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Abstract

Electricity and heat generation activities accounted for about 41% of the carbon dioxide
(CO2) emissions from burning fossil fuels in 2017. Therefore, developing low-carbon means
of power generation and decarbonising the electricity and heat generation sectors are crucial
steps in the transition to net zero. Geothermal energy is an adaptable and enormous re-
source, and when used in combination with carbon capture and storage can prevent CO, from
reaching the atmosphere by sequestering it in saline aquifers located deep underground. CO4
was introduced as an alternative working fluid in geothermal systems, defining the concept
of COy-plume geothermal (CPG). Although scCOs has a lower heat capacity than water, its
lower viscosity results in a lower pressure drop and higher production rates. Moreover, the
naturally generated thermosiphon flow (resulting from the density gradient between the in-
jection and the production well) almost removes the pumping requirements at the production
well. However, there are a plethora of geochemical, thermophysical, and subsurface hydroge-
ological parameters that affect the efficiency of such systems. One of the main concerns about
injecting COy in saline aquifers is the geochemical reactions (specifically capillary-enhanced
salt precipitation) that happen inside the aquifer and can damage the aquifer by reducing its
permeability and increasing the pressure build-up near the injection well. Second is the geo-
logical uncertainty and heterogeneity that significantly affects the system performance. Last
but not least, and arguably the most important, is the naturally-driven thermosiphon flow
and power generation from the aquifer. The present work covers all these concerns in sepa-
rate but coherent and integrated pieces of research, using a range of porous media and heat
and mass transfer modelling studies. First, salt precipitation and the effect of capillary back-
flow are studied, and an analytical solution is provided to estimate the amount and extent
of the precipitation when injecting COs in a saline aquifer. Capillary pressure significantly
affects the amount of precipitated salt and should not be ignored. Nevertheless, intense salt
precipitation mainly occurs in a close area near the injection well. Therefore, its effects on
the system’s overall performance and power generation are insignificant. Second, using the
developed codes and models, various 2D and 3D heterogeneous braided aquifer realisations
are generated, and performance metrics are optimised by studying different affecting param-
eters. It is observed that heterogeneity significantly reduces the system performance by up
to 75%. Finally, a direct CO5 power plant is coupled with the well and aquifer models, and
a comprehensive power generation sensitivity analysis is provided. This study has offered
a more profound insight into the operation and functionality of CPG power systems and

proposes recommendations on their feasibility, performance, and challenges.
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Introduction
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1.1 Preface

The importance of reducing CO, emissions has been recognised scientifically in the mod-
ern world. The COVID-19 pandemic and the resulting restrictions had a major impact on
greenhouse emissions worldwide. For instance, in the UK, due to a greater number of in-
dividuals staying at home in 2020, household greenhouse gas emissions decreased by 10%
when compared to the previous year [1]. Despite this, after the gradual reduction of lim-
itations, the UK territorial greenhouse gas emissions increased from 405.5 to 424.5 million
tonnes of carbon dioxide equivalent (MtCOge) from 2020 to 2021 [2, 3]. Emissions from the
residential and energy supply sectors accounted for about 16% and 21% of total emissions
in 2020, respectively [3]. Moreover, CO5 - mainly resulting from burning fossil fuels - has
the most extensive share of greenhouse emissions [3]. Therefore, developing low-carbon, eco-
friendly, and cost-effective means of power generation and decarbonising the electricity and
heat generation sectors are crucial steps to transition to net zero emissions.

Geothermal energy can supply the required heat demand and, when combined with car-
bon capture utilisation and storage (CCUS), can store significant amounts of COy (10th of
MtCOs) in deep underground reservoirs for a relatively long period of time. For instance,
adding 7-9 GW power carbon capture and storage plants to the UK’s offshore wind will save
about 18 MtCOy by reducing CO, emissions into the atmosphere [1]. Currently, solar and
geothermal energy account for less than 5% (1100 thousand tonnes of oil equivalent) of the
total renewable energy sources in the UK [3] (Fig. 1.1), while geothermal energy itself holds
a potential higher than 100 GW, [5, 6, 7]. The Durham Energy Institute has calculated that
the UK has the potential of about 9.9 x 10° GWh available heat sources of up to depths
of 9.5 km. Also, with the currently available technology of engineered geothermal systems,
about 222 GW, from depths of up to 6.5 km and 2280 MW, from depths of 4.5 km are
achievable [7]. Many locations around the world have access to low enthalpy resources, such
as the hot sedimentary aquifers, and it is argued that the lack of high enthalpy resources
is partly responsible for the limited growth of geothermal energy, especially in the UK [8].
COg-plume geothermal (CPG) can be the key to this problem as it requires low to medium
enthalpy aquifers to perform. Therefore, it is hypothesised that CPG can meet the energy
demands while contributing to reducing CO, emissions by storing considerable amounts of
CO; in underground aquifers.

This thesis presents representative models of CPG systems considering important phys-
ical processes that take place when COs is used to extract energy. I included the mutual

dissolution of CO5 and brine, geochemical reactions, capillary-driven backflow, COs seques-
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Figure 1.1: Renewable energy sources in the UK, 2021. The total amount of renewable used
is 22495 thousand tonnes of oil equivalent (ktoe) [3]. Solar and geothermal energy together
account for about 5% of the total renewables used in the UK.

tration, and aquifer thermal depletion. This thesis provides a good understanding of the
potential, advantages, and problems of CPG systems and suggests mitigating solutions to
make CPG a competitive option for CCUS. The thesis covers three main concerns about
CPG, including salt precipitation, geological uncertainty, and net power generation. Each
chapter includes a peer-reviewed and published journal article that has addressed one of
the above-mentioned specific concerns about CPG. The first two papers mainly studied geo-
chemical reactions and salt precipitation that happen inside the aquifer through numerical
and analytical approaches. The third paper presented a performance optimisation of a CPG
operating in a 2D heterogeneous fluvial aquifer. Finally, the fourth paper provided a detailed
model for CPG, which includes coupled aquifer modelling, geochemical reactions, sequestra-
tion and cycle lifetime, well modelling, thermosiphon, optimisation, and power cycle analysis
in 3D fluvial aquifers. The following sections provide details on the background, motivation,

and outline of the research.

1.1.1 Background of geothermal energy and CPG

The term ’geothermal energy’ pertains to heat obtained from beneath the Earth’s surface,
encompassing depths ranging from a few meters to several kilometres. Generally, one or
more injection and production well pairs are drilled to make a close/open loop fluid circuit.
Then, cold fluid is injected at the injection well and absorbs the heat from the naturally-hot
rock below the Earth’s surface, and hot fluid returns to the surface. The produced hot fluid

is either used for heating purposes or producing electricity through the concept of a ‘heat
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engine’ [J].

