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Abstract

The regulation of differentiation is essential for the growth and development of living organisms. Changes
in the dynamic expression of certain genes have been associated with differentiation in multiple con-
texts, including development and cancer. For example, the dynamic expression of the basic helix-loop-
helix transcription factors Hes5 and Her6, which are involved in neurogenesis in mice and zebrafish
respectively, is mediated by auto-repressive feedback. This auto-repression, when coupled with delays,
noise, and nonlinear interactions inherent to biological processes, gives rise to dynamic expression
profiles, such as oscillations.

Gene expression dynamics mediated by the auto-repressive feedback motif are influenced by a num-
ber of biochemical interactions, including transcription, translation, transcriptional repression and
degradation. Therefore, differences in dynamic gene expression between cells that express Hes5 or
Her6 may be due to variations in some or all of these interactions. The ability to perform live imaging
of gene expression at single-cell resolution presents an opportunity to identify such variations using
Bayesian inference methods.

Bayesian inference allows us to estimate biophysical parameters by linking experimental data with
mathematical models. However, Bayesian methods that combine stochasticity, delays, and nonlinear-
ity have not been widely adopted. I present an approach for inferring parameters of an auto-negative
feedback motif with delay using live-imaging time-series data. This method is applied to published
data on murine neural progenitor cells, and the results are used to inform experimental design choices.
I subsequently extend this approach and adopt a variational inference method in order to work with
combined time-series data from multiple cells with similar dynamic expression. We see a drastic re-
duction in the uncertainty in our estimates, as well as speed improvements of multiple orders of mag-
nitude. Importantly, our method provides concise and accurate estimates for multiple parameters, such
as the production rates of mRNA and protein.

In addition to auto-repression, Her6 dynamics are influenced by miR-9, a microRNA which acts on
mRNA stability and protein translation. In a cross-disciplinary collaboration, we show that miR-9 in-
creases in a sharp stepwise manner during zebrafish neurogenesis. To understand the impact of this
mode of increase, I develop a mathematical model based on perfect adaptation and interactions be-
tween miR-9 and Her6. My results suggest that the stepwise increase facilitates the robustness of cell
state transitions in the presence of small-scale fluctuations.

The work in this thesis demonstrates the power of computational methods in interpreting data and un-
derstanding how changes in gene expression dynamics are regulated during development.
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Chapter 1

Introduction

1.1 Gene expression dynamics and cell fate

The formation and growth of an organism that takes place during embryogenesis is a complex,
fine-tuned procedure. Different processes, such as morphogenesis and tissue growth, play
roles which must be understood in the context of development, as well as in isolation. The
study of these processes is essential to understanding the occurrence, and prevention, of de-
velopmental disorders. For example, the failure of cells to take up the appropriate roles within
neural tissue represents the major convergence point for neurodevelopmental disorders (Ernst,
2016). This act of adopting a new role is generally referred to as differentiation, but more ac-
curately as cell state transitions or cell fate changes.

Cell fate changes are important for multicellular development and are driven by changes in
gene expression. Gene expression is inherently dynamic due to transcriptional pulsing (tran-
scription occurring in pulses or bursts), stochastic fluctuations (random events, like random
timings of collisions between molecules), as well as positive or negative feedback loops, which
may include delays. The qualitative dynamics of gene expression itself, rather than simply the
presence of a gene product or its concentration, may be functionally important (Huang, 2009;
Kageyama et al., 2012; Kageyama et al., 2008; Raj & van Oudenaarden, 2008).

Associations between cell fate changes and dynamic gene expression have been observed in
various model systems, including somitogenesis, neurogenesis, and in cancer cell lines (Chou
et al., 2010; Manning et al., 2019; Marinopoulou et al., 2021; Purvis et al., 2012; Soroldoni
& Oates, 2011; Soto et al., 2019). For example, oscillatory expression of tumour suppressor
gene p53 has been shown to prevent cells from committing to a fate, suggesting a biological
timing mechanism (Purvis et al., 2012). Her and Hes genes are basic helix-loop-helix (bHLH)
transcriptional repressors and inhibit neuronal differentiation in zebrafish (Cheng et al., 2015)
and mice (Hatakeyama, 2004) respectively. Oscillations in Hes genes are required for the pro-
liferation of neural progenitor cells during neurogenesis in mice (Imayoshi et al., 2013; Man-
ning et al., 2019; Ochi et al., 2020), and oscillatory expression of the Hes orthologs Her1 and
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Her7 regulates somite segmentation in zebrafish (Choorapoikayil et al., 2012; Lewis, 2003;
A. C. Oates & Ho, 2002). Recently, different dynamic expression profiles of Hes5, such as
decreasing expression with or without oscillations, have been linked to different cell fate tran-
sitions in murine neural development (Manning et al., 2019). To fully understand the link be-
tween gene expression dynamics and cell fate, for example during neurogenesis, it will be es-
sential to determine how different gene expression dynamics emerge.

Many different hypotheses may explain differences in gene expression dynamics, and expla-
nations for the emergence of heterogeneity in clonal populations have been explored at length
(Brock et al., 2009; Elowitz et al., 2002; Raj & van Oudenaarden, 2008). These differences
may reflect dynamic changes in protein or mRNA degradation, transcriptional or translational
activation, transcriptional auto-repression, or post-transcriptional modification. This large
number of possible mechanisms makes direct experimental testing of all hypotheses unfeasi-
ble, particularly if a combination of effects is to be tested (Lillacci & Khammash, 2010). One
approach to overcome this challenge is to combine mathematical modelling and Bayesian in-
ference techniques to evaluate alternative hypotheses based on their ability to describe recorded
time series of gene expression. The ideal situation is to choose a biological system where gene
expression dynamics influence cell fate decisions, where the interactions between each com-
ponent are well characterised, and a mathematical model which is able to capture the dynamic
behaviour of the gene expression exists. Predictive modelling can then drive focused experi-
mentation to validate the molecular mechanism and be used to identify the key model param-
eters which influence expression dynamics at the level of a single cell. One such biological
system is the auto-repressive negative feedback mechanism that governs the dynamic expres-
sion of Hes genes in various contexts (Imayoshi et al., 2013; Kobayashi & Kageyama, 2014;
Lewis, 2003; Shimojo et al., 2008; Soto et al., 2020).

1.1.1 Variations in Hes expression demonstrate the need for understanding the heterogene-

ity of dynamics

As early as 1961 it was suggested that genes might interact by negative feedback or repres-
sion (Mahaffy & Pao, 1984). Goodwin (1965) interrogated this idea of negative control math-
ematically, describing the dynamics of the concentrations of mRNA and protein, in a sim-
ple delayed negative feedback model of a single gene. This demonstrated the possibility of
undamped oscillatory gene expression, supporting experimental evidence of periodic cellu-
lar processes and biological clocks. Evidence of gene expression oscillations has since been
found, however, these oscillations are typically circadian, i.e. linked to the day-night cycle
(Levi & Schibler, 2007). During embryonic development responses at shorter time scales are
possible. One example of this is in the formation of somites in the developing zebrafish em-
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bryo, where the protein concentrations of the Her1 and Her7 genes oscillate with periods of
around 30 minutes (Lewis, 2003). When these oscillations are simulated mathematically with
a simple feedback model using experimentally informed parameters, the generated period is
close to the experimentally observed one, suggesting that this model may capture most of the
relevant biological information (Lewis, 2003). Similar genes in other systems also oscillate
(Imayoshi et al., 2013). The bHLH factors Hes1 and Hes5 in the mouse have been shown to
undergo oscillations in neural progenitors, and the extent to which hes1 oscillates in a popula-
tion of cells has been accurately quantified (Phillips et al., 2017). They have been found to re-
press their own expression due to their proteins binding to their own transcription site (Bansod
et al., 2017; Hatakeyama, 2004; Hirata et al., 2002; Kobayashi & Kageyama, 2014; Manning
et al., 2019; Monk, 2003; Tsutsumi et al., 2012). Although oscillatory expression of these
genes plays a key role, other dynamic expression profiles have been observed, and have dif-
ferent functional roles. Shimojo et al. (2008) theorised it is likely that sustained expression of
Hes1 forms boundary cells in the developing central nervous system. In contrast, oscillatory
expression causes the formation of compartment cells in the embryonic brain and persistent
and high levels of Hes1 expression inhibit neuronal differentiation and cell cycle progression
by repressing the expression of proneural genes and cell cycle regulators.

Notch genes are a family of evolutionarily conserved genes that are involved in cell commu-
nication and play a crucial role in the development of various tissues and organs in animals,
including humans (Artavanis-Tsakonas et al., 1999). Notch signals control how cells respond
to intrinsic or extrinsic developmental cues (Artavanis-Tsakonas et al., 1999) and regulate
the maintenance of undifferentiated cells. Hes1 and Hes5 are essential Notch effector genes
(Ohtsuka et al., 1999). In the absence of Hes genes, cell differentiation is accelerated – mem-
bers of the Hes family have been shown to play a key role in maintaining neural progenitors
(Bonev et al., 2011). The timing of neural stem cell differentiation has important consequences
for the size, shape and histogenesis of the nervous system, including the brain (Kicheva et al.,
2014). In embryos lacking Hes1 and Hes5, as well as Hes3 which has a similar role (Hirata
et al., 2000), neural stem cells prematurely differentiate into neurons, without generating the
later-born cell types, such as oligodendrocytes, astrocytes and ependymal cells, and the brain
structures are severely underdeveloped (Hatakeyama, 2004). Overexpression of Sox21, which
directly represses Hes5, similarly promotes neuronal differentiation (Tsutsumi et al., 2012).

1.1.2 The role of noise in biological systems

Gene expression dynamics can now be analysed at single-cell resolution over time. Stochas-
tic variation in a population of cells cannot be quantified using population-level measure-
ments, and oscillatory gene expression in single cells cannot be captured using ‘static’ single-
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cell measurements, e.g. with flow cytometry or single-cell RNA sequencing (Longo & Hasty,
2006). New experimental techniques (see Section 2.2) have uncovered heterogeneous gene ex-
pression within populations of cells, and have demanded the development of new mathemat-
ical methods which draw from, for example, Markov chain theory, graph theory, Bayesian in-
ference and stochastic calculus, in order to interpret this information (Ezer et al., 2016; Giug-
gioli & Neu, 2019; Gómez-Schiavon et al., 2017; Minas et al., 2017). Heterogeneity has been
shown to have important implications for cell fate decisions for several cell types, ranging
from stem cells to cancer cells (Loos, 2016; Michor & Polyak, 2010; Torres-Padilla & Cham-
bers, 2014). So how does gene expression variability arise?

Cell-to-cell variability within clonal populations has been of great interest to biologists for
many years (Spudich & Koshland, 1976), and stochastic effects have been invoked to explain
this phenomenon (Swain et al., 2002). Stochastic effects, or noise, in gene expression, can
be broadly classified into two types – intrinsic and extrinsic. These arise, loosely, from the
internal system (regulatory network) or external sources (environment). Intrinsic noise oc-
curs when only a few molecules of a specific type are present in a cell, leading for example
to probabilistic binding and dissociation of a gene regulatory protein to and from its site on
the DNA (Elowitz et al., 2002), or due to the random nature of a polymerase binding to a pro-
moter (Dublanche et al., 2006). Extrinsic noise, in contrast, refers to external effects that will
create differences between cells (Raser & O’Shea, 2005), such as differences in extracellular
signalling.

The idea that noise plays an essential functional role in biological systems is not intuitive,
since development in living organisms is precisely coordinated. However, cells can take ad-
vantage of the variation introduced by noise. For example, noise can allow oscillations to con-
tinue undamped (Alonso et al., 2007; Lewis, 2003). Theoretical work in a multi-cell model
has predicted cooperative behaviours between cells induced by noise (L. Chen et al., 2005),
and variations in the timing of cell differentiation enable cells in fluctuating environments to
avoid prematurely committing to a specific fate (Eldar & Elowitz, 2010). Stochastic variation
of the cell cycle has been shown to lead to robust proportions of cell differentiation (Gruen-
heit et al., 2018). Negative effects of noise, like the reduced function of essential proteins (A.
Singh, 2011), can be mitigated by transcriptional (negative) auto-regulation (Dublanche et al.,
2006). Negative feedback reduces the effects of noise since fluctuations in gene expression are
continually pushed towards the mean (Raj & van Oudenaarden, 2008).

One potential consequence of stochastic effects is that the kinetic parameters of a cell, for ex-
ample, rates of degradation or protein translation, may vary across a cell population. This may
be caused by a number of factors, including differences in the concentration of transcription
factors for upstream target genes, the location of a cell within the tissue, or post-transcriptional
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regulation through micro-RNAs.

1.1.3 Micro-RNAs also regulate gene expression

MicroRNAs are small noncoding RNAs, which regulate gene expression at the post-transcriptional
level. In zebrafish neurogenesis, the micro-RNA miR-9 regulates Her6 and Her9 by increasing
the rate of mRNA degradation and repressing protein translation (Coolen et al., 2012; Galant
et al., 2016; Leucht et al., 2008; Soto et al., 2020). Dynamic changes in Her6 protein expres-
sion coincide with the onset of miR-9 expression in the hindbrain (Soto et al., 2020). Experi-
mental work (Bonev et al., 2012) and mathematical modelling (Goodfellow et al., 2014; Phillips
et al., 2016) have shown that the amount of miR-9 in a cell controls the timing of cell state
transitions.

For example, a delay differential equation model of a double-negative feedback loop of miR-
9 and Hes1 informed by experimental data (Bonev et al., 2012) exhibits both oscillations and
bi-stability (Goodfellow et al., 2014). A key finding of this model is that the amount of ac-
tive miR-9 provides a mechanism to tune the degradation rate of Hes mRNA, and controls the
timing of transient oscillations. When this model is extended to account for intrinsic noise,
timing to differentiation becomes distributed, and greater amounts of noise increase the uncer-
tainty in this timing (Phillips et al., 2016). This result more accurately reflects experimental
data, reinforcing the need to account for intrinsic noise.

Although the amount of miR-9 present is important, how the amount of miR-9 is controlled is
not well understood. This question is difficult to address since zebrafish possess seven copies
of the miR-9 gene at distinct loci, which are all capable of producing the same mature miR,
and it is not clear how they cooperate to determine differentiation. In Chapter 5 it is shown
that miR-9 increases in a sharp stepwise manner during zebrafish neurogenesis. We develop
a mathematical model based on perfect adaptation and interactions between miR-9 and Her6
and suggest that the stepwise increase of miR-9 facilitates the robustness of cell state transi-
tions in the presence of small-scale fluctuations.

1.2 Aims and objectives

Recent work in murine neural stem cells has identified differences in HES5 protein expres-
sion dynamics and hypothesises that these dynamics correlate with cell states (Manning et
al., 2019). In particular, cells declining with oscillatory HES5 correlate with interneuron fate,
whereas declining non-oscillatory cells correlate with motor neuron fate (Manning et al., 2019).
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Understanding the driving forces behind these differences is essential to understanding cell
fate decisions during the formation of the nervous system.

The mechanisms behind the oscillatory expression of Hes have previously been illuminated by
Monk (2003). This model was subsequently extended to account for intrinsic noise, which en-
ables us to accurately capture the observed dynamics (Section 2.3) (Barrio et al., 2006; Brett
& Galla, 2013; Galla, 2009; Manning et al., 2019; Phillips et al., 2016). Parameter inference
has been performed on models of Hes via direct numerical solutions of SDE’s (Heron et al.,
2007). However, this approach does not obtain a closed form likelihood, and therefore re-
lies on sampling parameters conditional on a sampled path of the unobserved states, which is
both high-dimensional and inefficient due to strongly correlated trajectories (Calderazzo et al.,
2019; Golightly & Wilkinson, 2011). Performing parameter inference on these models could
enable the identification of many kinetic parameters of gene expression, such as the rates of
transcription, translation, and degradation without performing further experiments. However,
methods for parameter inference in this model have not been widely developed. In order to ad-
dress this, this thesis has the following aims and objectives.

1.2.1 Developing a method for parameter inference in stochastic delayed gene regulation sys-

tems (Chapter 3)

A method for parameter inference in stochastic delayed systems has been proposed by Calder-
azzo et al. (2019), where the authors develop a novel filtering approach to infer parameters
from time-series data. We extend this approach in two key ways. We apply this new approach
to a widely applicable motif of auto-repression which includes both mRNA and protein. We
also extend this approach by implementing a gradient-based sampling method for efficient and
accurate inference. Our method enables us to determine specific kinetic parameters of a cell,
such as rates of degradation, translation and transcription, given noisy time series data. This
work was published in (Burton et al., 2021).

1.2.2 Investigating the influence of data on uncertainty (Chapter 3)

The design of imaging experiments may impact information acquisition, but this relationship
has not been well characterised for the auto-negative feedback motif. We explore how param-
eter uncertainty in our inference method changes when key experimental changes are made,
for example how long a cell is imaged for. We also show how our approach can be easily ex-
tended to account for multiple data types from additional experiments. This work was pub-
lished in (Burton et al., 2021).
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1.2.3 Scaling up inference to larger datasets (Chapter 4)

Parameter uncertainty may be too high to distinguish cells with qualitatively different protein
expression dynamics effectively. To address this, cells can instead be clustered together based
on their gene expression, and data from multiple cells can be combined to reduce parameter
uncertainty. However, this leads to inference which is restrictively time-consuming. We im-
prove the performance of our Kalman filtering approach, achieving a speed-up of multiple or-
ders of magnitude. Combining our improved method with variational inference enables accu-
rate parameter estimation when the amount of data increases.

1.2.4 Using data to inform model building and exploration (Chapter 5)

Her6/Hes5 dynamics do not only depend on internal parameters of the auto-repressive feed-
back motif but can also be tuned by external factors. A known external factor modulating
Her6 and Hes5 dynamics is the microRNA miR-9. How miR-9 concentrations vary over time,
and how these variations affect Her6 dynamics remains an open question. In a joint cross-
disciplinary investigation with experimental collaborators, my colleagues show that the amount
of mature miR-9, a key regulator of neuronal development, increases during zebrafish neuro-
genesis in a sharp stepwise manner. To illuminate the role of this stepwise increase, I develop
a mathematical model which shows that an adaptive network containing Her6 is insensitive to
linear increases in miR-9 but responds to stepwise increases of miR-9, revealing a potential
mechanism for robust cell state transitions in the presence of noise. This work was published
in (Soto et al., 2022).
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Chapter 2

Technical Background

In order to achieve our aims, we will first need to equip ourselves with the necessary tools to
describe and pursue an answer to our research question. First, we will look at how statistical
models can be built and fit to data. Then we will review experimental techniques for measur-
ing gene expression, and the type of data these experiments gather. Lastly, we will iteratively
introduce a mathematical model for gene expression driven by delayed negative feedback, and
present an overview of how this model can be used to interpret time-series data.

2.1 Bayesian inference for mechanistic models

We aim to use a mathematical model to infer the kinetic parameters of single cells, using gene
expression time-series data. The success of this approach will rely upon how well our model
captures the true data-generating process, as well as how informative the collected data is. In
order to illustrate the philosophy of our approach, we first consider a simple example. A simi-
lar example can be found in Professor Simon Cotter’s Introduction to Uncertainty Quantifica-
tion lecture notes.

2.1.1 Heads or tails?

Consider the following scenario:

Alice and Bob have lunch together every day. They each have a favourite place so
to decide where to eat, Alice flips a coin. If it lands on heads, they eat at Alice’s
favourite place, if it’s tails they eat at Bob’s. Recently, Bob has become suspicious
that this coin isn’t fair. In the last 30 days, the coin has landed on heads 22 times.
How can Bob determine how likely it is that this coin is fair or not?

Example 2.1.1 (Heads or tails?) Let’s suppose that the probability of the coin landing on
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heads is given by p ∈ [0, 1]. In other words,

P (heads) = p,

P (tails) = 1− p.

One approach we could take is to approximate p using the proportion of heads out of the total
number of flips, in this case, 22/30 ≈ 0.73. But consider if the coin was flipped three times
and only one of them was heads. Would we be happy to approximate p with 1/3? We don’t
have enough information to be confident in this approximation, so we need some way of quan-
tifying this uncertainty. We also want to be able to account for our prior knowledge that most
coins we have come across in the past are fair.

One way to approach this is to use Bayesian inference. Bayesian inference provides us with
a framework to use data to update our pre-existing beliefs about the likelihood of an event,
rather than characterising a hypothesis that we seek to prove or disprove. In this view, the
question is not “is this coin fair?”, but rather, “how likely is it that this coin is fair?”.

We start by using our knowledge and past experiences to construct a prior distribution p(θ)
which gives our degree of belief that the unknown value p is equal to θ for each θ ∈ [0, 1].
In this example, we want a distribution defined over the range [0, 1]. A common choice is the
Beta distribution, whose probability density function is defined by

fX(x) =
xα−1(1− x)β−1

B(α, β)
, (2.1)

where α, β ∈ R>0, x ∈ [0, 1], B(α, β) = Γ(α)Γ(β)
Γ(α+β)

and Γ is the Gamma function.

We could choose Beta(1, 1), which is uniform over the range [0, 1], if we think that p could
take any value in [0, 1] with equal probability. We might have a strong suspicion that the coin
is fair since most coins are (almost (Diaconis et al., 2007)), and instead, choose p(θ) = Beta(10, 10).
Figure 2.1 shows the probability density functions of these two distributions. Suppose Bob
wants to give Alice the benefit of the doubt, so he chooses to use Beta(10, 10) as his prior.

Next, we update this prior distribution to construct the posterior probability distribution of θ
given the data x,

p(θ | x) = p(x | θ)p(θ)
p(x)

∝ p(x | θ)p(θ). (2.2)

This function describes the probability of θ conditioned on some data. It will allow us to de-
termine the most likely values of our parameters, and how much more likely they are than
other values. The denominator p(x) is the marginal likelihood of the data and is a normalis-
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(a) (b)

Figure 2.1: Probability density functions for (a) Beta(1, 1) and (b) Beta(10, 10)

ing constant defined by

p(x) =

∫︂
Θ

p(x | θ)p(θ)dθ, θ ∈ Θ, (2.3)

which is typically non-trivial to calculate.

The mechanism for updating our prior beliefs is the likelihood function p(x | θ). This func-
tion tells us how the chance of obtaining the observed data changes as θ varies. In the case of
our coinflip example, this is given by

p(x | θ) =
(︃
30

22

)︃
θ22(1− θ)8, (2.4)

where
(︁
n
k

)︁
= n!

k!(n−k)!
is the binomial coefficient.

Putting the prior and likelihood together, we get

p(θ | x) ∝ p(x | θ)× p(θ) (2.5)

=

(︃
30

22

)︃
θ22(1− θ)8 × θ9(1− θ)9

B(10, 10)
(2.6)

∝ θ31(1− θ)17, (2.7)

which is proportional to Beta(32, 18).

Figure 2.2 shows the prior and posterior distributions for this example. The posterior distri-
bution has a mean of 0.64 and a standard deviation of 0.067, and 95% of the distribution is
contained in the interval [0.504, 0.766] (see Figure 2.3). Given the available data, it seems un-
likely that p = 0.5, and it’s nearly 8 times more likely that the probability of getting heads is
0.64. In this case, Bob might have a word with Alice and suggest they use a new coin.
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Figure 2.2: The Beta(10, 10) prior and Beta(32, 18) posterior distributions.

For Example 2.1.1 the posterior is given by Beta(α+nH, β+nT), where the prior is Beta(α, β)
and nH, nT are the number of heads and tails respectively. If we consider again the scenario
where the coin is flipped three times and only one is heads, with a Beta(10, 10) prior the pos-
terior distribution would be Beta(11, 12), which has a mean of ≈ 0.478. With the weaker
prior Beta(1, 1), the posterior is Beta(2, 4). This distribution has a mean of 1/3, however, the
standard deviation is 0.178, indicating a lack of certainty. In other words, the Bayesian ap-
proach allows us to account for the fact that we have limited information, and this will be re-
flected in any predictions we make. To more clearly visualise this uncertainty, Figure 2.4 shows
the progression of the posterior distribution as data is added in the sequence tails, heads, tails.

