗
n given by

w =S an(xn,n)dn−1(xn−1,n) · · · a2(x2,2)d1(x1,2, . . . , x1,n)a1(x1,1)

where xi,j ∈ Zmax for 1 ≤ i ≤ j ≤ n, and for each i in the range 1 ≤ i ≤ n,

ai(xi,i) =

a
xi,i

i if xi,i ∈ Z,

ci if xi,i = −∞,

while for each 1 ≤ i < n, di(xi,i+1, . . . , xi,n) = di,i+1(xi,i+1) · · · di,n(xi,n) where

dij(xi,j) =

a
xi,j

i dija
−xi,j

i if xi,j ̸= −∞,

ε if xi,j = −∞.

We will then use this normal form to define an isomorphism between S and UTn(Zmax).

First, we show that given w ∈ Ω∗
k,n, we can express w as

w =S dk(xk,k+1, . . . xk,n)ak(xk,k)v

where xk,j ∈ Zmax for k ≤ j ≤ n and v ∈ Ω∗
k−1,n.

By using Lemma 5.4.2 and Lemma 5.4.3, we have that w =S uv for some u ∈

(Ωk,n \ Ωk−1,n)∗ and v ∈ Ω∗
k−1,n. Since Ωk,n \ Ωk−1,n = {ak, a−1

k , ck, dk,h : k < h ≤ n}

and each dk,h is idempotent, we can write any word over this set as

u1dk,j1u2dk,j2 · · ·ul′dk,jl′ul′+1



5.4. PRESENTATIONS 81

where ui ∈ {ak, a−1
k , ck}∗. Since the submonoid of S generated by {ak, a−1

k , ck} is

commutative and ck is a left zero for Ωk,n \ Ωk−1,n it follows that we can express w as

w =S

(
l∏

i=1

atik dk,ji

)
a
tl+1

k cεkk v

where l ∈ N0, t1, . . . , tl+1 ∈ Z, k < j1, . . . , jl ≤ n and εk ∈ {0, 1}. In particular,

for k = n, we may express w as ak(x)v for some x ∈ Zmax and v ∈ Ω∗
k−1,n. By the

definition of dk,j(x), axkdk,j = dk,j(x)axk for x ∈ Z. Thus,

w =S

(
l∏

i=1

dk,ji(Ti)

)
a
Tl+1

k cεkk v.

where Ti =
∑i

m=1 tm for 1 ≤ i ≤ l + 1.

We are able to simplify the above expression, by noticing that, when k < n,m and

n ̸= m, we can make the following commutation:

dk,n(x)dk,m(y) =S a
x
kdk,na

y−x
k dk,ma

−y
k

=S a
x
kdk,na

x−y
m ay−x

m ay−x
k dk,ma

−y
k (I1), (I2)

=S a
x
ka

x−y
m dk,ndk,ma

y−x
m a−x

k (C6), (C12), (S4), (S5)

=S a
x
ka

x−y
m dk,mdk,na

y−x
m a−x

k (C8)

=S a
y
kdk,ma

x−y
k ax−y

m ay−x
m dk,na

−x
k (C6), (C12), (S4), (S5)

=S a
y
kdk,ma

x−y
k dk,na

−x
k (I1), (I2)

=S dk,m(y)dk,n(x).

When n = m, we can simplify in the following way.

dk,n(x)dk,n(y) =S a
x
kdk,na

y−x
k dk,na

−y
k

=S

a
x
kdk,n(

∏|y−x|
i=1 akdk,n)a−y

k y ≥ x

axkdk,n(
∏|y−x|

i=1 a−1
k dk,n)a−y

k y < x

(C10), (S6)

=S

a
x
ka

y−x
k dk,na

−y
k y ≥ x

axkdk,na
y−x
k a−y

k y < x

(C10), (S6)

=S a
max(x,y)
k dk,na

−max(x,y)
k

=S dk,n(max(x, y)).
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Now, we define the following variables. For k < j, let

xk,j =

max({Tm : jm = j}) if jm = j for some m,

−∞ otherwise.

xk,k =

Tl+1 if εk = 0,

−∞ if εk = 1.

Then, using the above facts about multiplying dk,n(x) and dk,m(y), we have that

w =S dk(xk,k+1, . . . , xk,n)ak(xk,k)v.

Thus, each w ∈ Ω∗
k,n, can be expressed in the above form. Therefore, by applying this

with k = n, . . . , 1 for w ∈ Ω∗
n = Ω∗

n,n, we have that

w =S an(xn,n)dn−1(xn−1,n) · · · a2(x2,2)d1(x1,2, . . . , x1,n)a1(x1,1).

Using this set of normal forms, we now construct an isomorphism between S and

UTn(Zmax). Define the map ϕ : Ω∗
n → UTn(Zmax), given by ai → Ai(1), a−1

i 7→

Ai(−1), ci 7→ Ai(−∞), dij 7→ Eij and extending multiplicatively. Now, given a

normal form

w = an(xn,n)dn−1(xn−1,n) · · · a2(x2,2)d1(x1,2, . . . , x1,n)a1(x1,1),

a simple calculation shows that

ϕ(w) =


x1,1 . . . x1,n

. . .
...

xn,n

 .

Thus, as xi,j, for 1 ≤ i ≤ j ≤ n, can be any element from Zmax, we get that every

matrix in UTn(Zmax) is the image of exactly one normal form, and hence the normal

forms are in bijection with UTn(Zmax). So, it suffices to check that the images of the

generators satisfy the relations in R′.

We can see that (C1–C3), (C5), (Z1), (I1), and (I2) hold as ϕ(ak), ϕ(a−1
k ), and ϕ(ck)

are diagonal for all 1 ≤ k ≤ n, so the results follow instantly from the multiplication

of Zmax.
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For the rest of the relations, note that for X ∈ UTn(Zmax),

(XEi,j)s,t =

max(Xs,j, Xs,i) s ≤ i and t = j

Xs,t otherwise.

(Ei,jX)s,t =

max(Xi,t, Xj,t) s = i and t ≥ j

Xs,t otherwise.

Then, (C4) holds as we can see that E2
i,j = Ei,j, (C6–C7) hold as k ̸= i, j, and (Z2–Z3)

hold as, for s ≤ i < j and t ≥ j > i,

(Ai(−∞)Ei,j)s,j = −∞ and (Ei,jAj(−∞))i,t = −∞.

Similarly, (C8) holds as (Ei,jEs,t)i,t = −∞ = (Es,tEi,j)s,j. For (C9), it suffices to check

that (Ei,jEj,t)j,k = (Ej,tEi,jEi,t)j,k for k ≥ t and that (Ei,jEj,t)i,t = (Ej,tEi,jEi,t)i,t.

For the final 3 relations, we can see that (C10) holds as for t ≥ j,

(Ei,jAi(1)Ei,j)i,t = (Ai(1)Ei,j)i,t,

(C11) holds as for s ≤ i < j,

(Ei,jAj(1)Ei,j)s,j = (Ei,jAj(1))s,j,

and finally (C12) holds as, for s < i < j and t > j > i, we have that

(Ai(1)Aj(1)Ei,j)i,t = −∞ = (Ei,jAi(1)Aj(1))i,t,

(Ai(1)Aj(1)Ei,j)s,j = −∞ = (Ei,jAi(1)Aj(1))s,j,

(Ai(1)Aj(1)Ei,j)i,j = 1 = (Ei,jAi(1)Aj(1))i,j.

Thus, UTn(Zmax) satisfies every relation in R′, and is hence finitely presented by

⟨Ωn | R′⟩.

It is well known that if a semigroup is finitely presented then it can be finitely

presented with every finite generating set for the semigroup [Ruš95, Proposition 3.1].

So, we will now use the above Theorem to construct a finite presentation for UTn(Zmax)

using the minimal and irreducible generating set from Corollary 5.2.5. For this, we
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define an alphabet Σn = {ak, b, ck, dij : 1 ≤ k ≤ n, 1 ≤ i < j ≤ n} and relations for

1 ≤ i < j ≤ n, and 1 ≤ k ≤ n:

akb = bak, (R1)

di,jb = bdi,j, (R2)

a1 · · · anb = ε. (R3)

We define R to be the collection of relations (C1–C11), (Z1–Z3), and (R1–R3). That

is R′ with (I1), (I2), and (C12) replaced with (R1–R3).

Theorem 5.4.5. UTn(Zmax) is finitely presented by ⟨Σn | R⟩.

Proof. Let M be the monoid presented by ⟨Σn | R⟩ and recall that S = UTn(Zmax) is

the monoid presented by ⟨Ωn | R′⟩. We show that M ∼= S. Define ϕ : M → S to be

the map given by ai 7→ ai, ci 7→ ci, di,j 7→ di,j, and b 7→ a−1
1 · · · a−1

n and extending

multiplicatively. To see that ϕ is a well-defined map, we must show that ϕ(Σ∗
n) satisfies

the relations R. We see this by remarking that ϕ is the identity map on Σn \ {b}, and

hence satisfies the relations (C1–C11) and (Z1–Z3). Thus, it suffices to check that

ϕ(Σ∗
n) satisfies the relations (R1–R3). For 1 ≤ i < j ≤ n and 1 ≤ k ≤ n,

ϕ(ak)ϕ(b) = aka
−1
1 · · · a−1

n =S a
−1
1 · · · a−1

n ak = ϕ(b)ϕ(ak) by (S1),

ϕ(di,j)ϕ(b) = di,ja
−1
1 · · · a−1

n =S a
−1
1 · · · a−1

n di,j = ϕ(b)ϕ(di,j) by (S2), (S4), (S5),

ϕ(a1) · · ·ϕ(an)ϕ(b) = a1 · · · ana−1
1 · · · a−1

n =S ε = ϕ(ε) by (C1), (I1).

Now, define ψ : S → M to be the map given by ai 7→ ai, ci 7→ ci, di,j 7→ di,j, and

a−1
i 7→ a1 · · · ai−1ai+1 · · · anb and extending multiplicatively. To show that ψ is a well-

defined map, we show that ψ(Ω∗
n) satisfies the relations R′. We see this by remarking

that ψ is the identity map on Ωn \ {a−1
k : 1 ≤ k ≤ n}, and hence satisfies the relations

(C1–C11) and (Z1–Z3). Thus, it suffices to check that ψ(Ω∗
n) satisfies the relations

(I1), (I2), and (C12). For 1 ≤ i < j ≤ n and 1 ≤ k ≤ n,

ψ(ak)ψ(a−1
k ) = aka1 · · · ak−1ak+1 · · · anb =M ε = ψ(ε) (C1), (R3),

ψ(a−1
k )ψ(ak) = a1 · · · ak−1ak+1 · · · anbak =M ε = ψ(ε) (C1), (R1), (R3),
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ψ(ai)ψ(aj)ψ(di,j) = aiajdi,j

=M aiajdi,ja1 · · · anb (R3),

=M a1 · · · anbdi,jaiaj (C1), (C6), (R1), (R2),

=M di,jaiaj (R3),

= ψ(di,j)ψ(ai)ψ(aj).

Thus, ψ is a well defined morphism. We now show that ϕ and ψ and mutually inverse

morphisms. Clearly, ψϕ(ai) = ai, ψϕ(ci) = ci, ψϕ(di,j) = di,j and we can see that

ψϕ(b) = ψ(a−1
1 · · · a−1

n )

= (ba2 · · · an) · · · (ba1 · · · an−1)

=M bnan−1
1 · · · an−1

n by (C1), (R1),

=M (a1 · · · anb)n−1b by (C1), (R1),

=M b by (R3).

Therefore, ψϕ : M →M is the identity map on M . Similarly, ϕψ(ai) = ai, ϕψ(ci) = ci,

and ϕψ(di,j) = di,j, so finally note that, for 1 ≤ k ≤ n,

ϕψ(a−1
k ) = ϕ(a1 · · · ak−1ak+1 · · · anb)

= a1 · · · ak−1ak+1 · · · ana−1
1 · · · a−1

n

= a−1
k by (C1), (S1), (I1).

Thus, ϕψ : S → S is the identity map on S. Therefore, ϕ and ψ are mutually inverse

morphisms and M and S are isomorphic. Hence, ⟨Σn | R⟩ is a finite presentation for

UTn(Zmax) with a minimal generating set.

The presentation given by the above theorem has n(n+3)
2

+ 1 generators and 1
8
(n4 +

6n3 + 15n2 + 10n+ 8) relations.



Chapter 6

Growth of Commutative Bipotent

Matrices

The growth rate of a semigroup is an important invariant in geometric semigroup the-

ory as it provides information about the geometry and structure of the semigroup

[GK17]. For instance, a renowned theorem in this area is Gromov’s theorem on

groups of polynomial growth, which says that a finitely generated group has poly-

nomial growth if and only if it has a nilpotent subgroup of finite index [Gro81]. This

implies that every finitely generated group of polynomial growth satisfies a semigroup

identity as Malcev [Mal53] showed that all nilpotent groups of class n satisfy a semi-

group identity. However, the corresponding statement for semigroups is not true as, by

Shneerson [Shn93], there exist finitely generated semigroups with polynomial growth

which do not satisfy any semigroup identities.

In [dP03], d’Alessandro and Pasku investigated the growth of finitely generated

subsemigroups of Mn(S), when S is a commutative bipotent semiring. They showed

that, for any such finitely generated subsemigroup, the growth function is bounded

above by a polynomial. However, the degree of the polynomial is dependent on the

dimension of the matrices and the number of unique entries in the matrices in the

generating set. As a result, different generating sets for the same semigroup can give

upper bounds for the growth functions with different polynomial degrees.

In Section 6.1, we introduce the notation and definitions required for the rest of

this chapter. In Section 6.2, for S a commutative bipotent semiring, we provide a poly-

nomial upper bound for the growth function of any finitely generated subsemigroup of

86
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Mn(S) where the degree of the polynomial is dependent both on n and the growth of

the multiplicative semigroup generated by the entries of the matrices in the generating

set. When we restrict our attention to finitely generated subsemigroups of Mn(T), we

obtain a polynomial upper bound for the growth function where the degree of the

polynomial is only dependent on n and the rank of the free abelian subgroup which

the finite entries in the matrices of the generating set generate as a group. The finite

entries in the matrices in any generating set for a subsemigroup of Mn(T) generate as

a group the same free abelian subgroup of (R,+); hence the bound on the degree of

the growth function of a semigroup is independent of the generating set. Moreover,

when further restricted to Mn(Qmax), we show that the growth of any finitely gener-

ated subsemigroup is bounded above by a polynomial with a degree only dependent

on n. We then consider UTn(S), where S is a commutative bipotent semiring, and

find a different upper bound for any finitely generated subsemigroup UTn(S). Again,

we show that if we restrict to UTn(Qmax), then the growth of a finitely generated

subsemigroup is bounded above by a polynomial with degree dependent only on n.

Finally, for all n ∈ N, we give examples of finitely generated subsemigroups of Mn(T)

and UTn(T) which attain these bounds, demonstrating that these bounds are sharp.

6.1 Preliminaries

Let S be a finitely generated semigroup and X be a finite generating set for S. The

growth function of S with respect to X is given by fX(k) = |
⋃k

i=1X
i|. We say the

growth function of S with respect to X, fX(k), is bounded above by a polynomial of

degree n if there exists cX > 0 such that for all k ∈ N, fX(k) ≤ cXk
n.