Geothermal energy production is more than a century years old, and the first geother-
mal plant was built in Larderello, Italy in 1904 [10]. Conventionally, water is used as the
working fluid in geothermal systems. One of the most common types of geothermal systems
is Groundwater Heat Pump (GWHP), which can operate with either a closed or an open
loop water cycle as shown in Fig. 1.2. Geothermal heat is extracted by GWHPs using heat
exchangers, which involve pipes inserted into the ground to circulate a working fluid in a
‘closed loop” system, or by pumping the groundwater in aquifers in "open loop” systems [11].
By using a heat pump, these systems convert low-grade heat from fluids into useful heat
(> 40 °C) for heating purposes [l 1]. Finally, the cold fluid is re-injected into the aquifer.
GWHPs have the capability to provide heating, cooling, or a combination of both.

In the past decades, many researchers focused on GWHP systems and their development.
One of the areas of interest was about the effects of thermal dispersivity on thermal plume
dispersion and its effects on the thermal performance of the system [12, 13, 11, 15, 16]. Other
researchers also developed GWHPs by focusing on different aspects, such as different design
scenarios [17, 18], sensitivity analysis, modelling, and performance [19, 20, 21, 22], thermal
impact assessment [23], and sustainability [24].

Another type of geothermal system is called Hot Dry Rock (HDR). Within this con-
cept that was first developed by researchers at Los Alamos National Laboratory, deep (2.5
to 5 km) and low-permeable geothermal sources were the target. By increasing the pres-
sure of the wells permeability was improved, and faults were reopened. Then, water was
circulated through the permeability-enhanced reservoir and to the surface, and was used
to produce electricity [25, 26]. This was almost the first time that low-permeable deep
geothermal sources were used for energy extraction. Later, the term HDR was changed to
Enhanced/Engineered Geothermal Systems (EGS) to emphasise more on the hydraulic frac-
turing and artificial permeability enhancement of the low-permeable field (Fig. 1.2) [11, 27].
CO4 was later proposed as a working fluid for EGS systems to fracture the rocks, and these
geothermal systems were referred to as CO9-EGS systems [28, 29, 30)].

Similar to GWHPs, many researchers worked on developing EGS systems and there are
several recent review papers that scheme through the research works about EGS. Among
these review papers, Li et al. [31] focused on reviewing the simulation mechanisms and design
of EGS, Kumari et al. [32] reviewed the sustainable developments of EGS, and Zhu et al. [33]
reviewed the mechanical responses of granite EGS systems. Finally, in 2019, Avanthi Isaka

et al. [31] provided a comprehensive review of the utilisation of supercritical CO5 (scCO3) as
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Figure 1.2: Geothermal energy technologies: ground source heat pump for relatively shallow
depths, and hydrothermal systems, CPG, and engineered geothermal systems (also known
as Hot Dry Rock or HDR) for deep geothermal sources (modified from [11]). Compared to
EGS, CPG targets shallower aquifers with higher natural permeability.

the working fluid in EGS systems, showing that the attention of the geothermal researchers
and engineers community has moved toward the utilisation of CO, in the last decade.

CO. was initially suggested as the working fluid by Brown [35] in 2000. He stated that
the HDR concept can be more competitive by using COs joined with CO,y sequestration
as it can store COy and produce electricity. He also stated that CO, has some advan-
tages compared to water, such as lower mineral solubility and the self-driven flow known as
thermosiphon [35]. Finally, in 2009, Saar et al. [36] introduced the concept of COg-plume
geothermal (CPG) and patented this idea. In this concept, COy was used as the working
fluid in low/medium enthalpy sedimentary aquifers, whereby heat and pressure energy were
extracted from sedimentary basins that naturally had high permeability. The injection of
CO, forms a large funnel-shaped plume inside the aquifer, which is why this concept is called
COg2-plume geothermal. A schematic of a CPG system and the parts of the operation that

are the focus of this dissertation are shown in Fig. 1.3.
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Figure 1.3: Schematic of the direct-CPG cycle and surface power plant (modified from
[37] and [38]). Sections that are the focus of the present dissertation are (a) capillary-
driven backflow and its effects on salt precipitation near the injection well. Here because
of the water saturation gradient and the resulting capillary force water moves towards the
injection well and then at the dry-out zone water evaporates and salt will remain; (b) fluvial
heterogeneity and its effects on the performance of the CPG system. Fluvial channels form
as a result of underground water passage through several years and the presence of these
channels affects the COs distribution and the system performance; and (c¢) thermosiphon and
power generation, which is resulted from the CO, density gradient between the injection and
production wells. In light of thermosiphon, CO, is self-produces at the production well and
the need for pumping is greatly reduced.

In a CPG system, either the high pressure or the high temperature of the produced
CO3 can be used to produce electricity. In the case that the produced scCOs from the
CPG directly enters an expansion turbine, its high pressure is used to produce electricity
(direct-CO4 expansion cycle). Conversely, the produced fluid can be used in an indirect cycle
coupled with another cycle, such as an Organic Rankine Cycle (ORC), to transfer its heat
to another secondary working fluid through a heat exchanger (known as the indirect CPG
cycle). CPG is a different geothermal technology compared to other existing ones in many

aspects [J]:
e CPG mainly uses COs as its geologic working fluid.
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e [t targets low to medium enthalpy sedimentary basins instead of deep fractured net-
works used in EGS.

e CPG is relatively deep and uses sources at depths between 1.5 to 5 km.

e CPG is applicable for medium-range temperature aquifers and does not require hot

reservoirs.
e [t can produce electricity both through a direct and an indirect cycle.
e Great amounts of CO, will be stored and kept underground in CPG systems.

Moreover, using CO, as the working fluid offers several advantages. At depths beyond
approximately 800 m under typical hydraulic conditions, CO, transitions into the supercrit-
ical phase, characterised by the absence of a clear distinction between gas and liquid phases.
As a result, when CO, reaches the supercritical phase, it acquires a notable density and
exhibits a low viscosity, rendering it an appealing option for extracting energy [39]. This
lower viscosity, compared to water, results in a lower pressure drop within the reservoir and
enables higher working mass flowrates. Additionally, the density of CO, is highly sensitive to
temperature. As CO, is heated in the reservoir, its density decreases significantly. Therefore,
at the production well, the bottomhole pressure is more than sufficient to self-produce COq
to the surface without requiring any pumping. In terms of the efficiency of heat removal from
the aquifer, the heat capacity, density, and velocity of fluids under the same pressure gradient
are important. It is claimed that when the depth exceeds 4 km, under typical geothermal
gradients, water will be a more effective medium for carrying energy out of the aquifer com-
pared to CO,. However, for shallower aquifers with lower heat requirements, such as those
below 100 °C, CO, is believed to be more efficient [39]. Despite these benefits, CPG is still
a relatively new concept, and further investigation is necessary to address several concerns
and problems before it can become commercially available. These concerns and drawbacks

will be discussed in the following section.