2.1.2 Posterior distributions can be obtained via Monte Carlo sampling

In Example 2.1.1, our prior and posterior distribution have the same analytical form, as they
are both Beta distributions. When the prior and posterior distribution have corresponding an-
alytical expressions in this way, we refer to this as conjugacy, and say that the prior and poste-
rior are conjugate distributions. Example 2.1.1 used a conjugate prior to provide us with pos-
teriors which are well-known distributions. In real applications, this is typically not the case,
and posterior distributions won’t take an analytical form. How can we find the posterior distri-
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Figure 2.3: The 95% highest posterior density interval for the Beta(32, 18) posterior distribution.

bution in these cases? There are a number of different approaches, but here we will focus on
Markov chain Monte Carlo (MCMC) sampling.

A (discrete-time) Markov chain is a sequence of random variables X1, X2, X3, . . . that satisfy
the Markov property,

P (Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, . . . , X1 = x1) = P (Xn+1 = xn+1 | Xn = xn).

(2.8)
This is also referred to as memorylessness and says that future outcomes are only dependent
on the current state of the Markov chain, and are not dependent on past states, conditional on
knowing the previous state. For the purposes of this illustration, we restrict the Xi to discrete
values, but the following can be extended to general state spaces (see, for example, Chapter 4
of Gilks et al. (1995)).

If there exists some unique collection of probabilities {πj} such that for all i,∑︂
i

πjPij = πj
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Figure 2.4: The evolution of the posterior distribution as the coin is flipped multiple times, starting with a uni-
form prior.

and
lim
n→∞

P (Xn = j | X0 = i) = πj,

where Pij defines the probability of going from state i to state j, P (Xn+1 = j | Xn = i), then
this set of probabilities defines the distribution π, which we call the stationary distribution of
the Markov chain. The existence of a stationary distribution is dependent on certain properties
(discussed in Chapter 3 of Gilks et al. (1995)).

Example 2.1.2 (Coinflip) Suppose we are flipping a coin, which has an independent proba-
bility p = 0.25 of landing on heads each time it is flipped. If we define state one as heads and
state two as tails, then the transition probability matrix is given by

P =

[︄
0.25 0.75

0.25 0.75

]︄
.

Pij defines the probability of moving from state i to state j. For example, P12 is the probabil-
ity of the coin landing on tails given that it previously landed on heads. Since these events are
independent, this is simply given by the probability of landing on tails, 0.75. These states are
represented in Figure 2.5. In practice, Markov chains are not required to solve this example
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problem. Here, we use it to illustrate how Markov chain theory can be used.

heads

tails

0.750.25

0.25

0.75

Figure 2.5: Diagram representing the states of the Markov chain for a simple coinflip problem, where the proba-
bility of landing on heads is 0.25. The labels represent the transition probabilities.

MCMC describes a class of methods which output a Markov chain whose stationary distri-
bution is our target distribution, p(θ | x). The key is to construct an algorithm that will effi-
ciently locate areas of high posterior probability mass within our pre-defined parameter space.
The most common algorithm for doing this is Metropolis-Hastings (Algorithm 1), The sim-
plest version of Metropolis-Hastings is the random walk Metropolis (RWM), which is defined
as follows. Starting from an initial set of parameters θ0, the general procedure is that at step i
of the algorithm, a set of parameters θ′ are proposed from a distribution q conditioned on the
current location, θi. In order to determine whether the proposed sample is within (or closer
to) an area of high posterior density, an acceptance probability is computed. The acceptance
probability

α(θi, θ
′) = min

{︃
p(θ′ | y)q(θ′ | θi)
p(y | θi)q(θi | θ′)

, 1

}︃
= min

{︃
p(y | θ′)p(θ′)q(θ′ | θi)
p(θi | y)p(θi)q(θi | θ′)

, 1

}︃
is the largest value of [0, 1] given the choice of proposal distribution q which ensures that the
stationary distribution of the Markov chain is given by p(θ | y). By construction, this algo-
rithm outputs a Markov chain, and in the limit of infinite samples will converge to the station-
ary (posterior) distribution.

Random Walk Metropolis-Hastings

A common choice for q is the multivariate normal distribution whose mean is the current pa-
rameters and whose variance is given by hΣ. In other words, at step i of the algorithm, we
have

θ′ ∼ MvNormal (θi, hΣ) , (2.9)
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Algorithm 1: Metropolis-Hastings Algorithm
Input: initial value θ0, proposal distribution q, data y, number of iterations N
Output: θ1, θ2, . . . , θN

1 for i = 0, 1 . . . , N do
2 sample: θ′ ∼ q(θ′ | θi)
3 compute: α(θi, θ′)← min

{︂
p(θ′|y)q(θ′|θi)
p(y|θi)q(θi|θ′) , 1

}︂
= min

{︂
p(y|θ′)p(θ′)q(θ′|θi)
p(θi|y)p(θi)q(θi|θ′) , 1

}︂
4 u← Uniform(0, 1)
5 if u < α(θi, θ

′) then
6 accept the proposal: θi+1 ← θ′

7 else
8 reject the proposal: θi+1 ← θi
9 end

10 end

or equivalently
θ′ = θi +

√
hΣ1/2ξ (2.10)

where ξ ∼ MvNormal(0, Id), d is the number of parameters, and Id is the d−dimensional
identity matrix. This algorithm is an attractive choice due to its simplicity and ease of im-
plementation. For example, Listing 1 shows a Julia implementation of the random walk al-
gorithm to sample from a standard normal distribution.

Crucially, the performance of the random walk depends on the step size, h, and the proposal
covariance, Σ. If the step size is too large, areas of high probability may be missed entirely,
and if it is too small it will take a large number of steps before areas of high probability are
discovered. Figure 2.6 shows the Markov chains for 100 iterations of the random walk al-
gorithm for various step sizes, initialised at θ = 0. The step size can be manually tuned to
achieve an optimal acceptance rate of ≈ 0.2341. In Figure 2.6, the acceptance rates for h =

0.1, 20, and 200 are 0.90, 0.26, and 0.089 respectively (setting Σ = 1).

Metropolis-adjusted Langevin algorithm

The Metropolis-adjusted Langevin algorithm (MALA) is similar to the random walk Metropo-
lis but has the proposal distribution

θ′ ∼ MvNormal
(︃
θi +

(︃
hΣ

2

)︃
∇ log p(θi | x), hΣ

)︃
, (2.11)

where∇ log p(θi | x) is the gradient of the log-posterior at θi.

The MALA proposal is derived from a first order Euler-Maruyama approximation to the Langevin
1optimal under a set of conditions listed in Roberts and Rosenthal (2001)
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Figure 2.6: Markov chains sampling from a standard normal distribution using the random walk Metropolis al-
gorithm with various step sizes. When h is small, consecutive samples are close to each other and highly corre-
lated, and when h is large, consecutive samples can be far away from each other, but proposals are rejected more
frequently.

diffusion SDE defined by

dθ(t) =
1

2
∇ log p(θ(t) | x)dt+ dB(t), (2.12)

whose stationary distribution is given by p(θ | x), where B(t) is a d-dimensional Brownian
motion and θ ∈ Rd (Roberts & Tweedie, 1996).

The proposal here tends to move the chain in the direction of ∇ log p(θi | x), i.e. towards
larger values of the target distribution p, which helps the chain to converge more quickly. The
optimal acceptance rate for MALA is 0.574 (Roberts & Rosenthal, 2001), which means fewer
overall proposals are needed. The gradient needs to be computed at each step, which will in-
crease the per-iteration computation time. Listing 2 shows a Julia implementation of MALA
to sample from a standard normal distribution.
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using Distributions

function random_walk_normal(N, h; init=0)
theta = zeros(N)
theta[1] = init
for i in 2:N

u = rand(Uniform())
theta_prop = theta[i-1] + sqrt(h)*rand(Normal())
alpha = min(1, logpdf(Normal(), theta_prop) - logpdf(Normal(), theta[i-1]))
if log(u) < alpha

theta[i] = theta_prop
else

theta[i] = theta[i-1]
end

end
return theta

end

Listing 1. A Julia function to sample from the standard normal distribution using the random walk Metropolis
algorithm.

The effect of the gradient in the proposal distribution can be easily seen when comparing RWM
and MALA with an initialisation that is far from the mode, even when using the same values
for h and Σ (Figure 2.7). The gradient drives the proposal toward the mode of the distribu-
tion, meaning the Markov chain is in an area of high probability much more quickly than the
random walk algorithm (∼10 iterations with MALA compared to ∼60 with RWM). Further,
consecutive samples become uncorrelated much more quickly (Figure 2.8).

In higher dimensions, this difference in performance is amplified, as the search space becomes
unfeasibly large for the ‘guess-and-check’ strategy of RWM (Betancourt, 2017). Using infor-
mation about the geometry of the posterior distribution exponentially reduces the number of
proposals we have to check as the dimension increases (Durmus et al., 2017).

using Distributions

function mala_normal(N, h; init=0)
theta = zeros(N)
theta[1] = init
for i in 2:N

u = rand(Uniform())
theta_prop = theta[i-1] + (-theta[i-1]*h/2) + sqrt(h)*rand(Normal())
alpha = min(1, logpdf(Normal(), theta_prop) - logpdf(Normal(), theta[i-1]))
if log(u) < alpha

theta[i] = theta_prop
else

theta[i] = theta[i-1]
end

end
return theta

end

Listing 2. A Julia function to sample from the standard normal distribution using the Metropolis-adjusted
Langevin algorithm.
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Figure 2.7: A comparison of the RWM and MALA algorithms sampling from a standard normal distribution,
initialised at θ = 20. The Markov chain produced by MALA converges on the high probability mass of the dis-
tribution almost immediately, compared to the slow approach made by the RWM algorithm.

Figure 2.8: A comparison of the autocorrelation of the Markov chains from both the RWM and MALA algo-
rithms, shown in Figure 2.7. Consecutive samples obtained using RWM are highly correlated, meaning we can-
not treat them as independent samples. On the other hand, consecutive samples from MALA become uncorre-
lated after a lag time of 5.
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Hamiltonian Monte Carlo

State-of-the-art MCMC samplers used by modern probabilistic programming languages (Ge
et al., 2018; Salvatier et al., 2016; Stan Development Team, 2023) are based on Hamiltonian
Monte Carlo (HMC) (Duane et al., 1987).

In HMC, the target distribution is reformulated as the potential energy of a particle in a math-
ematically constructed physical system (Betancourt, 2017). This physical system is constructed
in such a way that ensures conservative dynamics. In other words, if our parameters θ are con-
sidered as particles, q, in the physical system, with auxiliary momentum variable p which con-
serves the dynamics of the system, then the Hamiltonian of this system is defined by

H(q, p) ≡ − log π(q, p)

≡ − log π(p | q)− log π(q)

≡ K(p, q) + V (q),

where π(q) is the density of the target distribution. We can then generate trajectories over the
state space by solving Hamilton’s equations,

dq
dt

=
∂K

∂p
,

dp
dt

= −∂K

∂q
− ∂V

∂q
,

to obtain a proposal for the next sample in the Markov chain.

In practice, these equations are solved with symplectic integrators, which are configured by
two parameters, a step size ϵ and an order, K. The standard choice is the leapfrog integrator
(Leimkuhler & Reich, 2005). The effectiveness of HMC is highly dependent on the choice of
algorithm parameters, such as the step size and the number of steps in the leapfrog integrator,
and the covariance of the proposal distribution. The No-U-Turn sampler (NUTS) is a variant
of HMC that avoids the necessity of manually tuning these parameters while generating inde-
pendent samples at least as efficiently as standard HMC (M. D. Hoffman & Gelman, 2014).
Modern probabilistic programming languages like Turing (Ge et al., 2018) also allow users to
easily define and sample from probabilistic models. For example, Listing 3 shows code which
allows a user to sample from a standard normal distribution with NUTS using Turing in the
Julia programming language.

Example 2.1.3 (Coinflips with Turing) We can use MCMC directly to estimate the proba-
bility p of flipping heads, given our input data of 22 heads out of 30 flips. Listing 4 shows
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using Turing

@model function turing_normal()
y ~ Normal(0,1)

end

chain = sample(turing_normal(), NUTS(), 2_000)

Listing 3. Code to obtain 2000 standard normal samples using NUTS via Turing.

the Julia code to produce 2000 samples from the posterior distribution. Figure 2.9 shows a
plot of the Markov chain produced by this code, as well as the density of this Markov chain
alongside the Beta(32, 18) distribution. The mean and standard deviation of the chain are 0.64
and 0.067 respectively, with a 95% HPDI of [0.506, 0.766], which aligns very closely with the
Beta(32, 18) distribution, as expected.

using Turing

data = vcat(zeros(8), ones(22))

@model function coinflip(y)
p ~ Beta(10,10)
for i in 1:length(y)

y[i] ~ Bernoulli(p)
end

end

model = coinflip(data)
chain = sample(model, NUTS(), 2_000)

Listing 4. A simple coin flip example using Turing

(a) (b)

Figure 2.9: Computational MCMC results align with our theoretical derivation of the coin flipping exam-
ple posterior. A. The Markov chain for the parameter p, produced using the NUTS sampler in Turing.jl. B. The
kernel density of the Markov chain (blue) is shown together with the density of the Beta(32, 18) distribution.

MCMC Diagnostics

The target posterior distribution is typically unknown, and MCMC is only guaranteed to con-
verge to the posterior as the number of samples tends to infinity. We may converge much sooner
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than this, and a number of statistics have been developed to test for convergence of our Markov
chains.

Best practice when performing MCMC is to compute multiple (usually 4 or more) Markov
chains, in parallel. How well the chains are exploring the posterior can be assessed with the
R̂ statistic, which evaluates the ratio of within- and between-chain variance (Vehtari et al.,
2020). Another measure of convergence is the effective sample size (ESS), which approxi-
mates the true number of independent and identically distributed samples from the posterior
distribution that the Markov chain contains.

Current recommendations for practice suggest that users should compute at least four chains,
and only use the sample if R̂ < 1.01 and the ESS is greater than 400 for each parameter (Ve-
htari et al., 2020).

Example 2.1.4 (Diagnostics in practice) MCMC diagnostics are implemented in Turing and
are provided to the user alongside the posterior samples. Furthermore, parallelization is easily
achieved with minimal changes to the code. Listing 5 shows the Julia code to produce 8000
samples from the posterior distribution of our coin-flipping example across 4 chains in paral-
lel. Table 2.1 reports on various statistics computed internally, which can be used to diagnose
any problems in the inference.

using Turing

data = vcat(zeros(8), ones(22))

@model function coinflip(y)
p ~ Beta(10,10)
for i in 1:length(y)

y[i] ~ Bernoulli(p)
end

end

model = coinflip(data)
chain = sample(model, NUTS(), MCMCThreads(), 2_000, 4)

Listing 5. A simple coin flip example using Turing

Parameter Mean SD R̂ ESS

p 0.6381 0.0666 1.0004 4491

Table 2.1: Summary and diagnostic statistics of the Markov chain computed in Listing 5.

Using Bayes theorem (eq. (2.2)), we are able to define the posterior distribution of the param-
eters of our model, given some observed data. MCMC algorithms allow us to generate cor-
related samples from this distribution. Biological experiments produce a variety of types of
data, which each require bespoke likelihood functions. In the following section, we discuss a
variety of biological experiments that measure gene expression in single cells.
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2.2 Gene expression can be measured with a variety of techniques

Heterogeneity of gene expression within a population of cells of the same cell type is ubiq-
uitous (Huang, 2009). In the past, population-averaged data has been obtained from microar-
rays or Western blots. Now, techniques such as flow cytometry (Pyne et al., 2009) and fluo-
rescent microscopy (Schroeder, 2011) provide data which is more information-rich. Typically,
gene expression heterogeneity is investigated by interrogating the gene expression variability
across a cell population at fixed points. Increasing amounts of evidence suggest that dynamic
patterns of gene expression can also show heterogeneity and vary between cell populations
(Manning et al., 2019; Soto et al., 2019). There are multiple experimental methods for obtain-
ing gene expression data from cells (e.g. protein copy number), and here the advantages and
implications of each one are discussed.

2.2.1 In situ Hybridization

In situ hybridization (ISH) is a technique used to study gene expression and involves a hy-
bridization reaction between a labelled nucleotide probe and complementary target DNA or
RNA sequences (Jin & Lloyd, 1997). Developed in 1969, traditionally these hybrids were
detected by autoradiographic emulsion for radioactively labelled probes or by histochemical
chromogen development, but this was replaced in 1977 with indirect immunofluorescence,
which quickly gained popularity (Jin & Lloyd, 1997; Rudkin & Stollar, 1977). The hybridiza-
tion signals in fluorescent in situ hybridization (FISH) can be visualised by fluorescent mi-
croscopy. Typically, cells have to be fixed, meaning that time-series data is not obtainable and
instead snapshot data is collected. A number of mathematical methods for analysing and infer-
ring information from snapshot data have been developed and are discussed in Section 2.3.1.
An important development for FISH came in the form of single-molecule FISH, which is able
to localize and quantify individual RNA molecules (Femino et al., 1998; Raj et al., 2008). In
Chapter 5, in situ hybridization techniques are used to investigate miR-9 expression during
early zebrafish development.

2.2.2 Single-cell RNA sequencing

Single-cell RNA sequencing (scRNAseq) provides the mRNA expression profiles for individ-
ual cells by isolating them and following a number of steps, such as reverse transcription and
RNA amplification. Recent methods encapsulate single cells in droplets in a microfluidic de-
vice. These droplets carry a DNA ‘barcode’ which uniquely labels the information derived
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from the cell (Klein et al., 2015; Macosko et al., 2015). This provides a snapshot mRNA mea-
surement like with smFISH but avoids the invasive cell fixing process which may perturb the
cell state. It also allows for much higher throughput, typically thousands of cells.

2.2.3 Flow Cytometry

Flow cytometry is a powerful tool for the analysis of multiple individual cell parameters from
heterogeneous populations (Picot et al., 2012). Thousands of cells per second can pass one by
one through one or more laser beams, which measure scattered light and fluorescence emis-
sions. Cells can be sorted into sub-populations by measured parameters, for example, protein
expression. Flow cytometry can indicate the amount of protein expressed in a single cell on
the basis of the intensity of fluorescence (Butts & Sternberg, 2009). This leads to snapshot
data (see Section 2.3.1) which can be analysed using software platforms such as Cell Quest
(BD Biosciences) and FlowJo (Tree Star, Inc.). These packages generate statistics on the data,
such as percentiles, mean numbers, and mean fluorescent intensity values for a sample (Butts
& Sternberg, 2009).

2.2.4 Endogenous gene knock-in

Another way to observe gene expression is by gene knock-in, or using a gene editing technol-
ogy such as CRISPR-Cas9 (Shen et al., 2014). These techniques involve either substitution
of DNA sequence information or the insertion of extra information not found within a genetic
locus. For example, a gene’s DNA sequence might be extended so that a fluorophore will be
attached to the translated protein. In this case, whenever the gene of interest is expressed so is
the added protein, and endogenous gene expression dynamics can be measured using fluores-
cent imaging. Absolute molecule numbers can then be studied with fluorescence correlation
spectroscopy (FCS). This tool allows us to translate fluorescence intensity into protein con-
centrations by analysing the diffusion properties of fluorescent molecules in a sub-femtoliter
volume (Politi et al., 2018). Hence it is possible to obtain protein copy numbers in a single
cell over time, with some level of error (∼ 0.25–6% (Politi et al., 2018)). This data contains
dynamic information at single-cell resolution. However, a single cell time series, although
information-dense, may only consist of ∼50–100 data points. In contrast, a snapshot from a
population of thousands of cells produces a much greater amount of data. Work must be done
to indicate the amount of data necessary to make sufficiently good inferences to inform exper-
imental procedure, which we explore in Chapter 3.
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2.3 Modelling gene expression and inference techniques

Here, we introduce two main types of data, snapshot and time series, and discuss approaches
for interpreting them in the context of a mathematical model. Then, we introduce the auto-
repressive feedback model which we will use to interpret single-cell gene expression.

2.3.1 Theoretical approaches to understanding gene expression are informed by data type

Approaches to understanding dynamic gene expression are dictated by the type of data avail-
able. As more advanced experimental techniques are developed we become able to observe
dynamic gene activity with finer resolution, greater accuracy, and longer time periods. This
makes it feasible to fit mathematical models to these data, which enables us to gain further
mechanistic insights and validate these through experimental predictions. Parameter inference
may give access to difficult-to-measure quantities and help pinpoint differences between cell
populations.

In recent years, researchers have started to develop Bayesian inference techniques that can
be used to identify molecular underpinnings of gene expression variation. However, current
methods have limitations. One type of method focuses on population-level heterogeneity in
snapshot data, thus ignoring dynamic properties of gene expression at the single cell level
(Gómez-Schiavon et al., 2017). A second type of method analyses protein expression time-
series data while ignoring non-linear effects of negative feedback (Minas et al., 2017). Initial
efforts for inference in systems including non-linear interactions as well as delays exist, how-
ever, they have not been applied to describe protein expression dynamics (Calderazzo et al.,
2019).

Snapshot data

Single-cell snapshot data can be represented mathematically by D = {{yj(tk)}j}nt
k=1, where

nt are the number of snapshot time points, and yj(tk) gives the value being measured, for ex-
ample, fluorescence intensity or amount of mRNA, for cell j at time point tk. In particular,
cells are not tracked over time, so even if there are multiple time points it is only possible to
analyse heterogeneity at the population level. Due to the heterogeneity across populations, it
may be possible to infer underlying mechanisms if additional biophysical constraints are im-
posed (Weinreb et al., 2018). Using population-averaged data, cellular heterogeneity can not
be captured and sub-populations remain concealed (Altschuler & Wu, 2010).
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Parameter inference with time-series data

Time-series data takes the form D = {{yj(tk)}nt
k=1}j. The distinction here from snapshot data

is that individual cells are tracked over multiple time points, giving dynamic gene expression
information at single-cell resolution.

Some mathematical and technological advancements for inferring model parameters using
time-series data have been made (Minas et al., 2017). The basic model of gene expression
upon which these efforts are built is given by

dm(t)

dt
= τ(t)− µmm(t), (2.13)

dp(t)
dt

= αpm(t)− µpp(t), (2.14)

wherem(t) is the amount of mRNA transcript at time t, p(t) is the amount of protein at time
t, τ(t) is a non-negative function that describes transcription, αp is the rate of translation, and
µm, µp are the mRNA and protein degradation rates respectively (Finkenstädt et al., 2013). If
we let yp(ti), i = 1, . . . , n, be the discretely observed imaging protein time series, then assum-
ing the mean of the data is proportional with unknown factor κ > 0 to the concentration of the
reporter protein, we have

yp(ti) = p̃(ti) + ϵ(ti), where p̃(t) = κp(t),

and ϵ(ti), i = 1, . . . , n are independent normally distributed random variables with mean zero
and unknown variance σ2(ti). If the observations are mRNA expression levels then instead we
have

ym(ti) = m̃(ti) + ϵ(ti), where m̃(t) = κm(t).

Parameter inference can be performed on data either by sampling from the posterior using
MCMC (discussed earlier, also see Jenkins et al. (2013)), or by linear regression. It is not
clear how well either method would perform on single-cell data, especially given that the model
used is deterministic. Also, the transcriptional time delay is not incorporated into the model,
which is necessary to allow us to capture experimentally observed dynamics. Further, the al-
gorithms require some amount of input from the user about the distribution of degradation
rates for protein and mRNA, which are not always known and therefore will introduce addi-
tional uncertainty which is not accounted for.