In fact, if the growth function of S with respect to X is bounded above by a

polynomial of degree n then the growth function with respect to any finite generating

set is bounded above by a polynomial of degree n. This fact is well known, but we

give a short proof here for completeness.

Proposition 6.1.1. Let X and Y be finite generating sets for a semigroup S. Then,

for all n ∈ N0, the growth function of S with respect to X is bounded above by a

polynomial of degree n if and only if the growth function of S with respect to Y is

bounded above by a polynomial of degree n.
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Proof. Let X = {x1, . . . , xl} and Y = {y1, . . . , ys} be generating sets for S. Suppose

fX(k) ≤ cXk
n for some cX and n ∈ N0. We can express the elements of Y as products

of elements from X since X is a generating set for S. Thus, for each 1 ≤ i ≤ s, there

exists 1 ≤ j1, . . . , jmi
≤ l such that yi = xj1 · · ·xjmi

. Let m = maxi(mi). Then

fY (k) ≤ fX (mk) ≤ cX (mk)n = cXm
nkn ≤ cY k

n

for some cY ≥ cXm
n. Therefore, as we chose X and Y arbitrarily, the growth function

of S with respect to any finite generating set is bounded above by a polynomial of

degree n.

Thus, we say that the growth of a semigroup S is bounded above by a polynomial of

degree n if there exists a generating set X for S and cX > 0 such that fX(k) ≤ cXk
n.

Recall, we denote the subsemiring of tropical rationals by Qmax = T∩ (Q∪{−∞}).

6.2 Growth of Commutative Bipotent Matrices

Recall that a semiring (S,+, ·) is called bipotent if x+y ∈ {x, y} for all x, y ∈ S. In this

section, we find upper bounds for the growth of any finitely generated subsemigroup

of Mn(S) or UTn(S) when S is a commutative bipotent semiring.

Proposition 6.2.1. Let S be a commutative bipotent semiring, T be a finitely gener-

ated subsemigroup of Mn(S), and X be a finite generating set for T . If the growth of

the multiplicative semigroup generated by the entries of the matrices in X is bounded

above by a polynomial of degree ℓ ∈ N0. Then, the growth function of T is bounded

above by a polynomial of degree ℓn2.

Proof. For every k ≥ 1, let Ck be the set of all the finite entries of the matrices in Xk.

Let ck = |
⋃k

i=1Ci|. As the growth of the semigroup generated by the entries of the

matrices in X is bounded above by a polynomial of degree ℓ, we have that ck ≤ βkℓ

for some β > 0 as S is bipotent.

Hence, as every matrix in Xk has entries in Ck∪{−∞}, we obtain for every k ∈ N,

fX(k) ≤ (ck + 1)n
2 ≤ (βkℓ + 1)n

2 ≤ ((β + 1)kℓ)n
2

= δkℓn
2

where δ = (β + 1)n
2
.
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Since S is a commutative semiring, for every finitely generated subsemigroup of

the multiplicative semigroup (S, ·) there exists an ℓ ∈ N0 such that the growth of

S is bounded above by a polynomial of degree ℓ [Kho92, Kho95]. Thus, we may

apply the above theorem to any finitely generated subsemigroup of Mn(S) when S is

a commutative bipotent semiring.

The previous upper bound on the degree of the growth, given by d’Alessandro and

Pasku [dP03], is (c − 1)n2 + 1 where c is the number of distinct matrix entries in a

generating set for T . Thus, the new bound given above is only worse when n ≥ 2, no

matrix in X contains 0S or 1S entries, and the growth of the multiplicative semigroup

generated by the entries of the matrices in X is bounded above by a polynomial of

degree c.

In order to achieve more explicit upper bound of the polynomial degree, we now

restrict to the case where we consider finitely generated subsemigroups of Mn(T).

To do this, we first require the following lemma which gives the growth of finitely

generated subsemigroups of the multiplicative semigroup of T in terms of the rank of

free abelian subgroup they generate as a group.

Lemma 6.2.2. Let T be a finitely generated subsemigroup of the multiplicative semi-

group of T and C be a finite generating set for T . Let ℓ be the rank of the free abelian

subgroup of (R,+) generated as a group by the finite entries of C. Then the growth of

T with respect to C is bounded above by a polynomial of degree ℓ

Proof. Let G be the free abelian group generated as a group by D = C \ {−∞}. Let

f(k) be the growth of T with respect to C and g(k) be the growth of G with respect

to (D ∪ D−1), where D−1 = {d−1 : d ∈ D}. Clearly, f(k) ≤ g(k) + 1, where the +1

accounts for the case where −∞ ∈ C. So, it suffices to show that g(k) ≤ ckℓ for some

c > 0.

As G is a free abelian group of rank ℓ, G has growth upper bounded by a polynomial

of degree ℓ [Wol68, Theorem 3.2]. Thus,

f(k) ≤ g(k) + 1 ≤ c′kℓ

for some c′ > 0.

Corollary 6.2.3. Let T be a finitely generated subsemigroup of Mn(T) and ℓ be the

rank of the free abelian subgroup of (R,+) generated as a group by the finite entries of
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the matrices in T . Then, the growth function of T is bounded above by a polynomial

of degree ℓn2.

Proof. As T is bipotent, the finite entries of the matrices in T and the finite entries of

the matrices in any generating set for T generate, as a group, the same free abelian

subgroup of (R,+). Thus, the result follows immediately from Proposition 6.2.1 and

Lemma 6.2.2

If we restrict to matrices over Qmax rather than matrices over T or an arbitrary

commutative bipotent semiring, then the group generated, as a group, by any finite

subset of Q containing a non-zero entry is isomorphic to Z, so we can simplify the

result in this case.

Corollary 6.2.4. Let T be a finitely generated subsemigroup of Mn(Qmax). Then, the

growth function of T is polynomially upper bounded of degree n2.

Proof. All finitely generated subgroups of (Q,+) are either trivial or isomorphic to

(Z,+), [Rob96, Exercise 4.2.6].

Again comparing to the bound by d’Alessandro and Pasku [dP03], we can see in

this case, the new bound is only worse when n ≥ 2 and S is generated by a matrix in

which every entry is the same non-zero entry of Q.

We now provide similar results for the semigroup of upper triangular matrices over

commutative bipotent semirings and Qmax.

Proposition 6.2.5. Let S be a commutative bipotent semiring, T be a finitely gener-

ated subsemigroup of UTn(S), and X be a finite generating set for T . If the growth of

the multiplicative semigroup generated by the entries of the matrices in X is bounded

above by a polynomial of degree ℓ ∈ N0. Then, the growth function of T is bounded

above by a polynomial of degree ℓn(n+1)
2

.

Proof. For every k ≥ 1, let Ck be the set of the finite entries of the matrices in the set

Xk. Let ck = |∪k
i=1Ci|. As the growth of the semigroup generated by the entries of the

matrices in X is bounded above by a polynomial of degree ℓ, we have that ck ≤ βkℓ

for some β > 0 as S is bipotent.

Hence, as every matrix in Xk has entries in Ck∪{−∞}, we obtain for every k ∈ N,

fX(k) ≤ (ck + 1)
n(n+1)

2 ≤ (βkℓ + 1)
n(n+1)

2 ≤ ((β + 1)kℓ)
n(n+1)

2 = δkγ
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where δ = (β + 1)
n(n+1)

2 and γ = ℓn(n+1)
2

.

Again, we restrict to the cases where the commutative bipotent semiring is T or

Qmax to give explicit bounds on the growth of finitely generated subsemigroups of

UTn(T) and UTn(Qmax).

Corollary 6.2.6. Let T be a finitely generated subsemigroup of UTn(T) and ℓ be the

rank of the free abelian subgroup of (R,+) generated as a group by the finite entries of

the matrices in T . Then, the growth function of T is bounded above by a polynomial

of degree ℓn(n+1)
2

.

Proof. As T is bipotent, the finite entries of the matrices in T and the finite entries of

the matrices in any generating set for T generate, as a group, the same free abelian

subgroup of (R,+). Thus, the result follows immediately from Proposition 6.2.5 and

Lemma 6.2.2.

Corollary 6.2.7. Let T be a finitely generated subsemigroup of UTn(Qmax). Then,

the growth function of T is bounded above by a polynomial of degree n(n+1)
2

.

Proof. All finitely generated subgroups of (Q,+) are either trivial or isomorphic to

(Z,+), [Rob96, Exercise 4.2.6].

6.3 The Bounds Are Sharp

In the previous section, we showed that for a given finitely generated subsemigroup

T of Mn(T) or UTn(T), the growth function of T is bounded above by a polynomial

of degree dependent on n and ℓ, the rank of the free abelian group generated as a

group by the finite entries of the matrices in T . We now show that for all n ∈ N and

ℓ ∈ N0, there exist finitely generated subsemigroups of Mn(T) and UTn(T) such that

the finite entries generate, as a group, a free abelian group of of rank ℓ with growth

functions bounded below by polynomials of degrees ℓn2 and ℓn(n+1)
2

respectively, that

is, the upper bounds given in Corollary 6.2.3 and Corollary 6.2.6.

Theorem 6.3.1. Let n ∈ N and ℓ ∈ N0. Then, there exists a finite generating set X

for a subsemigroup of UTn(T), such that the growth function of X is bounded below

by ck
ℓn(n+1)

2 for some c > 0 where ℓ is the rank of the free abelian subgroup of (R,+)

generated as a group by the finite entries of the matrices generated by X.
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Proof. The proof is immediate if ℓ = 0, so we may assume ℓ ≥ 1. Let I = {γ1, . . . , γℓ} ⊂

(R,+) be a minimal group generating set for a free abelian group of rank ℓ. Con-

sider the set of matrices Ck ⊆ UTn(T) such that the entries on and above the

diagonal of the matrices are the tropical product of at most
⌊
k−n
2n

⌋
elements from

I. Now, let X be the set of all n × n upper triangular matrices with entries from

{γ1, . . . , γℓ,−γ1, . . . ,−γℓ, 0,−∞}. We will show that for all k ∈ N, Ck ⊆ Xk and there

exists c > 0 such that |Ck| ≥ ck
ℓn(n+1)

2 . Thus, showing that the growth function of X

is bounded below by ck
ℓn(n+1)

2 .

LetA ∈ Ck. Let Lm, Rm ∈ UTn(T) be the diagonal matrices such that (Lm)ii = Aim

for all i ≤ m and 0 otherwise and (Rm)ii = −Aim for all i < m and 0 otherwise. Let

E ′
m be the upper triangular matrix where all diagonal entries are 0 and (E ′

m)im = 0

for all i ≤ m and −∞ elsewhere. To show that A ∈ Xk, let

Σ =
n−1∏
m=0

Ln−mE
′
n−mRn−m ∈ UTn(T).

Note that (LmE
′
mRm)ii = 0 for i ̸= m. Thus, for i ≤ j, we can see that

Σij = (Lj)ii(E
′
j)ij(Rj)jj = Aij + 0 + 0 = Aij.

Therefore, A = Σ. Note that since A ∈ Ck, for all i ≤ j, Aij can be expressed as

the product of at most
⌊
k−n
2n

⌋
entries from I, so the diagonal matrices Lm and Rm can

be expressed as the product of at most
⌊
k−n
2n

⌋
matrices from X. Therefore, for each

1 ≤ m ≤ n, LmE
′
mRm can be expressed as the product of 2

⌊
k−n
2n

⌋
+ 1 ≤

⌊
k
n

⌋
matrices

from X. Hence, A can be expressed as the product of n
⌊
k
n

⌋
≤ k matrices from X,

and thus A ∈ Xk.

Now, as {γ1, . . . , γℓ} is a minimal group generating set for a free abelian group,

the monoid generated by {γ1, . . . , γℓ} is a free commutative monoid of rank ℓ and has

a growth function bounded below by c′kℓ for some c′ > 0. Thus, there are at least

(c′(
⌊
k−n
2n

⌋
)ℓ)

n(n+1)
2 matrices in Ck ⊆ Xk. Hence the growth function of X is bounded

below by ck
ℓn(n+1)

2 for some c > 0.

Theorem 6.3.2. Let n ∈ N and ℓ ∈ N0. Then, there exists a finite generating set X

for a subsemigroup of Mn(T), such that the growth function of X is bounded below by

ckℓn
2
for some c > 0 where ℓ is the rank of the free abelian subgroup of (R,+) generated

as a group by the finite entries of the matrices generated by X.
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Proof. The proof is immediate if ℓ = 0, so we may assume ℓ ≥ 1. Let I = {γ1, . . . , γℓ} ⊂

(R,+) be a minimal group generating set for a free abelian group of rank ℓ such that

1 ≤ γi ≤ 2 for each i, and consider the set of matrices Ck ⊆ Mn(T) such that the di-

agonal entries of the matrices are the tropical product of between
⌊
2k−4n
16n+3

⌋
and

⌊
3k−6n
16n+3

⌋
elements from I and the off diagonal entries are the tropical product of between 0

and
⌊

k−2n
16n+3

⌋
elements from {−γ1, . . . ,−γℓ}. Let X be the set of all n × n matrices

with entries from {γ1, . . . , γℓ,−γ1, . . . ,−γℓ, 0,−∞}. We will show that Ck ⊆ Xk and

|Ck| ≥ ckℓn
2

for some c > 0.

Let A ∈ Ck. Let Lm, Rm ∈ Mn(T) be the diagonal matrix with entries (Lm)ii =

Aim−Amm if i ≥ m and 0 otherwise and (Rm)ii = Aim−Aii if i ≤ m and 0 otherwise.

Let Em be the matrix where all diagonal entries are 0 and (Em)im = 0 for all i ≥ m

and all other entries are −∞. Similarly, let E ′
m be the matrix where all diagonal

entries are 0 and (E ′
m)im = 0 for all i ≤ m and all other entries are −∞. Let Λ be the

diagonal matrix where Λii = Aii for all 1 ≤ i ≤ n. To show that A ∈ Xk, let

Σ =

(
n∏

m=1

LmEmL
−1
m

)
Λ

(
n−1∏
m=0

Rn−mE
′
n−mR

−1
n−m

)
.

Note that (LmEmL
−1
m )ii = 0 and (RmE

′
mR

−1
m )ii = 0. Thus, for 1 ≤ i, j ≤ n, we can see

that

Σij = max
m≤i,j

((Lm)ii + Λmm + (Rj)mm) = max
m≤i,j

(Aim + Amj − Amm) = Aij

as if m < min(i, j) then Aim + Amj − Amm ≤ 0 + 0 −
⌊
2k−4n
16n+3

⌋
≤ Aij as 1 ≤ γs ≤ 2 for

each s. Thus, we have that Σ = A.

Now, for all 1 ≤ m ≤ n, Em, E
′
m ∈ X and Lm and Rm (and therefore also L−1

m

and R−1
m ) can be expressed as the product of

⌊
3k−6n
16n+3

⌋
+
⌊

k−2n
16n+3

⌋
matrices from X.