1.2 Motivation

As mentioned, CPG is a relatively new technology and it requires further study and analy-
sis. There are some challenges that a CPG system may have, including the possible water
production at the initial stages of CPG that may result in a system performance reduction,

additional imposed pressure drop, and the requirement of a pump/compressor to compensate
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for this excess pressure drop due to water production at the initial stages of CPG. Another
challenge could be the choice of turbine and compressor and their working condition. The
phase condition of CO4 at the exit of the turbine is very uncertain and it is closely located
at the boundary of the supercritical phase and unsaturated two-phase regions, and this may
cause problems with the turbine working condition. Additionally, the overall efficiency and
lifetime of CPG systems are very uncertain and this has been highly overestimated in pre-
vious studies in this field. Besides these challenges, there are three major concerns about
utilising CPG that can affect every aspect of a CPG system and are the focus of the present
work. One of the main concerns is the geochemical reactions that happen between COs,
brine, and rock, which results in minerals precipitation and dissolution inside the aquifer.
Among these geochemical reactions, salt precipitation is of great importance as it is argued
that it can significantly damage the reservoir and reduce its injectivity [10] (Fig. 1.3a). The
second important concern is about the geological uncertainty and heterogeneity that is the
nature of fluvial sedimentary aquifers (Fig. 1.3b). Less attention has been given to inves-
tigating the performance of CPG in a real, heterogeneous aquifer and its overall viability.
Thirdly, are the CPG performance metrics, thermosiphon longevity, well patterns and spac-
ing, optimum working flowrates, and power generation (Fig. 1.3c). All these concerns are
directly related to the performance and energy output of a CPG system and should be clar-
ified to pave the way for CPG to become commercially available and competitive. In this
dissertation, it is tried to cover all these aspects in separate, but coherent and integrated

pieces of research.

1.2.1 Flow and salt precipitation in the aquifer

To ensure the technical and economic feasibility of a CPG system that utilises CO, as the
heat transmission fluid, various physics and considerations must be taken into account. CO»-
brine mutual solubilities and water vaporization are two phenomena that significantly impact
the thermo-hydrodynamics of the injected COs in the aquifer. Overlooking these factors can
result in over- or underestimation of the system’s feasibility. Other crucial phenomena that
must be considered in a CPG system include geochemical reactions between COs, brine,
and minerals, mineral dissolution/precipitation effects on reservoir porosity and permeabil-
ity, capillary pressure and capillary backflow, and water vaporization due to the low water
vapour pressure in the dry-out zone. Understanding the complexity of these interactions is
essential for successfully implementing CPG systems in commercial applications. When COq

is injected into a sandstone aquifer, minerals like calcite, anorthite, kaolinite, and halite can
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precipitate within the aquifer. These minerals’ dissolution and precipitation reactions can
affect the amount of CO, stored in the aquifer, reservoir injectivity, and CPG performance.
Of these minerals, halite is the most crucial to consider, as its precipitation near the injection
well can significantly impair the injectivity of the injection well.

To thoroughly study the effects of minerals (specifically salt) precipitation and investigate
the extent that they can affect the CPG performance, two sub-projects are defined. In the
first project, which formed Chapter 2, a complete sensitivity analysis on various parameters
that affect minerals precipitation/dissolution and specifically the capillary-driven backflow
inside the reservoir and the subsequently precipitated salt is performed. The study is done
through numerical modellings (using the CMG-GEM compositional simulator) coupled with
post-processing codes. In this sensitivity analysis, a new parameter (BEP) is also introduced
that correlates the amount of the precipitated salt to brine backflow. Then, in the second
project (Chapter 3), using an analytical approach based on the Buckley—Leverett theory,
and the programming code developed for that, I was able to estimate the amount of the
precipitated salt as well as the distance of the affected region in the reservoir, in presence of

capillary-driven backflow.

1.2.2 Heterogeneity and geological uncertainty

Fluvial heterogeneity is a fundamental characteristic of sandstone aquifers [11]. Tt refers
to the spatial variability of sedimentary properties and architecture within aquifers that
have been influenced by ancient river systems. This heterogeneity results from the com-
plex interplay of sediment supply, channel migration, and depositional processes. Different
types of heterogeneity can be present in saline aquifers, including meandering, braided, and
anabranching [12, 13, 11]. Heterogeneity can significantly impact the hydrological properties
of sandstone aquifers, such as their porosity, permeability, and storage capacity. Moreover,
the presence of fluvial channels in aquifers can significantly affect the flow pattern, CO, plume
propagation, and performance metrics of a CPG system. Therefore, a thorough understand-
ing of fluvial heterogeneity is essential for the accurate characterization and modelling of
sandstone aquifers, particularly for the design of effective and sustainable CPG systems.
While the effect of this parameter is significant, there has been no study that has taken this
parameter into account in a CPG.

In this regard, the ubiquitous presence of various forms of heterogeneity in rock properties
(porosity and permeability) which is inherent in subsurface porous media, is analysed through

two defined projects. One of the main achievements of these projects is the development
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of an in-house MATLAB code that can generate different 2D and 3D braided /meandering
fluvial heterogeneous realisations of sandstone aquifers with high coefficients of variation
(Cy > 1 [15]). Through this code, it is possible to generate different types of fluvial hetero-
geneity (braided and meandering) with control over channel number, width, thickness, and
sinuosity. In the first project (Chapter 4), 2D braided aquifer realisations are used to study
the performance metrics of a CPG system and suggest optimised working conditions. In the
second project, which is the most complete model of a CPG system in a 3D heterogeneous
aquifer (Chapter 5), different 3D realisations are generated, and the results are coupled with
the surface power plant model, and a comprehensive study on every aspect of a CPG is

performed.

1.2.3 CPG performance optimisation in heterogeneous reservoirs

It is important to establish the most efficient operational conditions for the CPG system.
However, there are many parameters to be considered in this regard. The dominant parame-
ters that affect the CPG system’s performance include the spacing and patterns of the wells
and the CO, injection rates. These parameters are optimised through numerous numerical
simulations that are performed in 2D and 3D aquifers. The optimal well spacing is deter-
mined by evaluating the performance metrics of the CPG system in a 2D aquifer (Chapter 4).
Subsequently, this optimised value is used to reduce the number of simulations required for
the 3D cases, and then the COs injection rate is optimised through the 3D models coupled
with the power plant model (Chapter 5). This approach ensures a comprehensive study of
every aspect of the CPG system and aids in determining the best operating conditions for

an efficient and sustainable system.