Indeed, due to relatively low molecular concentrations for genes of interest in single cells,
deterministic models are not able to capture the effect of spontaneous interactions between
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individual molecules. Stochastic effects are important for many key intracellular processes
(McAdams & Arkin, 1999), and not accounting for them can result in large errors in model
predictions (Fearnhead et al., 2014; D. J. Wilkinson, 2018).

The natural next step is to extend the above equations to account for noise, for example with
the Chemical Master Equation (Gillespie, 2007). This is done by considering each possible
individual interaction between molecules, and defines a stochastic differential equation which
is, in general, not possible to solve directly. Numerical solutions are available, for example us-
ing the stochastic simulation algorithm (Gillespie, 2007), but are typically slow, posing prob-
lems for parameter inference methods which are already computationally intensive. Nonethe-
less, parameter estimation in SDE models requires knowledge of the Markovian transition
density (Golightly & Wilkinson, 2005). As a result, a number of methods for performing pa-
rameter inference in models which account for stochasticity have been developed. For exam-
ple, Golightly and Wilkinson (2005) use a diffusion approximation to perform Bayesian in-
ference on a prokaryotic autoregulatory gene network. Reactions are assumed to occur at a
constant rate, and the number of reactions that happen in a given time interval is modelled
by a Poisson distribution. This gives rise to a simplified stochastic differential equation, from
which transition probabilities can be obtained using an Euler discretisation. A drawback of
this approach is that the assumption of a Poisson distribution for the number of reactions re-
sults in an approximation that does not accurately simulate the true dynamics, due to ignor-
ing the discreteness of the underlying process (Boys et al., 2008). Furthermore, when obser-
vational noise is included into the model, the inference performs poorly and does not con-
verge. Boys et al. (2008) instead consider a specific number of reactions in a given time in-
terval (0, T ] and, by choosing a conjugate choice of prior for the rate constants derive the pos-
terior distribution

p(θk | y) ∼ Γ

(︃
ak + rk, bk +

∫︂ T

0

gk(y(t))dt
)︃
,

where θk are the rate constants, y are the discretely observed gene expression data, ak and bk
are constants chosen for the prior distributions such that θk ∼ Γ(ak, bl), rk is the number of
type k reactions and gk defines the reaction propensity. The key problem is that the number
and times of each reaction are not known, and have to be somehow inferred from discrete state
measurements. This is done using a reversible jump algorithm, combined with a block updat-
ing strategy which proposes reaction times using Poisson process approximations to the reac-
tion processes. This method outperforms the diffusion approximation approach, but has much
poorer computational efficiency, restricting the number of applicable models.

Other approaches to inference in stochastic reaction networks include sequential Monte Carlo,
which relies on multiple simulations from different initial conditions (e.g. particle filtering)
(Golightly & Wilkinson, 2011), moment closure based inference (Milner et al., 2013; Zech-
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ner et al., 2012), and the linear noise approximation (Fearnhead et al., 2014; Hey et al., 2015).
Each of these approaches has their own set of strengths and drawbacks, but typically perform
poorly in non-linear systems (Boys et al., 2008). Furthermore, none of them have been applied
to models with delayed reactions. Heron et al. (2007) extends the approach of (Golightly &
Wilkinson, 2005) to systems with delayed reactions, using bridge building techniques (Elerian
et al., 2001).

A more recent method has been developed which incorporates time delays, accounts for stochas-
ticity, and allows us to compute the likelihood, p(y | θ), for single cell protein expression
time series data (Calderazzo et al., 2019). The key to this computation is the Kalman filter,
an algorithm which aims to accurately predict the state of a system (in this case the number
of mRNA transcripts and protein molecules) from a series of noisy measurements (Kalman,
1960).

As well as developing methods to infer parameters, it is necessary to understand how much
data is needed to accurately infer the true parameters for a given model. Cao and Grima (2019)
describe in detail the accuracy of parameter estimation for auto-regulatory transcriptional
feedback loops, using time-series data. Their inference methods use summary statistics of the
data (mean, variance, and higher-order moments), thus ignoring the effects of dynamic gene
expression at the single-cell level. They identified with in silico data that for sample sizes
larger than a thousand, the number of time points did not affect the accuracy significantly.
They also concluded that although their moment-based inferences performed well, the sys-
tem they used (which did not explicitly describe mRNA) was weakly non-linear, for which
these methods perform well. Higher error rates would be expected if they incorporated coop-
erativity in protein-DNA binding reactions (e.g. in the form of a Hill function). It was also
found that accuracy declined rapidly when they varied parameters across cells within a pop-
ulation (Cao & Grima, 2019). This illustrates the necessity of performing inference at either
the single-cell or sub-population level, especially for populations with a small number of cells
and where gene expression dynamics are important.

2.3.2 Kalman filtering

A Kalman filter is an algorithm which produces accurate estimates of unknown variables of
a dynamical system using a series of sparse observations over time which are subject to some
degree of error. This is achieved by estimating a joint probability distribution over the vari-
ables at each time frame, using an iterative two-step ‘predict then update’ process. This is the
basic concept: At iteration n, we use the dynamical system and our current knowledge to pre-
dict the temporal variation of the protein (and mRNA) up to the n + 1 observation time point.
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Then, the prediction at the n+ 1 observation time point is compared to the actual observation,
and the previously predicted (unobserved2) states are updated based on this comparison.

Applications of Kalman filters include robotics (Kelly, 1994), neuroscience (Wolpert & Ghahra-
mani, 2000), navigation (Duan et al., 2016; Mirzaei & Roumeliotis, 2008), object tracking
(Farahi & Yazdi, 2020; Xiong et al., 2015), and climate forecasting (Hargreaves et al., 2004)
among others. Here I will provide a brief overview of the Kalman filtering approach, as well
as some additional extensions. For a comprehensive overview, refer to Särkkä (2013). Con-
sider the probabilistic state space model

Xk ∼ p(Xk | Xk−1),

yk ∼ p(yk | Xk),

where Xk is the state of the system at time k, and yk is the measurement at time k. The dy-
namic model is p(Xk | Xk−1) and the measurement model is p(yk | Xk). We are interested in
the marginal posterior distribution of Xk at each k given the history of measurements,

p(Xk | y1:k).

The Kalman filter (Kalman, 1960) is the closed form solution to the marginal posterior distri-
bution when both the dynamic and measurement models are linear and Gaussian,

Xk = Ak−1Xk−1 + qk−1,

yk = FXk + εk,

where A is the transition matrix of the dynamic model, F is the measurement model, q is the
process noise, εk ∼ N (0,Σε) and the state space prior is Gaussian, X0 ∼ N (ρ0, P0).

The filtering equations can be evaluated in closed form as

p(Xk | y1:k−1) = N (Xk | ρk, Pk),

p(Xk | y1:k) = N (Xk | ρ∗k, P ∗
k ),

p(yk | y1:k−1) = N (yk | Fρk, FPkF
T + Σε),

where ρk and Pk are the state space mean and covariance at time k given observations y1:k−1,
and ρ∗k and P ∗

k are the updated mean and covariance given y1:k.

Models of gene expression are typically nonlinear, in which case the above defined Kalman
filter is not applicable. The extended Kalman filter extends the Kalman filter to nonlinear mod-

2The number of unobserved states can be specified. A finer discretization can be chosen, but this reduces the efficiency of the algorithm.

45



els,

Xk = f (Xk−1) + qk−1,

yk = FXk + εk,

where f is the dynamic (nonlinear) model function. At each estimation step in the extended
Kalman filter, the non-linear system is linearised around the current estimate using Taylor se-
ries (Khodarahmi & Maihami, 2023). When the system is highly nonlinear, this linearisation
step can result in poor performance (Julier & Uhlmann, 2004). The unscented Kalman filter
uses a sampling technique called the unscented transformation which propagates a set of sam-
ple points around the mean through the nonlinear prediction and update functions and forms
new mean and covariance estimates (Julier & Uhlmann, 2004). Other approaches include the
second-order extended Kalman filter (Särkkä, 2013; Singer, 2002), particle filters (Andrieu
et al., 2010; Doucet & Johansen, 2011; Golightly & Wilkinson, 2011), the ensemble Kalman
filter (Evensen, 2003) and the square root Kalman filter (Van der Merwe & Wan, 2001).

In this thesis I make use of a variant of the Kalman filter, the so called Extended Kalman-
Bucy Filter (Singer, 2002).

Formally, suppose ρ(t) = E[X(t) | y0:t] and P (t) = Var[X(t) | y0:t], where y0:t = y0, y1, . . . , yt.
We wish to find estimates of the mean and variance of π(xt+∆t | y0:t+∆t)— that is, our belief
in the true value at time t + ∆t, xt+∆t, given all observations up to that time, y0:t+∆t. The re-
lationship between xt and yt is given by yt = Fxt + ϵt, where ϵt ∼ N (0,Σϵ) and F is a
q × p matrix (where q is the dimension of yt and p is the dimension of xt). The prediction step
is performed using the Euler-Maruyama approximation. We can derive the unobserved states
approximate mean and variance equations over a time-interval δt by

Xt+δt = Xt + g(Xt)δt + a(Xt)∆Bt + o(δt),

where ∆Bt =
√
δtZt, Zt is a standard normal and A(·) = a(·)a(·)T .

Dropping the terms of order o(δ2t ), it follows that

E[Xt+δt | y0:t] ≈ E[Xt | y0:t] + E[g(Xt) | y0:t]δt,

Var[Xt+δt | y0:t] ≈ Var[Xt | y0:t] + Cov[Xt, g(Xt) | y0:t]δt
+ Cov[g(Xt), Xt | y0:t]δt + E[A(Xt) | y0:t]δt.

Let ρ(t) = ρt. The first order Taylor expansion of g(·) and A(·) about ρt is

g(Xt) ≈ g(ρt) + Jg(ρt)(Xt − ρt),
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A(Xt) ≈ A(ρt) + JA(ρt)(Xt − ρt),

where J denotes the Jacobian matrix. These expansions are then plugged in to the previous
equations, allowing their propagation under linearity. Letting P (t) = Pt, rearranging and
taking the limit as δt → 0 gives

dρt = g(ρt)dt,

dPt = Jg(ρt)Ptdt+ P T
t Jg(ρt)

Tdt+ A(ρt)dt.

In Chapter 3 we show how this approach can be extended to systems with a fixed delay term.
Further details for distributed delay systems can be found in Calderazzo et al.; Mbalawata et
al.; Särkkä; Singer (2019, 2013, 2013, 2006). The consequence of using a Kalman filter is that
we obtain the likelihood of all the observations given some model parameters, p(y | θ), in a
tractable form:

n−1∏︂
i=0

φ(yi·l;Fρi·l, FPi·lF
T + Σϵ), (2.15)

where n is the number of observations, l is the time (in minutes) between observations, and

φ(y;µ,Σ) =
1√︁

det(2πΣ)
exp

(︃
−1

2
(y − µ)TΣ−1(y − µ)

)︃
.

This can then be used in an iterative Markov chain Monte Carlo scheme, such as Metropolis
random walk, as was done by Calderazzo et al. (2019).

Algorithm 2 shows how the Kalman filter is combined with a Metropolis random walk ap-
proach in order to infer parameters of interest from noisy gene expression data.

In the following section, we iteratively introduce our mathematical model of interest, the auto-
negative feedback loop. In Chapter 3 we will implement a Kalman filtering approach for this
model, and extend it to make use of gradient-based sampling techniques.

2.3.3 Iterative model building for Hes gene expression

A basic mathematical model for dynamic gene expression can be expressed using ordinary
differential equations (ODEs), where the rate of change of concentration of mRNA and pro-
tein over time is calculated over a given time span. The simplest model is given by Equations (2.13)
and (2.14), with τ(t) = αm ∈ R≥0, which asserts that mRNA is transcribed at a constant rate
αm, and degrades at a constant rate µm. Similarly, protein degrades at a constant rate µp and is
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Algorithm 2: Parameter inference via Kalman filtering
Input: initial value θ0, proposal distribution q, data y, number of iterations N
Output: θ1, θ2, . . . , θN

1 for i = 0, 1 . . . , N do
2 sample: θ′ ∼ q(θ′ | θi)

3 for j = 0, 1, . . . , t do
4 compute: ρj(θ′) and Pj(θ

′) using the Kalman filter
5 end
6 compute the likelihood:

∏︁n−1
i=0 φ(yi·l;Fρi·l, FPi·lF

T +Σϵ)

7 compute: α(θi, θ′)← min
{︂

p(θ′|y)q(θ′|θi)
p(y|θi)q(θi|θ′) , 1

}︂
= min

{︂
p(y|θ′)p(θ′)q(θ′|θi)
p(θi|y)p(θi)q(θi|θ′) , 1

}︂
8 u← Uniform(0, 1)
9 if u < α(θi, θ

′) then
10 accept the proposal: θi+1 ← θ′

11 else
12 reject the proposal: θi+1 ← θi
13 end
14 end

translated at a rate proportional to the concentration of mRNA, αpm.

In our system of study, we know that the rate of transcription is negatively affected by protein
concentration. To account for this, we can modify the mRNA production term to include a
function which decreases monotonically from 1 to 0 as protein concentration increases from
0 to∞.

dm
dt

= αmf(p)− µmm, (2.16)

dp
dt

= αpm− µpp. (2.17)

A popular choice for this function f(p) is the repressive Hill function defined by

f(p) =
1

1 +
(︂

p
P0

)︂h , (2.18)

where h is the Hill coefficient and P0 is the repression threshold. Figure 2.10 shows the Hill
function defined above for various values of Hill coefficient, h. The number of protein molecules
ranges from 0 to 1000, and as the number of protein molecules increases, so does the repres-
sion of transcription. As the Hill coefficient increases, so does the steepness of the curve at
the intersection point. As h → ∞, the Hill function acts as an on-off switch for transcription.
At the repression threshold P0 = 500, transcription is reduced to half its basal rate.

So far our model considers both mRNA and protein expression, as well as repression from
protein concentration via the use of a Hill function. Biologically, in order for a protein to re-
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Figure 2.10: A plot of the Hill function for the values h = 1, 2, 5, and 10. The repression threshold, P0 is 500.

press its own transcription, individual molecules must travel to the nucleus and bind to their
own receptor on the DNA, and this process is not instantaneous. Further, the process of tran-
scription also takes time. To account for this, we introduce one additional change, which is
that the production rate of mRNA at time t is dependent on the amount of protein at some
(unknown) time in the past, t− τ .

dm
dt

= αmf(p(t− τ))− µmm, (2.19)

dp
dt

= αpm− µpp. (2.20)

In Figure 2.11 we compare the difference between protein dynamics for the systems with and
without delay.

We can see in Figure 2.11 that the protein expression in the system with delay is oscillatory
but eventually converges to a stable steady state. In experimental data, this trend is typically
not seen, and sustained oscillations have been observed. The data is also typically noisier than
that produced by a deterministic system. This is due to a finite number of molecules leading
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Figure 2.11: Oscillatory protein expression emerges from delayed transcriptional repression.

to transcription and translation happening in a probabilistic way, i.e. only when the relevant
molecules interact in the cell. We will use the chemical Langevin equation (CLE) to approxi-
mate the stochastic system, which is defined by

dm
dt

= αmf(p(t− τ))− µmm+
√︁
αmf(p(t− τ)) + µmmξm, (2.21)

dp
dt

= αpm− µpp+
√︁

αpm+ µppξp, (2.22)

where ξm and ξp are temporally uncorrelated, independent Gaussian white noises. A full deriva-
tion of the above is given in Chapter 3. Figure 2.12 compares the deterministic delay system
with the stochastic system using the same parameters and initial conditions. We can see that
oscillations are sustained in the stochastic system and are damped in the deterministic system,
for this choice of parameters. This model motivates our inference efforts in Chapters 3 and 4.
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Figure 2.12: Intrinsic noise allows for sustained oscillations which are otherwise damped in the deterministic
model.
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Chapter 3

Inferring kinetic parameters of oscillatory

gene regulation from single cell time-series

data

Joshua Burton, Cerys S. Manning, Magnus Rattray, Nancy Papalopulu and Jochen Kursawe
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I conceived the study together with J.K., C.M., N.P. and M.R.. I developed all code for the
Kalman filtering algorithm, including the calculation of the likelihood gradients, aided by
discussion and code review with J.K. who contributed to the algorithm development. I wrote
all the code related to MCMC sampling and the adaptive sampling strategies. I also wrote all
code for processing and analysing data, simulating data, running in-silico experiments, and
making figures. I produced all figures, with the exception of panels A–C of Figure 3.1 which
were provided by C.M.. I co-wrote the initial draft of the manuscript with J.K., and redrafted
it with helpful comments and suggestions from J.K., N.P. and M.R..

3.2 Publication status
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29th September 2021 (Burton et al., 2021).
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Abstract

Gene expression dynamics, such as stochastic oscillations and aperiodic fluctuations, have
been associated with cell fate changes in multiple contexts, including development and can-
cer. Single cell live imaging of protein expression with endogenous reporters is widely used
to observe such gene expression dynamics. However, the experimental investigation of regu-
latory mechanisms underlying the observed dynamics is challenging, since these mechanisms
include complex interactions of multiple processes, including transcription, translation, and
protein degradation. Here, we present a Bayesian method to infer kinetic parameters of oscil-
latory gene expression regulation using an auto-negative feedback motif with delay. Specifi-
cally, we use a delay-adapted nonlinear Kalman filter within a Metropolis-adjusted Langevin
algorithm to identify posterior probability distributions. Our method can be applied to time
series data on gene expression from single cells and is able to infer multiple parameters simul-
taneously. We apply it to published data on murine neural progenitor cells and show that it
outperforms alternative methods. We further analyse how parameter uncertainty depends on
the duration and time resolution of an imaging experiment, to make experimental design rec-
ommendations. This work demonstrates the utility of parameter inference on time course data
from single cells and enables new studies on cell fate changes and population heterogeneity.

Keywords: Parameter inference, Bayesian methods, Gene expression oscillations, MCMC,
Kalman filters, Stem cell differentiation

Lay summary: The cells in an organism can change their state and behaviour by varying the
concentration of key molecules, so called transcription factors. For some transcription fac-
tors, extensive amounts of time series data reveal oscillations of their concentrations in time.
Here, we introduce a statistical method that can analyse such data to infer the rates at which
the transcription factor molecules are produced and degraded, and how strongly oscillating
transcription factors self-regulate. Our tool may be used to identify differences between indi-
vidual cells, and is aimed to facilitate studies on the relationship between transcription factor
oscillations and cell behaviour.
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3.3 Introduction

The identification of regulatory mechanisms that control gene expression may have impor-
tant implications in biological systems. Cell state transitions are a key contributor to many
processes in healthy and diseased tissue, and as such they play a major role in development,
regeneration, and cancer. There is an increasing amount of literature uncovering the relation-
ship between gene expression dynamics, i.e. dynamic changes in protein copy numbers from a
single gene, and cell state transitions (Bansod et al., 2017; Imayoshi et al., 2013; Kobayashi &
Kageyama, 2014; Manning et al., 2019; Purvis et al., 2012; Soto et al., 2020; Tan et al., 2012).
For example, Imayoshi et al. (2013) used optogenetics to show that oscillatory expression of
the transcription factor ASCL1 promotes cell proliferation of mouse neural progenitor cells,
whereas sustained expression promotes differentiation. Manning et al. (2019) linked aperiodic
HES5 protein expression dynamics to murine neural progenitors, and declining oscillatory dy-
namics to differentiating neurons. Further evidence by Soto et. al. and Phillips et. al. (Phillips
et al., 2016; Soto et al., 2020) demonstrates the contribution of gene expression noise to tun-
ing oscillatory dynamics and influencing dynamically driven cell state transitions.

Experimentally, the dynamics of gene expression can be studied using a variety of approaches.
Accurate measurements of protein dynamics are made through live-imaging of transcription
factors in single cells, which provides real-time information on gene regulation and identifies
cell-to-cell heterogeneity. This can be achieved through fluorescent fusion reporters (Longo
& Hasty, 2006), where endogenously expressed proteins are attached to fluorescent reporter
molecules. Fluorescence microscopy can then be used to obtain time series data that quan-
tify protein expression levels over time (Figure 3.1A and B, supplementary Section A.10). It
may further be possible to translate the fluorescence intensity into exact protein copy num-
bers (Manning et al., 2019; Soto et al., 2020). Fluorescent protein reporters are widely used
to research the role of transcription factor dynamics in cell differentiation events, and have
provided dynamic data on gene expression in various contexts, such as neural differentiation,
circadian regulation, and cell cycle regulation (Alber et al., 2018; Imayoshi et al., 2013; Man-
ning et al., 2019; Pepe-Mooney et al., 2019; Soroldoni & Oates, 2011; Yang et al., 2020).

Mechanistically, dynamic gene expression is controlled by multiple processes, including tran-
scriptional pulsing (transcription occurring in pulses or bursts), stochastic fluctuations (due
to a limited number of molecules), gene regulatory interactions and translational control. In
order to understand how these processes interact to modulate gene expression dynamics it is
necessary to use mathematical models.

Within systems biology, mathematical models are often represented as a collection of gene
regulatory motifs (Alon, 2019; Novák & Tyson, 2008). One very common motif is the delay-
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mediated, auto-repressive negative feedback loop (Figure 3.1C), which gives rise to oscilla-
tions and other dynamic patterns of gene expression that have been observed in somitogenesis,
neurogenesis, and in cancer cell lines (Chou et al., 2010; Manning et al., 2019; Purvis et al.,
2012; Soroldoni & Oates, 2011; Soto et al., 2020). In this motif, a protein represses the tran-
scription of its own gene. In combination with delays that are intrinsic to biological systems,
this admits a range of dynamic behaviours, most notably oscillations at the mRNA and pro-
tein level. Regulation of gene expression through the auto-negative feedback motif contributes
to cell state changes in multiple systems, including neural differentiation (Chang et al., 2008;
Iwasaki et al., 2020; Manning et al., 2019).

A B

C D

Protein product
Translation

mRNA 
degradation

Transcription

Autorepression

Protein 
degradation

mRNA 
product

Figure 3.1: Time series data of protein expression can be modelled with an auto-negative feedback motif.
A. Stills from a movie of a single cortical neural progenitor in vitro with Venus::HES5 knock-in reporter. Colour
bar shows Venus::HES5 intensity. Stills taken at time points 1.75h (1), 4.5h (2), 6h (3), 7h (4), 9.5h (5), 10.75h,
(6), 15.5h (7), 17.25h (8). Scale bar 5µm. For details on data collection see supplementary Section A.10.1,
Imaging of Primary NS cells. B. Venus::HES5 intensity time series of cell in A. C. Graphical representation of
the auto-negative feedback motif. D. Model parameter values taken from previously published experiments and
theoretical considerations. (Goodfellow et al., 2014; Honkela et al., 2015; Lewis, 2003; Manning et al., 2019;
Monk, 2003; Phillips et al., 2016; Schwanhüusser et al., 2011).

Despite great advances in the collection of dynamic data on gene expression, and the mod-
elling of these data, challenges remain when calibrating models to data. Even simple math-
ematical models, such as the auto-negative feedback motif (Figure 3.1C), employ multiple
model parameters that correspond to biophysical quantities. For example, the auto-negative
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feedback motif uses rates of transcription, translation, degradation, and other parameters to
predict protein and mRNA expression dynamics. Each of these parameters can take a large
range of values (Figure 3.1D). For many application areas, parameter inference, i.e. identify-
ing which parameters correspond to a given experimentally obtained data set, remains an open
problem, since it requires the ‘inverse’ of the model, which typically cannot be computed di-
rectly. However, solving this problem bears great potential for the research of gene expression
dynamics and its links to cell fate. Identifying which parameter changes correspond to ob-
served differences in protein expression dynamics may illuminate the molecular pathways that
contribute to cell fate control, and identify new sources of heterogeneity within a cell popula-
tion.