Similarly, Λ can be expressed as the product of
⌊
3k−6n
16n+3

⌋
matrices from X. Thus, Σ

can be expressed as the product of

4n

⌊
3k − 6n

16n+ 3

⌋
+ 4n

⌊
k − 2n

16n+ 3

⌋
+ 2n+

⌊
3k − 6n

16n+ 3

⌋
≤ 16n(k − 2n)

16n+ 3
+ 2n+

3k − 6n

16n+ 3

= k

matrices from X, and hence A ∈ Xk.

Now, as {γ1, . . . , γℓ} is a minimal group generating set for a free abelian group,

the monoid generated by {γ1, . . . , γℓ} is a free commutative monoid of rank ℓ and has



94 CHAPTER 6. GROWTH OF COMMUTATIVE BIPOTENT MATRICES

a growth function bounded below by c′kℓ for some c′ > 0. Thus, there are at least

(c′(
⌊

k−2n
16n+3

⌋
)ℓ)n

2
matrices in Xk. Hence the growth function of X is bounded below by

ckℓn
2

for some c > 0.

Corollary 6.3.3. The bounds given in Corollary 6.2.3 and Corollary 6.2.6 are sharp.

i.e. For all n ∈ N and ℓ ∈ N0, there exist finitely generated subsemigroups of Mn(T)

and UTn(T) such that their growth function is bounded below by a polynomial of degree

ℓn2 and ℓn(n+1)
2

respectively where ℓ is the rank of the free abelian group generated as

a group by the finite entries of the matrices in subsemigroup.



Chapter 7

Identities of tropical matrix

semigroups and the plactic monoid

of rank 4

The semigroup identities satisfied by semigroups of matrices over the tropical semiring

have been widely studied in recent years [DJK18, Izh16b, IM18]. Birkhoff’s HSP

Theorem (Theorem 1.1.1) allows us to connect semigroup identities satisfied by a

semigroup with its homomorphic images, subsemigroups and direct products. Thus,

this research has led to interest in the semigroup identities satisfied by the semigroups

which are representable by tropical matrices [AR23, CKK+17]. In this chapter, we

focus on the problem of showing when semigroup identities are not satisfied by these

semigroups, allowing us to deduce when a given semigroup variety is strictly contained

in another.

In particular, we prove a conjecture posed by Johnson and Kambites [JM21, Con-

jecture 3.5]. That is, we show that for every positive integer n there is a semigroup

identity satisfied by UTn(T) but not by UTn+1(T). Moreover, Johnson and Kam-

bites also asked [JM21, Question 4.8] whether the variety generated by P4, the plactic

monoid of rank 4, is equal to the variety generated by UT4(T) and/or the variety

generated by UT5(T), and in Section 7.4 we show that P4 satisfies semigroup identities

not satisfied by UT5(T) and hence, the variety generated by P4 is strictly contained in

the variety generated by UT5(T). It is known that the variety generated by UT2(T)

is equal to the variety generated by P2 and similarly the variety generated by UT3(T)

95
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is equal to the variety generated by P3. It remains open if the variety generated by

UT4(T) is equal to the variety generated by P4.

In addition to this introduction, this chapter comprises 4 sections. In Section 7.1,

we introduce some notations and definitions that we use throughout the rest of the

chapter.

In Section 7.2, we introduce a necessary requirement for a semigroup identity to

be satisfied by the semigroup of n × n upper triangular matrices, UTn(T). We then

use this to show that for all n ∈ N we can construct semigroup identities satisfied

by UTn(T) but not UTn+1(T) proving the conjecture given by Johnson and Kambites

[JM21, Conjecture 3.5].

In Section 7.3, we turn our attention to the full matrix semigroup, Mn(T). We

show that there exists a semigroup identity satisfied by M3(T) but not M4(T) and

additionally show that there exists a semigroup identity satisfied by Mp−1(T) but not

Mp(T) when p is prime. The question of if Mp−1(T) and Mp(T) generate different

varieties for non-prime p remains open.

In Section 7.4, we look at the plactic monoid and find a new set of semigroup

identities that is satisfied by P4 but not by UT5(T), partially answering the question

posed by Johnson and Kambites [JM21, Question 4.8] by showing that the variety

generated by P4 is strictly contained in the variety generated by UT5(T).

This chapter is based on the paper [Air22].

7.1 Preliminaries

When writing matrices over the tropical semiring, we use blank entries for −∞ when

it is clear.

For a matrix A = (Aij) ∈ Mn(T), we write GA = (V,E) for the weighted digraph

associated to A, that is, the digraph with vertex set {1, . . . , n} and edge set E(GA)

containing, for all 1 ≤ i, j ≤ n such that Aij ̸= −∞, a directed edge (i, j) with weight

Aij. Similarly, for A,B ∈Mn(T), we write GA,B for the labelled-weighted digraph with

vertex set {1, . . . , n} and edge set E(GA) ∪ E(GB) with the edges from GA labelled

by A and the edges from E(GB) labelled by B.

A path γ on a digraph is a series of edges (i1, j1), . . . , (im, jm) such that jk = ik+1
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for all 1 ≤ k < m. We say g is a node of γ if an edge starting or ending at g is in

γ, and call an edge a loop if it starts and ends at the same node. A path γ is said to

have length m if γ contains m edges (counted with multiplicity), written |γ| = m, and

has simple length m if γ contains m non-loop edges (again counted with multiplicity).

A path is called simple if it does not contain any loops. For any word w ∈ {A,B}+

and γ a path in GA,B, we say γ is labelled w if |γ| = |w| and, for all 1 ≤ r ≤ |γ|, the

edge (ir, jr) is labelled w(r), the rth letter of w. It can be easily seen that powers of a

matrix A correspond to the maximal weights of paths in GA, that is, the (i, j)th entry

of Am is given by the maximal weight of all paths from i to j of length m in GA.

Moreover, it is well known that, for w ∈ {a, b}∗, the product w(a 7→ A, b 7→

B) corresponds to the maximal weight of paths in GA,B, where the (i, j)th entry of

w(a 7→ A, b 7→ B) is given by the maximal weight of all paths from i to j labelled

by the word w[a 7→ A, b 7→ B] in GA,B, that is, all paths of length |w| where, for

1 ≤ k ≤ |w|, the kth edge in the path is labelled by w[a 7→ A, b 7→ B](k), the kth letter

of w[a 7→ A, b 7→ B].

7.2 Upper Triangular Matrix Semigroups

In this section we restrict our attention to the subsemigroup of upper triangular trop-

ical matrices and show that upper triangular tropical matrix semigroups of different

dimensions generate different semigroup varieties.

We begin by proving a lemma which we will use to falsify semigroup identities,

which hold in UTn(T), by matrices in UTn+1(T).

Lemma 7.2.1. Suppose u, v, w ∈ {a, b}∗ are words such that w has length n and is a

factor of u but not v. Then there exists A,B ∈ UTn+1(T) such that u(a 7→ AB, b 7→

BA) ̸= v(a 7→ AB, b 7→ BA).

Proof. Let w ∈ {a, b}∗ be a word of length n. We recursively define n+ 1 parameters

c1, · · · , cn+1 ∈ T, using the structure of the word w. Let c1 = 0 and for 2 ≤ k ≤ n+ 1

let

ck =

ck−1 − 1 if w(k−1) = a

ck−1 + 1 if w(k−1) = b.
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From these parameters, we can define matrices Aw, Bw ∈ UTn+1(T) to be

Aw =



c1

c2
. . .

cn

cn+1


Bw =



−c1 0

−∞ . . .

. . . . . .

−∞ 0

−cn+1


,

where (Aw)kk = ck for 1 ≤ k ≤ n+ 1 and −∞ otherwise; (Bw)11 = −c1, (Bw)n+1,n+1 =

−cn+1, (Bw)k,k+1 = 0 for 1 ≤ k ≤ n and −∞ otherwise.

Let A = Aw and B = Bw. We aim to show that if w is a factor of u but not v,

then u(a 7→ AB, b 7→ BA) ̸= v(a 7→ AB, b 7→ BA). Note that AB and BA are given

by the following matrices

AB =



0 c1

−∞ c2

. . . . . .

−∞ cn

0


BA =



0 c2

−∞ c3

. . . . . .

−∞ cn+1

0


.

Consider the labelled-weighted digraph GAB,BA; nodes 1 and n + 1 each have two

loops of weight 0 labelled AB and BA and for each 1 ≤ i ≤ n there are two edges

from i to i + 1 of weight ci and ci+1 labelled AB and BA respectively. Moreover, we

define a function fw by

fw : {a, b}∗ → T, t 7→ t(a 7→ AB, b 7→ BA)1,n+1.

Recall, that t(a 7→ AB, b 7→ BA)1,n+1 is equal to the maximum weight of a path

labelled by t[a 7→ AB, b 7→ BA] from node 1 to n + 1. Thus, we will now show that

fw(u) > fw(v) by considering the maximum weighted paths from node 1 to n + 1 in

GAB,BA labelled by u[a 7→ AB, b 7→ BA] and v[a 7→ AB, b 7→ BA].

By construction, we have that ci > ci+1 if w(i) = a and ci < ci+1 if w(i) = b. As

the only cycles in GAB,BA are loops of weight 0 at nodes 1 and n + 1, the weight of

any path from 1 to n + 1 is bounded above by the weight of the unique path ρ of

length n which takes the edge of largest weight from i to i + 1 for each 1 ≤ i ≤ n.
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Moreover, ρ is labelled w[a 7→ AB, b 7→ BA], and hence the upper bound is fw(w).

So for any word t, we have that fw(t) ≤ fw(w). If t = sws′ is a word containing w

as a factor, a path of maximal weight labelled s[a 7→ AB, b 7→ BA] around the loops

at 1, w[a 7→ AB, b 7→ BA] along ρ, and s′[a 7→ AB, b 7→ BA] around the loops at

n+ 1, gives a path of weight fw(w) as the loops have weight 0. Hence, fw(t) = fw(w).

On the other hand, if t does not contain w as a factor, then a path from 1 to n + 1

labelled t cannot contain the simple path ρ. It follows that at some step of the path

we must traverse a non-maximal weight edge between two consecutive nodes. Thus,

fw(t) < fw(w) in this case.

Therefore, fw(u) = fw(w) > fw(v) as w is a factor of u but not v. Hence, letting

A = Aw and B = Bw, we have that there exists A,B ∈ UTn+1(T) such that u(a 7→

AB, b 7→ BA) ̸= v(a 7→ AB, b 7→ BA).

The following corollary is a result by Izhakian [Izh16b, Theorem 4.5] applied to the

semigroup UTn(T). This gives us a way of generating semigroup identities for UTn(T).

Corollary 7.2.2. Let w ∈ {a, b}∗ be any word having as its factors all the words of

length n − 1 such that waw and wbw have no letter appearing n times sequentially.

Then, the semigroup identity

waw[a 7→ ab, b 7→ ba] = wbw[a 7→ ab, b 7→ ba]

is satisfied by UTn(T).

Example 7.2.3. For n = 3, w = ab2a2b has all words of length 2 as a factor, and

neither waw nor wbw has a3 or b3 as a factor. Therefore, by the above corollary,

waw[a 7→ ab, b 7→ ba] = wbw[a 7→ ab, b 7→ ba] is an identity that holds in UT3(T). We

will use this example later in this chapter.

Theorem 7.2.4. For all n ∈ N, there exists an identity satisfied by UTn(T) but not

satisfied by UTn+1(T).

Proof. As matrix multiplication is commutative if and only if n = 1, the identity

ab = ba is satisfied by UT1(T), but not UT2(T). It is known [IM09] that UT2(T)

satisfies the Adian identity, ab2a2bab2a = ab2aba2b2a. Note that this identity can be

written in the form u[a 7→ ab, b 7→ ba] = v[a 7→ ab, b 7→ ba] where u = abaab and
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v = abbab, and since a2 is a factor of u but not v then the identity is not satisfied by

UT3(T) by Lemma 7.2.1.

For n = 3, we can see by Example 7.2.3, that the following identity

u3 := ab2a2bbab2a2b[a 7→ ab, b 7→ ba] = ab2a2baab2a2b[a 7→ ab, b 7→ ba] =: v3

is satisfied by UT3(T). Note that bab is a factor of u3 but not v3. Thus, u3 = v3 is

falsified in UT4(T) by Lemma 7.2.1.

Now let n ≥ 4 and define w to be the word of length n given by w = a2bn−2.

We aim to construct a word w ∈ {a, b}∗ such that for u = waw and v = wbw we

have that u and v do not have any letter appearing n times sequentially; the word

w contains sufficiently many factors for Corollary 7.2.2 to apply, so that the identity

u[a 7→ ab, b 7→ ba] = v[a 7→ ab, b 7→ ba] is satisfied by UTn(T); and that the word w is

a factor of u but not of v, so that u(a 7→ AB, b 7→ BA) ̸= v(a 7→ AB, b 7→ BA) for

some A,B ∈ UTn+1(T) by Lemma 7.2.1.

Let w1, . . . , wm be a complete list of words in {a, b}n−1 taken in some arbitrary but

fixed order. For 1 ≤ i ≤ m, we define w′
i to be the word obtained from wi by removing

the prefix b if possible, and the suffix a if possible. Now, we let

w = abn−2(abw′
1ab)(abw

′
2ab) · · · (abw′

m−1ab)(abw
′
mab).

By construction, w contains each word of length n− 1 as a factor and each bracketed

expression (abw′
iab) does not contain an or bn as a factor. Likewise, it can be seen that

w does not contain an or bn as each bracketed expression starts and ends with ab and

each w′
i contains at most n− 2 copies of a or b in a row. Furthermore, since w begins

and ends with ab, it follows that u = waw and v = wbw do not contain an or bn. This

shows that Corollary 7.2.2 applies, so that u[a 7→ ab, b 7→ ba] = v[a 7→ ab, b 7→ ba] is

satisfied by UTn(T).

Similarly, a2bn−2 is not a factor of the bracketed expressions (abw′
iab) as n ≥ 4 and

as each bracketed expression starts and ends with ab, a2bn−2 is not a factor of w.

Thus, we can see that w is a factor of u = waw as aw = aabn−2 · · · = w · · · but

not a factor of v. Therefore, by Lemma 7.2.1, u[a 7→ ab, b 7→ ba] = v[a 7→ ab, b 7→ ba]

is falsified in UTn+1(T).

Another possible approach to Theorem 7.2.4 would be to use knowledge about the

free objects in these varieties discussed by Kambites in [Kam22] to show that the free
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objects in the varieties generated by UTn(T) and UTn+1(T) are not isomorphic for all

n ∈ N.

7.3 Full Tropical Matrix Semigroups

We introduce the notation that n = lcm{1, . . . , n} and, for u, v ∈ {a, b}∗, write ⟨u, v⟩

for the identity u = v and ⟨u, v⟩ [a 7→ x, b 7→ y] for the semigroup identity u[a 7→

x, b 7→ y] = v[a 7→ x, b 7→ y]. Recall, we say a matrix A ∈ Mn(T) has the underlying

permutation of σ ∈ Sn if Aij ̸= −∞ if and only if j = σ(i). A matrix A ∈ Mn(T)

is invertible if and only if A has an underlying permutation by Lemma 5.3.2. The

following theorem of Izhakian and Merlet allows us to produce semigroup identities

satisfied by Mn(T).