1.2.4 Thermosiphon and net power generation

The thermosiphon effect and net power generation are critical factors to consider in a CPG
system. Along with influencing parameters such as heterogeneity, other phenomena also
significantly impact a CPG system’s efficiency and power output. One such phenomenon is
COy plume propagation. Firstly, a minimum COs saturation is required at the production
well to have an annular flow inside the well (to maintain the thermosiphon effect) and to
be able to use the produced fluid directly in a turbine. Also, it is important to always pro-
duce supercritical CO, at the surface. Therefore, the production temperature and pressure

should not fall below critical values. These criteria define the lifetime of a CPG system. To
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accurately calculate the net power output of a CPG system, a model is required, which con-
siders the CPG lifetime as described combined with well and power plant models. Providing
such a comprehensive model is the target of this dissertation in Chapter 5, in which a direct
CO4 expansion power plant is coupled with a CPG in a 3D heterogeneous aquifer. The
provided model in this chapter includes the CO, density-driven thermosiphon flow, effects of
a 3D heterogeneous aquifer, well modelling, direct power cycle, geochemical reactions, and

performance optimisation in an integrated manner.

1.3 Thesis objectives

The detailed thesis objectives are summarised below:

e Investigating the extent and the effects of geochemical reactions on the reservoir injec-

tivity and CPG performance.
e Studying the effective parameters on salt precipitation and capillary-driven backflow.

e Being able to analytically estimate the amount and the extent of salt precipitation

when injecting COs in a saline aquifer.

e Studying the effects of heterogeneity on CPG performance, lifetime, sequestration time,

and thermosiphon longevity.

e Optimising CPG performance and net power output through an integrated aquifer,

well, power plant model.

1.4 Thesis structure and publications

A combination of numerical modelling, analytical solutions, programming, and optimisation
approaches have been used to investigate CPG systems further. The presented journal-
format thesis comprises four peer-reviewed and published papers that are direct outcomes of
the PhD project. The first two papers, forming chapters #2 and #3, are about geochemical
reactions and capillary-enhanced salt precipitation that occur in CPG. The third and fourth
papers, forming chapters #4 and #5, primarily focus on the effects of heterogeneity, power
generation, and thermosiphon in CPG systems. All these papers have been peer-reviewed,
published, and are available online. Chapter #6 provides a summary of the findings of the

present dissertation and future research opportunities, and chapter #7 offers supplementary
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descriptions and analyses for each of the preceding chapters. The papers that form this

thesis are listed below:

1. CO;3-plume geothermal processes: A parametric study of salt precipitation
influenced by capillary-driven backflow, A. M. Norouzi, M. Babaei, W. S. Han,
K. Y. Kim, V. Niasar. Chemical Engineering Journal vol.425, p.130031, (2021).

Link: https://www.sciencedirect.com/science/article/pii/S1385894721016168

2. Analytical solution for predicting salt precipitation during CO, injection
into saline aquifers in presence of capillary pressure. A. M. Norouzi, V. Ni-
asar, J. Gluyas, M. Babaei. Water Resources Research, vol.58, no.6, p.e2022WR032612,
(2022).

Link: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022WR032612

3. COz-plume geothermal in fluvial formations: A 2D numerical performance
study using subsurface metrics and upscaling. A. M. Norouzi, J. Gluyas, M.
Babaei. Geothermics, Vol.99, p.102287, (2022).

Link: https://www.sciencedirect.com/science/article/pii/S0375650521002443

4. COs-plume geothermal: Power net generation from 3D fluvial aquifers. A.
M. Norouzi, F. Pouranian, A. Rabbani, N. Fowler, J. Gluyas, V. Niasar, J. Ezekiel,
M. Babaei. Applied Energy, Vol.3532, p.120546, (2023).

Link: https://www.sciencedirect.com/science/article/pii/S0306261922018037
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Chapter 2

COs-plume geothermal processes: A
parametric study of salt precipitation

influenced by capillary-driven
backflow

This chapter is a modified version of the paper published in the ‘Chemical Engineering Jour-

nal’.

Authors: A. M. Norouzi, M. Babaei, W. S. Han, K. Y. Kim, V. Niasar. COs-plume
geothermal processes: A parametric study of salt precipitation influenced by capillary-driven
backflow. Chemical Engineering Journal, vol.425, p.130031, 2021.
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2.1 Abstract

Utilising COq-plume geothermal systems allows both carbon dioxide storage (about 12% of
the injected COy —1.4 Mt— in this study) and geothermal heat exploitation by producing hot
fluid. However, the commercial and technical feasibility aspects of such systems are major
challenges to address. Salt precipitation is a common phenomenon that governs near-well
damage and pressure build-up. Although various governing parameters affect the amount
and the extent of salt precipitation, capillary-driven backflow is considered in a recent review
paper by Miri and Hellevang [10] as a key mechanism that determines regimes of salt pre-
cipitation. As a result, a comprehensive sensitivity analysis is performed on a wide range of
parameters, including relative permeability and capillary pressure curves; injection flow rate
and temperature; and the reservoir’s initial salinity, porosity, and temperature to underpin
the role of capillary pressure and capillary-driven backflow on salt precipitation. Moreover,
a backflow extent parameter (BEP) is defined, through which the brine backflow velocity
profile is linked to salt precipitation. It is observed that capillary backflow significantly in-
fluences the pattern and enhances near-well salt precipitation. Also, BEP is found to have a
semi-linear relation to the amount of the precipitated salt. Also, an increase in brine salinity
(up to a critical value ~ 175000 ppm for our simulations) resulted in a significant reduction
in reservoir porosity and permeability surrounding the injection well. In addition, the im-
posed required pumping power is analysed, and an average (for all salinities) 20% increase
of pumping power is required to keep the injection rate constant in the present study.
Keywords: CO, injection, Capillary backflow, Salt precipitation, Pumping power, COs-

plume geothermal.

2.2 Introduction

2.2.1 COj sequestration and salt precipitation

Through the last decade, climate change and global warming have alarmed the importance of
carbon dioxide (CO2) management and carbon footprint reduction [16]. One of the proposed

solutions to CO4 problem is the geological storage of CO, in various reservoirs, such as coal

beds, deep and shallow saline aquifers, and depleted oil and gas reservoirs [17], which became
a growing attraction for researchers during the last few years [18]. In addition to the carbon
storage, COq also can be used in enhanced oil recovery [19, 50, 51], enhanced gas recovery

[52], and integrated sequestration-geothermal processes [53, H4].
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Among the above-mentioned types of reservoirs, deep saline aquifers are the most practi-
cal candidates and have the largest storage capacity [55]. For non-isothermal flow in aquifers,
in addition to carbon storage, heat extraction can also be considered. Generally, there are
two approaches regarding COs injection into geothermal systems. One is the enhanced
geothermal system (EGS) where either COy is used for hydrofracturing or is used as the
transmission fluid [28, 29, 30], known as COy-EGS; through this approach, carbon storage
is not the main objective. Secondly, there is the COg-plume geothermal system (CPG), in
which COs is injected into the aquifer to be stored and to act as a means to provide energy
[53, 54, 56, 57, 58, 59]. Unlike EGS, the main objective of CPG operations is to maximize
both the hot and high-pressure fluid production and CO, storage. Therefore, storage ca-
pacity, heat recovery factor, and injectivity are the factors that should be considered for the
economic and technical feasibility of such systems [10)].