The need for parameter estimation in biological systems has motivated extensive research in
recent years, with a variety of approaches being developed for different types of data (Babtie
& Stumpf, 2017; Browning et al., 2020; Liepe et al., 2014; Warne et al., 2019). Techniques
using Bayesian inference have emerged as a preferred approach due to their ability to quan-
tify uncertainty in the face of noisy data, which is a common feature of biological experi-
ments (McAdams & Arkin, 1999), by representing parameters with distributions, rather than
point estimates (Cao & Grima, 2019; Finkenstädt et al., 2013; Gómez-Schiavon et al., 2017;
Honkela et al., 2015; Jenkins et al., 2013; Munsky et al., 2012; Toni et al., 2009; Vallejos et
al., 2016). Placing probability distributions over our parameters, rather than treating them as
point estimates, allows us not only to determine the most likely values for each of the parame-
ters, given some data, but also to quantify our uncertainty in them.

To achieve parameter estimation with uncertainty quantification, Bayesian inference aims to
identify the posterior distribution of the model under consideration, denoted π(θ | y), where
θ and y are the model parameters and observed data respectively. The posterior distribution
describes the probability of the model parameters given observed data, and can be calculated
using Bayes’ rule

π(θ | y) = π(y | θ)π(θ)
π(y)

∝ π(θ)π(y | θ). (3.1)

Here, π(y | θ) is referred to as the likelihood, and is a measure of the fit of a statistical model
to the observed data, given specific values of the model parameters. The prior probability,
π(θ), is a distribution which outlines one’s beliefs in the parameters θ before any new data
is taken into account. These prior distributions can be informed using published data (Fig-
ure 3.1D), as well as physical constraints (e.g. rate constants must be positive). To visualise
the posterior distribution and use it in further analysis it is common to work with computa-
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tionally generated samples from this distribution. Posterior probabilities may be difficult to
compute directly, hindering the efficient generation of these samples (Beaumont et al., 2002;
Ramachandra Murthy et al., 2019).

Specifically, it may not be possible to calculate posterior probabilities if the likelihood of the
model is not available. In these cases, Approximate Bayesian Computation (ABC) can be
used. However, ABC reduces the data to a small number of summary statistics, which inevitably
decreases the accuracy of inference (Fearnhead & Prangle, 2012). If an expression for the
likelihood is available and can be calculated at given parameter points, the calculation of the
marginal likelihood π(y) often poses a further challenge in Bayesian inference, since it may
require the numerical integration of the likelihood and prior probability. To overcome this
challenge, sampling from the exact posterior distribution can be achieved using Markov chain
Monte Carlo (MCMC) techniques, such as the Metropolis-Hastings random walk (Hastings,
1970).

MCMC methods can produce samples from the posterior distribution π(θ | y) even if the
integration factor π(y) is unknown. In many scenarios, the reconstruction of a posterior dis-
tribution using MCMC sampling can be slow, in particular if the parameter space is high-
dimensional, if the calculations of the likelihood are computationally expensive, or if parame-
ters are highly correlated within the posterior distribution (M. D. Hoffman & Gelman, 2014).
In these scenarios, more efficient Hamiltonian Monte Carlo (HMC) or Metropolis-adjusted
Langevin algorithm (MALA) methods are preferable (Betancourt, 2017; Duane et al., 1987;
Roberts & Tweedie, 1996). HMC and MALA algorithms additionally require the gradient
of the posterior probability with respect to the model parameters and can result in orders-of-
magnitude faster convergence of the sampled distribution to the posterior distribution, espe-
cially for high-dimensional distributions or when parameter correlations are present (Betan-
court, 2017; Girolami & Calderhead, 2011).

For time series data specifically, a common approach to calculating the likelihood is the Kalman
filter. The Kalman filter is an algorithm which calculates the likelihood of the data at each
time point, given a mathematical model of stochastic dynamics, and an observation noise model.
It can generally be applied to Markov processes, where dynamic changes over time only de-
pend on the current state of the system, and not past states. The Kalman filter is a powerful
method to calculate posterior probabilities if delays are not present in the model (Lillacci &
Khammash, 2010), and can be extended to estimate the gradient of the likelihood function,
making gradient-based sampling of the posterior distribution possible (Mbalawata et al., 2013).

A number of recent methods focus specifically on time series of gene expression (Clerx et al.,
2019; Fan et al., 2015; Kojima et al., 2008; Manning et al., 2019; Minas et al., 2017; Moles
et al., 2003; Warne et al., 2019). For the study of oscillatory gene expression, a wide array of
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studies discuss time series data of protein concentrations, such as in Figure 3.1A,B, as well as
the description of these data through the auto-negative feedback motif (Figure 3.1C). Despite
this, a reliable Bayesian inference method for this popular combination of data and model is
still missing. Since the model includes delays, the widely-used Kalman filter approaches are
not applicable. Recently, Calderazzo et al. (2019) have addressed this problem by identifying
a method to introduce delays into the Kalman filter (Calderazzo et al., 2019), indicating that
accurate Bayesian inference for the auto-negative feedback motif on time series data of gene
expression may be possible. However, this approach lacks the ability to calculate gradients of
the posterior probability distribution, thus preventing the use of efficient gradient-based sam-
pling methods. Furthermore, while Calderazzo et al. (2019) applied their method to a motif
containing negative feedback, this method has not yet been applied to the widely used motif in
Figure 3.1C, which includes mRNA in addition to protein.

Here, we present a Bayesian inference pipeline that can be used as a non-invasive method to
measure kinetic parameters of gene expression emerging from the auto-negative feedback
motif using protein expression time course data. We extend the Kalman filtering method pre-
sented by Calderazzo et al. (2019) by introducing a recursive implementation to calculate the
gradient of the likelihood. This enables us to embed the non-linear delay-adapted Kalman fil-
ter into a state-of-the-art MALA sampling algorithm. This extension enhances the robustness
of the inference, making it more suitable for use in typical experimental settings.

Our method is able to capture multiple kinetic parameters of gene expression simultaneously
using time course data from single cells, and outperforms previous approaches. We demon-
strate the accuracy of our method on in silico data, provide an example of how the method can
be applied to experimental data, and show how the method can be used to obtain experimental
design recommendations. This work is paving the way for the use of Bayesian inference meth-
ods for the investigation of gene expression dynamics and their links to cell fate.

3.4 Methods

In this section, we give an overview of the key components of our method. First, we introduce
the mathematical model for the auto-negative feedback motif. Then, we discuss how we use
a delay-adapted non-linear Kalman filter to approximate the likelihood function. Lastly, we
provide details on data processing. Descriptions of our method that require longer derivations,
as well as further details on data collection, are provided in the Supplementary Information.
This includes our implementation of two MCMC methods, Metropolis-Hastings random walk
(MH) and MALA, as well as our proposed algorithm to compute the gradient of the likeli-
hood function, which is a major technical advancement in this paper. The availability of this
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gradient enables the use of a wider range of MCMC samplers, such as MALA, which we use
throughout the paper.

3.4.1 The negative feedback chemical reaction network

Here we consider a widely used model of gene expression, that incorporates knowledge of the
auto-repressive negative feedback loop (Figure 3.1C). Our model describes both protein and
mRNA expression dynamics over time at the level of a single cell, accounting for transcription
and translation, as well as degradation. We include a delay in the model, representing the time
taken from the initiation of transcription until the production of a transcript and its removal
from the nucleus. We further account for the effect of transcriptional auto-repression, where a
high abundance of the target protein inhibits transcription of the mRNA (Hatakeyama, 2004;
Lewis, 2003; Monk, 2003).

Let p(t) andm(t) define the number of protein and mRNA molecules, respectively, at time t
for a gene of interest. Gene expression is often subject to stochastic effects due to finite molecule
numbers. To reflect this we model the system with delayed Chemical Langevin Equations
(Brett & Galla, 2014; Galla, 2009; Gillespie, 2000),

dm
dt

= αmf(p(t− τ))− µmm+
√︁
αmf(p(t− τ)) + µmmξm, (3.2)

dp
dt

= αpm− µpp+
√︁

αpm+ µppξp, (3.3)

where ξm, ξp denote Gaussian white noise, i.e.

⟨ξm(t1)ξm(t2)⟩ = δ(t1 − t2),

⟨ξp(t1)ξp(t2)⟩ = δ(t1 − t2),

⟨ξm(t1)ξp(t2)⟩ = 0,

where δ(·) is the Dirac-delta function.

The parameters µm, µp, αm, and αp describe the rate of mRNA degradation, protein degrada-
tion, basal transcription rate in the absence of protein, and translation rate respectively. The
transcriptional delay is given by τ , and auto-repression is taken into account via the use of a
Hill function

f(p(t− τ)) =
1

1 + [p(t− τ)/P0]h
, (3.4)

reducing the rate of transcription for increasing amounts of protein p at time t − τ (Hirata et
al., 2002). Here, τ , the time delay, is the duration of the transcription process. The Hill func-
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tion (eq. (3.4)) is close to one when the protein at time t − τ is much less than the repression
threshold P0 and close to zero when the protein at time t− τ is much more than the repression
threshold. The steepness of the transition from one to zero can be regulated by the Hill coef-
ficient h. The Hill coefficient reflects the extent of cooperativity between ligand binding sites
for the gene of interest (Weiss, 1997).

From equations (3.2) and (3.3) we can see that the instantaneous rate of transcription is deter-
mined by αmf(p(t − τ)). This allows us to define an approximation for the average rate of
transcription as

αT = αmf(p̂) (3.5)

where p̂ is the average expression of protein. This average expression of the protein may be
obtained from simulated or experimental data.

We simulate the stochastic differential equations (3.2) and (3.3) using the Euler-Maruyama
method with a time step ∆t = 1 min, which is chosen sufficiently small to ensure numerical
accuracy of the scheme.

A deterministic version of the model in equations (3.2) and (3.3) was first developed by Monk (2003)
in order to describe gene expression oscillations of Hes1, p53 and NF-κB, and various ver-
sions of the model have since been widely studied (Brett & Galla, 2014; Galla, 2009; Good-
fellow et al., 2014; Lewis, 2003; Manning et al., 2019; Monk, 2003; Phillips et al., 2016). In
particular, when molecular copy numbers of mRNA and protein are low, we expect the rate
processes of transcription, translation, and degradation to stochastically vary with time. This
effect is accounted for by the noise terms in the Chemical Langevin Equations (3.2) and (3.3)
(Brett & Galla, 2014; Galla, 2009; Gillespie, 2000).

3.4.2 The likelihood function can be evaluated through Kalman filtering

The Kalman filter is an algorithm which calculates the likelihood function for linear stochas-
tic differential equations describing time-series data (Särkkä, 2013). The Kalman filter eval-
uates the likelihood of each time-point recording consecutively. The full likelihood is then
the product of these individual likelihoods, exploiting the Markov property of the underlying
stochastic process. The Kalman filter can be extended to non-linear dynamical systems by us-
ing piecewise-linear Gaussian approximations (Singer, 2002).

Here, we implement a Kalman filter, extended to account for non-linearity and delay, in order
to evaluate the likelihood that our observed data results from the model in eqs. (3.2) and (3.3)
at a given parameter combination. This likelihood can then be used to infer model parameters
for a given experimentally observed time series recording of gene expression. The resulting
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posterior distribution may then represent testable predictions on the biophysical characteristics
of the gene of interest, such as transcription, translation, and degradation.

Our Kalman filter implementation uses a finer discretisation on the time axis than that given
by the observation interval. Specifically, we introduce z hidden states between consecutive
observations. Introducing such hidden states is common when applying Kalman filters to non-
linear stochastic differential equations. It increases the accuracy of a piece-wise linear Gaus-
sian approximation. In the following, the time variable t will assume integer values number-
ing all discretisation time points, i.e. t = 0, 1, ..., nz, where n is the total number of observa-
tions.

It is possible to show that the likelihood of a set of observations given specific model parame-
ters can be expressed as (Calderazzo et al., 2019)

π(y | θ) =
n−1∏︂
i=0

φ(yi·z;Fρi·z(θ), FPi·z(θ)F
T + Σϵ), (3.6)

where the subscript i · z denotes multiplication of i and z and

φ(x;µ,Σ) =
1√︁

det(2πΣ)
exp

(︃
−1

2
(x− µ)TΣ−1(x− µ)

)︃
(3.7)

is the multivariate Normal distribution. Note that here we have explicitly shown the depen-
dence of P and ρ on θ, but will leave it out for readability for the rest of the paper. The true,
unobserved state of the system at time t is given byX(t) = xt = [m(t), p(t)]T, and the rela-
tionship between xt and the observed data yt is given by yt = Fxt + ϵt, where ϵt ∼ N (0,Σϵ)

and F is a 1 × 2 matrix. Thus, F and ϵ represent our measurement model. Throughout, we
use F = [0, 1], since we aim to apply our method to data on protein expression dynamics,
where measurements of mRNA levels are not available. The value Σϵ is called the measure-
ment variance, and describes the observation noise introduced through the experimental mea-
surement process. The variables ρ and P represent the state space mean and state space vari-
ance respectively. We define y0:t = [y0, yz, y2z, . . . , yt]

T , and write ρt = E[X(t) | y0:t−1] and
Pt = Cov(X(t),X(t) | y0:t−1).

The Kalman filter calculates ρt, and Pt in eq. (3.6) using an iterative process with two main
steps. At iteration k, the first k observations have been used to infer a probability distribu-
tion over the true state of the system X(t) for all discretisation time points up to t = kz. This
probability distribution is characterised by it’s mean ρ∗kz = E[X(t) | y0:kz] and covariance
P ∗
kz = Cov(X(t),X(t) | y0:kz).

In the Kalman filter prediction step we then use the model to calculate the predicted proba-
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bility distribution for protein and mRNA copy numbers at the next observation time point,
X((k+1)z). We use this prediction to evaluate the likelihood of the observed data at the k+1

observation time point. Before the prediction for the next observation is made, the Kalman
filter update step is applied, in which the probability distribution of the state space up to ob-
servation k + 1 is updated to take the measurement at t = (k + 1)z into account.

For our update step we derive an expression for the mean and variance of the state space dis-
tribution π(xt−τ :t | y0:t), denoted ρ∗t−τ :t and P ∗

t−τ :t respectively. That is, the likelihood of our
state space estimates from the past time t − τ to the current time, t, given all of our current
observations. This is necessary in order to accurately predict the state space distribution at the
next observation time point, π(xt+∆t | y0:t), as past states can affect future states due to the
presence of delays. We provide detailed derivations of our Kalman filter prediction and update
steps in the Supplementary Information Section A.1.

3.4.3 Implementation of MCMC sampling algorithms

The aim of our inference algorithm is to generate independent samples from the posterior dis-
tribution, π(θ | y). In this paper, we compare results from two different sampling methods,
MH and MALA. The MH algorithm and MALA are two of the most widely used MCMC
methods for drawing random samples from a probability distribution. For completeness, we
provide their algorithms in the Supplementary Information Sections A.2 and A.3.

Drawing proposals using MALA requires the calculation of the gradient of the log-posterior
U(θ), which we outline in Section A.4. This is achieved by iteratively computing the deriva-
tives of state space mean, ρt, and state space variance, Pt, with respect to each parameter, as
detailed in Section A.5.

3.4.4 Trends in the data are identified by Gaussian processes

Before applying our inference method we detrend protein expression time series using Gaus-
sian process regression, in order to identify and exclude data that show significant long-term
trends (Pedregosa et al., 2011; Rasmussen & Williams, 2005) (see Section 3.5.3 for further
motivation). Specifically, we make use of a scaled squared exponential Gaussian process com-
bined with white noise, whose kernel is given by

k(t, t′) = γ exp
(︃
−∥x(t)− x(t′)∥2

2l2

)︃
+ ηδ(t− t′), (3.8)
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where ∥x(t)−x(t′)∥ is the Euclidean distance between x(t) and x(t′), l is the lengthscale, and
γ, η ∈ (0,∞). In the Gaussian process regression the hyperparameters γ, l, and η are found
using constrained optimisation.

The initial value of the lengthscale is 1000 minutes, and is bounded uniformly in the range
(1000 min, 2000 min). The lower bound of this range, 1000 minutes, was chosen to ensure
that detrending does not perturb ultradian dynamics in the data. The upper bound, 2000 min-
utes, was chosen sufficiently large to ensure that detrending is not affected by it. The initial
value of the parameter γ is the variance of the data, σ2

data, and is restricted by a uniform prior
to (0.1σ2

data, 2σ
2
data). The parameter η has an initial value of 100, and is restricted by a uniform

prior to (10−5, σ2
data). Here, x(t) and x(t′) represent our protein expression time course data

at time t and t′ respectively. We identified data without a significant long-term trend manu-
ally by visual inspection (see Section 3.5.3, Figure 3.4) and removed any residual trend before
applying our inference method.

3.5 Results

Single cells in a seemingly homogeneous population can change cell fate based on gene ex-
pression dynamics. The control of gene expression dynamics can be understood with the help
of mathematical models, and by fitting these models to experimentally measured data. Here,
we analyse our new method for parameter inference on single-cell time series data of gene ex-
pression using the widely used auto-negative feedback motif. We first validate our method
by showing the performance of our algorithm (Algorithm 2) on in silico data sets. We then
demonstrate the utility of our method by applying it to experimentally measured data and, fi-
nally, use our method to analyse how parameter uncertainty may depend on certain properties
of the data, as well as the experimental design.

3.5.1 Sampled posterior distributions agree with analytical derivations for one-dimensional

parameter inference.

We first test our inference method on in silico data from the forward model of the auto-negative
feedback motif (Figure 3.1C). This is done using Chemical Langevin Equations, as detailed in
Section 3.4.1. Specifically, we emulate an in silico imaging experiment by selecting simulated
data in sparse intervals of ∆tobs mins and mimic measurement noise by adding random per-
turbations to each observation time point (Figure 3.2A). These perturbations are drawn from a
Gaussian distribution with variance Σϵ. Testing the method on in silico data first is beneficial,
since ground truth parameter values are known a priori for the generated in silico data sets,
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Figure 3.2: Our algorithm accurately samples posterior distributions. A. Simulated experimental data. Pro-
tein copy numbers are simulated using the Chemical Langevin Equation (see Section 3.4, blue dots). Experimen-
tal observations are emulated every five minutes by adding Gaussian noise to the protein copy number (pink).
The parameter values used were P0 = 3407.99, h = 5.17, µm = log(2)/30, µp = log(2)/90, αm = 15.86, αp =
1.27, τ = 30,Σϵ = 10000, and the simulated mRNA copy numbers are also included (green dots). B, C, D. Pos-
terior distributions for one-dimensional inference. For individual model parameters, posterior distributions were
inferred while keeping all other parameters fixed, respectively. Shown above are the inferred marginal posteriors
for the Hill coefficient (B), transcription rate (C), and transcriptional delay (D) respectively as histograms, using
MALA as the underlying sampling algorithm (see Section A.2) for 2500 iterations. The blue lines are the exact
likelihood calculations. The sampled and exact distributions coincide. E, F. Histograms for both MALA and MH
on the 1-dimensional problem for the Hill coefficient (E) and repression threshold (F).

and can be compared to the obtained posterior distributions.

We start by applying our inference method to simple test cases, where the true values of all
but one parameter are known, and only the remaining, unknown, parameter value is inferred
(Figure 3.2). This allows us to compare our sampled posterior distributions to the exact like-
lihood, which can be calculated in these one-dimensional examples using equation eq. (3.6).
If our inference method is accurate, the sampled posterior distribution should closely match
the exact likelihood if the Markov chain has converged (see Section A.7). We find that this is
indeed the case, for example, in silico data sets (Hill coefficient, transcription rate and tran-
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scriptional delay in Figure 3.2B–D, repression threshold and translation rate in Figure A.1).
Additionally, ground truth parameter values lie well within the support of the posterior distri-
bution (Figure 3.2B–D, supplementary Figure A.1, vertical black lines).

Our proposed inference method uses the MALA sampler, which relies on calculating likeli-
hood gradients (see Section A.4). The comparison with exact calculations in Figure 3.2B–
D and supplementary Figure A.1 validates our implementation of MALA and the associated
computations of the likelihood gradient. In order to further test our implementation of MALA,
and the associated computations of the likelihood gradients, we compare our results to poste-
rior distributions sampled using the MH algorithm, which does not require gradient calcula-
tions. Despite an expected slower convergence of the MH algorithm, this comparison is fea-
sible for one-dimensional posterior distributions, which typically can be well approximated
with a few thousand samples. The sampled means have a relative difference below 0.03%,
and the standard deviations fall within 4% of each other (Table 3.1, supplementary Table A.3).
This comparison reveals that posterior distributions from both samplers agree well with each
other (Figure 3.2E–F, Figure A.2), and further validates the implementation of the individual
likelihood gradients.

Parameter True Value µ (MALA) µ (MH) σ (MALA) σ (MH)
Repression threshold, P0 3408 3422 3423 37.51 36.65

Hill Coefficient, h 5.17 5.113 5.112 0.100 0.104

Table 3.1: The true values for the parameters which were used to generate the data in Figure 3.3A, alongside the
means, µ, and standard deviations, σ of the corresponding one-dimensional posterior distributions, from both
the MALA and MH algorithms (Figure 3.2E,F).

3.5.2 Our method allows for simultaneous inference of multiple model parameters

Having validated the method on one-dimensional posterior distributions, we further test the
performance of the method by simultaneously inferring multiple model parameters from a sin-
gle in silico data set and comparing the resulting posterior distribution to the ground truth pa-
rameter combination (Figure 3.3A,B). Since we cannot measure convergence of the sampled
posterior through comparison to the true posterior distribution in the multi-dimensional case,
we rely on typical MCMC convergence diagnostics (Section A.7).

We choose a data set that shares characteristics with typically collected time course data from
single cells. Specifically, our in silico data set is of similar length and observation intervals as
previously analysed by Manning et al. (2019). In this paper, the degradation rates of protein
and mRNA have been measured, so we assume these measurements as known values, leaving
five unknown parameter values to infer. The prior distributions were uniform, defined by the
range of values given in Table A.1, and log-uniform for αm and αp (see Section A.6 for de-
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Figure 3.3: MCMC sampling enables simultaneous inference of multiple parameters. A. An in silico data
set was generated using parameter values P0 = 47515, h = 4.77, µm = log(2)/30, µp = log(2)/90, αm =
2.65, αp = 17.61, τ = 38.0,Σϵ = 106. B. Our method is applied to the data set in (A) to sample the joint pos-
terior distribution over five parameters. The marginal posteriors for each parameter are shown. All marginal pos-
terior means are within half a standard deviation of the true value. C. A (symmetric) correlation matrix which
shows the correlation coefficient, ν, between samples for each pair of parameters. Diagonal entries are, by defini-
tion, perfectly correlated (ν = 1), and off-diagonal entries take values in the range [−1, 1]. D,E,F. Joint posterior
distributions show the relationship between different pairs of parameters. D shows the repression threshold, P0

is not correlated with the protein translation rate, αp. E shows a correlation of ν = 0.6 between the repression
threshold and the Hill coefficient, h. In other words, for this data set, a higher Hill coefficient indicates a higher
repression threshold (and vice-versa). Finally, F shows a strong negative correlation between P0 and αm.

tails).

We find that the marginal posterior means, i.e. values of largest probability, all lie within max-
imally half a standard deviation of the ground truth values (Table 3.2). This indicates that a
high degree of accuracy in the inference can be achieved with the amount of data typically
gathered from a single cell.

Parameter True Value Mode SD
Repression threshold, P0 47515 44915 12434

Hill Coefficient, h 4.77 4.41 0.80
Log basal transcription rate, log(αm) 0.975 1.45 1.24

Log translation rate, log(αp) 2.869 2.808 0.288
Transcriptional delay, τ 38.0 39.87 4.39

Table 3.2: The true values for the parameters which were used to generate the data in Figure 3.2A, alongside the
means, µ, and standard deviations, σ, using MALA.