Theorem 7.3.1. [IM18, Theorem 3.6] For any t ≥ (n−1)2+1 and any identity u = v

satisfied by Mn−1(T), where u, v ∈ {a, b}+, the following holds:

(i) If q = r is an identity satisfied by UTn(T), then Mn(T) satisfies the identity

⟨ua, va⟩
[
a 7→ (qr)t

[
a 7→ an, b 7→ bn

]
, b 7→ (qr)tr

[
a 7→ an, b 7→ bn

]]
,

where q, r ∈ {a, b}+.

(ii) If pqp = prp is an identity satisfied by UTn(T), then Mn(T) satisfies the identity

⟨ua, va⟩
[
a 7→ wqp

[
a 7→ an, b 7→ bn

]
, b 7→ wrp

[
a 7→ an, b 7→ bn

]]
,

where w = (pqprp)t and p, q, r ∈ {a, b}+.

Theorem 7.3.2. There exists an identity satisfied by M3(T) that is not satisfied by

M4(T).

Proof. We apply Theorem 7.3.1 in the case n = 3. Set u = a2b3a3babab3a2 and

v = a2b3ababa3b3a2. Then u = v holds in M2(T) by [DJ17]. Let w = ab2a2b, q =

wbw[a 7→ ab, b 7→ ba], and r = waw[a 7→ ab, b 7→ ba]. Then q = r holds in UT3(T) by

Example 7.2.3. Let t = 5 and note that since n = 6 when n = 3, Theorem 7.3.1(i)

now yields the identity of length 29328 satisfied by M3(T)

⟨s, t⟩ := ⟨ua, va⟩
[
a 7→ (qr)5

[
a 7→ a6, b 7→ b6

]
, b 7→ (qr)5r

[
a 7→ a6, b 7→ b6

]]
,



102 CHAPTER 7. SEMIGROUP IDENTITIES

Now, let X, Y ∈M4(T) be given by

X =


−∞ 3 −∞ −∞

−∞ −∞ 3 −∞

−∞ −∞ −∞ 0

2 −∞ −∞ −∞

 Y =


1 −∞ −∞ −∞

−∞ −∞ 1 −∞

3 0 −∞ −∞

−∞ −∞ −∞ 2

 .

Then, a computation (run on the GAP computer algebra system [GAP21]) gives s(a 7→

X, b 7→ Y ) ̸= t(a 7→ X, b 7→ Y ) and hence we have constructed an identity satisfied

by M3(T) but not by M4(T). Note that the matrices X and Y were also found using

code run on GAP [GAP21].

In order to prove that Mp−1(T) and Mp(T) generate different semigroup varieties

we must first prove a number of lemmas, the first of which shows that we are able to

falsify an identity satisfied by M2(T) using two matrices from Mn(T) when n ≥ 3 is

odd.

Lemma 7.3.3. Let n ≥ 3 be odd, and A,B ∈ Mn(T) be invertible matrices such that

A has the underlying permutation of an n-cycle and B is a non-scalar diagonal matrix.

Then, there exists an identity satisfied by M2(T), u2 = v2, such that u2(a 7→ A, b 7→

B) ̸= v2(a 7→ A, b 7→ B).

Proof. Let u2 = a2b4a2 a2b2 a2b4a2, v2 = a2b4a2 b2a2 a2b4a2. Then u2 = v2 is an identity

satisfied by M2(T), [IM09, Theorem 3.9]. Now, let A,B ∈ Mn(T) be such that A has

the underlying permutation of an n-cycle σ and B is a diagonal matrix. Then, as A and

B are invertible matrices, we can see that u2(a 7→ A, b 7→ B) = v2(a 7→ A, b 7→ B) if

and only if A2B2 = B2A2, by cancelling A2B4A2 from both sides of u2(a 7→ A, b 7→ B)

and v2(a 7→ A, b 7→ B). However,

(A2B2)i,σ2(i) = Aiσ(i)Aσ(i)σ2(i)B
2
σ2(i),σ2(i),

(B2A2)i,σ2(i) = B2
iiAiσ(i)Aσ(i)σ2(i).

Moreover, as (A2B2)ij = −∞ = (B2A2)ij if j ̸= σ2(i), we get that A2B2 = B2A2 if

and only if Bii = Bσ2(i),σ2(i) for all 1 ≤ i ≤ n. That is, as σ is an n-cycle and n is odd,

if and only if B is a scalar matrix. Therefore, u2(a 7→ A, b 7→ B) ̸= v2(a 7→ A, b 7→ B)

if A has the underlying permutation of an n-cycle and B is a non-scalar diagonal

matrix.
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The following lemma allows us to construct an identity satisfied by Mn(T) in the

form of two words, a2 and b2, substituted into any identity satisfied by M2(T). Thus,

by using the previous lemma we may, in the n odd case, simplify the problem of

falsifying an identity for Mn(T) to showing that there exists X, Y ∈Mn(T) such that

a2(a 7→ X, b 7→ Y ) has the underlying permutation of an n-cycle and b2(a 7→ X, b 7→ Y )

is a non-scalar diagonal matrix.

Lemma 7.3.4. For each k in the range 3 ≤ k ≤ n, let qk = rk be an identity satisfied

by UTk(T), where qk, rk ∈ {a, b}+, and let t ≥ (n − 1)2 + 1 be a fixed integer. Let

an = a, bn = b, and for k = n, . . . , 3 recursively define

ak−1 = (qkrk)t
[
a 7→ akk, b 7→ bkk

]
and bk−1 = (qkrk)trk

[
a 7→ akk, b 7→ bkk

]
.

Then, for any identity satisfied by M2(T), u2 = v2, we have that

u2[a 7→ a2, b 7→ b2]a2a3 · · · an−1 = v2[a 7→ a2, b 7→ b2]a2a3 · · · an−1

is an identity satisfied by Mn(T).

Proof. For each 3 ≤ k ≤ n, we construct the identity uk = vk which holds in Mk(T)

using Theorem 7.3.1(i), as follows

uk = (uk−1a)
[
a 7→ (qkrk)t[a 7→ ak, b 7→ bk], b 7→ (qkrk)trk[a 7→ ak, b 7→ bk]

]
;

vk = (vk−1a)
[
a 7→ (qkrk)t[a 7→ ak, b 7→ bk], b 7→ (qkrk)trk[a 7→ ak, b 7→ bk]

]
.

By expressing ak−1 as a[a 7→ ak−1, b 7→ bk−1], and substituting the definitions

of ak−1, bk−1 and the definition of uk, we have that the following equalities hold for

3 ≤ k ≤ n

uk−1[a 7→ ak−1, b 7→ bk−1]ak−1ak · · · an−1

= (uk−1a)[a 7→ ak−1, b 7→ bk−1]ak · · · an−1

= (uk−1a)
[
a 7→ (qkrk)t

[
a 7→ akk, b 7→ bkk

]
,

b 7→ (qkrk)trk
[
a 7→ akk, b 7→ bkk ]

]
ak · · · an−1

= uk[a 7→ ak, b 7→ bk]ak · · · an−1,

where the product ak · · · an−1 is taken to be the empty word when k = n. Similarly, it

can be shown that

vk−1[a 7→ ak−1, b 7→ bk−1]ak−1 · · · an−1 = vk[a 7→ ak, b 7→ bk]ak · · · an−1
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for 3 ≤ k ≤ n. So, through the equalities given above, we have that

u2[a 7→ a2, b 7→ b2]a2a3 · · · an−1 = un[a 7→ an, b 7→ bn], and

v2[a 7→ a2, b 7→ b2]a2a3 · · · an−1 = vn[a 7→ an, b 7→ bn].

Thus, as un = vn is an identity satisfied by Mn(T), we have that the identity u2[a 7→

a2, b 7→ b2]a2a3 · · · an−1 = v2[a 7→ a2, b 7→ b2]a2a3 · · · an−1 is satisfied by Mn(T).

In preparation for the remainder of this section, we include two technical lemmas.

The first is an elementary result in real linear algebra.

Lemma 7.3.5. Let p be an odd prime, X = (xi) ∈ Np
0 and Pσ ∈ Mp(R) be the

permutation matrix of a p-cycle σ. Then, X,PσX, . . . , P
p−1
σ X are linearly dependent

over Q if and only if xi = xj for all 1 ≤ i, j ≤ p.

Proof. Clearly, if xi = xj for all 1 ≤ i, j ≤ p then X = PσX for all σ ∈ Sp and hence

linearly dependent over Q. So, we only need to show the forward implication.

All permutation matrices of p-cycles are conjugate so we may, without loss of

generality, suppose that σ is the p-cycle given by σ(i) = i + 1 mod p. Suppose

X,PσX, . . . , P
p−1
σ X are linearly dependent over Q, then there exist c0, . . . , cp−1 ∈ Q,

not all zero, such that
∑p−1

i=0 ciP
i
σX = 0. By factorising out X, we can express this

sum as CX = 0 where C =
∑p−1

i=0 ciP
i
σ ∈Mp(R) is a circulant matrix [Laz95].

If xi = 0 for all i, we are done. Suppose then that xi ̸= 0 for some i. Then, X is

an eigenvector of C with eigenvalue 0. Let ω be a primitive pth root of unity, then

by [Laz95, Theorem 0], C over Q[ω] has (right) eigenvectors vj with corresponding

eigenvalues λj for 0 ≤ j ≤ p− 1 given by the column vectors

vj = (1, ωj, ω2j, . . . , ωj(p−1)) and λj = c0 + c1ω
j + · · · + cp−1ω

j(p−1).

Now, as we know C has 0 as an eigenvalue, suppose λk = 0 for some k ≥ 1, then

we have that

λk = c0 + c1ω
k + · · · + cp−1ω

k(p−1) = 0.

Then, as ωk ̸= 1 is a pth root of unity, the above equality can only hold when c0 =

· · · = cp−1 = c for some c ∈ Q by [LL00, Theorem 2.2], as a non-constant solution in

Q implies there exists a non-constant solution in Z, giving a contradiction.
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Therefore, we have that (CX)i = c(x1 + · · · + xp) = 0 for all 1 ≤ i ≤ p and hence

either c = 0 or x1 + · · · + xp = 0. However, we assumed that not all c0, . . . , cp−1 were

equal to zero, so we cannot have c = 0. So, we must have x1 + · · · + xp = 0, but as

x1, . . . , xp ∈ N0 we must have x1 = · · · = xp = 0 giving a contradiction as we supposed

xi ̸= 0 for some i.

So, suppose λk ̸= 0 for all k ≥ 1. Then, λ0 = 0, as X is an eigenvector of C with

eigenvalue 0. Thus, as λk ̸= 0 for all k ≥ 1, X must be a scaling of the corresponding

eigenvector v0 = (1, . . . , 1) and hence, xi = xj for all 1 ≤ i, j ≤ p.

Next, in order to prove that, for p prime, Mp−1(T) and Mp(T) generate different

semigroup varieties, we require the following lemma. We introduce the notation |w|a,k,pb

to denote the total number of b’s in w which have k mod p copies of a occurring before

them when read left-to-right.

Lemma 7.3.6. Let p be an odd prime and A,B ∈ Mp(Qmax) be invertible matrices

such that A has the underlying permutation of a p-cycle and B is a diagonal matrix.

Then, for w ∈ {a, b}∗, if w(a 7→ A, b 7→ B) is a scalar matrix then, either

(i) B is a scalar matrix, or

(ii) for all 1 ≤ k ≤ p, |w|a,k,pb = T for some fixed T ∈ N.

Proof. We prove the contrapositive of this statement. First, suppose B is not a scalar

matrix and that |w|a,n,pb ̸= |w|a,m,p
b for some 1 ≤ n < m ≤ p. If w(a 7→ A, b 7→ B) is

not a diagonal matrix then it is not a scalar matrix, so we may assume it is diagonal.

As A and B are invertible matrices, GA and GB have exactly one edge leaving each

node. Thus, as w(a 7→ A, b 7→ B) is diagonal, for 1 ≤ i ≤ p, there is a unique path on

GA,B from i to i labelled w[a 7→ A, b 7→ B], call this path ρi, recall that the weight of

ρi is w(a 7→ A, b 7→ B)ii. As A has the underlying permutation of a p-cycle and GB

only contains loop edges, the total weight of all the edges labelled A in ρi is the same

for all 1 ≤ i ≤ p as in order to start and end at i, the path must go through every

edge of GA the same number of times.

Note that the weight of an edge of ρi labelled B is entirely determined by the

node in which the edge starts. Moreover, as A has the underlying permutation of a

p-cycle and B is a diagonal matrix, the weight of an edge of ρi labelled B is entirely
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determined by the starting node of ρi, and the number of edges modulo p labelled by

A occurring before the edge. That is, the number of a’s modulo p in w occurring to

the left of the b which corresponds to the B labelling the edge.

As all permutation matrices of p-cycles are conjugate, without loss of generality,

we suppose that A has the underlying permutation of σ where σ(i) = i + 1 mod p.

Now, by the previous paragraphs we can see that the total weight of all the edges

labelled B in ρi is given by

Mi =

p∑
k=1

|w|a,k,pb Bσk(i),σk(i)

=

p−i∑
k=1

|w|a,k,pb Bi+k,i+k +

p∑
k=p−i+1

|w|a,k,pb Bi+k−p,i+k−p

=

p∑
k=1

|w|a,k−i,p
b Bk,k.

Now suppose ρi and ρj have the same weight for all i, j, then we have that Mi = N

for a fixed N ∈ N for all 1 ≤ i ≤ p. However, as p is an odd prime, |w|a,k,pb ∈ N0 for

all 1 ≤ k ≤ p, and, by assumption, |w|a,n,pb ̸= |w|a,m,p
b for some 1 ≤ n < m ≤ p, the

vectors given by

Xi = (|w|a,1−i,p
b , . . . , |w|a,p−i,p

b )

for 1 ≤ i ≤ p are linearly independent over Q by Lemma 7.3.5. Thus, there is at most

one solution for the entries of B that gives Mi = N for all 1 ≤ i ≤ p, and we can see

that Bii = N
|w|b

for all 1 ≤ i ≤ p is the solution. However, this gives a contradiction

as we supposed B was not a scalar matrix. Thus, the weight of ρi is different than

the weight of ρj for some i, j and hence w(a 7→ A, b 7→ B)ii ̸= w(a 7→ A, b 7→ B)jj.

Therefore, w(a 7→ A, b 7→ B) is not a scalar matrix.

Theorem 7.3.7. Let p be a prime. Then there exists an identity satisfied by Mp−1(T)

but not by Mp(T).

Proof. As matrix multiplication is not commutative in dimension p > 1, ab = ba is

satisfied by M1(T) but not by M2(T) and by Lemma 7.3.3 there exists an identity

satisfied by M2(T) but not by M3(T).