Reservoir composition and geochemical reactions play important roles in the injectivity
and trapping of COs inside the reservoir [60]. As a result, to accurately simulate a reservoir,
it is vital to consider them similar to the real field reservoirs in modelling. In this regard,
Zhu et al. [01] numerically modelled and studied the long-term COs-brine-rock reactions in
a sandstone reservoir and compared the results with measured data for natural analogue. In
another comprehensive study, Nghiem et al. [62] provided a fully coupled solver that simu-
lates minerals dissolution and precipitation for the COs injection into an aquifer. Also, they
included the main geochemical reactions for a COq-brine-rock system, as well as their chem-
ical equilibrium constants. Among these reactions, the solid salt resulting from fluid-rock
reactions was found to be of great importance. While injecting supercritical (sc) COs into the
reservoir, the formation water eventually evaporates, resulting in an increase in the dissolved
salt concentration. As the amount of salt passes the solubility limit, solid salt precipitates
and clogs the reservoir pores, which can significantly affect the reservoir’s properties such as
permeability and porosity as well as COy injectivity. Consequently, the bottom-hole pres-
sure increases and the pump requirement is necessarily increased. Miri and Hellevang [10]
comprehensively reviewed the up-to-date knowledge regarding salt precipitation during CO,
injection. Although there is still a dispute over the preponderant parameter that controls
salt precipitation, in general, it is believed that the capillary force plays an important role in
supplying fresh brine to the dry-out front, causing salt precipitation. However, according to
the works reviewed in [10], only few research studies have considered the effect of capillary
force and brine backflow on salt build-up.

To better demonstrate the importance of salt precipitation and the associated damages
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at a reservoir, it is useful to summarise observations from field investigations. Baumann et
al. [63] reported that salt precipitation occurred near the brine levels with the maximum
halite saturation of 14.1% in the Ketzin CO, injection project; the reservoir’s temperature
and pressure were 35 °C and 7.5 MPa, respectively, and the brine salinity was 220 g.L.='. In
addition, Grude et al. [64] investigated CO5 injection into the low permeable Tubaen sand-
stone formation where the temperature and pressure were 95 °C and 28 MPa, respectively.
Through the time-lapse seismic survey, it was revealed that injectivity was reduced near the
wellbore and pressure build-up was observed. Here, salt precipitation was suggested as a
possible reason for these phenomena.

Through laboratory experiments, Nooraiepour et al. [65] tested CO; injection in shale
caprocks to investigate whether salt can block COs leakage pathways or not. The study
revealed that solid salt had the potential to clog the fractures. Another experimental work
by Muller et al. [66] reported a 16% salt precipitation with a subsequent reduction of the
absolute permeability of about 40% in a sandstone core for carbon storage near Ketzin,
Germany. Ott et al. [67] investigated the effects of salt precipitation during sc-CO, injection
for enhanced oil recovery and gas disposal purposes and reported a 0.8% impairment in
macroporosity. Similarly, Bacci et al. [08] reported a porosity reduction of about 3-5% and
a permeability reduction of about 13-75%. In another work, Berntsen et al. [09] provided a
medium-scale experimental study on salt precipitation near the injection well. Through X-
ray computed tomography they observed that capillary backflow affects the water saturation
near the wellbore and compensates for water evaporation by dry COs. There are other
research studies in this regard that all focused on salt precipitation and its effects on the
reservoir’s permeability (Oh et al. [70], Tang et al. [71], and Kim et al. [72]).

Various numerical studies focused on salt precipitation in the COs injection process and
analysed the effects of different parameters on the amount of precipitation and CO; injectiv-
ity. For instance, Cui et al. [73], considered complex geochemical reactions, including halite,
during COs injection in a saline aquifer. Effects of various parameters were studied in this
work. However, the sensitivity analysis was only performed for the pressure build-up at the
injection well and the changes in other parameters were overlooked. It was observed that
although salt precipitation might result in a significant pressure build-up, it was only limited
to the vicinity of the injection well. In a more recent study, Parvin et al. [71] provided a
formulation of the capillary-enhanced salt clogging of the pores near injection. Their model
indicated that in the absence of capillary effect, salt precipitation still occurred, however,

the magnitude of precipitation is a strong function of capillary pressure. The modelling is
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carried out on one-dimensional 15 cm X 6 cm X 6 ¢cm, with a total of 15 grid blocks only. In
another recent work, Babaei [53] considered the effect of brine salinity and salt precipitation
in reservoirs with closed and open boundary conditions and different well patterns, suggest-
ing that increasing the number of wells can significantly reduce the maximum amount of
the precipitated salt. Other older similar works can be referred to through the review paper

provided by Miri and Hellevang [10].

2.2.2 Salt precipitation and capillary backflow

After CO; injection into the aquifer, three zones including a dry-out zone, a two-phase-flow
zone, and a saturated zone can be defined (Fig. 2.1). Miri and Hellevang [10] proposed
that salt can precipitate through different mechanisms such as water evaporation, capillary
backflow and salt diffusion. It has been conjectured that brine backflow due to capillary

pressure plays an important role in salt precipitation [10].

Water and CO, '

Production Well
Injection Well

Dried out Zone Unsaturated Two Phase Zone Saturated Zone

Figure 2.1: CPG system with injection and production wells (main figure), and capillary
backflow inside the aquifer (inset figure). Water moves backwards as a result of the water
saturation gradient between the dry-out and the saturated zones. Here, the two-phase zone
plays an important role in moving water backwards through the water films and to the dry-
out region, and consequently the salt precipitation near the injection well.
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Capillarity affects the spreading of the liquid saturation profile across the drying fronts.
Previously the evolution of water saturation with time was calculated using a fitting proce-
dure [75] to relate the decrease in water saturation after two-phase immiscible displacement
due to evaporation to gas flow rate. In another study, Cui et al. [76] used the CMG-
GEM simulator to include geochemical reactions in a COs injection process and observed
the capillary-driven brine backflow at the edge of the two-phase zone near the injection well,
which resulted in localized salt precipitation. Similarly, Pruess and Miiller [77] included
brine backflow in their numerical solution for the COs-brine system. They reported that
precipitation only happened in the dry-out region (the region affected by capillary-driven
backflow). Also, the inclusion of the capillary effect in the solution increased the amount of
precipitation by a factor of 1.1 compared to the case without applying capillary pressure.