Simultaneous inference of multiple parameters further allows for the investigation of pairwise
parameter correlations, using correlation coefficient ν (Figure 3.3C). Pairwise correlations
provide crucial information on how posterior distributions can be constrained further. Specif-
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ically, the strong correlation between the repression threshold, P0, and the logarithm of the
basal transcription rate, log(αm) (Figure 3.3E), highlights that the data in Figure 3.3A is con-
sistent with either high repression thresholds and low transcription, or vice versa. Such strong
pairwise correlations (Figure 3.3E,F) imply that gaining new information on one of the two
parameters would constrain the other. This is not the case when parameters are uncorrelated,
such as the transcriptional delay and the translation rate (Figure 3.3D), and experimentally
measured values on either of these parameters would not inform the other.

3.5.3 Parameter inference on single cell data outperforms previous approaches and may re-

veal underlying mechanisms for population heterogeneity

Next, we seek to evaluate the performance and utility of our method by applying it to exper-
imentally measured data. Specifically, we investigate data on gene expression oscillations in
mouse spinal cord neural progenitor cells (Manning et al., 2019) (see supplementary Sec-
tion A.10.2, Conversion of Venus::HES5 intensity to molecule number), and compare our
method to results on parameter inference from ABC (Figure 3.4A). In this previous approach,
the inference was performed using population-level summary statistics of the collected time-
course data. This resulted in posterior distributions with high parameter uncertainty. Specifi-
cally, the marginal posterior distributions for the Hill coefficient and the transcriptional delay
were close to uniform, illustrating that the provided summary statistics did not contain suffi-
cient information to constrain the uniform prior distribution. The remaining parameters had
distinct modes. Nonetheless, parameter uncertainty was high since the spread of the poste-
rior distribution was comparable to that of the prior (Manning et al., 2019). Importantly, this
previous approach did not allow for the comparison of posterior distributions between single
cells.

When applying our method to time series data from fluorescence microscopy experiments,
it is necessary to address that our model of the auto-negative feedback motif cannot describe
long-term trends in data. Specifically, the model of the auto-negative feedback loop consid-
ered here is designed to describe ultradian oscillations that typically have periods shorter than
10 hours (Galla, 2009; Goodfellow et al., 2014; Monk, 2003), and cannot describe variations
in protein numbers on longer timescales, such as one would expect from a slow up- or down-
regulation of the gene in the tissue. Hence, we only apply our algorithm to protein expres-
sion time series that we expect to be accurately modelled by eqs. (3.2) and (3.3) by exclud-
ing data that show significant long-term trends. In order to identify such time series, we first
remove trends from the time series that vary on lengthscales longer than 10 hours by using
Gaussian process regression (see Section 3.4.4). Then, we manually identify all the time se-
ries for which the detrended and raw time series visually agree (Figure 3.4B) and select these
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Figure 3.4: Parameter inference on single cell data outperforms previous approaches.

for inference.

In order to identify a suitable value for the measurement variance Σϵ we rely on previous es-
timates (Manning et al., 2019). Manning et al. (2019) decomposed the measured time series
into two contributions, one from a time-varying signal with finite auto-correlation time, and
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Figure 3.4: Parameter inference on single cell data outperforms previous approaches. A. Marginal posterior
distributions for each parameter are obtained from the ABC algorithm using summary statistics in place of likeli-
hood evaluations. B. Detrending of in vivo single cell protein expression data (black line). The sampling interval
is 15 minutes, and the length of the time course is 12 hours (720 mins). The mean is subtracted from the data
and a squared exponential Gaussian process determines the long term trend (pink line). This trend is removed
from the data and the mean is added back in (green line). C. Marginal posteriors from MALA for the detrended
single cell data shown in panel B. D,E. Marginal posterior distributions for every cell in clusters 1 and 2 respec-
tively.

one from a time-varying signal for which consecutive observations are uncorrelated (Manning
et al., 2019). This second contribution follows an identical distribution as the measurement
error in our model, and was estimated to contribute 10% of the total variance across all de-
trended time series. Hence, we set

Σϵ =
0.1

Nc

Nc∑︂
i=1

σ2
i , (3.9)

where Nc is the number of considered traces, and σ2
i is the variance for the ith detrended data

set.

We find that our method can identify more accurate posterior distributions than the previous
ABC-based approach by using single cell time series of gene expression only (Figure 3.4C
vs. Figure 3.4A.). For the single-cell gene expression time course in Figure 3.4B, we find
that there is still comparatively high uncertainty on the basal transcription rate (αm in Fig-
ure 3.4C), as the support of the marginal posterior distribution reflects that of the uniform
prior distribution. However, for all other model parameters that are inferred from this time
course, the marginal posterior distributions are narrower than the prior, and than previously
identified marginal posterior distributions from ABC (Figure 3.4C).

Having investigated marginal posterior distributions from a single cell we proceed to analyse
to what extent these posterior distributions can vary across multiple cells in the population.
Among the experimental data considered here, hierarchical clustering has previously iden-
tified two sub-populations (denoted as clusters 1 and 2) which have distinct gene expression
dynamics and which also do not have strong long-term trends (Manning et al., 2019), such as
down-regulation of gene expression. For clusters 1 and 2 there are 19 and 22 cells respectively
which we have selected for negligible trends (see Section 3.4.4).

We find that the posterior distributions inferred from multiple cells share features that are con-
served across all cells and both populations (Figure 3.4D,E). Specifically, the marginal poste-
rior distributions of the translation rate αp are all larger than exp(2)/min, and biased to larger
values. Similarly, the marginal posterior distributions for the delay τ cover the entire range of
considered values, and are biased towards smaller values, with most likely values below 10
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minutes. These observations appear to hold true for both clusters considered here, and they
highlight that parameter inferences obtained from our method are biologically reproducible,
which is a necessary feature to enable the use of the method in practical applications.

In contrast, for the basal transcription rates αm and the Hill coefficient h, marginal posterior
distributions vary between individual cells, suggesting that there is an underlying heterogene-
ity of these parameters across the cell population. However, the remaining parameter uncer-
tainty is too high to reliably identify differences between cells and clusters of cells, raising the
question of how imaging protocols may need to be changed in order to achieve lower uncer-
tainty on typical parameter estimates.

3.5.4 Longer time course data improves accuracy of inference more effectively than more

frequent sampling

Typically, longer imaging time series can only be collected at the cost of a lower imaging fre-
quency. When designing experiments, it may be desirable to choose an imaging protocol that
optimises the parameter inference towards high accuracy and low uncertainty. However, pa-
rameter uncertainty may not only be influenced by the imaging protocol, but also by the bi-
furcation structure of the underlying dynamical system (Roesch & Stumpf, 2019). Hence, we
next analyse how posterior distributions depend on the frequency of sampling, on the length
of the imaging interval, and on the position in parameter space. To evaluate the performance
of our inference, we investigate the uncertainty using relative uncertainty, RUθ (Section A.7,
eq. (A.26)), which quantifies the spread of the posterior distribution. We use this metric to
quantify the performance of our inference method on a number of synthetic data sets with dif-
ferent lengths and sampling frequencies, and for different locations in parameter space.

We choose two locations in parameter space that correspond to two different values of oscilla-
tion coherence, thus producing qualitatively different expression dynamics (Figure 3.5A, Ta-
ble A.2). The oscillation coherence is a measure of the quality of observed oscillations (sup-
plementary Section A.8). Choosing parameter combinations with different coherence thus en-
sures that these correspond to different positions within the bifurcation structure of the auto-
negative feedback loop (Galla, 2009; Momiji & Monk, 2008; Zhuang & Zhu, 2010).

We first analyse to what extent collecting data for a longer sampling duration may reduce pa-
rameter uncertainty (Figure 3.5B,D). We find that a longer sampling duration can strongly de-
crease parameter uncertainty. Doubling the length of the time series reduces the uncertainty
by 19% on average for the high coherence parameter combination, and 7.1% on average for
the low coherence parameter combination. A tripling of the available data leads to reductions
in uncertainty by 29.8% and 18.3% and for high and low coherence respectively.
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Figure 3.5: Increasing the length of time course data improves inference more than increased sampling fre-
quency. A. Two examples of in silico protein observations, one which has low coherence (pink) and another with
high coherence (purple). Exact parameter combinations can be found in Table A.2. B. RUθ for low coherence
data sets sampled with different lengths, from 12 hours to 60 hours. As length increases from 12 hours to 36
hours, both the mean and standard deviation decrease. C. RUθ for low coherence data sets sampled with different
frequencies. As frequency increases from 15 minutes to 5 minutes, the mean decreases. D. Same as B with the
high coherence data sets. E. Same as C with the high coherence data sets.

In contrast, an increase in sampling frequency leads to a smaller decrease in parameter uncer-
tainty on average (Figure 3.5C,E). Specifically, doubling the amount of data only leads to a
decrease by 11.3% in the case of the high coherence parameter combination, and 6.7% in the
case of low coherence. A tripling of the available data leads to reductions in uncertainty of
13.2% and 9.1% for low and high coherence respectively.

We find that analogous conclusions hold true if inference accuracy is analysed (MEθ, supple-
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mentary Section A.7, eq. (A.27), instead of uncertainty (Figure A.3). Accuracy increases with
longer sampling durations and shorter imaging intervals, and longer sampling durations have
a stronger effect than shorter imaging intervals.

3.5.5 Additional measurements of mRNA copy numbers improve estimates of the average

transcription rate

In the previous section, we have analysed the impact of changes in the imaging protocol on
parameter uncertainty overall. Alternatively, it may be desirable to identify interventions that
reduce uncertainty for particular parameters of interest. For example, an important quantity
of interest may be the average rate of transcription of the investigated gene, introduced as αT

in equation (3.5). In many in silico examples of our parameter inference, this average rate of
transcription αT is poorly inferred, with the mean of the posterior distribution being up to 5
times larger than the ground truth value. This is for example the case in Figure 3.6A. In this
and other examples, the ground truth value lies outside the 85% highest density interval (HDI)
of the posterior distribution (Figure 3.6A–C). Intuitively, one may assume that estimates for
the rate of transcription are improved if measurements of mRNA copy numbers, in addition to
protein expression dynamics, are considered in the inference.

Hence we next assume that, in addition to data on the dynamics of protein expression, mea-
surements of mRNA copy numbers have been conducted on the observed cells. Specifically,
we generate in silico data mimicking a single-molecule in situ hybridisation (smFISH) experi-
ment. Such smFISH experiments generate distributions of mRNA copy numbers, thus provid-
ing a snapshot of mRNA levels across a population at a fixed time point (Femino et al., 1998;
Raj et al., 2008). To account for this additional data, we incorporate the observed distribu-
tion of mRNA copy numbers into our likelihood function, such that it effectively penalises pa-
rameters for which inferred copy numbers of mRNA are outside the experimentally observed
range (see supplementary Section A.9).

We find that this inclusion of mRNA information collected from a cell population leads to
more accurate inference of the average transcription rate for single cells, using our algorithm
(Algorithm 2). Observing example data sets from Figure 3.5, the posterior distributions cover
multiple orders of magnitude if only protein expression data is considered in Figure 3.6D,E,
with the mean of the distribution being 5.4 times larger than the true value in Figure 3.6D,
and 2.4 times larger in Figure 3.6E, respectively. Upon inclusion of mRNA information, these
posterior distributions are instead concentrated around the true value, with a relative error
below 15.3%. In both examples the ground truth is contained within the 65% HDI. In Fig-
ure 3.6F a posterior distribution that is already close to the true value gets further constrained

73



A B

G

I

C

D E F

H

J

Figure 3.6: Additional measurements of mRNA copy numbers improve estimates of the average transcrip-
tion rate.

by the additional mRNA data. In these examples, the observed reduction of uncertainty on the
inferred transcription rate is accompanied by a reduction of uncertainty on estimated mRNA
copy numbers for individual cells, as inferred by the Kalman filter (see e.g. supplementary
Section A.10.2A vs. Section A.10.2B). Investigating the uncertainty on the average inferred
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Figure 3.6: Additional measurements of mRNA copy numbers improve estimates of the average transcrip-
tion rate. A,B,C. Posterior distributions of the average rate of transcription, αT , calculated using the posterior
samples of three example data sets from Figure 3.5. The ground truth value (vertical black line) is poorly esti-
mated by these posteriors. D,E,F. The same three posterior distributions for αT as in A–C, this time compar-
ing posterior samples drawn without mRNA information (blue) and with mRNA information (orange). Here the
ground truth value (vertical black line) is much more closely inferred when mRNA information is included. G.
Uncertainty of αT for the low coherence data sets from Figure 3.5. Uncertainty in αT is reduced by more than
60% when mRNA information is included. Uncertainty on αT is calculated using the coefficient of variation,
defined by the posterior standard deviation over the posterior mean, σ̂αT

/µ̂αT
. H. Same as in G but for high co-

herence data sets. Here mRNA information reduces uncertainty in αT by more than 50%. I. Values of relative
uncertainty RUθ (eq. (A.26) in supplementary Section A.7) for low coherence data sets (cf. Figure 3.5) with and
without additional data on mRNA copy numbers. J. RUθ for high coherence data sets from Figure 3.5 with and
without additional data on mRNA copy numbers. In G–J the coloured lines and shaded areas represent the mean
and standard deviation across observed values, respectively. Data sets in A–C are all sampled for a duration of 12
hours, and with sampling intervals of 8 minutes, 8 minutes, and 5 minutes respectively. All data sets considered
in G–J are sampled every 15 minutes for a duration of 12 hours and the parameters correspond to the low and
high coherence parameter sets respectively (see Table A.2).

transcription rate across data sets introduced in Figure 3.5, we observe a reduction in uncer-
tainty of 61.8% for low coherence parameter combinations (Figure 3.6G), and a reduction in
uncertainty of 51.2% for high coherence parameter combinations (Figure 3.6H).

How does this improved estimate of transcription rate affect overall uncertainty across pa-
rameter space, as analysed in Figure 3.5? Counter-intuitively, we find that this inclusion of
mRNA data into our parameter inference does not reduce overall parameter uncertainty (Fig-
ure 3.6I,J). For data sets from the low coherence parameter combination, the relative uncer-
tainty increases by 1.1% on average when mRNA information is included (Figure 3.6I). For
data sets from the high coherence parameter combination, uncertainty decreases slightly (9.1%
on average (Figure 3.6J)). Importantly, this reduction of uncertainty is considerably smaller
than the reduction of uncertainty observed when longer measurement durations are consid-
ered (cf. Figure 3.5D). We make analogous observations as inference accuracy is analysed
(Figure A.4), instead of uncertainty. Inference accuracy is not reduced for high coherence data
sets when data on mRNA copy numbers are included, and it is only slightly reduced for some
of the low coherence data sets, with the effect being much smaller than the effect of consider-
ing longer time course data (cf. Figure A.3).

The effect that overall uncertainty is not decreased as new data on mRNA copy numbers are
included contradicts the intuition that more accurate inference of the average rate of transcrip-
tion αT will also reduce uncertainty on model parameters regulating αT , such as the basal
transcription rate, αm and the repression threshold, P0. This effect may be attributed to cor-
relations between these parameters, which we typically observe in our posterior distributions
(see Figure 3.3F). For the data set in Figure 3.6A, inference of αT is improved upon the inclu-
sion of mRNA information. This leads to a tighter coupling between the parameters αm and
P0 (Figure A.6). However, this constraining of the posterior distribution is not reflected in ei-
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ther of the marginal posterior distributions. Thus, although the inclusion of in silico smFISH
data reduces the spread of the posterior distribution overall, uncertainty within the marginal
posterior distributions is not reduced, and individual parameter estimates are not improved.
An additional factor is that data from smFISH experiments may be considered to reflect the
time-averaged mRNA copy number distribution of single cells. Hence, these data might not
reduce uncertainty on parameters that are expected to predominantly alter the dynamics rather
than the level of expression, such as the transcriptional delay τ and Hill coefficient h. Hence,
to better infer these parameters, other strategies, e.g. those discussed in Figure 3.5, may be re-
quired.

We conclude that distributions of mRNA copy numbers from population-level measurements
can be used to infer average transcription rates for individual cells, using our inference method,
which may facilitate the study of transcriptional dynamics in the context of gene expression
oscillations. Together with results from Figure 3.5, this illustrates how our method may be
used to evaluate the benefit of different experiments in silico, and highlights that our method
can be naturally extended to utilise additional data of different types.

3.6 Discussion

The aim of this work was to develop a statistical tool that can be used to infer kinetic parame-
ters of the auto-negative feedback motif, based on typically collected protein expression time
series data from single cells. Importantly, the stochastic nature of the involved processes de-
manded a method that enables uncertainty quantification. We have achieved our aim by em-
bedding a non-linear delay-adapted Kalman filter into the MALA sampling algorithm. Our
method can generate accurate posterior distributions for the simultaneous inference of mul-
tiple parameters of the auto-negative feedback motif. The produced posterior distributions
are more informative than those from previous approaches. Since our method can be applied
to data from single cells, it enables the investigation of cell-to-cell heterogeneity within cell
populations. It can further be used to make experimental design recommendations, which we
demonstrated by investigating how parameter uncertainty may depend on the position in pa-
rameter space, the sampling frequency, and the length of the collected time series data. Addi-
tionally, our method may be extended to account for the presence of different types of data, for
example to improve estimates of the transcription rate for individual cells.

Often, new inference algorithms are presented on a single data set, and due to necessary tun-
ing requirements of the involved sampling methods, further data sets are not considered. How-
ever, it is important to understand the behaviour of a method for a range of data sets if we wish
to make experimental design recommendations. It is an achievement of this paper that we
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provide a method that demonstratively can reliably infer parameters, even when the size and
structure of the data are changed significantly.

The mathematical model underlying our method aims to describe the dynamic expression of
a protein which is controlled by auto-negative feedback. The success of our inference relies
upon how well this model approximates reality. Mathematical models for the oscillatory ex-
pression of transcription factors are informed by experimental research (Bonev et al., 2012;
Hirata et al., 2002) and have been developed over time (Lewis, 2003; Momiji & Monk, 2008;
Monk, 2003; Phillips et al., 2016; Soto et al., 2020). Existing model extensions include inter-
actions with other genes or microRNAs (Goodfellow et al., 2014) and future models could in-
clude effects of transcriptional bursting (Tunnacliffe & Chubb, 2020). The simple model used
here provides a starting point for developing inference algorithms for further models includ-
ing non-linear, stochastic interactions as well as delays, and future validation of experimental
predictions can be used to guide data-driven model improvements. To this end, our algorithm
may enable model selection to identify gene regulatory network properties, such as interac-
tions between multiple transcription factors.

Chemical Langevin Equations such as eqs. (3.2) and (3.3) approximate the full stochastic dy-
namics of the system by assuming Gaussian increments. Further, our Kalman filter assumes
that measurement errors follow a Gaussian distribution, and are not correlated between con-
secutive time points. The likelihood calculations within the Kalman filter assume that distri-
butions of protein copy numbers, which are predicted by eqs. (3.2) and (3.3), can be approxi-
mated by Gaussian distributions.

The Gaussian approximation within the Chemical Langevin Equation can break down when
molecule concentrations are very low, resulting in an inaccurate simulation of the dynamics.
We do not expect this to be a problem for data analysed in this paper, since protein copy num-
bers throughout our analysis are around 50,000 protein molecules per nucleus. In other appli-
cations, the validity of the Chemical Langevin Equation may be explicitly tested on samples
from the posterior distribution by directly comparing simulated expression time series with
those obtained from an exact sampling algorithm, such as the Gillespie algorithm (Gillespie,
2007). Similarly, simulations of the Chemical Langevin Equation can be used to test assump-
tions on the Gaussianity of the state space made within the Kalman filter. In cases where these
assumptions do not hold, alternative inference algorithms, such as particle filter methods, may
need to be developed.

For Bayesian inference problems it is common to use MCMC samplers, such as MH or MALA.
We have found that combining a delay-adapted non-linear Kalman filter and MALA can al-
low us to infer parameters of the auto-negative feedback motif. This builds on previous ap-
proaches which applied a Kalman filter in the context of a different transcriptional feedback
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motif with delay (Calderazzo et al., 2019). MCMC algorithms typically require tuning which
may be data specific. We have taken steps to reduce additional input from the user by using
MALA, which proposes new samples based on the gradient of the target posterior, hence ac-
counting for geometric properties of parameter space, which can result in faster, more robust
performance on some distributions (Girolami & Calderhead, 2011). MALA also has fewer
tuning parameters than other algorithms, such as HMC. This allows us to more easily incorpo-
rate adaptation into our algorithm (Andrieu & Thoms, 2008). Surprisingly, the MALA sam-
pler did not result in faster convergence than MH on example posteriors from our model (see
Supplementary Figure A.7). Hence, the added computational cost of calculating likelihood
gradients will not be beneficial in all applications, especially since, in our model, gradient cal-
culations increase the computational cost of individual parameter samples by a factor of 12.
We expect the availability of likelihood gradients to achieve a speed-up in high-dimensional
problems, where convergence speeds of MALA scale with d1/3, rather than d1 for MH (Roberts
& Rosenthal, 2001), for model dimension d. Note, that more efficient MCMC algorithms can
eliminate the problem of tuning entirely (Girolami & Calderhead, 2011). These methods rely
on the computation of the Hessian, i.e. the second derivative of the likelihood function. De-
riving expressions for the Hessian and investigating the efficiency of the resulting algorithm is
thus a potential avenue for future work.

In our applications of the algorithm to experimentally measured data, we detrended the data
before applying our inference (Figure 3.4B). Such detrending is commonly used when analysing
time series of oscillatory signals (Manning et al., 2019; Mönke et al., 2020; Phillips et al.,
2017). The detrending removes signal fluctuations from the recorded time series that vary
on a much longer time scale than the ultradian oscillations that are being considered. This is
necessary, since our model cannot describe such long-term fluctuations. Specifically, indepen-
dently of the model parameter chosen, simulated traces from the Chemical Langevin Equation
(eqs. (3.2) and (3.3)) do not include long-term trends. Hence, detrending prevents any bias
that the presence of a long-term trend in the data may introduce to the parameter inference.
When the algorithm will be applied to data from other transcription factors, we recommend
excluding data that contains trends with timescales that are longer than the fluctuations and
oscillations that are expected to emerge from the auto-negative feedback, in line with previous
detrending recommendations (Mönke et al., 2020; Phillips et al., 2017). Presumably, varia-
tions in the long-term trend of the data stem from a time dependence of one or multiple of the
model parameters due to regulatory processes that our model does not account for. Hence, fu-
ture improvements to our algorithm may be developed where the temporal variation of model
parameters is inferred, instead of one static value.

When applying our inference method to experimental data (Figure 3.4), we relied on previ-
ously reported values for the measurement variance, Σϵ, in the data set that we considered
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(Manning et al., 2019). When users seek to apply our algorithm to other data where previ-
ously published values are not available for Σϵ, this parameter can be inferred following the
same procedure as reported in Manning et al. (2019).

Our algorithm opens up the investigation of research problems, such as cell-to-cell hetero-
geneity in dynamic gene expression, which would previously not have been accessible. In fu-
ture applications, our algorithm may provide a non-invasive method to measure the kinetic
parameters of the gene of interest, such as the translation and transcription rates, or properties
of the gene’s promoter, which are described by the repression threshold and Hill coefficient
parameters in our model. On experimental data sets where multiple, qualitatively different dy-
namics are observed (D’Urso & Brickner, 2017; Elowitz et al., 2002; Godwin et al., 2017),
our algorithm may provide insights into the mechanistic origin of these different dynamics, by
identifying differences in inferred parameter values between the observed cells or cell popu-
lations. In order to classify whether observed differences between posterior distributions are
significant, one can construct the posterior distribution describing the difference between pa-
rameter values from both cells or populations, and test whether the credible interval of that
distribution contains zero (Gelman et al., 2020). To facilitate such analysis, our method may
for example be combined with clustering algorithms on the time series data, such as Gaussian
mixture modelling. Since different dynamic patterns of gene expression have been observed
in multiple studies of auto-repressing transcription factors (Manning et al., 2019; Soto et al.,
2020), we anticipate that these approaches will spark new scientific investigations.