Suppose that p is a prime greater than 3. For each 3 ≤ k < p, let qk := wkbaw
′
k and

rk := wkabw
′
k for some wk, w

′
k ∈ {a, b}∗ such that qk = rk is an identity satisfied by
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UTk(T) with the property that |qk|a, |rk|a ≡ −1 mod p. This can be done by starting

with an identity satisfied by UTk(T), given by Corollary 7.2.2. In such an identity,

the letter a occurs the same number of times on both sides and hence, by appending

a power of a to the right of both sides of the identity, we can get that |qk|a, |rk|a ≡ −1

mod p. Let ap−1 = a, bp−1 = b and define words ak−1, bk−1 for 3 ≤ k < p recursively,

as in Lemma 7.3.4, by

ak−1 = (qkrk)t
[
a 7→ akk, b 7→ bkk

]
and bk−1 = (qkrk)trk

[
a 7→ akk, b 7→ bkk

]
,

where t = p3−1
2

. Note that t ≥ (p− 2)2 + 1.

Let X ∈Mp(Qmax) be the permutation matrix of a p-cycle σ and Y ∈Mp(Qmax) be

an invertible non-scalar diagonal matrix. Then, for 2 ≤ m ≤ p− 1, let Am = am(a 7→

X, b 7→ Y ) ∈Mp(Qmax) and Bm = bm(a 7→ X, b 7→ Y ) ∈Mp(Qmax). We will now show

Am has the underlying permutation of a p-cycle and Bm is an invertible non-scalar

diagonal matrix for every 2 ≤ m ≤ p−1. This is true for Ap−1 and Bp−1 by definition.

Proceeding by induction, suppose it is true for Ak and Bk and we show it is true for

Ak−1 and Bk−1.

For any u ∈ {a, b}∗, the matrix u(a 7→ Ak, b 7→ Bk) is invertible as Ak and Bk are

invertible. Moreover, as the underlying permutation of Ak, τ say, is a p-cycle, and Bk

is a diagonal matrix, it follows that the underlying permutation of u(a 7→ Ak, b 7→ Bk)

depends only on the number of occurrences of a in u modulo p. If |u|a ≡ 0 mod p,

then u(a 7→ Ak, b 7→ Bk) is a diagonal matrix; otherwise it is a p-cycle as p is prime

so τn is a p-cycle unless p divides n. Let |ak|a = n for some n ∈ N0, and note that

|bk|a ≡ 0 mod p as Bk is diagonal. Then, we can see that

|ak−1|a ≡ |(qkrk)t|a|a
k
k|a ≡ t|qkrk|ank ≡ p3 − 1

2
(−2)nk ≡ nk mod p

|bk−1|a ≡ |(qkrk)trk|a|a
k
k|a ≡ |(qkrk)t|ank + |rk|ank ≡ nk − nk ≡ 0 mod p.

Thus, as p does not divide n as Ak has the underlying permutation of a p-cycle, and p

does not divide k, p does not divide nk. Hence, Ak−1 has the underlying permutation

of a p-cycle and Bk−1 is a diagonal matrix, as required.

Let z = (qkrk)trk. Now, we must show that Bk−1 is not a scalar matrix. To do this

we will show that |z|a,n,pb ̸= |z|a,m,p
b for some n ̸= m and then apply the contrapositive

of Lemma 7.3.6.
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Recall that t = p3−1
2

, qk = wkxw
′
k, and rk = wkyw

′
k, where x = ba and y = ab.

Consider,

z = (qkrk)trk = (wkxw
′
kwkyw

′
k)twkyw

′
k.

Now, by only considering the factors wk (resp. w′
k) of z which are prefixes (resp.

suffixes) of qk and rk in z, we can see that there are p3 copies of wk (resp. w′
k) in z.

There are −1 mod p occurrences of a from the start of any wk (resp. w′
k) to the start

of the next wk (resp. w′
k) as |qk|a, |rk|a ≡ −1 mod p, so we can see that z contains p2

factors labelled wk (resp. w′
k) with l mod p copies of a before them for each 1 ≤ l ≤ p.

Thus, the total number of b’s which are contained in wk or w′
k and have l mod p copies

of a before them is the same for all 1 ≤ l ≤ p; denote this number N .

Therefore, the difference in the |z|a,l,pb for different l’s is entirely due to the b’s in

the x’s immediately to the right of wk in qk and in the y’s immediately to the right of

wk in rk. For clarity, we will now refer to the b in x as b1 and the b in y as b2.

For j = 1, 2, there are t copies of each bj in (qkrk)t and −2 mod p copies of

a between a bj and the next bj in (qkrk)t as |qkrk|a ≡ −2 mod p. Remark that,

t = p2−1
2

· p + p−1
2

≡ p−1
2

mod p so, for j = 1, 2, the number of bj’s in (qkrk)t with i

mod p copies of a before them is p2+1
2

for i ≡ lj, lj − 2, . . . , lj + 3 − p mod p and p2−1
2

for i ≡ lj + 1, lj − 1, . . . , lj + 2 − p mod p, where lj is the number of a’s before the

first occurrence of bj.

Let l = |wk|a and note that |w′
kwk|a ≡ −2 mod p as |qk|a, |rk|a ≡ −1 mod p.

Now, by considering qkrk = (wkb1aw
′
k)(wkab2w

′
k), we can see that there are l mod p

copies of a before the first b1 and l mod p copies of a before the first b2 in (qkrk)t,

that is, l1 ≡ l2 ≡ l mod p. Therefore, in total, b1 and b2 in (qkrk)t contribute p2 + 1

copies of b with l, l − 2, . . . , l + 3 mod p copies of a before them and p2 − 1 copies of

b with l + 1, l − 1, . . . , l + 2 mod p copies of a before them.

Now, as |(qkrk)t|a ≡ (−2) · p−1
2

≡ 1 mod p, we can see that there are l+ 2 mod p

occurrences of a before the final b2 in the final rk in z. Thus,

|z|a,l,pb = N + p2 + 1 ̸= N + p2 − 1 = |z|a,l+1,p
b

and hence, by Lemma 7.3.6, Bk−1 is not a scalar matrix as Bk, and therefore Bk
k , is

not a scalar matrix by the inductive hypothesis.
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So, by induction, A2 has the underlying permutation of a p-cycle and B2 is a non-

scalar diagonal matrix. Therefore, if we let u2 = v2 be the identity satisfied by M2(T)

given by Lemma 7.3.3, then u2(a 7→ A2, b 7→ B2) ̸= v2(a 7→ A2, b 7→ B2) and hence

u2(a 7→ A2, b 7→ B2)A2 · · ·Ap−2 ̸= v2(a 7→ A2, b 7→ B2)A2 · · ·Ap−2

as A2, . . . , Ap−2 ∈Mp(T) are invertible matrices. However, by Lemma 7.3.4,

u2[a 7→ a2, b 7→ b2]a2 · · · ap−2 = v2[a 7→ a2, b 7→ b2]a2 · · · ap−2

is an identity satisfied by Mp−1(T) and so we have constructed an identity satisfied by

Mp−1(T) that is falsified by X, Y ∈Mp(Qmax) ⊆Mp(T).

Question 7.3.8. For each n ∈ N, does there exist a semigroup identity satisfied by

Mn(T) not satisfied by Mn+1(T)?

7.4 Plactic Monoid of Rank 4 and Upper Triangu-

lar Matrix Semigroup of Rank 5

In this section we show the plactic monoid of rank 4, P4, does not generate the same

variety as UT5(T). To do this we will use the faithful tropical representation of Pn

given in [JM21]. We begin by recalling some notation used in the definition of this

representation. For S, T ∈ 2[n], we write Si for the ith smallest element of S, and say

S ≤ T if |S| ≥ |T | and Si ≤ T i for each i ≤ |T |. Moreover, for P,Q ∈ 2[n], we write

[P,Q] for the order interval from P to Q, and ∪[P,Q] for the union of sets in the order

interval.

The following theorem is given in greater generality in [JM21], but we only require

the n = 4 case in what follows.

Theorem 7.4.1. [JM21, Theorem 2.8] There exists a faithful semigroup morphism

ρ : P4 → UT2[4](T), where

ρ(x)P,Q =


−∞ if |P | ≠ |Q| or P ≰ Q;

1 if |P | = |Q| and x ∈ ∪[P,Q];

0 otherwise.



110 CHAPTER 7. SEMIGROUP IDENTITIES

for each generator x ∈ P4, extending multiplicatively for products of generators and

defining the identity element e as

ρ(e) =

−∞ if |P | ≠ |Q| or P ≰ Q;

0 otherwise.

Note that in [JM21], the map ρ has codomain M2[4](T), however, given a natural

choice of ordering of 2[4] (any linear extension of ≤), the image of ρ is contained in

UT2[4](T), so we have restricted the codomain in the above theorem to UT2[4](T).

Moreover, by considering [JM21, Example 2.1], we can see that for all x ∈ P4, ρ(x)

is a block matrix where the largest block is of size 6 by 6 and all simple paths in Gρ(x)

have length at most 4.

Lemma 7.4.2. Let X, Y ∈ UTm(T) and u = v be an identity satisfied by UTn(T)

where n ≤ m. If there exists a path in GX,Y of simple length less than or equal to

n − 1 of maximal weight among all paths from i to j labelled u[a 7→ X, b 7→ Y ], then

u(a 7→ X, b 7→ Y )ij ≤ v(a 7→ X, b 7→ Y )ij.

Proof. Let γ be a path of maximal weight of GX,Y labelled u[a 7→ X, b 7→ Y ] of simple

length k ≤ n− 1 from i to j. Let X,Y ∈ UTk+1(T) be the matrices obtained from X

and Y by removing rows and columns not indexed by the nodes of γ, with the rows

and columns labelled by their original labelling. Let γ′ be the path obtained by taking

γ and replacing the labels X and Y by X and Y respectively. Then, as GX,Y is the

subgraph of GX,Y induced by the nodes of γ, the path γ′ is a path in GX,Y having

maximal weight among all paths from i to j labelled by u[a 7→ X, b 7→ Y ], and so we

have that u(a 7→ X, b 7→ Y )ij = u(a 7→ X, b 7→ Y )ij. Moreover, we have that

u(a 7→ X, b 7→ Y )ij = u(a 7→ X, b 7→ Y )ij = v(a 7→ X, b 7→ Y )ij

≤ v(a 7→ X, b 7→ Y )ij,

where the second equality holds since u = v is an identity satisfied by UTn(T) and

hence also for UTk+1(T) as k+1 ≤ n, and the inequality follows from the construction

of X and Y .

Theorem 7.4.3. Let u, v ∈ {a, b}∗ be such that u[a 7→ ab, b 7→ ba] = v[a 7→ ab, b 7→ ba]

is a semigroup identity satisfied by UT4(T). Then the identity abuab[a 7→ ab, b 7→ ba] =

abvab[a 7→ ab, b 7→ ba] is satisfied by P4.
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Proof. Let ρ : P4 → UT2[4](T) be the morphism given in Theorem 7.4.1, and let

x, y ∈ P4. Recall that ρ is faithful and the semigroup identity abuab[a 7→ ab, b 7→ ba] =

abvab[a 7→ ab, b 7→ ba] is satisfied by UT4(T). Let X = ρ(x), Y = ρ(y) and consider

abuab(a 7→ XY, b 7→ Y X) and abvab(a 7→ XY, b 7→ Y X). Note that XY and Y X are

block diagonal matrices where each block is indexed by sets of a given size. Hence,

every node of a path in GXY,Y X is indexed by sets of the same size. In the subgraph

labelled by sets of size two, the only simple path of length at most 4 is from {1, 2} to

{3, 4}. Thus, for all (P,Q) ̸= ({1, 2}, {3, 4}) a path from P to Q in GXY,Y X has simple

length at most 3, as all other subgraphs containing sets of a given size have at most

4 nodes and can therefore only contain simple paths of length at most 3. Hence we

may apply Lemma 7.4.2 (in both directions) to obtain abuab(a 7→ XY, b 7→ Y X)P,Q =

abvab(a 7→ XY, b 7→ Y X)P,Q for all (P,Q) ̸= ({1, 2}, {3, 4}). Now by the fact that ρ is

faithful, we have that

abuab(a 7→ xy, b 7→ yx) = abvab(a 7→ xy, b 7→ yx) if and only if

abuab(a 7→ XY, b 7→ Y X){1,2},{3,4} = abvab(a 7→ XY, b 7→ Y X){1,2},{3,4}. (7.1)

Therefore, it suffices to check that abuab[a 7→ ab, b 7→ ba] = abvab[a 7→ ab, b 7→ ba]

holds for the {1, 2}, {3, 4} entry in the image of ρ.

It follows from the definition of ρ, we have that for s ∈ P4, ρ(s)P,P is the total

number of occurrences of letters from the set P in some fixed word representing s. It

follows from this that

ρ(s){1,2},{1,2} + ρ(s){3,4}{3,4} = ρ(s){1,3},{1,3} + ρ(s){2,4},{2,4}

for all s ∈ P4 as all words representing s have the same number of 1’s, 2’s, 3’s and 4’s

and so both sides of the equality count the number of occurrences of 1’s, 2’s, 3’s and

4’s in some word representing s. Then for each s we have that, either

ρ(s){1,3},{1,3} ≥ ρ(s){1,2},{1,2} or ρ(s){2,4},{2,4} ≥ ρ(s){3,4}{3,4}.

We now look at the graph GXY,Y X . This is the graph where, if ρ(xy)ij ̸= −∞, there

is an edge from i to j labelled XY with weight ρ(xy)ij and, if ρ(yx)ij ̸= −∞, there is an

edge from i to j labelled Y X with weight ρ(yx)ij. Note ρ(xy){1,3},{1,3} ≥ ρ(xy){1,2},{1,2}

if and only if ρ(yx){1,3},{1,3} ≥ ρ(yx){1,2},{1,2} as ρ(xy) and ρ(yx) have the same diagonal
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entries. Suppose that ρ(xy){1,3},{1,3} ≥ ρ(xy){1,2},{1,2}, and let γ be a path of maximal

weight in GXY,Y X from {1, 2} to {3, 4} labelled by the word abuab[a 7→ XY, b 7→ Y X].

We split into two cases:

(i) If γ does not contain an edge from {1, 2} to {1, 3}. Then, γ is a path of simple

length ≤ 3, so by Lemma 7.4.2,

abuab(a 7→ XY, b 7→ Y X){1,2},{3,4} ≤ abvab(a 7→ XY, b 7→ Y X){1,2},{3,4}.

(ii) If γ contains an edge from {1, 2} to {1, 3}. Then γ is of the form

γ = λ{1,2} ◦ γ{1,2},{1,3} ◦ µ,

where λ{1,2} is a path made up of loop edges around node {1, 2}, γ{1,2},{1,3} is the

subpath of γ corresponding to an edge from {1, 2} to {1, 3} and µ is the rest of γ.

Since, we have assumed ρ(xy){1,3},{1,3} ≥ ρ(xy){1,2},{1,2} (and similarly for ρ(yx)),

each loop at {1, 3} has greater weight than its counterpart at {1, 2}. Since γ

is assumed to have maximal weight on the word abuab[a 7→ XY, b 7→ Y X], this

means that the path λ{1,2} can be assumed to have length at most 1; it has length

0 if γ{1,2},{1,3} is labelled XY , and length 1 if γ{1,2},{1,3} is labelled Y X.