The fact that capillary backflow and the resulting salt precipitation mainly happen in the
dry-out region is also supported by some experimental works such as [78]. They found local
salt precipitation mainly inside the capillary-dominated region, and as a consequence, the
absolute permeability was reduced by a factor of 4. Ott et al. [79] studied salt precipitation
due to capillary-dominated flow in a sandstone reservoir and proposed a length scale for
the dry-out zone, as well as a permeability-porosity correlation considering the effect of salt
precipitation. Showing the importance of the capillary-driven backflow, Miri et al. [30]
investigated the physics of salt precipitation in a micromodel experiment and observed two
phenomena contributing to localized salt precipitation (i.e., salt self-enhancing and water
film salt transport). Based on their results, trapped water films inside the two-phase and
dry-out region could transport brine from the saturated zone to the dry-out zone, resulting in
a continuous salt precipitation in this region. Also, at high flow rate conditions, the effects of
capillary-driven backflow were negligible and as a result, very limited precipitation happened.
Roels et al. [31] conducted a core-flooding experiment on a Bentheimer sandstone core, and a
considerable reduction in the injectivity due to salt accumulation through capillary pressure

was reported.

2.2.3 This study

According to the above-mentioned papers, and to the authors” knowledge, there is almost no
consistent work focusing on capillary-driven backflow and its relation to salt precipitation.
In this regard, the present study provides a comprehensive sensitivity analysis of governing
parameters, including relative permeability and capillary pressure curves, injection temper-

ature and flow rate; reservoir’s salinity, temperature, and porosity; and the production well
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bottomhole pressure, and their effects both on brine backflow and salt precipitation. The
range of the governing parameters was chosen in a way to cover all ranges studied in pre-
vious studies. In addition, a backflow extent parameter (BEP) is defined, which relates all
governing parameters to water backflow and salt precipitation, and it is shown that changes
in other governing parameters, which result in an increase in BEP, would contribute to salt

precipitation.

2.3 Problem description and backflow and energy met-
rics

The model includes different processes and mechanisms —namely heat and mass transport,
geochemical reactions, minerals dissolution/precipitation and their effects on porosity and
the permeability, water vaporization, and capillary backflow— fully coupled with a geochem-
ical compositional equation of state (EoS) simulator (CMG-GEM)[62]. The EoS parameters
and the equations used in this simulator are described in Appendix A. Also, the results of
the solution validation, as well as the grid resolution sensitivity analysis, are reported in

Appendix B.

2.3.1 Reservoir properties

A 600 m x 500 m x 100 m reservoir (as shown in Fig. 2.2) is considered to investigate
the relationship between water capillary-driven backflow and the subsequent salt precipi-
tation, as well as the resulted increase in the required pumping power. Heat and mass
transport, aqueous and mineral reactions, water vaporization, capillary backflow, minerals
dissolution /precipitation and their effects on the porosity and the permeability of the field
are considered during these simulations. The size of the domain is the same as the model by

Cui et al. [76], with which the simulations are validated.
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Figure 2.2: 2D grid and geometry of the studied aquifer. Thisis a 111 x 1 x 10 structured grid
with near-injection dx=0.05 which then increases to 10 m. The injection well is perforated
at the lower half (lower 50 m) of the reservoir, and the production well is perforated at the
upper half (upper 50 m).

The aquifer is studied both through a 1D and a 2D grid. Since the 1D case required
less simulation time, it is used to provide multiple simulations covering a wide range of
governing parameters. The 2D grid is used to analyse the main cases, i.e., the salinity
sensitivity analysis, in more detail. Since most of the salt precipitation occurs near the
injection well, a finer mesh is used in this region. Although a coarser grid would reduce the
simulation time, it may result in a noticeable over- or underestimation of salt precipitation
[82]. Therefore, for the 1D case, a 111 x 1 x 1 structured grid (with near-injection dz=0.05
and then increasing to 10 m) is used. Similarly, for the 2D case, a 111 x 1 x 10 grid with
the same dx as the 1D case and dz=10 m is utilised. It should be mentioned that the size of
dz, which represents the vertical resolution, can have an impact on the vertical distribution
of CO4 and the upward density-driven flow. Consequently, it may also affect the extent of
salt precipitation near the injection well, as this region experiences the most COq vertical
flow. Therefore, altering the vertical resolution has the potential to change the locations of
localised salt precipitation near the injection area.

Some considerations are taken into account for the design of the simulations. The de-

signed reservoir is considered to be representative of a sandstone reservoir in terms of min-
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eralogy and petrophysical properties; and the reservoir’s boundaries maintain heat transfer
with the surrounding rock, however, a no-flow condition is applied at the boundaries. In
addition, CO, is injected at the supercritical condition through an injection well that is per-
forated at the lower half (lower 50 m) of the reservoir, and at the production well, perforated
at the upper half (upper 50 m), hot fluid is extracted. Additionally, it should be mentioned
that the permeability, porosity, and temperature gradient of the reservoir (42.5 °C/km) con-
sidered in this study are selected for a reservoir with an ideal condition for CPG exploitation.
However, these values over-represent the characteristics of most actual reservoirs available
for CPG. Also, It is important to note that these parameters have been selected in such
a manner as to facilitate comparisons with other similar works in this field. The general

properties of the reservoir are summarised in Table 2.1.

Table 2.1: Reservoir and model initial properties for the main simulation case.

Parameter Value Parameter Value
Top depth _ D, [m] 3500 Thermal conductivity - K, [W.m~1.°C71] 2
Length _ L, [m] 600 Initial water saturation - SO 1
Width - W, [m] 500 Solubility of CO2 in water [33], % 2.7
Height - H, [m)] 100 Solubility of water in CO2 [33], % 10.45
Pressure _ P, [MPa] 35 CO2-Water diffusion coefficient, [m2.s7!]  11E-09
Temperature - T, [°C] 150 Brine salinity _ S, [ppm] 58440
Horizontal permeability _ ky y, [md] 100 COg injection rate _ 1, [kg.s™!] 15
Vertical permeability _ k,, [md] 50 CO; injection temperature _ T}, [°C] 40
Initial porosity _ ¢° 0.1 Displace pressure, [MPa] 2
Density _ p, [kg.m ™3] 2650 Simulation time _ ¢, [year] 30
Heat capacity ¢, [J.kg=t.°C™!] 840

As mentioned, the reservoir is considered to be sandstone, where calcite, anorthite, and
kaolinite represent carbonate, silicate, and clay mineral components, respectively. Based on
the literature in this field [61, 62, 81, 85], the following chemical reactions for a sandstone
reservoir including aqueous and mineral reactions are considered. These reactions are ap-
plicable for all geological structures that include interactions between the aforementioned
minerals, CO,, and brine. The reactions’ equilibrium coefficients and minerals’ rate law

parameters are provided in Tables A2 and A3, respectively.