Throughout, we have assumed that measurements in the form of protein copy numbers per nu-
cleus are available over time. To collect such data, it is necessary to combine endogenous flu-
orescent reporters with FCS in order to translate reporter intensity values to molecule concen-
trations. Future versions of our algorithm may be applied to data where FCS is not available,
if one extends our measurement model (F , Section 3.4.2) to include an unknown, linear scal-
ing parameter between protein copy numbers and imaged intensity values.

We highlight that the impact of this work is not limited to a single gene in a single model sys-
tem. The conceptual framework and derivations described here are applicable to any system
which can be described by delayed stochastic differential equations, although there may be
computational limitations as model sizes increase.
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Abstract

Expression dynamics of a large number of genes are influenced by noise and negative feed-
back. These dynamics, such as oscillations, are increasingly linked to cell fate decisions. How-
ever, the underlying mechanisms that control these dynamics are not well understood. Stochas-
tic delay differential equations offer a powerful framework for modelling gene expression dy-
namics over time, but accurately inferring the parameters of these models from time-series
data remains a computational challenge. Previous methods lead to uncertain estimates with
data from a single cell, and increasing the amount of available data makes inference compu-
tationally prohibitive. Here, we extend our previously implemented Bayesian method in or-
der to more efficiently infer kinetic parameters of gene expression using time-series data from
multiple cells. We reformulate our computational implementation to allow estimation of the
gradient of the data likelihood with respect to the delay parameter so that we can apply a vari-
ational inference algorithm to infer parameters for clusters of cells with qualitatively similar
dynamics, and better utilise Hamiltonian Monte Carlo (HMC) methods. We find that by com-
bining in-silico time-series data from up to 40 simulated live-imaging experiments, we are
able to reduce the standard deviation of all inferred parameters by at least a factor of 4 in com-
parison to single experiments, and several orders of magnitude faster than HMC. By enabling
fast and accurate inference of time-series data from a large number of cells, our method opens
up new opportunities for identifying kinetic parameters of gene expression that regulate cell
fate decisions in biological systems.

Keywords: Parameter inference, Bayesian methods, variational inference, Gene expression
oscillations, MCMC, Kalman filters
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4.3 Introduction

Oscillations and other dynamic patterns of gene expression are indicators of cell state, and
changes in dynamic gene expression have been shown to precede differentiation across mul-
tiple organisms, including mice and zebrafish (Imayoshi et al., 2013; Manning et al., 2019;
Purvis et al., 2012; Soto et al., 2020). In each of these biological systems, stochastic interac-
tions between transcription factors and DNA may influence the dynamics of gene expression,
causing homogeneous populations to diversify into different cell states (McAdams & Adam
Arkin, 1997; Raj & van Oudenaarden, 2008; Spudich & Koshland, 1976). Understanding how
interactions, or kinetic parameters of gene expression, regulate dynamic gene expression will
allow us to uncover critical mechanisms which influence heterogeneity during development.
However, simultaneously observing multiple types of molecular interaction at single-cell reso-
lution is technically infeasible, and we are typically limited to capturing the concentration of a
few specific proteins over time using live imaging techniques. It is therefore vital to have com-
putational methods for determining kinetic parameters of gene expression from the currently
available data.

Experimentally observed gene expression dynamics can be approximated using a generative
process, for example, a differential equation model, and then combined with Bayesian infer-
ence methods in order to determine kinetic parameters from single-cell time-series data. In
order for this approach to be effective, it is essential that the model is able to capture the ob-
served dynamic behaviour.

In a number of biological systems, a protein represses the expression of its own gene and, in
combination with delays inherent to biological processes, can exhibit a wide array of dynamic
behaviour including ultradian oscillations in both protein and mRNA concentration (Hirata
et al., 2002; Jensen et al., 2003; Lewis, 2003; Takebayashi et al., 1994). In order to represent
these ultradian oscillations mathematically, models need to account for both stochasticity and
delays between different interactions, in the form of stochastic delay differential equations.
One mathematical representation of this biological motif is the delay-mediated auto-repressive
feedback loop (Burton et al., 2021; Heron et al., 2007; Lewis, 2003; Purvis et al., 2012). In
this work we model the delay term as a constant, in contrast to previous approaches to infer-
ence in delayed SDE models, e.g. (Calderazzo et al., 2019), that use distributed delays.

In this paper, the parameters of this model are inferred from data using Bayesian methods.
In particular, we aim to find the posterior distribution of the model parameters θ given some
data y,

π (θ | y) ∝ π (y | θ)π(θ), (4.1)

84



where π (y | θ) is the likelihood function, which represents the probability of the data the
model parameters, and π(θ) is the prior, a distribution which quantifies our belief in the likely
values for each parameter in the absence of data. Prior beliefs about the parameter values can
be informed by experiments and reported values in the literature, as well as by physical con-
straints, for example requiring positive rate parameters. Bayesian methods are used specifi-
cally to quantify uncertainty in the inferred parameter estimates and provide a range of rea-
sonable parameter values, as opposed to a point estimate.

Bayesian inference methods for uncovering the rates of e.g. transcription, translation and degra-
dation, using the delay-mediated auto-repressive feedback loop have been developed but are
not widely used (Heron et al., 2007). In our previous work (Burton et al., 2021), we adapted a
delay-adjusted Kalman filtering approach (Calderazzo et al., 2019) to infer the kinetic parame-
ters of our model using single-cell time-series data. This approach has two main components.
First, the true (unobserved) expression of individual genes is approximated from noisy obser-
vations by combining a model of gene expression and a measurement model. This is achieved
with a delay-adjusted Kalman filter and is illustrated by Figure 4.1A. (see Section 4.4.2 for
the derivation). From this procedure, a likelihood function is defined. Second, Markov chain
Monte Carlo (MCMC) methods are used to sample from the posterior distribution to identify
the most suitable model parameters given the original experimental observations. In partic-
ular, the Metropolis-adjusted Langevin algorithm (MALA), a gradient-based sampling algo-
rithm, was used, which takes advantage of the gradient of the likelihood with respect to the
model parameters to improve convergence speed (Betancourt, 2017; Girolami & Calderhead,
2011).

For simple problems, i.e. where only one or two parameters are unknown, this approach is
effective, and we have shown with in-silico experiments that model parameters can be accu-
rately inferred using simulated data (Burton et al., 2021). When extending this approach to
infer multiple kinetic parameters of gene regulation simultaneously for experimental data, we
found that the uncertainty in our estimates was too high to identify differences between cells
with qualitatively different dynamic expression (Burton et al., 2021). One way to overcome
this shortcoming is to simply use more data. In typical applications, time series data from
multiple cells are collected for a given experimental condition. Cells with similar dynamics
can be clustered together (Manning et al., 2019) and assumed to have the same or similar ki-
netic properties. We have previously shown that in our system of interest, an increase in the
length of simulated time series data improves the accuracy of inference (Burton et al., 2021).
Increasing the length of time series data is equivalent to combining multiple datasets, under
the assumption that they were produced by an equivalent generating process with the same pa-
rameter values. We can therefore perform inference on combined time series from a number
of cells simultaneously, either by summing the log-likelihoods given by eq. (4.1), or within
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a hierarchical model, to improve our parameter estimates and avoid overfitting (Gelman et
al., 2013). Hierarchical modelling has been extensively applied to combined single cell time
series data. For example, to improve estimates of the timing of switching between transcrip-
tional states across a whole tissue, as well as rates of mRNA degradation for a large number
of genes (Featherstone et al., 2016; Jenkins et al., 2013). Single cell time series filtering ap-
proaches (Calderazzo et al., 2019) have been extended with a spatial hierarchical model that
improves parameter estimates for individual cells by ‘borrowing strength’ from combined data
(Unosson et al., 2021).

A B

Figure 4.1: The delay-adjusted Kalman filter accurately recaptures unobserved states from noisy obser-
vations. A. Simulated experimental data. Protein molecule numbers are simulated using the chemical Langevin
equation (see Section 4.4.1, blue line). Experimental observations are made every 10 min by adding Gaussian
noise to the protein molecule number (orange dots). The Kalman filter recaptures the unobserved state using the
experimental observations and parameters used to generate them (pink line). The parameter values used were
P0 = 3407.99, h = 5.17, µm = log(2)/30, µp = log(2)/90, αm = 15.86, αp = 1.27 and Σϵ = 382, 104. Con-
fidence regions calculated from the estimated covariance are also shown (pink shaded areas). B. Log-likelihood
values for a range of time-delay values, with two separate discretisations of the state space. Accuracy improves
as ∆t decreases, however, there is no gradient information since τ is not continuous.

In our previous implementation of the delay-adjusted Kalman filter (Burton et al., 2021), sam-
pling from the posterior distribution was too slow to deal with data from multiple cells – com-
bining time-series data from a cluster of a typical size of 10–40 cells would require weeks of
calculation time, which is unfeasible for day-to-day use. In order to fully utilise the gradient-
based sampling approach that we introduced, we have to be able to compute the gradients of
the likelihood with respect to all model parameters. Since our state-space approximation of
the unobserved gene expression dynamics was discretised over time, the gradient of the like-
lihood with respect to the time delay parameter τ was not defined. Therefore, although we
could improve the accuracy of our method with a finer discretisation, we were not able to ben-
efit from the improved performance of gradient-based sampling. Figure 4.1B illustrates this
point. The log-likelihood values for varying τ are shown using two different discretisations
of the state space approximation (blue and pink lines). Although the accuracy will improve as
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the discretisation becomes finer, the gradients remain undefined, as indicated by the flat lines
between each data point.

Here, we address these drawbacks by introducing a new method that is able to produce ac-
curate, approximate posterior distributions, and is up to two orders of magnitude faster than
advanced MCMC for similar problems. This opens up the ability to infer parameters using a
cluster of cells at a fraction of the computational cost of our previous approach.

We present a redesigned version of our previously published delay-adjusted Kalman filter
(Burton et al., 2021) where the time delay parameter is now continuous, meaning the gradi-
ent of the likelihood with respect to τ is defined (see Section 4.4, Methods). This allows us
to take full advantage of the variational inference algorithm Pathfinder (Zhang et al., 2022) to
sample from an approximation of the target distribution. Pathfinder has been evaluated on a
wide range of posterior distributions, outperforms automatic differentiation variational infer-
ence (ADVI) and is comparable to short chains of dynamic Hamiltonian Monte Carlo (HMC)
(Zhang et al., 2022), a widely used form of MCMC (Betancourt, 2017; M. Hoffman & Ma,
2020; M. D. Hoffman & Gelman, 2014). Further, it requires multiple orders of magnitude
fewer log density and gradient evaluations for challenging posteriors (Zhang et al., 2022).

We validate the use of variational methods by comparing posteriors from both Pathfinder and
dynamic HMC for test cases, e.g. using synthetic data and only inferring a few parameters.
We find that posterior densities from both approaches overlap, indicating very similar distri-
butions. We sample posterior distributions for varying amounts of in-silico time-series data
simulated using the same parameter values, in order to emulate a cluster of single cells. We
show that posterior distributions can be obtained for clusters of up to 40 cells in less than an
hour of computation time, and demonstrate a significant reduction in parameter uncertainty as
the size of a cluster increases.

4.4 Methods

In this section, we extend the methods introduced in Burton et al. (2021) to account for con-
tinuous time delays, in order to enable gradient-based variational inference. First, we briefly
re-introduce the delay-adjusted Kalman filter and negative feedback chemical reaction net-
work that models our experimental system. Then, we show how the Kalman filter can be mod-
ified so that the time delay is modelled as a continuous parameter. Lastly, we introduce a vari-
ational inference method, which enables us to obtain posterior distributions faster than previ-
ously possible by several orders of magnitude.
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4.4.1 Simulating data from the negative feedback chemical reaction network

We model gene expression dynamics using the negative feedback chemical reaction network,
which is defined by

dm
dt

= αmf(p(t− τ))− µmm+
√︁
αmf(p(t− τ)) + µmmξm, (4.2)

dp
dt

= αpm− µpp+
√︁

αpm+ µppξp, (4.3)

where ξm and ξp are temporally uncorrelated, independent Gaussian white noises,m(t) and
p(t) represent concentrations of mRNA and protein at time t and

f(p(t− τ)) =
1

1 +
(︂

p(t−τ)
P0

)︂h (4.4)

is an activating Hill function. The Hill coefficient h, and repression threshold P0, both deter-
mine the relationship between protein concentration and mRNA production. A higher Hill co-
efficient implies greater increases in repression of transcription in response to changes in pro-
tein concentration. The repression threshold defines the amount of protein needed to reduce
transcription to half of the basal rate. The transcriptional time delay parameter, τ , represents
the duration of the transcription process. We assume the delay is constant, rather than being
defined by a distribution. The degradation rates for mRNA and protein are denoted µm and µp

respectively, αm is the basal transcription rate in the absence of protein, and αp is the transla-
tion rate.

To simulate experimental time-series data we solve the Chemical Langevin equations (eqs. (4.2)
and (4.3)) over a given time span (0, T ) with parameters θ = (P0, h, µm, µp, αm, αp, τ), dis-
carding the first 1000 minutes so that the time series are independent of the initial condition,
which is chosen to be [30, 500]. To solve the SDDE we use an explicit Runge-Kutta discretiza-
tion of the strong order 1.0 Milstein method with adaptive time-stepping (Mil’shtejn, 1975).
We then select protein values every tobs = 10 minutes, to obtain an array of true protein val-
ues ptrue ∈ RN , where N is the desired number of data points. We set the measurement vari-
ance to be Σϵ = 0.1x̂d, where x̂d is the variance of ptrue. This is consistent with (Manning et
al., 2019), where the measurement variance has been estimated to contribute 10% of the total
variance in this system. We construct the synthetic data-set pobserved by adding a sample from a
normal distribution with zero mean and variance Σϵ ∈ R to each data point in ptrue, e.g.

pobserved(i) = ptrue(i) + ε(i),
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where
ε(i) ∼ Normal (0,Σϵ) ,

for i ∈ 1, . . . , N .

4.4.2 The delay-adjusted Kalman filter provides a likelihood function

We are specifically interested in being able to infer the parameters θ = (P0, h, µm, µp, αm, αp, τ)

of the negative feedback chemical reaction network defined by eqs. (4.2) and (4.3). Formally,
we want to use Bayesian inference methods to find the posterior distribution π(θ | y). In order
to do this we need to define a closed-form likelihood function. This is achieved by the delay-
adjusted Kalman filter (Burton et al., 2021; Calderazzo et al., 2019), which approximates the
true (unobserved) state, X(t) ∈ Rd, of a stochastic dynamical system of the form

dX(t) = g(X(t))dt+ f (X(t− τ)) dt

+
√︁

l(X(t)) + q (X(t− τ))dB(t), (4.5)

where B(t) is a d-dimensional Wiener process, using (potentially noisy) observations y =

{y(t1), . . . , y(tn)}, linked to the true state by a measurement model

y(ti) = FX(ti) + ϵi, i = 1, . . . , n, (4.6)

where ϵt ∼ N (0,Σϵ), F ∈ R1×d. In the case of our system of interest, F = [0, 1] and
X(ti) = [m(ti), p(ti)]

T . The parameter Σϵ is the measurement variance and represents any
noise introduced through the experimental measurement process. For ease of notation, we de-
fine X(t) = Xt and {y(t1), . . . , y(tN)} = y1:N .

We initialise the procedure at negative times with the steady-state solutions to the equivalent
deterministic model (i.e. where ξm, ξp = 0). The state space mean is initialised with the
steady-state solution, and the state space variance is initialised with a multiple of this mean.
Specifically, the variance of the mRNA is initialised at 20 times its mean value, and the vari-
ance of the protein is initialised at 100 times its mean value. Off-diagonal elements of the
state space covariance are initially zero, as in Burton et al. (2021).

The delay-adjusted Kalman filter then approximates the likelihood by iteratively inferring a
multivariate Gaussian probability distribution with mean

ρt = E [Xt | y1:t−1]
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and covariance
Pt,s = Cov (Xt,Xs | y1:t−1) ,

over the true state at each observation time point, by simulating the dynamical system between
consecutive observations (the prediction step) and then updating the distribution at each ob-
servation (the update step).

For the prediction step, since the system state is governed by an SDDE, this requires deriv-
ing the delay differential equations that govern both ρt and Pt,s, which is done using the linear
noise approximation (Van Kampen, 1992) (see Section 3.4.2 for details):

dρt = g(ρt)dt+ f(ρt−τ )dt, (4.7)

dPt =
[︁
Jg(ρt)Pt + P T

t Jg(ρt)
T
]︁
dt+ [Jf (ρt−τ )Pt−τ,t] dt+

[︁
Pt,t−τJf (ρt−τ )

T
]︁
dt+ A (ρt, ρt−τ ) dt,

(4.8)

dPs,t = Ps,tJ
T
g (ρt)dt+ Ps,t−τJ

T
f (ρt−τ )dt, (4.9)

where A(ρt, ρt−τ ) = l(ρt) + q(ρt−τ ). These equations can then be solved with any ODE solver
(see Section 4.4.4).

Our prediction step using the ODE solver gives us an a priori state estimate since it does not
incorporate the state of the system at the current observation time point which has now been
reached. In the update step of the Kalman filter, we derive an expression for the mean and
variance of the state space distribution π(Xt−τ :t | y1:t). Crucially, given that our system of
interest involves a delay τ , all state space estimates back to time t − τ are updated at time t.
The updated state space mean and variance, denoted ρ∗t−τ :t and P ∗

t−τ :t, are given by:

ρ∗t−τ :t = ρt−τ :t + C(y − Fρt), (4.10)

P ∗
t−τ :t = P ∗

t−τ :t − CFPt,t−τ :t, (4.11)

where
C = Pt−τ :t,tF

T (FPtF
T + Σϵ)

−1,

and Pt−τ :t,t = [Pt−τ,t, Pt−τ+∆s,t, . . . , Pt,t], where ∆s is the off-diagonal step size.
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At the end of this filtering procedure, the likelihood can be evaluated by

π(y | θ) =
n∏︂

i=1

N (yi | µ = Fρi(θ), σ
2 = FPi,i(θ)F

T + Σϵ), (4.12)

where ρi(θ) and Pi,i(θ), which are dependent on θ, are taken directly from the solutions to
eqs. (4.7) to (4.9), rather than their updated counterparts.

Our prior distributions for each parameter are outlined in Section B.1

4.4.3 Continuous time delays via ODE interpolation

We solve eqs. (4.7) to (4.9) using the DifferentialEquations.jl Julia package (Rackauckas &
Nie, 2017). We use either the forward Euler method with linear interpolation, or the 4th order
Runge–Kutta method with 3rd order interpolation (see Section 4.4.4), so that the solution is
a continuous function of t. Specifically, interpolation is done automatically via the Differen-
tialEquations.jl package and allows us to interrogate the solution of our equations at any time
t over a given time span.

Solving Equation (4.7) requires access to past values for the state space mean, but is otherwise
straightforward. However, calculating P (t, t) using eq. (4.8) at each observation time point for
any τ > 0 is more involved. This is due to the fact that Equation (4.8) requires that covari-
ance terms P (t, t − τ) are known for any t. In other words, we need to be able to interrogate
P (t, s) for any t, s > 0. In our previous work (Burton et al., 2021) we solved this problem
by discretising the state space variance and only allowing values of τ which were multiples
of this discretisation value. Here, we define an alternative procedure to solve this problem by
employing interpolation methods. Our procedure contains three distinct steps, which we will
first explain for τ ≥ tobs, where tobs is the observation time step in our data.

First, solving Equation (4.8) requires that we know P (t − τ, t) for any τ ∈ (0, t). These off-
diagonal covariances, i.e. P (s, t) where s ̸= t, are solved over the time-span t → t + tobs

for s ∈ (t − τ, t). We define the off-diagonal step size ∆s and partition (t − τ, t) into S =

[t− τ, t− τ +∆s, . . . , t−∆s], and solve each of the off-diagonal DDE’s using eq. (4.9) to
obtain a set of solutions

{P (si, t)→ P (si, t+ tobs) | si ∈ S} .

Each of these solutions can use the interpolation provided by the DifferentialEquations.jl pack-
age. In other words, the second argument of P is continuous. To get P (s, t) for any s we use
linear interpolation over the set {P (si, t) | si ∈ S}.
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Second, we solve the diagonal covariance DDE given by eq. (4.8) up to the next observation
time-point to obtain the solution

{P (t, t)→ P (t+ tobs, t+ tobs)} .

Lastly, we solve a final set of off-diagonal variances to obtain the set of solutions

{P (si, si)→ P (si, t+ tobs) | si ∈ S} .

If τ < tobs, this three-step procedure is repeated multiple times, solving each DDE over time
spans of length τ rather than tobs, until the next observation time point is reached.

We calculate the updated mean ρ∗t , variance P ∗(t, t), and covariance P ∗(s, t) at time t given
the most recent observation at time tc via

ρ∗(t) = ρ(t) + C(t)(y − Fρ(tc)), (4.13)

P ∗(s, t) = P (s, t)− C(s)FP (tc, t) (4.14)

where
C(s) = P (s, tc)F

T (FP (tc, tc)F
T + Σϵ)

−1,

(see section B.3 for a full derivation). The key advantages of our updated approach are that
the time delay parameter τ is a continuous variable and that we can use higher-order solvers
which promise increased speed and accuracy.

The implementation of our updated approach is available on GitHub, and online documenta-
tion with tutorials are also available at https://burtonjosh.github.io/DelayedKalmanFilter.jl/dev/.

4.4.4 Description of ODE solvers

Within the delay-adjusted Kalman filter, we solve multiple DDEs at each prediction step. To
accurately calculate the likelihood and obtain reliable posterior distributions, it is important
to ensure that any error introduced in the numerical solution of these equations is minimised.
Since DDEs can be thought of as a discontinuous initial value problem, we can choose any
ODE solver for our method (ZivariPiran & Enright, 2010). Consider the initial value problem
defined by

dy
dt

= f(t, y), y(t0) = y0. (4.15)
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We want to know y at some time tN in the future. The simplest method for achieving this is
the (forward) Euler method. If y(tn) = yn, then

yn+1 = yn +∆tf(tn, yn), (4.16)

where ∆t is called the step size. Although this method is efficient, the error in the estimate at
any given time is proportional to the step size.

If this error is high we can decrease the step size, ∆t, but this leads to many evaluations of
f . We can use a more accurate solver, which will be more expensive per step but may require
fewer steps in total. One popular choice is the 4th order Runge–Kutta method. Here we have

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)∆t, (4.17)

where

k1 = f(tn, yn),

k2 = f

(︃
tn +

∆t

2
, yn +∆t

k1
2

)︃
,

k3 = f

(︃
tn +

∆t

2
, yn +∆t

k2
2

)︃
,

k4 = f (tn +∆t, yn +∆tk3) .

The local truncation error in this estimate is on the order of O((∆t)5) and the global trunca-
tion error is on the order of O((∆t)4).

4.4.5 Variational inference using Pathfinder

In order to infer the parameters of our model for a combination of datasets we use Pathfinder,
a variational inference algorithm which approximates a target posterior distribution (Zhang et
al., 2022). The aim of Pathfinder is to locate an approximation to the posterior density along a
quasi-Newton optimisation path.

Pathfinder is initialised with a random sample θ0 from the prior, and then L-BFGS optimisa-
tion is used to generate a trajectory {θ0, θ1, . . . , θL} towards a local maximum of the posterior
density. For each θl, a local normal approximation of the posterior distribution with mean µ(l)

and variance Σ(l) is generated, using the gradient and curvature information collected along
the optimisation trajectory.