Therefore, the edge γ{1,2},{1,3} is contained within the first two edges of γ corre-

sponding to the first two letters of abuab and hence by the definition of matrix

multiplication in UT2[4](T) we have that

abuab(a 7→ XY, b 7→ Y X){1,2},{3,4}

= ab(a 7→ XY, b 7→ Y X){1,2},P + uab(a 7→ XY, b 7→ Y X)P,{3,4}

for some P ∈ 2[4] such that {1, 3} ≤ P ≤ {3, 4}. Moreover, as each such path

from P to {3, 4} (and hence the path of maximal weight) has simple length at

most 3, we can apply Lemma 7.4.2 to get that

abuab(a 7→XY, b 7→ Y X){1,2},{3,4}

= ab(a 7→ XY, b 7→ Y X){1,2},P + uab(a 7→ XY, b 7→ Y X)P,{3,4}

≤ ab(a 7→ XY, b 7→ Y X){1,2},P + vab(a 7→ XY, b 7→ Y X)P,{3,4}

≤ abvab(a 7→ XY, b 7→ Y X){1,2},{3,4}.
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We can now apply a similar case analysis to a maximal weight path labelled by

abvab[a 7→ XY, b 7→ Y X] to get that

abuab(a 7→ XY, b 7→ Y X){1,2},{3,4} ≥ abvab(a 7→ XY, b 7→ Y X){1,2},{3,4}.

Therefore, abuab(a 7→ XY, b 7→ Y X){1,2},{3,4} = abvab(a 7→ XY, b 7→ Y X){1,2},{3,4},

and by (7.1) we can conclude that abuab(a 7→ xy, b 7→ yx) = abvab(a 7→ xy, b 7→ yx).

A similar argument in the case where ρ(xy){2,4},{2,4} ≥ ρ(xy){3,4}{3,4} applies to

show that abuab(a 7→ xy, b 7→ yx) = abvab(a 7→ xy, b 7→ yx).

Corollary 7.4.4. There exists an identity satisfied by P4 but not satisfied by UT5(T).

Proof. Let u = ba3b3aba b ba3b3aba and v = ba3b3aba a ba3b3aba. By Corollary 7.2.2,

we have that u[a 7→ ab, b 7→ ba] = v[a 7→ ab, b 7→ ba] is an identity satisfied by UT4(T).

So by Theorem 7.4.3, abuab[a 7→ ab, b 7→ ba] = abvab[a 7→ ab, b 7→ ba] is satisfied by

P4. However, abab is a factor of abuab but not of abvab. So, by Lemma 7.2.1, we have

that there exists A,B ∈ UT5(T) such that abuab(a 7→ AB, b 7→ BA) ̸= abvab(a 7→

AB, b 7→ BA), and thus abuab[a 7→ ab, b 7→ ba] = abvab[a 7→ ab, b 7→ ba] is not satisfied

by UT5(T).

Johnson and Kambites [JM21, Question 4.8] asked if the plactic monoid of rank 4

generates the same semigroup variety as UT4(T) and/or UT5(T). By the above corol-

lary, we have partially answered this question by showing that the variety generated

by P4 is strictly contained in the variety generated by UT5(T). However, what remains

to be answered is the following.

Question 7.4.5. Is the semigroup variety generated by P4 equal to the semigroup

variety generated by UT4(T)? That is, does P4 satisfy the exact same set of semigroup

identities as UT4(T)?



Chapter 8

Tropical Representation of the

Stylic Monoid

While studying identities and varieties of semigroups and monoids, several important

questions arise, such as the question of whether a semigroup admits a finite basis for its

equational theory. This question is known as the finite basis problem [Sap14, Vol01],

and it is well known that there are finite semigroups which are not finitely based

[Per69]. Other questions regarding the variety generated by a semigroup are those of

whether it contains only finitely generated subvarieties (see, for example, [Vol01]), or

countably infinite subvarieties [Tra88]. These problems have also been considered for

involution semigroups, that is, semigroups equipped with a unary operation * which

satisfies the identities (x∗)∗ = x and (xy)∗ = y∗x∗ (see [Lee20] for a collection of results

on this subject). In particular, the finite basis problem for finite involution semigroups

has received much attention, since, contrary to intuition, finite involution semigroups

and their underlying semigroups need not necessarily be simultaneously finitely based

(see, for example, [Lee16, Lee19]).

The stylic monoid of finite rank n, introduced by Abram and Reutenauer in [AR22]

and denoted by styln, is a finite quotient of the plactic monoid of rank n, defined by

the action of words, over a finite totally ordered alphabet with n letters, on the left

of columns of semistandard Young tableaux, by Schensted left insertion. Its elements

can be uniquely identified with so-called N -tableaux, and it is presented by the Knuth

relations and the relations a2 ≡ a, for each a ∈ [n]. As such, to the author’s knowledge,

it is the first finite plactic-like monoid to be studied. It is a finite J -trivial monoid

114
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([AR22, Theorem 11.1]), hence, by [Sim72], is in J k, the pseudovariety in Simon’s

hierarchy of J -trivial monoids which corresponds to the class of all piecewise testable

languages of height k, in Eilenberg’s correspondence ([Eil76, Pin86]), for some k ∈ N.

The pseudovariety J k is defined by the equational theory Jk of all identities u = v

such that u and v share the same subsequences of length ≤ k. Blanchet-Sadri has

studied these equational theories in depth ([BS89, BS93, BS94]), showing that Jk is

finitely based if and only if k ≤ 3. In this chapter, we show that the stylic monoid of

rank n generates the pseudovariety J n.

The chapter is organized as follows: Section 8.1 gives the necessary background on

the subject matter, namely identities, varieties and pseudovarieties in Subsection 8.1.1;

and the stylic monoid in Subsection 8.1.2. In Section 8.2, we give a faithful representa-

tion of styln by Un+1(T), thus proving that styln is in the variety generated by Un+1(T),

and we follow up in Section 8.3 by showing that all identities satisfied by styln must also

be in Jn, and therefore the equational theory of styln is Jn. From this, we deduce that

the variety generated by styln, for n ≥ 3, has uncountably many subvarieties. Finally,

in Section 8.4, we look at the finite basis problem for the stylic monoid with involution

* induced by the unique order-reversing permutation of [n], and show that (styln, *)

is finitely based if and only if n = 1. We also show that (styln, *) and (Un+1(T), ⋆),

where ⋆ is the skew transposition, do not generate the same variety for n ≥ 2, which

contrasts with the results obtained in Section 8.3.

This chapter is based on joint work with Duarte Ribeiro [AR23].

8.1 Background

This chapter is the only place where we consider finite semigroups, so here we introduce

some universal algebra specific to finite semigroups. For a general background on

universal algebra, see [BS81]; on pseudovarieties, see [Alm94]. We also refer the reader

to the survey [Vol01] on the finite basis problem for finite semigroups.

8.1.1 Identities and Varieties

The set of all identities Σ satisfied by a monoid M is called its equational theory. An

identity u = v is a consequence of a set of identities Σ if all monoids which satisfy
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all identities of Σ also satisfy u = v. An equational basis, or simply basis, B of an

equational theory Σ is a subset of Σ such that each identity in Σ is a consequence of B.

We say an equational theory is finitely based if it admits a finite basis, and non-finitely

based otherwise.

On the other hand, a class of finite monoids is a pseudovariety if it is closed under

taking homomorphic images, submonoids and finitary direct products. A subvariety

is a subclass of a variety which is itself a variety. We say a pseudovariety is generated

by a finite monoid M if it is the smallest pseudovariety containing M .

An equational pseudovariety is a pseudovariety which consists of all the finite

monoids in some variety (see, for example, [Alm94]). An equational pseudovariety

is defined by its equational theory. We say that a variety or an equational pseudova-

riety is finitely based if its equational theory is finitely based, and that a monoid is

finitely based if the variety it generates is finitely based.

For each k ∈ N, we denote by J k the pseudovariety defined by Jk, the set of all

identities u = v such that u and v share the same subsequences of length ≤ k. The

increasing sequence

J 1 ⊊ J 2 ⊊ · · · ⊊ J k ⊊ . . . ,

whose union is the pseudovariety J of all finite J -trivial monoids, was introduced

in [Sim72], and is known as Simon’s hierarchy of J -trivial monoids. Furthermore, a

finite monoid is J -trivial if and only if it is in J k if and only if it satisfies all identities

in Jk, for some k. Regarding whether these equational theories admit finite bases, we

have the following:

(I) ([BS94, folklore]) J1 admits a finite basis, consisting of the following identities:

x2 = x and xy = yx.

(II) ([Sim72]) J2 admits a finite basis, consisting of the following identities:

xyxzx = xyzx and (xy)2 = (yx)2.

(III) ([BS89, Proposition 4.1.6] and [BS93]) J3 admits a finite basis, consisting of the
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following identities:

xyx2zx = xyxzx,

xyzx2tz = xyxzx2tx,

zyx2ztx = zyx2zxtx,

(xy)3 = (yx)3.

(IV) ([BS94, Theorem 3.4]) The equational theory Jk is non-finitely based, for k ≥ 4.

8.1.2 The Stylic Monoid

The stylic monoid of rank n, denoted by styln, was first defined in [AR22, Section 5]

as the monoid of endofunctions of the set of columns over [n] obtained by a left action

of words on columns [AR22, Section 4]. It is a finite quotient of the free monoid over

[n], and the corresponding stylic congruence of [n]∗ is denoted by ≡styl. It is J -trivial

[AR22, Theorem 11.1], and therefore, by Simon’s Theorem, there exists k ∈ N such

that styln ∈ J k.

The stylic monoid of rank n can be defined in two other ways, which will be the ones

used in this work: It is defined by the presentation ⟨[n] |Rstyl⟩ [AR22, Theorem 8.1],

where

Rstyl =Rplac ∪ {(a2, a) : a ∈ [n]}.

and Rplac is the set of Knuth relations. The defining relations are known as the stylic

relations, and are the plactic relations together with generator idempotent relations.

As such, the stylic monoid of rank n can be viewed as a quotient of the plactic monoid

[AR22, Proposition 5.1], and two words in the same stylic class have the same support

[AR22, Lemma 5.3].

For the other definition, we need a combinatorial object analogous to a Young

tableau: An N-tableau is a Young tableau where each row is strictly increasing and

contained in the row below [AR22, Subsection 6.1]. An example of an N -tableau is

5 6

2 5 6

1 2 3 4 5 6
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As with Young tableaux and Schensted’s algorithm, it is possible to associate each

word w ∈ [n]∗ to a unique N -tableau, which we denote by N(w), by using the right

N-algorithm: Consider rows of an N -tableau as subsets of the alphabet. The right N-

insertion of a letter a ∈ [n] into a row B ⊆ [n] gives the row B∪{a}. If b is the smallest

letter in B strictly greater than a, we say b is bumped (but b is not deleted in B∪{a}).

The right N-insertion of a letter a ∈ [n] into an N -tableau is recursively defined as

follows: a is inserted into the first row, then, if a letter b is bumped, b is inserted into

the row above. The algorithm stops when no letter is bumped. Inserting a letter into

an N -tableau, using this algorithm, produces an N -tableau [AR22, Proposition 6.1].

The right N-insertion of a word w ∈ [n]∗ into an N -tableau is done by inserting the

letters of w, one-by-one from left-to-right. The stylic congruence on [n]∗ is defined by

u ≡styl v ⇐⇒ N(u) = N(v),

for u, v ∈ [n]∗ [AR22, Theorem 7.1].

The stylic monoid of rank n has an absorbing element, which is the stylic class

of the decreasing product of all letters in [n]∗ [AR22, Proposition 5.4]. This element

corresponds to the N -tableau with n rows and the letters {i, . . . , n} in the i-th row.

The following definitions are introduced in [AR22, Subsection 6.3]: For each subset

B of [n], and each letter a ∈ [n], the element a↑B ∈ B ∪ {ε} is the smallest letter

in B which is strictly greater than a, or ε if such a letter does not exist. Define

the mapping δ : [n]∗ → [n]∗ as follows: for any word w ∈ [n]∗ and letter a ∈ [n],

δ(wa) = δ(w) · a↑supp(w). Notice that the smallest letter in w is not in δ(w), hence

supp(δk(w)) ⊊ supp(δk−1(w)), for all k ∈ N such that supp(δk−1(w)) ̸= ∅.

Example 8.1.1. Let w = 311321424543. Then, δ(w) = 3332354; this can be seen by

applying the above algorithm to w which can be expressed in the following way:

w = 3 1 1 3 2 1 4 2 4 5 4 3

δ(w) = 3 3 3 2 3 5 4

We introduce the following definition, which expands upon the “arrow” notation:

For a word w ∈ [n]∗, and k ∈ N, define the mapping ↑kw : {1, . . . , |w|} → supp(w)

recursively, as follows: for 1 ≤ l ≤ k,

↑0w(i) = w(i)

↑lw(i) =
(
↑l−1
w (i)

)↑
supp(δl−1(w≤i))

.
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where δ0(w≤i) = w≤i. If ↑kw(i) ̸= ε, then ↑kw(i) is the letter which is bumped into the

(k + 1)-th row when w(i) is inserted into the N -tableau. As an example, consider the

word 535234512345. Then,

5 3 5 2 3 4 5 1 2 3 4 5 = w,

5 3 5 5 2 3 4 5 = δ(w),

5 3 5 5 = δ2(w),

5 = δ3(w),

and ↑3w(8) = 5, that is, the letter w(8) = 1 bumps 5 to the fourth row of the N -tableau

N(535234512345).

The following lemmas are consequences of the definition of ↑kw, and the right N -

algorithm in the case of the first lemma:

Lemma 8.1.2. Let w ∈ [n]∗, a ∈ [n], and k ∈ N. Then, a occurs in the k-th row of

N(w) if and only if there exists an index j ≤ |w| such that ↑k−1
w (j) = a.

Proof. By repeated application of [AR22, Lemma 6.3], supp(δk−1(w)) is the k-th row

of N(w), viewed as a subset of [n]. Moreover, by the definition of ↑k−1
w , for a ∈ [n], we

have that a ∈ supp(δk−1(w)) if and only if ↑k−1
w (j) = a for some j ≤ |w|. Thus, a is in

the k-th row of N(w) if and only if there is some j satisfying the previously mentioned

condition.

Lemma 8.1.3. Let w ∈ [n]∗ and k, sk ∈ N be such that 1 ≤ k ≤ sk ≤ |w|. If

↑k−1
w (sk) = a, for some a ∈ [n], then there exists a strictly decreasing subsequence

w(s1), . . . , w(sk) of w such that w(s1) = a and ↑l−1
w (sl) = a for 1 < l ≤ k.

Proof. Since supp(δl(w)) ⊊ supp(δl−1(w)), for all l < k, then ↑k−1
w (sk) = a implies

that a ∈ supp(δl(w)), for all 1 ≤ l ≤ k − 1, and a ∈ supp(w). Thus, there exist

1 ≤ s1, . . . , sk−1 ≤ |w| such that w(s1) = a and ↑l−1
w (sl) = a for 1 < l ≤ k − 1.

Notice that ↑l−1
w (sl) = a implies that there is a letter a to the left of ↑l−2

w (sl) in

δl−2(w), for all 2 < l ≤ k. Similarly, ↑1w(s2) = a implies that there is a letter a

to the left of w(s2) in w. As such, we can restrict the choice of s1, . . . , sk−1 to have

s1 < · · · < sk.