H" 4+ OH =— H,0 (2.1a)
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CO, + H,O == HCO; +H' (2.1b)

HCO; =— CO4 +H* (2.1¢)

Calcite + HY = Ca’" + HCO5 (2.1d)

Anorthite + 8H" == 4H,0 + Ca’* + 2A1°" + 28i0, ,, (2.1¢)

Kaolinite + 6H" == 5H,0 + 2A1*" + 2Si0, (2.1f)

Halite == Na® + CI' (2.1g)

The initial composition of the brine and the reservoir are set based on Cui et al. [70] and

are presented in Table 2.2.

Table 2.2: Reservoir and brine initial compositions.

Ton Ht Ca®* AT Si0y 4q Na®™  CI°
mol.L71 1x1077  9.12x107% 2.32x107 2.35x107% 1 1

Brine
Ton HCO5 CO& OH
mol.L~! 25x1072 1.2x107° 5.45x1077
Component Anorthite  Calcite Kaolinite Halite

Mineral
Volume fraction 0.036 0.153 0.00135 0.00

Corey model [80, 87] is used to calculate relative permeabilities as shown in Eq. 2.2a.

For the main case, the irreducible water saturation (S, ) is set to be 0.3 and the gas critical
saturation (Sg.) is 0.05. In addition, to generate various relative permeability curves, five
different S, values are considered, i.e., Sy = 0.1, 0.2, 0.3, 0.4, and 0.5 [38, 89].

Erw = Sibny  Krg = (1= Sun)?(1 = S2) (2.2a)
Sw — Swi
Sun = _Tw mwer 2.9b
1- Swir - Sgc ( )
For the capillary pressure, the van Genuchten model [90] is used as Eq. 2.3. Again, for

the main case, Pcoap is equal to 0.004 MPa, and the capillary force parameter () is set to be
0.412. Same as the relative permeability, various capillary curves are generated by changing

the Py, (0.002, 0.004, and 0.008 MPa) and the force parameter (0.412 and 0.5) [73, 74, 89].
These curves are illustrated in Fig. 2.3. It should be noted that changes in porosity caused by
precipitation and dissolution can influence the relative permeability and capillary pressure

curves. However, for the sake of simplicity, these curves are assumed to remain constant
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throughout the simulations, and the impact of porosity changes on them is neglected.

_ po =1/v _ 1\1-v
PCGP - Pcap(Sum 1) (23)
1r 600
o i Relative permeability parameter
0.9 Capillary pressure parameter
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Figure 2.3: (a) Relative permeability [38, 89], and (b) capillary pressure curves [73, 74, 89]

considered in this work. These curves are chosen in a way to cover a wide range of relative
permeability and capillary properties that are used in other relevant works. However, it
should be noticed that these curves are considered to remain constant during the simulations
and the effect of porosity change on them is neglected.

2.3.2 Simulation cases and governing parameters

A total of 140 simulations were performed, covering wide ranges of parameters considered
by numerical and simulation works such as [10, 73]. A complete description of the properties
of the simulation cases is provided in Table 2.3. It should be mentioned that for each of the
five salinity cases, variations of all governing parameters are studied, i.e., 27 simulations for
each salinity case. In addition, a case with no capillary pressure effect is considered for each
of these salinity cases. The general conservation equations, such as the mass conservation
equation, CO, and water solubility, and geochemical equations utilised in the simulations,
are thoroughly described in Appendix A. In order to conduct these 140 simulations, certain
simplifying assumptions are made, as explained in the previous section. One potential source
of error in this study is the 1D geometry used in the simulations, which overlooks the effects

of vertical density-driven flow. However, to address this concern, some 2D cases are also
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defined and studied in the present work to provide additional insights and justification.

Table 2.3: 1D and 2D simulation cases and studied parameters.

Parameter Simulation case
Swir 0.1, 0.2, 0.3*, 0.4, and 0.5 Cases 1 to 5
Py, [MPa]  0.002, 0.004*, and 0.008 Cases 6 and 7
~y 0.412* and 0.5 Case 8
Tinj, [°C] 40*, 60, 80, 100, 120, and 140 Cases 9 to 13
Tres, [°C] 50, 70, 90, 110, 130, and 150* Cases 14 to 18
m, [ke.s™!] 10, 15%*, 20, and 25 Cases 19 to 21
Pyrod, [MPa] 10, 20, 30, 33*, and 40 Cases 22 to 25
1) 0.05, 0.1*, and 0.15 Cases 26 and 27

s, mg. L1 29220, 58440*, 116880, 175320, and 233760 Cases 28 to 140

* indicates parameters used for the main simulation case.

2.3.3 Backflow and energy parameters

To better study the effects of minerals and especially salt (dissolution and precipitation) on
reservoir damage and pressure drop of the system, a resistance factor parameter is defined
as:
kTL
Ry =—
Tk

where, k" represents the permeability of the previous time-step, and k stands for the current

(2.4)

permeability. Utilising Eq. A13, the resistance factor can be written as below:

(o Rf cap 1—¢ 2
- (2)(52)

To correlate the minerals’ precipitation effect to the energy consumption of the system

and the required pumping power, Eq. 2.4 is implemented into Darcy’s law. In Eq. 2.6, @ is
constant and is equal to the injection rate and AP is calculated for every time step using
the calculated value of Ry. Also, it is important to note that this equation is used only for
the 1D cases.

_ —QuLR;

Using the equation for the pumping power, the relation between the required pumping
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power and the resistance factor (resulted from minerals precipitation) can be illustrated.

m —TI’LQ/LLRf
o = | — |AP = 2.7
e ( p ) pAk" (27)

In the above equation, wpump represents the pumping power (W) as a function of resistance
factor.

Capillary backflow of water is experimentally shown to be the main mechanism causing
salt precipitation near the injection well [69]. Based on its profiles, it is found that both the
strength of the capillary backflow (maximum amount of the water backflow velocity) and its
time span reflect the magnitude of salt precipitation at any location. Therefore, to account
for both of these parameters, a backflow extent parameter (BEP) is defined and used to

illustrate the results. .
B

BEP = /VB.dt (2.8)
0
In which, tp is the time at which water backflow disappears and Vp is the water backflow

velocity.

2.4 Results and discussion

Based on the literature, mineral precipitation has damaging effects on the reservoir’s porosity,
permeability, and COs injectivity. Accordingly, in this section, 1D and 2D results of the
simulations are presented, and as described earlier, various parameters are considered for

the sensitivity analysis.

2.4.1 Main case

A main case as a benchmark is considered, and its results are used for the study of the
parameters’ effects. Properties of this benchmark case are provided in Table 2.3. 1D results
are shown in Fig. 2.4 and the 2D profiles of the main case are illustrated (with a 1:3 scale)
in Fig. 2.5.