Pathfinder then selects the approximation which minimises the Kullback-Leibler (KL) diver-
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gence to the target density,

l∗ = argmin
l

KL
[︁
MVNormal

(︁
θ | µ(l),Σ(l)

)︁
∥ p(θ | y)

]︁
. (4.18)

To achieve this, it is equivalent to maximise the evidence lower bound (ELBO). With draws
from the local approximations, φ(1), . . . , φ(K) ∼ MVNormal(µ(l),Σ(l)), the ELBO can be
approximated with Monte Carlo by

ELBO
[︁
MVNormal

(︁
µ(l),Σ(l)

)︁
∥ p(θ | y)

]︁
≈ 1

K

K∑︂
k=1

log p(φ(k))− log(MVNormal(φ(k) | µ(l),Σ(l))). (4.19)

Finally,M approximate posterior samples are drawn from the distribution that minimises the
KL divergence, MVNormal

(︁
µ(l∗),Σ(l∗)

)︁
.

4.5 Results

We aim to infer kinetic parameters of gene regulation by combining time-series data from
multiple cells that show similar dynamics. In this section, we evaluate the performance of our
method on in-silico data. We simulate collected time series from single cells and use varia-
tional inference to infer parameters with combined data from multiple simulated cells. First,
we characterize the numerical convergence of our likelihood function using different ODE
solvers. We illustrate that higher-order solvers significantly increase the speed of this calcu-
lation, and identify an optimal step size for fast and accurate inference. We then validate our
updated computational implementation by inferring parameters of the auto-repressive feed-
back motif using the No-U-Turn sampler (NUTS), a dynamic HMC algorithm. We show that
the variational inference algorithm Pathfinder identifies similar posterior distributions to those
obtained with MCMC, at a decreased computational cost. Finally, we apply this new approach
to the combined data of multiple cells with similar dynamics, which leads to a significant de-
crease in parameter uncertainty.

4.5.1 Higher order solvers can improve both accuracy and computational efficiency.

There is a trade-off between accuracy and run time in our algorithm (Algorithm 2). We aim
to obtain accurate posterior distributions, which means our likelihood calculation needs to be
accurate.
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A B

C

Figure 4.2: Analysis and comparison of solver configurations allow us to optimise performance. A. The rel-
ative error in the calculated log-likelihood value for a range of solver step sizes∆t, and off-diagonal step sizes
∆s, using the forward Euler ODE solver. The error is calculated relative to the likelihood value when using the
RK4 solver with∆t = 0.01, ∆s = 0.1. B. Same as A with the 4th order Runge–Kutta solver. In both A and
B the accuracy of the likelihood for each value of ∆s plateaus when ∆t decreases. For the RK4 solver, this hap-
pens for much larger values of ∆t, allowing for the same accuracy with fewer function evaluations. C. A plot
of the relative errors (shown in A and B) against the median run-time of each likelihood evaluation in seconds.
To obtain a smaller relative error, the step sizes need to be smaller, leading to a longer run-time. Each data point
corresponds to a unique solver configuration. The colour scheme is the same as in A and B.

This can be achieved by using higher-order ODE solvers or decreasing the numerical param-
eters ∆s (the off-diagonal step size) and ∆t (the ODE solver step size) in our algorithm (Al-
gorithm 2). As part of the algorithm, we are required to approximate the covariance of gene
expression P (s, t) at arbitrary time combinations s and t. This covariance is related to the cor-
relation of gene expression between the time points s and t. To approximate P (s, t), both ar-
guments of this covariance are discretised into equally sized intervals of length ∆s and ∆t,
respectively. Thus, the accuracy of our approximation depends on the order of the approxi-
mation as well as the step size. Further details are available in section Section 4.4.4. In par-
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ticular, the order of the approximation is determined by the choice of ODE solver inside our
method (Forward Euler or Runge-Kutta). Our aim is to identify a solver configuration for our
method which optimises both accuracy and computational efficiency.

We first investigated the performance of our method by testing how the off-diagonal step size,
∆s, and solver step size, ∆t, influence the log-likelihood if different ODE solvers are used.
For an accurate representation of the true log-likelihood value, we used the RK4 solver with
∆s = 0.1 and ∆t = 0.01. This was the benchmark value for which all of the relative errors
were calculated (Figure 4.2A,B).

We found that in general, solutions obtained with the RK4 solver required fewer time steps in
total to achieve a given accuracy than the Forward Euler solver. For the forward Euler solver,
we found that a step size of ∆t greater than 0.1 was typically not sufficient to converge for
any ∆s (Figure 4.2A). In contrast, the RK4 solver converged typically when ∆t = ∆s (Fig-
ure 4.2B). For both solvers, decreasing ∆t had a limited impact on the total relative error. In
order to decrease the relative error, it was also necessary to decrease ∆s. We found that the
relative error was typically lower when using the RK4 solver. The forward Euler had errors as
large as 6× 10−4, whereas relative error did not exceed 1× 10−4 for the RK4 solver.

To assess the trade-off between speed and accuracy we computed the median run times of
each of the above configurations and compared them to the relative error (Figure 4.2C). For
identical step size combinations, RK4 is slower than Forward Euler, as expected. For exam-
ple, for an off-diagonal step size of ∆s = 0.1 and solver step size of ∆t = 0.01, the log-
likelihood calculation took 301 and 824 seconds for forward Euler and RK4 respectively. In
contrast, for an off-diagonal step size of ∆s = 10.0 and solver step size of ∆t = 10.0 the time
taken was 0.034 and 0.043 seconds for the forward Euler and RK4 respectively.

To assess the potential speed up for each solver, we calculated the relative runtime lb/lt of the
median time taken for each likelihood calculation lt, against a benchmark likelihood calcula-
tion time lb, when ∆s = 1.0 and ∆t = 1.0, which was the discretisation we used in our pre-
vious implementation (Burton et al., 2021). We found that we were able to achieve up to 15.7
and 25.6 times speedups for the forward Euler and RK4 solvers respectively if larger step sizes
were used (Tables 4.1 and 4.2).

Although the fastest configuration using the RK4 was slightly slower than the forward Euler
solver using the same combination of ∆s and ∆t (∼ 25% slower), it was still very fast (0.043
seconds) and the relative error was an order of magnitude lower. Given these results, we de-
cided to perform further in-silico experiments by calculating the likelihood using the RK4
solver, with ∆s = ∆t = 10.0. This ensured that our calculation run times were short, al-
lowing for faster inference while maintaining high accuracy in our likelihood calculation. To
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Forward Euler step size
∆t = 0.01 ∆t = 0.1 ∆t = 1.0 ∆t = 10.0

Off-diagonal
step size

∆s = 0.1 0.0017548 0.0140161 0.0386144 0.0465365

∆s = 1.0 0.0208933 0.189342 1.0 1.67295

∆s = 10.0 0.143718 1.31861 8.21313 15.6934

Table 4.1: Relative runtimes for a single log-likelihood calculation using the forward Euler method, using the
∆s = ∆t = 1.0 condition as the benchmark. For example, the calculation is over 15 times faster when ∆s =
∆t = 10.0.

Runge–Kutta step size
∆t = 0.01 ∆t = 0.1 ∆t = 1.0 ∆t = 10.0

Off-diagonal
step size

∆s = 0.1 0.0017548 0.0140161 0.0386144 0.0465365

∆s = 1.0 0.0134368 0.142397 1.0 2.86899

∆s = 10.0 0.0876649 0.895599 6.65484 25.6409

Table 4.2: Relative runtimes for a single log-likelihood calculation using the 4th order Runge–Kutta method,
using the ∆s = ∆t = 1.0 condition as the benchmark. For example, the calculation is over 25 times faster when
∆s = ∆t = 10.0.

assess the consistency of this accuracy, we computed the relative error of the likelihood for
150 different parameter combinations. The relative error was typically less than 1 × 10−3

around the mode of the distribution, i.e. for large log-likelihood values (> −650), and around
1 × 10−2 in the tails (see Figure B.1). Although we sacrifice some accuracy in the tails of the
distribution with this configuration, we expect to accurately identify areas of high posterior
probability since absolute errors are small around the mode (< 0.65).

4.5.2 Dynamic HMC can be used to perform inference on single datasets for multiple pa-

rameters

To confirm that our solver configuration would produce accurate posterior distributions, we
tested our new software implementation by inferring parameters for a single synthetic data
set. This data set was simulated using the procedure described in Section 4.4.1, with param-
eter values P0 = 3407.99, h = 5.17, µm = log(2)/30, µp = log(2)/90, αm = 15.86,
αp = 1.27 and Σϵ = 382, 104. These parameter values were chosen for the oscillatory dy-
namics they exhibit in the model. In order to quickly test our approach and easily diagnose
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DC

Figure 4.3: Dynamic HMC can be used to infer multiple parameters for single datasets accurately. A. For
the simulated dataset shown in Figure 4.1A, the repression threshold parameter P0 is inferred using HMC. The
MCMC traceplot is shown here for 2, 000 iterations after warm-up. B. A density plot made from the samples
shown in (A) (blue). The ground truth (blue line) and maximum likelihood estimate (orange line) are also shown.
C., D. Inference is done on the same dataset for parameters P0, h and τ simultaneously. Traceplots are shown
for 500 iterations after warm-up, and density plots are shown with the ground truth and maximum likelihood
estimates shown (solid pink and dashed orange lines respectively). In each case, we chose the initial value of
the Markov chains by performing maximum likelihood estimation with the L-BFGS optimiser and set the target
acceptance rate of the NUTS sampler to δ = 0.8. We sampled 8000 posterior draws across 4 chains (3000 draws
per chain, discarding the first 1000 draws as burn-in) for A, and we sampled 2000 posterior draws across 4 chains
(750 draws per chain, discarding the first 250 draws as burn-in) for C.

any potential problems, we first considered two simple scenarios; where only P0 is unknown
(Figure 4.3A,B), and where the three parameters P0, h, and τ are unknown (Figure 4.3C,D).
These scenarios were chosen to allow for comparisons with the previous implementation (Bur-
ton et al., 2021), as well as to see how run time scaled as the number of parameters inferred
was increased. We sample 4 chains in parallel from the posterior distribution using the No-
U-Turn sampler (NUTS) via the Turing.jl Julia package (Ge et al., 2018; M. D. Hoffman &
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Gelman, 2014). The chains are initialised with the maximum likelihood estimate, calculated
using the L-BFGS optimiser. The prior distributions used for each parameter are detailed in
Section B.1.

The R̂ statistic provides the ratio of the between- and within-chain estimates of the parame-
ters. Values close to 1 indicate that these estimates agree and that we are likely to be sampling
from the posterior distribution. The effective sample size (ESS) measures the sampling effi-
ciency in the bulk of the distribution, with high values indicating reliable mean and median
estimates. Values of R̂ < 1.01 and ESS > 400 per parameter reassure us that our posterior
estimates are reliable (Vehtari et al., 2020). Table 4.3 summarises the 8000 posterior draws
obtained using dynamic HMC. We computed an R̂ statistic of 1.0007 and an ESS of 2775.32.
The inference procedure accurately recaptures the true value of the repression threshold, P0,
with the mean of the posterior distribution being less than 0.015 standard deviations from the
true value. The Monte Carlo standard error (MCSE), which estimates the noise in our estima-
tion, is also negligible in comparison to the standard deviation of the Markov chain.

Parameter True value MLE Mean SD MCSE R̂ ESS

repression threshold, P0 3407.99 3406.26 3409.03 71.18 1.50 1.0007 2775

Table 4.3: Summary statistics of the Markov chain shown in Figure 4.3A. The columns refer to the true parame-
ter value, maximum likelihood estimate, posterior mean, posterior standard deviation, Monte Carlo standard er-
ror of the Markov chain, R̂-statistic and the effective sample size respectively. The true value of P0 is contained
within the 10% highest density interval, indicating the mass of the distribution is close to the ground truth.

To infer three parameters simultaneously (Figure 4.3C,D) we again chose the initial value of
the Markov chains by performing maximum likelihood estimation with the L-BFGS optimiser
and sampled 2000 posterior draws across 4 chains.

Inferring P0, h, and τ introduces greater uncertainty (Table 4.4) in our estimates, in compari-
son to the single parameter case (Table 4.3). This can be seen by the increase in standard de-
viation for the repression threshold, P0. However, the mean estimates are still within half a
standard deviation for all parameters, and the MCSE is less than 5% of the standard deviation.
The R̂ and ESS values indicate that our estimates of the posterior distribution are reliable.

Although our chains are initialised with a maximum likelihood estimate, this does not always
accurately recapture the true value, i.e. the MLE value for τ is 35.75, whereas the posterior
mean is 29.78. Figure B.3A shows positive correlation between τ and h when only consider-
ing simulated data from a single cell, which may be the cause of the difference between the
ground truth and the maximum likelihood estimate. This highlights the need for us to account
for uncertainty in the data, and Bayesian inference methods provide one approach for doing
this in a rigorous manner.
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Parameter True value MLE Mean SD MCSE R̂ ESS

repression threshold, P0 3407.99 3406.32 3286.63 270.57 8.81 1.0013 676.57

Hill coefficient, h 5.17 5.17 4.90 0.63 0.014 1.0016 681.64

time delay, τ 30.0 35.75 29.78 5.04 0.16 1.0007 940.54

Table 4.4: Summary statistics of the Markov chain shown in Figure 4.3C. The definitions of the columns are the
same as in Table 4.3.

Parameter True value Mean SD MCSE R̂ ESS

repression threshold, P0 3407.99 3369.8 267.2 3.50 1.0 8137

Hill coefficient, h 5.17 4.89 0.69 0.0077 1.0 8185

time delay, τ 30.0 30.35 5.17 0.058 1.0 7822

Table 4.5: Summary statistics of the samples obtained using the Pathfinder algorithm. The definitions of the
columns are the same as in Table 4.3

4.5.3 Pathfinder approximates posteriors with similar accuracy to HMC

The total compute duration to obtain 2000 samples from the posterior distribution using data
from a single cell across 4 chains was 5.45 hours per thread, using a laptop with an Intel®
Core™ i7-8750H CPU with 16GiB of RAM, running Ubuntu 20.04.5 LTS. In many contexts,
it is desirable to sample posterior distributions for a large number of cells or to combine time-
series data from multiple cells to further reduce uncertainty in our estimates (Burton et al.,
2021). Run-time will scale linearly with the amount of data, meaning for example that pos-

A B C

Figure 4.4: Variational inference allows for fast and accurate inference of multiple parameters. A–C.
Marginal posterior densities from using HMC (blue lines, Figure 4.3D), alongside marginal posterior densities
computed using 8000 samples from a single run of Pathfinder (pink lines). The two densities overlap, indicating
very similar posterior distributions.
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terior inference for a combined cluster of 30 cells would take ∼1 week, and multiple days of
computing resources may not always be available.

Variational inference methods are a potential way to speed up inference. In order to evaluate
the accuracy and extent of the speed-up available, we used the Pathfinder algorithm to sample
from an approximate posterior distribution (Figure 4.4). The summary statistics of the sam-
pled distribution, which are shown in Table 4.5, are comparable to when using NUTS to sam-
ple directly. The standard deviations for each parameter are nearly identical, and the means
are very similar. The total run-time of this approach on the same laptop was 93.48 seconds on
a single thread, a speed-up of 839 times (Table 4.6, first column).

4.5.4 Pathfinder enables fast inference on combined datasets

A

C

B

D

Figure 4.5: Parameter inference on multiple simulated datasets simultaneously using Pathfinder. A. The
repression threshold is inferred using Pathfinder for varying numbers of cells. As the number of cells increases
from 1–40, the standard deviation of the posterior reduces from 69.2 to 10.5. B–D. Inferring the same three pa-
rameters as in Figure 4.3B–D, but with varying numbers of cells. As the number of cells increases from 1–40,
the standard deviation of each parameter is reduced by a factor of (B) 6.51 for the repression threshold P0, (C)
4.15 for the Hill coefficient h, and (D) 6.05 for the transcriptional time delay τ . The compute duration for per-
forming variational inference over 40 cells was 40 minutes.

In our previous work, we compared posterior distributions from multiple cells in the same
cluster and found that for some parameters the uncertainty was too high to identify differ-
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ences across clusters (Burton et al., 2021). However, given the computational requirements of
MCMC sampling, it is not practical to perform inference on combined time-series data from
a cluster of 10–40 cells. Therefore, after confirming that variational inference gave similar re-
sults to using MCMC directly on simulated data from one cell, we went on to investigate how
the posteriors obtained using variational inference changed as simulated time-series data from
an increasing number of cells were combined.

To do this, we simulated 40 in-silico time-series, using the same approach as previously out-
lined in Section 4.4.1, with the same parameter values as in Figure 4.3, apart from Σϵ which
was chosen to be 360, 000 to simulate noise within a biologically realistic regime (Manning
et al., 2019). We calculate the joint likelihood of data from multiple cells by summing each
of the likelihoods of the data from the individual cells. This provides us with a framework for
interrogating the effect of inference accuracy as the number of cells in a cluster increases.

We first inferred a single parameter, P0, for 1, 10, 20, 30, and 40 cells respectively (Figure 4.5A).
The standard deviation in our estimate when using data from only 1 cell was 69.2, which was
reduced to 10.5 when using the combined data from 40 cells. The posterior mean also signif-
icantly improved, from 3478.7 when using 1 cell to 3412.3 with 40 cells, where the ground
truth was 3407.99.

Having confirmed that variational inference accurately identifies the true parameter in this
simple case, we extended our model to infer three parameters simultaneously, P0, h, and τ
(Figure 4.5B–D). The search space for this problem is much larger and introduces additional
complexity, given that we have previously identified a strong correlation between P0 and h
(Burton et al., 2021). Despite this, inferring the parameters was extremely fast, taking less
than 40 minutes using in-silico time-series data from 40 cells (Table 4.6).

We found a drastic improvement in accuracy when incorporating data from multiple simulated
cells in this way. For data from 1 cell, the standard deviation for P0 was 267.2 (Table 4.5), and
this decreased to 41.5 with 40 cells. To contextualise the significance of this improvement, the
size of the 95% highest posterior density interval (HPDI) for P0 changes from 995 to 161, a
reduction of over 6 times (Figure 4.4B). Similarly, we observe a reduction of 4.1 and 5.8 times
in the 95% HPDIs for h and τ respectively (Figure 4.4C,D). Although the posterior means do
not seem to converge to the true parameter values as the number of cells increases, their de-
viation is not large enough that we see different dynamics in our posterior predictive checks
(Figure B.2). These checks show that key aspects of the data (period, mean expression) are
accurately captured by the inferred parameters, despite a strong correlation between the re-
pression threshold P0 and Hill coefficient, h (Figure B.3, (Burton et al., 2021))
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Number of cells 1 10 20 30 40

Time taken (minutes) 1.55 11.9 33.5 32.4 39.8

RMSE (P0) 296.5 208.8 196.8 252.5 187.7

SD (P0) 267.2 74.2 55.8 49.6 41.5

Table 4.6: Time taken to infer P0, h, and τ simultaneously using variational inference for in-silico time-series
data from a varying number of cells. The root-mean-square error (Section B.2) for P0 is also shown. These val-
ues are shown for h and τ in Table B.1.

4.6 Discussion

Our main aim in this work was to extend our previously published statistical tool to be able to
identify key properties of an auto-negative feedback loop using combined data from a clus-
ter of cells. We have achieved this aim by extending all model parameters to continuous space
and employing state-of-the-art variational inference methods. We were able to improve the ac-
curacy and speed of the delay-adjusted Kalman filter by introducing higher-order ODE solvers.
We demonstrated that variational inference gave comparable results to advanced HMC meth-
ods, and was almost three orders of magnitude faster when inferring three unknown model
parameters simultaneously. We were able to use this approach to interrogate how parameter
uncertainty changed as the amount of data increased.

Variational inference using the Pathfinder algorithm allows us to sample from an approxima-
tion to the true posterior distribution with orders of magnitude fewer log-density and gradi-
ent evaluations of the target distribution. Pathfinder has been tested on a diverse set of pos-
teriors, and its accuracy ranges from slightly worse to much better than short chains of HMC
(Magnusson et al., 2022). To ensure this approximation was faithful in our model, we com-
pared samples from Pathfinder to samples obtained using dynamic HMC for a simple test
case, where one data set was used to infer three parameters simultaneously. We found that
when combining the samples from each approach, the resulting R̂ and ESS values indicated
that the convergence and summary statistics (mean and SD) were unchanged. Given these re-
sults, we do not expect our approximation to deviate significantly from the true posterior. We
then further investigated the use of Pathfinder by simulating time-series data equivalent to that
collected from 40 cells. Assuming the same parameter values, we were able to infer the tran-
scriptional time delay τ , the Hill coefficient h and the repression threshold P0. These param-
eters were chosen specifically because they are difficult to measure experimentally, and inter-
act via a Hill function, often making them difficult to separate. Despite this non-linearity, we
were able to accurately infer these parameters and recapture the dynamic behaviour using pos-
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terior predictive checks.

Although the inferred parameters did not converge to the true values as the number of cells in-
creased (Figure 4.5B–D), the errors in our estimates are not large enough to identify a differ-
ent dynamic regime (Figure B.2). To reduce unwanted errors in the estimates, Pathfinder can
be run I times to produce I normal approximations. Then Pareto-smoothed importance re-
sampling (see Algorithm 5 of Zhang et al. (2022)) from the mixture of these normals can pro-
vide a robust approximation to posteriors which are far from normal, e.g. multi-modal poste-
riors, or which have complex correlation structures. Investigating the effect of this resampling
procedure on inference accuracy may be required to prevent bias in posterior distributions.
Some amount of bias introduced by a variational inference approach is to be expected. It may
be possible to investigate the nature of this bias using simulation based calibration, i.e. sam-
pling from multiple posteriors using simulated data from multiple prior initialisations. The
bias in parameter estimates across all of the posteriors can then be analysed, to see if it is con-
sistent across parameter space, or perhaps follows some kind of distribution. Diagnostics to
assess variational inference have been proposed using this approach, which may enable us to
assess the average bias of a point estimate (Yao et al., 2018).

Although we were able to accurately estimate specific model parameters under the condition
that simulated cells share the same parameters, it may be desirable to allow cell-specific pa-
rameter values under a hierarchical model. This would relax the current assumption that ki-
netic parameters within a cluster of cells are identical, as well as the assumption that qualita-
tively similar dynamics reflect similar parameter values. Hierarchical Bayesian modelling of
biological regulation processes with delays have been used with improved results over non-
hierarchical counterparts (Cortez et al., 2021). Due to the implementation of our inference
framework and the use of the Turing.jl MCMC package, extending to a hierarchical model
would make for a straightforward next step in this work.

Another potential for inaccuracies in our inference comes from the ODE solver configuration
in the Kalman filtering prediction step. In order to achieve the speed-up we have reported,
the step size in our solver has been increased. This will inevitably introduce some numeri-
cal error, however, we have ensured that the relative error in our log-likelihood calculation is
smaller than 10−3 around the mode. In our tests on simulated data, we were able to recapture
model parameters, and, apart from an increase in run-time, our results were unchanged when
we increased the accuracy of our solvers.

We implemented our statistical method with the Julia programming language. The main mo-
tivation for this choice was the advanced differential equations ecosystem provided by Dif-
ferentialEquations.jl. For the same level of accuracy in our likelihood calculations, we found
a speed-up when using higher-order solvers in our Kalman filtering algorithm. A further ad-
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vantage was the ease of implementation of automatic differentiation methods, which provide
the likelihood gradients used for optimisation (Revels et al., 2016). This means that gradients
don’t have to be derived and implemented for new models and that the size of the code-base
was reduced by over 35% compared to directly implementing the gradients, substantially im-
proving readability. We have not been able to identify any other Kalman filtering software
packages that apply to SDDE models, and other software packages do not allow the choice
of higher-order ODE solvers. To encourage collaboration in the wider open-source scientific
programming community, our code is hosted publicly on GitHub, and tutorials and documen-
tation are available at https://burtonjosh.github.io/DelayedKalmanFilter.jl/dev/.