We now prove that, since ↑l−1
w (sl) = a, there must exist i ≤ sl such that ↑l−2

w (i) = a

and w(i) > w(sl): In order to obtain a contradiction, take i such that w(i) ≤ w(sl),

↑jw(i) ≤ ↑jw(sl) < ↑j+1
w (sl) < ↑j+1

w (i),
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and ↑j′w(i) ≤ ↑j′w(sl) for all 1 ≤ j′ ≤ j, such that j is minimal. In other words, when

comparing the sequences of “arrows” of i and sl, this choice of i gives us the sequence

where there are the least number of elements which are less than or equal to the

corresponding elements of the sequence of sl, i.e.

w(i) ≤ w(sl)

↑1w(i) ≤ ↑1w(sl)
...

...

↑jw(i) ≤ ↑jw(sl)

↑j+1
w (i) > ↑j+1

w (sl)
...

...

↑l−2
w (i) > ↑l−2

w (sl)

↑l−1
w (sl)

Then, we have that all occurrences of ↑j+1
w (sl) must be to the right of ↑jw(i) in δj(w≤sl),

since ↑jw(i) bumps ↑j+1
w (i) and not ↑j+1

w (sl). But at least one occurrence of ↑j+1
w (sl)

in δj(w≤sl) will bump a to the (l − 2)-th row. This contradicts the minimality of j,

hence, we can choose s1, . . . , sl such that s1 < · · · < sk and w(s1) > · · · > w(sl).

Thus, we have found a strictly decreasing subsequence w(s1), . . . , w(sk) of w, where

w(s1) = a and ↑l−1
w (sl) = w(s1) for all 1 < l ≤ k.

8.2 Tropical Representations of the Stylic Monoid

We first construct a faithful representation of the stylic monoid of finite rank n in the

monoid of upper unitriangular (n+1)×(n+1) tropical matrices, for each n ∈ N. Since,

by [JF19, Corollary 3.3], this monoid generates the variety with equational theory Jn,

we show that styln satisfies all identities in Jn.

Let x := n+1−x for all x ∈ [n]. We define the map ρn : [n]∗ → Un+1(T) as follows:

ρn(x)i,j =


0 if i = j;

1 if i ≤ x < j;

−∞ otherwise.

for each x ∈ [n], extending multiplicatively to all of [n]∗ and defining the image of

the empty word to be ρn(ε) = I(n+1)×(n+1). For example, the images of 2 and of 4213
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under ρ4 are, respectively,

0 −∞ −∞ 1 1

−∞ 0 −∞ 1 1

−∞ −∞ 0 1 1

−∞ −∞ −∞ 0 −∞

−∞ −∞ −∞ −∞ 0


and



0 1 2 2 3

−∞ 0 1 1 2

−∞ −∞ 0 1 2

−∞ −∞ −∞ 0 1

−∞ −∞ −∞ −∞ 0


Notice that, for each x ∈ [n], its image under ρn is a unitriangular tropical matrix

where the only entries above the diagonal different from −∞ are equal to 1.

Lemma 8.2.1. Let w ∈ [n]∗. For 1 ≤ i < j ≤ n+1 and k ∈ N, we have that ρn(w)i,j =

k if and only if k is the maximum length of any strictly decreasing subsequence of w

only using letters between j + 1 and i. On the other hand, ρn(w)i,j = −∞ if and only

if w does not contain a for any i ≤ a < j.

A remark about abuse of language: we say “only using letters between j + 1 and

i” in order to avoid the formal, but more cumbersome, statement “only using letters

a ∈ [n] such that j + 1 ≤ a ≤ i”.

Proof. Let w ∈ [n]∗ and 1 ≤ i < j ≤ n + 1. Suppose ρn(w)i,j = k, for some

k ∈ N. Then, by the definition of tropical matrix multiplication, w admits a sub-

sequence w(s1), . . . , w(sk), of length k, and there exist i = t0 < · · · < tk = j such

that ρn(w(si))ti−1,ti = 1 for all 1 ≤ i ≤ k. Furthermore, by the definition of ρn,

ti−1 ≤ w(si) < ti. Therefore, w(s1), . . . , w(sk) is a strictly decreasing subsequence of w

such that i ≥ w(s1) > · · · > w(sk) ≥ j + 1 and hence, the maximum length of a strictly

decreasing subsequence of w only using letters between j + 1 and i is greater than or

equal to ρn(w)i,j.

Suppose now that k is the maximum length of any strictly decreasing subsequence

of w only using letters between j+ 1 and i. Let w(s1), . . . , w(sk) be a strictly decreasing

subsequence of w such that i ≥ w(s1) > · · · > w(sk) ≥ j + 1, then let t0 = i, tk = j and

ti = w(si+1) for 1 ≤ i < k. Hence, by the definition of ρn, we have that ρn(w(si))ti−1,ti =

1 for 1 ≤ i ≤ k, and therefore

ρn(w)i,j ≥
k∏

i=1

ρn(w(si))ti−1,ti = k.
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Thus, ρn(w)i,j is greater than or equal to the maximum length of a strictly decreasing

subsequence only using letters between j + 1 and i. Equality follows.

In the case where ρn(w)i,j = −∞, there is no t ∈ {1, . . . , |w|} such that i ≤ w(t) < j,

otherwise, w(t) would form a strictly decreasing subsequence of w (with just one letter),

only using letters between j+1 and i, which would imply that ρn(w)i,j ≥ 1. Conversely,

if w(t) < i or w(t) ≥ j for all 1 ≤ t ≤ |w|, then ρn(w(t))i,j′ = −∞ for all i < j′ ≤ j and

hence ρn(w)i,j = −∞.

As an immediate corollary, notice that ρn(w)i,j ≤ n, for all 1 ≤ i, j ≤ n + 1. We

also have the following:

Corollary 8.2.2. Let w ∈ [n]∗. Then, any two finite adjacent entries in ρn(w) must

differ by at most 1, and are weakly increasing on columns and weakly decreasing on

rows. In other words, for 1 ≤ i ≤ j ≤ n+ 1, if ρn(w)i,j and ρn(w)i+1,j are both finite,

then ρn(w)i+1,j ≤ ρn(w)i,j ≤ ρn(w)i+1,j + 1. Similarly, if ρn(w)i,j and ρn(w)i,j+1 are

both finite, then ρn(w)i,j ≤ ρn(w)i,j+1 ≤ ρn(w)i,j + 1.

Proof. First, by noticing that any strictly decreasing subsequence only using letters

between j+1 and i is also a strictly decreasing subsequence only using letters between j

and i, and j+1 and i+1, we have that the entries of ρn(w) weakly increase left-to-right

on the columns and weakly decrease top-to-bottom on the rows.

Suppose, in order to obtain a contradiction, that there exist 1 ≤ i ≤ j ≤ n and

0 ≤ k < k′ ≤ n such that ρn(w)i,j = k and ρn(w)i,j+1 = k′+1. By the previous lemma,

there exist maximum length strictly decreasing subsequences u and v of w, of length k

and k′ +1 and only using letters between j+1 and i and between j and i, respectively.

Taking v and discarding its smallest letter gives us a strictly decreasing subsequence of

w, of length k′, only using letters between j+1 and i, which contradicts the maximality

of the length of u. Similarly, we can prove that there are no 2 ≤ i ≤ j ≤ n + 1 and

1 ≤ k < k′ ≤ n such that ρn(w)i,j = k and ρn(w)i−1,j = k′ + 1.

Proposition 8.2.3. The map ρn : [n]∗ → Un+1(T) induces a well-defined morphism

from styln to Un+1(T).

Proof. We show that ρn satisfies the stylic relations, that is x2 ≡ x for all x ∈ [n] and

the Knuth relations.
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To show that ρn(x2) = ρn(x) for all x ∈ [n], begin by observing that for all i ≤ j,

ρn(x2)i,j = ρn(x)i,k · ρn(x)k,j for some i ≤ k ≤ j. Suppose ρn(x2)i,j ̸= −∞. If there

exists i < k < j such that ρn(x)i,k ̸= −∞ ≠ ρn(x)k,j, then we have that i ≤ x < k ≤

x < j, giving a contradiction. Thus, we either have i = k or k = j. In either case, as

ρn(x)i,i = ρn(x)j,j = 0, we have that ρn(x2)i,j = ρn(x)i,j. If ρn(x2)i,j = −∞, then as

ρn(x2)i,j ≥ ρn(x)i,j · ρn(x)j,j, we have that ρn(x)i,j = −∞.

For the Knuth relations, both sides of each relation have the same number of

occurrences of each letter, and are of length 3. Let w be one side of a Knuth relation,

then by Lemma 8.2.1, ρn(w)i,j ∈ {−∞, 0, 1, 2} for all i, j, as w does not contain a

strictly decreasing subsequence of length 3. Moreover, it is clear to see that ρn(w)i,j = 0

if and only if i = j.

Let u ≡ v be a Knuth relation. Then, ρn(u)i,j ̸= −∞ if and only if i = j or i ≤

u(t) < j for some t ∈ {1, 2, 3}. Thus, as u and v have the same content, ρn(u)i,j ̸= −∞

if and only if ρn(v)i,j ̸= −∞.

Finally, it suffices to show that ρn(u)i,j = 2 if and only if ρn(v)i,j = 2. Observe

that, as ρn(u)i,j ≤ 2, then ρn(u)i,j = 2 if and only if there exists i ≤ k ≤ j such that

ρn(u(s1))i,k = ρn(u(s2))k,j = 1 for some 1 ≤ s1 < s2 ≤ 3 and hence, i ≤ u(s1) < k ≤

u(s2) ≤ j.

By considering all the decreasing sequences in both sides of each Knuth relation, it

suffices to show that if ρn(ca)i,j = 2 then ρn(ba)i,j = 2 for a < b ≤ c and ρn(cb)i,j = 2

for any a ≤ b < c.

Suppose ρn(ca)i,j = 2 for a < b ≤ c. Then, there exists k such that ρn(c)i,k =

ρn(a)k,j = 1, with i ≤ c < k ≤ a < j. But then as a < b ≤ c, there exists

k′ such that i ≤ b < k′ ≤ a < j, hence ρn(b)i,k′ = ρn(a)k′,j = 1. Similarly, if

ρn(ca)i,j = 2 for a ≤ b < c then there exists k such that ρn(c)i,k = ρn(a)k,j = 1, with

i ≤ c < k ≤ a < j. But then as a ≤ b < c, there exists k′ such that i ≤ c < k′ ≤ b < j,

hence ρn(c)i,k′ = ρn(b)k′,j = 1. Thus, ρn respects the Knuth relations.

Let us denote by ρ̂n the induced morphism from styln to Un+1(T). For example,

the words 4213, 4214234 and 4241234 are in the same stylic class, and the image of



124 CHAPTER 8. TROPICAL REPRESENTATION OF THE STYLIC MONOID

[4213]styl4 under ρ̂4 is the same as that of 4213 under ρ4, that is,

ρ̂4 : 4

2 4

1 2 3 4

7→



0 1 2 2 3

−∞ 0 1 1 2

−∞ −∞ 0 1 2

−∞ −∞ −∞ 0 1

−∞ −∞ −∞ −∞ 0


The following lemma allows us to deduce if a letter a occurs in the k-th row of

N(w), by looking at the image of w under ρn and seeing if, in line a, the leftmost entry

with value k (if it exists) has below it an entry with value k − 1:

Lemma 8.2.4. Let w ∈ [n]∗, a ∈ [n], and k ∈ N. Then, a occurs in the k-th row of

N(w) if and only if there exists j ∈ {1, . . . , n+ 1}, with a < j, such that ρn(w)a,j = k,

and ρn(w)a+1,j = k − 1.

Proof. Suppose for some a < j, ρn(w)a,j = k and ρn(w)a+1,j = k − 1. Then, by

Lemma 8.2.1, there exists a strictly decreasing subsequence w(s1), . . . , w(sk) of w such

that a ≥ w(s1) > · · · > w(sk) ≥ j + 1.

Recall the “arrow” notation introduced in Subsection 8.1.2. We want to show

that ↑k−1
w (sk) = a. As w(s1), . . . , w(sk) is a strictly decreasing sequence of length k,

b := ↑k−1
w (sk) ̸= ε. Note that b ≤ a as ↑lw(sk) ≤ w(sk−l) by the definition of ↑lw. Thus,

by Lemma 8.1.3, there is a strictly decreasing subsequence w(s′1)
, . . . , w(s′k−1)

, w(sk) such

that w(s′1)
= b. However, as ρn(w)a+1,j = k − 1, by Lemma 8.2.1, there is no strictly

decreasing subsequence of length k only using letters between j + 1 and a− 1. Hence,

a − 1 < w(s′1)
or w(sk) < j + 1. Thus, b = w(s′1)

> a − 1 as w(sk) ≥ j + 1. Therefore,

a = b, and hence, by Lemma 8.1.2, a occurs in the k-th row of N(w).

Suppose now that a occurs in the k-th row of N(w). Hence, by Lemma 8.1.2, there

exists an index sk ≤ |w| such that ↑k−1
w (sk) = a, and therefore, by Lemma 8.1.3, there

exists a strictly decreasing subsequence w(m1), . . . , w(mk) of w, where w(m1) = a and

hence, by Lemma 8.2.1, ρ(w)a,n+1 ≥ k.

Choose j as the minimum index such that ρn(w)a,j = k, which exists by Corol-

lary 8.2.2, since ρn(w)a,a = 0. Suppose, in order to obtain a contradiction, that

ρn(w)a+1,j = k. Let b < a be such that ρn(w)b,j = k and ρn(w)b+1,j = ρn(w)b,j−1 =

k − 1. Notice that such a b exists, by Corollary 8.2.2. By Lemma 8.2.1, there exists
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a strictly decreasing w(p1), . . . , w(pk) of w such that b ≥ w(p1) > · · · > w(pk) ≥ j + 1.

By the same reasoning as given before, we can show that ↑k−1
w (pk) = b. Thus, by

Lemma 8.1.3, there exists a strictly decreasing subsequence w(r1), . . . , w(rk) of w such

that w(rk) = w(pk) ≥ j + 1, w(r1) = b, and ↑i−1
w (ri) = b for 1 < i ≤ k. Notice that, since

ρn(w)b,j−1 = k − 1, then w(rk) ≤ j + 1 by Lemma 8.2.1, otherwise we would have a

strictly decreasing subsequence of w of length k only using letters between j + 2 and

b, contradicting the minimality of j. Hence, w(rk) = j + 1.

On the other hand, as a is in the k-th row of N(w), by Lemma 8.1.2, there exists sk

such that ↑k−1
w (sk) = a, and hence, by Lemma 8.1.3, there exists a strictly decreasing

sequence w(s1), . . . , w(sk) where w(s1) = a, ↑i−1
w (si) = a for 1 < i ≤ k, and w(sk) ≤ j+ 1,

since ρn(w)a,j−1 = k − 1.