As illustrated in Fig. 2.1, beginning with the CO, injection process, three zones form
inside the aquifer, including a two-phase zone. This zone plays a significant role in the salt
precipitation process and has a leading front with its propagation speed mainly controlled by
the injection rate. By the movement of the flooding front toward the aquifer, the formation

water evaporates, and the concentration of the dissolved salt increases. When the salt
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concentration surpasses its solubility value, the excess salt begins to precipitate. During
this process, some residual brine also becomes trapped in the two-phase zone. This trapped
water eventually evaporates as well, resulting in more salt precipitation. The capillary-
driven backflow plays as a brine supplier for this region. That is, when the capillary pressure
becomes higher than the pressure gradient resulted from the injection fluid, water moves
backwards to this two-phase zone. As a consequence, vaporization happens and solid salt
builds up. Moreover, it is worth mentioning that despite the existence of various mechanisms
that could potentially lead to water backflow, it was observed that there was minimal water
backflow in cases without the capillary effect. As a result, the main conclusion drawn from
the observations is that water backflow primarily occurs due to capillary pressure. The
amount of time that the two-phase zone exists in a certain place, plays an important role
in the amount of salt that precipitates in that location. The lifetime and the extent of this
two-phase zone are mainly determined by the capillary pressure and the resulted capillary
backflow. Therefore —as will be shown in the following sections by considering a case with
no capillary effect, it can be concluded that salt precipitation mainly happens due to the
evaporation of water and capillary backflow. Moreover, complementary cases are defined in
Appendix C, where it is shown that even if the water phase pressure in a no-capillary case
is equal to water phase pressure in a capillary-enabled case, the salt precipitation pattern is
significantly different due to capillary pressure and capillary back-driven flow.

Fig. 2.4(a) shows the amount of minerals precipitation and dissolution throughout the
reservoir after 30 years of CO, injection. As can be seen, the main mineral that precipitated
is salt and it mainly occurred near the injection well, where the strongest capillary backflow
happened in the two-phase zone. Although other minerals, such as kaolinite and calcite
precipitated near the production well, it is seen that the porosity reduction that happened
by their build-up is much less than that of solid salt. In other words, kaolinite and calcite
precipitation about 110 mol.m™2 caused the porosity to become 0.108 from its maximum
amount of 0.112 (about 3.57% reduction), while the salt precipitation about 1861 mol.m™
caused the porosity to reduce to 0.066 (about 41% reduction). Therefore, based on this fact,
in future sections, only salt precipitation is reported as the preponderant component that
affects the reservoir’s porosity.

Fig. 2.4(b) shows the variations of water velocity inside the reservoir at three different
times. As time goes on, within the first year of injection, water saturation in the vicinity of
the injection well reduces and so is its velocity. Therefore, by the increase of the CO4 plume,

water velocity moves toward zero. However, near the boundary of the CO4 plume, in which
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the two-phase zone is present (for these three cases 15, 20, and 25 m from the injection
well), the water velocity is negative, indicating that capillary backflow is happening. As
the simulation time evolves, the backflow region moves forward, but its magnitude reduces
to such an extent that almost no salt precipitation happens far from the injection well.
The magnitude of backflow and its time span, as well as the magnitudes of the resistance
factor, porosity, and salt precipitation at the injection well, are presented in Fig. 2.4(c) and
(d). First, it is seen that the water backflow time span is exactly the same as the time at
which resistance factor, porosity, and salt precipitation become constant (about 396 days).
This could also mean that these phenomena are triggered by the capillary-driven backflow.
Additionally, it is also observed that salt precipitation and porosity linearly change as time
increases, but the resistance factor follows an exponential pattern. Therefore, the capillary
backflow and the resulted salt build-up exponentially increase the amount of resistance factor,

which based on Eq. 2.7 represents the required pumping power in this study.
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Figure 2.4: Main case 1D results: (a) minerals (anorthite, calcite, halite, and kaolinite)
precipitation/dissolution and porosity after 30 years, (b) water velocity and water backflow
velocity (the inset figure) after 30 years of injection, (c¢) water backflow velocity and the
resistance factor at the injection well block at different times, and (d) salt precipitation and
porosity at the injection well for different time steps from the onset of injection.
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The 2D results of the main case are illustrated in Fig. 2.5. The interpretations deduced
from 1D results are also valid here. Fig. 2.5(a) shows that anorthite most intensely dis-
solves near the production well, where the aqueous phase region is present. In addition,
from Fig. 2.5(b), it can be seen that except in the vicinity of the injection well, calcite is
precipitated in the reservoir, which can also mean that a portion of CO, is sequestrated
through this mechanism inside the reservoir. Fig. 2.5(c) shows that kaolinite precipitation
has inverse behaviour compared to anorthite. In other words, at places that anorthite is
dissolved, kaolinite is precipitated. Based on Fig. 2.5(d), salt precipitation is limited to the
vicinity of the injection well (about 10 m from the injection well). However, it will be shown
in the following sections that for a brine with higher initial salinity the precipitation spread
would be much higher. Fig. 2.5(e) shows that CO, plume tends to move upward because of
its lower density. As a result, below the production well, a region with low gas saturation
and high water saturation forms, in which brine is trapped. This can be the reason that
almost no precipitation/dissolution or changes in the porosity happen below the production
well. According to Fig. 2.5(f), two phenomena can be observed. First is that the initial
porosity of the reservoir is slightly increased (about 0.015) due to the fluid pressure and
the rock compressibility factor (4E-06 kPa~! at the reference pressure of 3550 kPa for the
present study). The second phenomenon is that porosity is greatly reduced (about 35 to
40%) at the injection well. Fig. 2.5(g) shows the temperature distribution inside the reser-
voir. It is seen that after 30 years of injection, there is still geothermal heat available to be
used. However, since CO4y saturation near the production well is increasing, COy thermal
plume will eventually reach the production well, and it would not be feasible to exploit that
amount of remaining heat. Fig. 2.5(h) displays the capillary-driven backflow and the CO,
saturation for three different times. As it is seen in this figure, the backflow mainly happens
at the boundary of CO, saturation, which is exactly where the two-phase region exists. As
the CO4y plume extends, the intensity of the water backflow reduces, which could be a key
factor that salt precipitation did not happen far from the injection well (see Appendix C for

further analyses).
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Figure 2.5: 2D results of the main case: (a), (b), (c), and (d) represent anorthite, calcite,
kaolinite, and halite precipitation/dissolution throughout the reservoir and after 30 years of
injection, respectively, (e), (f), and (g) show the CO4 saturation, porosity, and the reservoir
temperature distribution after 30 years of cold (40 °C) COy injection, respectively, and (h)
shows the capillary-driven backflow, happening near the dry-out region boundary, and gas

saturation for three different times.
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2.4.2 Effects of differ