As a = w(s1) > w(r1) = b, we have that r1 ≤ s1 as otherwise w(s1), w(r1), . . . , w(rk)

would form a strictly decreasing sequence between a and w(rk) of length k+1. Moreover,

if we had w(s2) < w(r1), then we would have a = ↑1w(s2) ≤ w(r1) = b < a as r1 ≤ s2.

Thus, w(s2) ≥ w(r1).

By induction, we will show that w(si+1) ≥ w(ri), for all 1 ≤ i ≤ k − 1. The base

case was covered in the previous paragraph. Suppose that there is 1 ≤ i ≤ k − 2 such

that w(si+1) ≥ w(ri). Notice that, if si+1 < ri+1, then, by our assumption, w(si+1) ≥

w(ri) > w(ri+1), and hence w(s1), . . . , w(si+1), w(ri+1), . . . , w(rk) is a strictly decreasing

sequence between a and w(rk) of length k + 1, giving a contradiction. So, ri+1 ≤ si+1.

Since w(si+2) occurs after w(si+1), which was shown to occur after w(ri+1), we have that

w(si+2) < w(ri+1) implies ↑1w(si+2) ≤ w(ri+1) and hence a = ↑i+1
w (si+2) ≤ ↑iw(ri+1) = b <

a, giving a contradiction. Thus, w(si+2) ≥ w(ri+1).

Therefore, we can conclude that

j + 1 ≥ w(sk) ≥ w(rk−1) > w(rk) = j + 1,

which results in a contradiction. Thus, ρn(w)a+1,j ̸= k, which, by Corollary 8.2.2,

implies that ρn(w)a+1,j = k − 1.

Theorem 8.2.5. The morphism ρ̂n : styln → Un+1(T) is a faithful representation of

styln.

Proof. It suffices to show that we can construct N(w) from ρn(w). By the previous

lemma, a letter a is in the k-th row of N(w) if and only if there exists an index
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j such that ρn(w)a,j = k and ρn(w)a+1,j = k − 1. Since N -tableaux are uniquely

determined by the support of each row (see [AR22, Subsection 6.1]), and ρn induces

ρ̂n by Proposition 8.2.3, we can recover, from ρ̂n([w]styln), all the information needed

to construct N(w).

As an example, recall the image of [4213]styl4 under ρ̂4, that is,

ρ̂4 : 4

2 4

1 2 3 4

7→



0 1 2 2 3

−∞ 0 1 1 2

−∞ −∞ 0 1 2

−∞ −∞ −∞ 0 1

−∞ −∞ −∞ −∞ 0


Notice that ρn(4213)1,5 = 3 and ρn(4213)2,5 = 2, hence, 4 is in the third row ofN(4213).

However, since ρn(4213)2,4 = ρn(4213)3,4 = 1 and ρn(4213)2,5 = ρn(4213)3,5 = 2, we

have that 3 is neither in the second nor the third row of N(4213); on the other hand,

since ρn(4213)2,3 = 1, we can conclude that 3 is in the first row of N(4213). Similarly,

we can see that 2 is in the second, but not the third row, and 1 is only in the first row.

With this information, we have all the necessary information to construct N(4213).

Corollary 8.2.6. V(styln) ⊆ V(Jn) for all n ∈ N.

Proof. Follows from the previous theorem, and [JF19, Corollary 3.3].

We now define two semirings: N0,max := T ∩ (N ∪ {0,−∞}); and [n]0,max := {x ∈

N0,max | x ≤ n}, for n ∈ N, with operations max and n-truncated addition. These

semirings can be seen to be N∗
max ∪ {0,−∞} and [n]∗max ∪ {0,−∞} respectively. Fur-

thermore, we define the morphism φn+1 : Un+1(N0,max) → Un+1([n]0,max) to be given

by φn+1(X)i,j = min(Xi,j, n).

Note that ρ̂n(styln) ⊆ Un+1(N0,max). For the following corollary, treat ρ̂n as a mor-

phism with codomain Un+1(N0,max). Consider the morphism ρn : styln → Un+1([n]0,max)

defined by ρn([x]styln) = (φn+1 ◦ ρ̂n([x]styln)), for x ∈ [n]∗.

Corollary 8.2.7. The morphism ρn : styln → Un+1([n]0,max) is a faithful representation

of styln.
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Proof. We can see that ρn is a morphism as φn+1 and ρ̂n are both morphisms. More-

over, for w1, w2 ∈ [n]∗,

ρn([w1]styln) = ρn([w2]styln) if and only if ρ̂n([w1]styln) = ρ̂n([w2]styln),

as ρ̂n([w]styln)i,j ≤ n for all 1 ≤ i, j ≤ n+1 and w ∈ [n]∗. Hence, ρn(styln) ∼= ρ̂n(styln) ∼=

styln.

Remark 8.2.8. By [JF19, Proposition 3.2], Un+1(T), Un+1(N0,max) and Un+1([n]0,max)

satisfy the exact same set of monoid identities. Hence, we gain no more information

about the monoid identities satisfied by styln by considering ρn rather than ρ̂n.

8.3 Identities of the Stylic Monoid

We now show that styln and Un+1(T) satisfy the exact same set of monoid identities,

thus proving that styln and Un+1(T) both generate the variety V(Jn), and that styln

generates the pseudovariety J n.

Theorem 8.3.1. Let n ∈ N and let u = v be a non-trivial identity satisfied by styln.

Then, u = v ∈ Jn.

Proof. We show the contrapositive of the statement. Let Σ = {x1, . . . , xm} be a set

of variables, and let u, v ∈ Σ∗ be such that u = v /∈ Jn. Without loss of generality,

we can assume that there exist variables a1, . . . , ak ∈ Σ such that ak, . . . , a1 form a

subsequence of u but not of v, for some k ≤ n.

Let y1, . . . , ym be strictly increasing words over [k], defined as follows:

i ∈ supp(yj) if and only if ai = xj,

for 1 ≤ i ≤ k, 1 ≤ j ≤ m. In other words, yj is the strictly increasing product of

indexes i such that ai is the variable xj.

Let ϕ : Σ∗ → [k]∗ be the homomorphism given by xi 7→ yi. Notice that, since

j ∈ supp(ϕ(aj)), then, for any w ∈ Σ∗, if w contains the subsequence ak, . . . , a1,

then ϕ(w) contains the subsequence k, . . . , 1. On the other hand, if ϕ(w) contains the

subsequence k, . . . , 1, then each index i occurs in some yji , such that ϕ(w) contains

the subsequence yjk , . . . , yj1 . This implies that w contains the subsequence xjk , . . . , xj1 ,

which, by the definition of yj, is the subsequence ak, . . . , a1.



128 CHAPTER 8. TROPICAL REPRESENTATION OF THE STYLIC MONOID

Hence, ϕ(u) contains the subsequence k, . . . , 1, but ϕ(v) does not. Therefore, since

this subsequence is the only strictly decreasing subsequence, of length k, whose first

letter is k, that can occur in a word over [k], we have that, by Lemmas 8.1.3 and 8.1.2,

N(ϕ(u)) contains k in the k-th row, but N(ϕ(v)) does not. Hence ϕ(u) ̸≡styl ϕ(v) and

therefore u = v is not satisfied by stylk. Since k ≤ n, u = v is not satisfied by styln.

Therefore, the stylic monoid of rank n joins an increasing list of monoids (see

[JF19, Vol04]) whose equational theory is Jn.

Corollary 8.3.2. For each n ∈ N, styln generates the variety V(Jn) and the pseudova-

riety J n. Furthermore, V(styln) ⊊ V(styln+1) for all n ∈ N, and styln is finitely based

if and only if n ≤ 3.

The following is an immediate consequence of [BFH+20, Section 3]:

Corollary 8.3.3. V(styln) has uncountably many subvarieties, for n ∈ N such that

n ≥ 3.

Proof. For any n ∈ N such that n ≥ 3, the word xyx is an isoterm for the equational

theory of styln, that is, there is no non-trivial identity u = v satisfied by styln, where

u or v is the word xyx. Hence [Jac00, Theorem 3.2] applies.

As such, styl3 is the only stylic monoid which is simultaneously finitely based and

which generates a variety with uncountably many subvarieties. Thus, it is finitely

based but not hereditarily finitely based, that is, not all of its subvarieties are finitely

based. On the other hand, since styl1 and styl2 are monoids with a zero and five or

less elements, they are hereditarily finitely based [ELL10].

8.4 The Finite Basis Problem for the Stylic Monoid

with Involution

Given a semigroup S, an involution on S is a unary operation * on S such that

(x∗)∗ = x and (xy)∗ = y∗x∗. An involution semigroup is a semigroup together with an

involution, denoted (S, *). Given an involution semigroup (S, *), we say the semigroup

reduct of (S, *) is the underlying semigroup S.
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The definitions of involution semigroup variety, finitely based involution semigroup,

identities satisfied by involution semigroups, and their corresponding involution monoid

definitions are analogous to the ones given for semigroups in Chapter 2. For a formal

definition of these terms, see [ADV12].

The unique order-reversing permutation on a finite ordered alphabet [n], which we

denote ·, is an anti-automorphism of the free monoid over [n], thus giving an involution.

Furthermore, it induces an anti-automorphism of the stylic monoid of rank n, which

is also an involution (see [AR22, Subsection 9.1]). We will denote this involution by

* and the stylic monoid with involution by (styln, *). Similarly, the operation of skew

transposition, denoted ⋆, is an involution on the monoid of unitriangular matrices over

the tropical semiring.

We can extend the tropical representation of the stylic monoid of rank n given in

Section 8.2 to the involution case:

Proposition 8.4.1. The morphism ρ̂n : styln → Un+1(T) is a faithful morphism from

(styln, *) to (Un+1(T), ⋆).

Proof. It suffices to show that ρ̂n(x)⋆ = ρ̂n(x∗) for all x ∈ [n]. For x ∈ [n], we have

that ρ̂n(x∗)i,j = 1 if and only if i ≤ n + 1 − x < j and (ρ̂n(x)⋆)i,j = 1 if and only if

n+ 1− j < x ≤ n+ 1− i. Thus, ρ̂n(x∗)i,j = 1 if and only if (ρ̂n(x)⋆)i,j = 1, and hence,

by the definition of ρ̂n, we have that ρ̂n(x∗) = ρ̂n(x)⋆.

In [HZL21, Section 5], it was shown that the involution monoid (Un+1(T), ⋆) is

non-finitely based, for n ≥ 3. It was also shown that (U3(T), ⋆) satisfies, for each

k ∈ N, the identity

xy1y
∗
1y2y

∗
2 · · · yky∗kx∗zz∗ = zz∗xy1y

∗
1y2y

∗
2 · · · yky∗kx∗.

As such, (styl2, *) must also satisfy these identities. Similarly, it was also shown that

(U4(T), ⋆) satisfies, for each k ∈ N, the identity

x1x2 · · ·xkx∗1x∗2 · · ·x∗kx1x2 · · ·xk = x∗kx
∗
k−1 · · ·x∗1xkxk−1 · · ·x1x∗kx∗k−1 · · ·x∗1.

As such, (styl3, *) must also satisfy these identities.

However, as with the case of (Un+1(B), ⋆) where the involution is again given by

skew transposition, we have that (styln, *) does not satisfy exactly the same identities

as (Un+1(T), ⋆), in contrast to the monoid reduct case:
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Proposition 8.4.2. For each n ≥ 2, (styln, *) satisfies the identity

x∗xn−1 = x∗xn, (8.1)

while (Un+1(T), ⋆) does not.

Proof. By [HZL21, Theorem 5.2], we already know that (Un+1(T), ⋆) does not sat-

isfy the identity (8.1). Let ϕ : X → styln be a map. If supp(ϕ(x)) = [n], then

supp(ϕ(x∗)) = [n] and, as such, each side of the identity (8.1) has a word representa-

tive with a decreasing subsequence of all letters in [n]. As such, the evaluation of both

sides of the identity are equal to [n · · · 1]styln = 0styln .

On the other hand, suppose supp(ϕ(x)) ̸= [n]. Then, ϕ(x)n−1 = ϕ(x)n, since

both elements have a word representative with the maximal decreasing subsequence

of elements of its support, of length less than or equal to n − 1. Equality follows.

Therefore, (styln, *) satisfies the identity (8.1).

As such, (styln, *) does not generate the same variety as (Un+1(T), ⋆), in contrast

to the monoid reduct case. It remains open if (styln, *) and (Un+1(B), ⋆) generate the

same variety, where B is the boolean semiring.

Regarding the question of finite bases for the stylic monoids with involution, it is

immediate that (styl1, *) is finitely based, since it is a two-element monoid with a zero.

Hence, it admits a finite basis, consisting of the following identities:

x2 = x and xy = yx and x∗ = x.

We say an involution semigroup (S, *) is twisted if the variety V(S, *) it generates

contains the involution semilattice (Sl3, *), where

Sl3 = {0, a, b}

is a semilattice such that ab = ba = 0 and the involution is given by

0∗ = 0, a∗ = b, b∗ = a.

Notice that any identity u = v satisfied by (Sl13, *), that is, (Sl3, *) with an identity

adjoined, is such that supp(u) = supp(v). It can be easily seen that the variety gen-

erated by a twisted involution monoid also contains (Sl13, *). Therefore, the identities

satisfied by any twisted involution monoid must have the same support in both sides

of the identity.
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Lemma 8.4.3. For each n ≥ 2, (styln, *) is twisted.

Proof. Consider the quotient of the involution subsemigroup

{
[1]styl2 , [2]styl2 , [12]styl2 , [21]styl2

}
of (styl2, *) by the congruence which identifies [12]styl2 with [21]styl2 . This quotient is

isomorphic to (Sl3, *), hence (styl2, *) is twisted. Furthermore, since (styl2, *) embeds

into (styln, *), for each n ≥ 3, we have that (styln, *) is also twisted.

By [Lee17, Theorem 4], we have that any twisted involution semigroup whose

semigroup reduct is non-finitely based must also be non-finitely based. Since styln is

non-finitely based for n ≥ 4, by Corollary 8.3.2, the following is immediate:

Corollary 8.4.4. For any n ≥ 4, (styln, *) is non-finitely based.

Now, we look at the case of (styl2, *): The following proof was suggested by the

anonymous referee for [AR23].

Proposition 8.4.5. (styl2, *) is non-finitely based.

Proof. It is easy to see that (styl2, *) is isomorphic to the Catalan monoid with invo-

lution (Cat2, *), of rank 2 and order 5, which was shown to be non-finitely based in

[GZL20], hence, the result follows.

Finally, we look at the case of (styl3, *): Again, the following proof was suggested

by the anonymous referee for [AR23].

Proposition 8.4.6. (styl3, *) is non-finitely based.

Proof. In [Vol22], it is shown that styl3 is a homomorphic image of the Kiselman

monoid Kis3 and the Catalan monoid Cat3 is a homomorphic image of styl3. It can be

easily checked that these properties still hold when considering the mentioned monoids

with involution. Since, in [GZL22], it was shown that (Kis3, *) and (Cat3, *) generate

the same variety and said variety is non-finitely based, the result follows.

Therefore, we obtain the following result:

Theorem 8.4.7. The involution monoid (styln, *) is finitely based if and only if n = 1.
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[Okn91] J. Okniński. Semigroup algebras. CRC Press, 1991.
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