The improved accuracy of our parameter estimates will allow us to determine parameters most
likely associated with different dynamic patterns of expression. For example, we may find that
a high translation rate, or more stable mRNA, is linked to oscillatory expression that main-
tains the progenitor state. This improved ability to distinguish these patterns will allow us to
make biological predictions which can be validated experimentally. The potential application
of this method is broad, applying to any system governed by an auto-repressive negative feed-
back loop. This approach can also be easily extended to analyse other biological systems that
can be modelled using stochastic differential equations.
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Abstract

MicroRNAs (miRs) have an important role in tuning dynamic gene expression. However, the
mechanism by which they are quantitatively controlled is unknown. We show that the amount
of mature miR-9, a key regulator of neuronal development, increases during zebrafish neu-
rogenesis in a sharp stepwise manner. We characterize the spatiotemporal profile of seven
distinct microRNA primary transcripts (pri-mir)-9s that produce the same mature miR-9 and
show that they are sequentially expressed during hindbrain neurogenesis. Expression of late-
onset pri-mir-9-1 is added on to, rather than replacing, the expression of early onset pri-mir-
9-4 and -9-5 in single cells. CRISPR/Cas9 mutation of the late-onset pri-mir-9-1 prevents
the developmental increase of mature miR-9, reduces late neuronal differentiation and fails
to downregulate Her6 at late stages. Mathematical modelling shows that an adaptive network
containing Her6 is insensitive to linear increases in miR-9 but responds to stepwise increases
of miR-9. We suggest that a sharp stepwise increase of mature miR-9 is created by sequential
and additive temporal activation of distinct loci. This may be a strategy to overcome adapta-
tion and facilitate a transition of Her6 to a new dynamic regime or steady state.

Key words: pri-mir-9, miR-9, Neurogenesis, Zebrafish, Temporal control
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5.3 Introduction

MicroRNAs (miRs) are a class of small (∼22 nt) regulatory noncoding RNAs, which regu-
late gene expression at the posttranscriptional level. These small RNAs are processed from
large microRNA primary transcripts (pri-mir) into 70∼90 nt precursors (pre-mir) before fur-
ther splicing into ∼22 nt mature miR. miR-9 is a highly conserved miR that is expressed pre-
dominantly in the central nervous system (CNS) of vertebrates and plays a crucial role during
CNS development. Specifically, previous work in Xenopus, zebrafish and mice has shown that
miR-9 is essential for cell fate transitions during neurogenesis (Bonev et al., 2011; Bonev et
al., 2012; Coolen et al., 2013; Shibata et al., 2011). miR-9 post-transcriptionally targets many
transcription factors that are involved in neural development such as FoxG1 (Shibata et al.,
2008), Tlx (also known as Nr2e1) (Zhao et al., 2009) and members of the Hes/Her helix-loop-
helix family of transcription factors, including Hes1 in mouse and Xenopus (Bonev et al.,
2011; Bonev et al., 2012) and Her6/Her9 in zebrafish (Coolen et al., 2012; Galant et al., 2016;
Leucht et al., 2008; Soto et al., 2020).

The Hes/Her family of proteins is expressed dynamically in an oscillatory manner at the ul-
tradian timescale (Hirata et al., 2002; Shimojo et al., 2008). Hes/Her oscillations are achieved
by a negative feedback loop, whereby Hes/Her proteins inhibit their own transcription cou-
pled with a rapid turnover of protein and mRNA. Instability of both protein and mRNA allows
for levels of the protein to fall, de-repression to occur and expression to resume, generating
a cyclic pattern (Hirata et al., 2002; Novák & Tyson, 2008). Indeed, both mRNAs and pro-
teins of Hes family genes are unstable: for example, in mice, the half-life of Hes1 mRNA is
∼24 min, the Hes1 protein half-life is in the order of 22 min (Hirata et al., 2002) and the Her6
(Hes1 zebrafish orthologue) protein half-life is ∼12 min (Soto et al., 2020).

Instability of mRNA, as well as translation of protein, are partly controlled by miRs. Indeed,
our previous work revealed that miR-9 regulation is important for controlling Hes1 mRNA
stability and allowing the oscillatory expression of Hes1 to emerge (Bonev et al., 2012; Good-
fellow et al., 2014). We have recently shown that in zebrafish, the dynamics of Her6 protein
expression switch from noisy to oscillatory and then to downregulation, and that these changes
coincide temporally with the onset of miR-9 expression in the hindbrain (Soto et al., 2020).
When the influence of miR-9 on her6 is removed experimentally, Her6 expression does not
evolve away from the ‘noisy’ regime and is not downregulated with a consequent reduction in
progenitor differentiation. We have interpreted this to mean that the miR-9 input is necessary
to constrain gene expression noise, enabling oscillations to occur and to be decoded by down-
stream genes, which in turn participate in downregulating Her6 as cells differentiate (Soto et
al., 2020).
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However, not only the presence of miR-9 but also the amount of miR-9 present is important,
as too much or too little miR-9 can lead to dampening of Hes1 oscillations (Bonev et al., 2012;
Goodfellow et al., 2014). Indeed, mathematical modelling showed that increasing miR-9 over
time drives the Hes1 expression into different states (oscillatory or stable high/low) and that
the amount of miR-9 present in the cell determines the length of time for which Hes1 oscil-
lates, effectively timing the transition to differentiation (Goodfellow et al., 2014; Phillips et
al., 2016). Together these findings support that Hes/Her dynamics and downregulation are
sensitive to the amount of mature miR-9 present in the cell; however, the mechanism by which
the miR-9 level is controlled is not known.

This question is complicated by the observation that vertebrates (and some invertebrates) pos-
sess multiple copies of the miR-9 gene at distinct loci, which are all capable of producing
the same mature miR. For example, both human and mouse contain three copies of miR-9
(Rodriguez-Otero et al., 2011; Shibata et al., 2011) and frogs have four (Walker & Harland,
2008). Due to an additional round of whole-genome duplication (WGD) in teleost fish (Amores
et al., 1998; Jaillon et al., 2004), zebrafish have seven paralogues of miR-9 (pri-mir-9-1 to pri-
mir-9-7) (P. Y. Chen et al., 2005).

One possibility is that different genomic loci contribute to miR-9 regulation in a qualitative
way, with differential temporal and spatial specificity of mature miR-9 expression. Indeed,
there is some limited evidence that these discrete copies of miR-9 are expressed differentially
during development both temporally and spatially (Nepal et al., 2016; Tambalo et al., 2020).
Another, and yet unexplored, possibility is that transcription from different loci may serve to
control miR-9 quantitatively, that is to increase the amount of miR-9 in the cell and perhaps do
so in a temporally controlled manner, thus contributing to the change of miR-9 levels that is
necessary to drive a change in the dynamics of Hes/Her targets.

Here, we undertake a systematic study of pri-mir-9 expression in zebrafish that aims to ad-
dress the likelihood of these distinct scenarios, with special attention to the possibility of a
quantitative control mechanism. We show by in situ hybridization that the expression of miR-
9 spreads from the forebrain to the hindbrain and increases quantitatively in the hindbrain be-
tween 24 and 48 h postfertilisation (hpf). A detailed time course of the expression of all seven
pri-mir-9 paralogues shows that they are all transcriptionally active, but exhibit subtle, yet dis-
tinct, temporal and spatial profiles. Focusing on a set of early- and late-expressed pri-mir-9s
in the hindbrain (pri-mir-9-1, pri-mir-9-4 and pri-mir-9-5) by quantitative single molecule flu-
orescent in situ hybridisation at single cell level, we found that, surprisingly, in many cells,
early and late pri-mir-9s were concurrently transcriptionally active such that the expression
from late-activated pri-mir-9s is added on to the early ones. This is functionally significant
as the specific mutation of the late pri-mir9-1 selectively reduces neurons that normally dif-
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ferentiate late. Our mathematical modelling suggests that the sharp quantitative increase af-
forded by the deployment of additional transcriptional units, may facilitate the downregulation
of Her6 at late time points. We found this to be consistent with a subtle but reproducible fail-
ure to downregulate Her6 at late stages when pri-mir-9-1 was specifically mutated. Taken to-
gether, although both quantitative and qualitative mechanisms may contribute to the decoding
function of mature miR-9s, we found a previously unappreciated quantitative component in
the deployment of pri-mir-9s, which is temporally controlled and in turn controls the evolution
of Her6 dynamic expression over time.

5.4 Results

5.4.1 Pri-mir-9s are expressed with differed temporal onset

miRs are derived from a duplex precursor and the -5p strand (‘guide’) is preferentially in-
corporated into an RNA-induced silencing complex (RISC) to exert its regulatory functions,
while the complementary -3p strand (‘passenger’) is thought to be rapidly degraded. Indeed,
for the mature miR-9 the miR-9-5p is designated as the ‘guide’ strand and its annotation is de-
rived from the mature miR sequence being embedded in the 5’ stem of the miR-9 precursor.

To investigate the expression of the mature miR-9 (-5p strand) in zebrafish embryos, we first
performed a whole-mount in situ hybridization (WM-ISH) for the mature miR-9 using a locked
nucleic acid (LNA) probe. Mature miR-9 was detected only in the forebrain at 24 hpf (Fig-
ure 5.1A), but at 30 hpf miR-9 was weakly observed in the midbrain and rhombomere (r) 1 of
the hindbrain, maintaining high expression in the forebrain (Figure 5.1A, 30 hpf). As devel-
opment progressed, miR-9 expression increased in the hindbrain with steady high levels in the
forebrain (Figure 5.1A, 35-38 hpf; blue arrow). Later in development, levels in the hindbrain
were further increased, while those in the forebrain were decreased (Figure 5.1A, 48 hpf; blue
arrow, hindbrain; green arrow, forebrain). These results show a temporally controlled increase
of miR-9 expression along the brain/hindbrain axis as previously described in Soto et al. (2020).

To characterize the increase of expression in the hindbrain in a quantitative manner, we used
quantitative real-time PCR (RT-qPCR) on dissected hindbrains from stages 25 hpf to 48 hpf.
This analysis confirmed that there is upregulation in the time frame analysed. An initial low
level of expression at 30 hpf was followed by a sharp upregulation at 37 hpf, which was main-
tained through to 42 hpf, undergoing a second sharp increase at 48 hpf (Figure 5.1B).

In zebrafish, the mature miR-9 can be produced from seven paralogues of miR-9. The miR-9
paralogues occupy seven unique loci across the genome (GRCz11; Genome Reference Con-
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Figure 5.1: Pri-mir-9 paralogues are expressed with different temporal onset. A. Representative example
of chromogenic whole-mount in situ hybridization (WM-ISH) of miR-9 using miR-9 LNA 5’-Dig observed at
different stages during development. Similar results can be observed in Soto et al. (2020). Longitudinal view,
anterior to the left. Green arrow, forebrain expression; blue arrow, hindbrain expression. B. Taqman RT-qPCR
of mature miR-9 from dissected hindbrain at different stages of development, relative to 25 hpf. Horizontal bars
indicate the median with 95% confidence intervals. C. Chromogenic WM-ISH of different pri-mir-9s using spe-
cific probes for each paralogue observed at different stages during development. Longitudinal view, anterior to
the left. Blue arrowhead, expression in hindbrain at 30-31 hpf; light blue arrowhead, expression in hindbrain at
34-36 hpf; blue arrow, expression in hindbrain at 48 hpf. D,E. SYBR green RT-qPCR relative quantification of
the seven pri-mir-9s from dissected hindbrains at different stages of development. Quantification was normalised
using β-actin. Data are mean±s.d. (B,D,E) N = 3, each N contains a pool of 10 hindbrains. Scale bars: 200
µm.

sortium Zebrafish Build 11) (Yates et al., 2020). With the exception of miR9-3, which is lo-
cated upstream of a long intergenic noncoding RNA (lincRNA), all miR-9 genes are intra-
genic, overlapping annotations of lincRNAs or proteins (Yates et al., 2020) (Figure C.1A,B).
Our in silico analysis of previously published RNA-seq data shows differential temporal ex-
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pression of six of the seven miR-9 paralogues hosts (White et al., 2017). It is also clear that
upregulation of miR-9 host genes (and hence miR-9) coincides with a gradual decline in the
expression of Her/Hes family gene expression, consistent with the idea that Her/Hes genes are
major targets of miR-9 (Figure C.1C) (Bonev et al., 2011).

Previous work has revealed that the seven miR-9 zebrafish paralogues are expressed in the
forebrain at early stages of neurogenesis; however, toward the end of embryonic neuronal dif-
ferentiation they are also expressed in the hindbrain (Nepal et al., 2016). Little is known about
the period spanning the peak of neurogenesis, when miR-9 controls downstream targets such
as the ultradian oscillator Her6. To characterize the expression in greater spatiotemporal de-
tail, particularly over regions of the hindbrain area in which Hes/Her target genes are expressed,
we investigated the expression of all seven primary transcripts over a time period spanning the
peak of neurogenesis, which occurs at 33 hpf (Lyons et al., 2003), using specific probes for
each pri-mir-9 (Figure C.2; Section 5.6.3).

We observed that all pri-mir-9s were first expressed in the forebrain (24 hpf) in a regional spe-
cific manner, which is not further characterised here. At 48 hpf they are all also expressed
in the hindbrain (Figure 5.1C, 24 and 48 hpf; Figure C.3A-C) consistent with previously de-
scribed results (Nepal et al., 2016). Differential expression was evident in the intermediate
stages. Specifically, primir-9-3, -9-4 and -9-5 were expressed ahead of the others in the hind-
brain (Figure 5.1C, 30-31 hpf; blue arrowhead). At the peak of hindbrain neurogenesis (34-36
hpf), pri-mir-9-2 and -9-7 were upregulated, joining most of the pri-mir-9s that were highly
expressed at this stage (Figure 5.1C, 34-36 hpf). Pri-mir-9-1 and -9-6 were temporally de-
layed, showing hindbrain expression at 48 hpf, at which point all pri-mir-9 were fully expressed.
Quantifying the expression with RT-qPCR confirmed that pri-mir-9-4 and -9-5 were expressed
early and that expression of pri-mir-9-1 commenced relatively late, at 42 hpf (Figure 5.1D,E).
At 48 hpf, all pri-mir-9s had a lower level of expression, although pri-mir-9-1 continued to be
relatively high compared with the other pri-mir-9s (Figure 5.1D,E). Overall, every pri-mir-9
was expressed in the CNS and exhibited a temporal progression.

5.4.2 Expression of pri-mir-9s from distinct loci is additive and sequentially activated

To achieve a more detailed characterisation of expression, we selected three different primary
transcripts based on: (1) the onset of their hindbrain temporal expression during development,
earliest or latest; and (2) a phylogenetic analysis of sequence based on vertebrate evolutionary
relationship performed by Alwin Prem Anand et al. (2018) to select representatives that are
widely distributed in the phylogenetic tree. Thus, pri-mir-9-5 was selected as the earliest to
be expressed in the hindbrain and belonging to clade I/subgroup I, pri-mir-9-4 as the earliest

114



Figure 5.2: Progressive additive expression of pri-mir-9s during development. A–D. Representative example
of double fluorescent WM-ISH (WM-FISH) labelling of pri-mir-9-1/pri-mir-9-4 (A,C) and pri-mir-9-1/pri-mir-
9-5 (B,D) in hindbrain (hb) from wild-type embryo observed at 30-32 hpf (A,B) and at 48 hpf (C,D). Transverse
view was collected from hindbrain rhombomere 4/5. Longitudinal view was collected from embryos with an-
terior to the left and posterior to the right; images are maximum intensity projection; 5 µm thickness for 48 hpf
embryos and 10 µm thickness for 30-32 hpf embryos. Merged images indicate pri-mir-9-4 or -9-5 in magenta
and pri-mir-9-1 in green. White arrows indicate artefactual signal originated from the amplification step with
FITC staining in the WM-FISH; red arrowheads indicate rhombomere 1 of the hindbrain. Pri-mir-9-1/pri-mir-
9-4: longitudinal/30-32 hpf, N = 3; transverse/30-32 hpf, N = 3; longitudinal/48 hpf, N = 4; transverse/48
hpf, N = 8. Pri-mir-9-1/pri-mir-9-5: longitudinal/30-32 hpf, N = 3; transverse/30-32 hpf, N = 4; longitudi-
nal/48 hpf, N = 4; transverse/48 hpf, N = 5. E. Schematic of transverse section from zebrafish hindbrain at
the level of the otic vesicle for 30-32 hpf and 48 hpf. A, anterior; MZ, mantle zone; P, posterior; VZ, ventricular
zone. Within the VZ there are dorsal progenitors (DP), medial progenitors (MP) and ventral progenitors (VP).
Scale bars: 30 µm.

and belonging to clade II, and pri-mir-9-1 as the latest and belonging to clade I/subgroup II
(Figure C.3D) (Alwin Prem Anand et al., 2018).

Double whole-mount fluorescent in situ hybridization (WMFISH) for pri-mir-9-1/pri-mir-9-4
and pri-mir-9-1/pri-mir-9-5 performed on stage 30-32 hpf embryos revealed expression of pri-
mir-9-4 and pri-mir-9-5 along the anterior-posterior (A-P) hindbrain axis, whereas the expres-
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sion of pri-mir-9-1 at this early stage was limited to the region of the anterior hindbrain corre-
sponding to r1 (Figure 5.2A; red arrowhead). A transverse view at mid-hindbrain (r4) reveals
expression of pri-mir-9-4 and pri-mir-9-5 within the ventricular zone (VZ; Figure 5.2A,B,E),
indicating that pri-mir-9s are expressed in the region where most of the progenitors are found
(Lyons et al., 2003; Tambalo et al., 2020). Pri-mir-9-1 staining shows an artefactual surface
expression, as indicated with white arrow in transverse view at 30-32 hpf (Figure 5.2A,B);
this is because of the WM-FISH detection method.

We repeated this analysis at 48 hpf to examine whether the late expression of pri-mir-9-1 is
cumulative with pri-mir-9-4 and primir-9-5 or spatially distinct. Double WM-FISH of pri-mir-
9-1 with pri-mir-9-4 or pri-mir-9-5 revealed overlapping expression of the primary transcripts
in both longitudinal and transverse views (Figure 5.2C,D). In addition, some distinct expres-
sion was observed in transverse views in that pri-mir-9-1 was more broadly expressed toward
the dorsal progenitor region (Figure 5.2C-E) when compared with pri-mir-9-4 and pri-mir-9-
5.

5.4.3 Mature miR-9 accumulates in single cells by overlapping expression of distinct loci pri-

mary transcripts

For overlapping expression to contribute to the total levels of mature miR-9 in a cell, early and
late pri-mir-9s would need to be expressed in the same cells. Thus, we investigated pri-mir-9
expression at the single-cell level, using triple WM-smiFISH for pri-mir-9-1, -9-4 smiFISH
(single-molecule inexpensive fluorescent in situ hybridization) and -9-5 to detect nascent tran-
scription sites, and Phalloidin staining to reveal cell boundaries. At 30 hpf we observed that
most cells expressed only one miR-9 primary transcript, pri-mir9-4 or pri-mir-9-5, while a
small proportion expressed both and none expressed pri-mir-9-1 (Figure 5.3A,D-F). By con-
trast, at 36-37 hpf and 48 hpf (Figure 5.3B,C), the number of cells that expressed one pri-
mir-9 decreased and, correspondingly, the number that expressed two or three pri-mir-9s in-
creased. The most striking increase was observed in the number of cells that co-express three
pri-mir-9s at 36-37 hpf, which was because of the onset of transcription of pri-mir-9-1 in the
same cells that expressed pri-mir-9-4 and -9-5. This finding suggests that, in many hindbrain
cells, the late expression of pri-mir-9-1 is added to the earlier expression of pri-mir-9-4 and
-9-5.
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Figure 5.3: Mature miR-9 expression in a cell is contributed by overlapping activation of distinct miR-9
loci. A–C. Representative example of the transverse view from triple whole-mount smiFISH, labelling active
transcriptional sites for pri-mir-9-5, -9-4 and -9-1 (from left to right) combined with cell boundary staining
(Phalloidin-Alexa Fluor 488) in hindbrain from wild-type embryo at 30 hpf (A), 36-37 hpf (B) and 48 hpf (C).
Merged images show pri-mir-9-5 in magenta, pri-mir-9-4 in yellow, pri-mir-9-1 in cyan and membrane in grey.
A’–C’. Increased magnification of representative images to show single cells expressing any single pri-mir-9 (1
pri-mir-9), any two different pri-mir-9 (2 pri-mir-9) and the three different pri-mir-9 (3 pri-mir-9). D–F. Percent-
age of cells expressing any single pri-mir-9 (D), any two different pri-miR-9 (E) and three different pri-mir-9
(F) relative to the total number of cells positive for the precursors (30 hpf, N = 4; 37-37 hpf, N = 4; 48 hpf,
N = 3). Data are median with 95% confidence interval. Scale bars: 20 µm (A-C); 5 µm (A’-C’).

5.4.4 Medial and dorsal progenitors maintain concurrent expression of miR-9 primary tran-

scripts at late neurogenesis

Based on the smiFISH data presented above, we created a map that depicts transcription in
single cells in transverse sections of the hindbrain over development (Figure 5.4A-C). From
left to right we observe: (i) the whole transverse section obtained from the Phalloidin staining,
(ii) the region in which cells transcribe primir-9-5, (iii) the cells with overlapping transcription
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Figure 5.4: Concurrent expression of miR-9 precursors in dorsal and medial progenitors.

for pri-mir-9-5/ 9-4 and (iv) the cells in which the three primary transcripts are transcribed
(Figure 5.4A-C). At 30 hpf, pri-mir-9-4 and -9-5 are co-expressed in many cells of the VZ
(Figure 5.4A). At 36-37 hpf, pri-mir-9-1 is transcriptionally activated in most, but not all, neu-
ral progenitors that already express pri-mir-9-4 and -9-5 (Figure 5.4B). At 48 hpf the pattern
of triple pri-mir-9 co-expression is similar to that seen in 36-37 hpf (Figure 5.4C). This re-
sult supports the concurrent expression of pri-mir-9s at late stages but also shows their expres-
sion in the neural progenitor area, which thins during development as cells differentiate (Fig-
ure 5.4D). All three paralogues are switched off in differentiating cells located in the marginal
zone, suggesting that they are involved in the decision to differentiate rather than in maintain-
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Figure 5.4: A–C. Mask representing segmented cells obtained from confocal images in Figure 5.3. Using Imaris
software, the cell segmentation was performed based on the membrane marker, Phalloidin-AF488, and the spot
tool allowed us to count active transcriptional sites for pri-mir-9-5, -9-4 and -9-1. From left to right we visualize
the mask showing all segmented cells present in the transverse view of the hindbrain (i, light blue), segmented
cells that express pri-mir-9-5 (ii, magenta), both pri-mir-9-5 and -9-4 (iii, light pink) and all three pri-mir-9-5, -9-
4 and -9-1 (iv, grey). The study was performed at 30 hpf (A), 36-37 hpf (B) and 48 hpf (C). D. Schematic of the
transverse section from zebrafish hindbrain at the level of the otic vesicle for 30-32 hpf, 36-37 hpf and 48 hpf.
MZ, mantle zone; VZ, ventricular zone. Within the VZ there are dorsal progenitors (DP), medial progenitors
(MP) and ventral progenitors (VP). E. Representative example of transverse view at 36-37 hpf from triple whole-
mount smiFISH labelling neurog1 as ventral progenitor marker (VP, yellow), ascl1 as medial progenitor marker
(MP, magenta) and atoh1 as dorsal progenitor marker (DP, cyan). The merge image shows the three progenitor
markers in their respective colours, which are expressed in the VZ as described in D. F. Representative example
of transverse view at 36-37 hpf, from triple whole-mount smiFISH labelling pri-mir-9-5 (cyan) and the zebrafish
Hes1 orthologues her6 (yellow) and her9 (magenta). The merge image shows pri-mir-9-5 (cyan) co-expressing
with her6 (yellow) and her9 (magenta). The dashed line indicates a boundary between different progenitor re-
gions (dorsal, medial and ventral progenitor region). Scale bars: 20 µm.

ing the differentiated state (Figure 5.4A-C).

To explore the identity of the triple pri-mir-9 expressing progenitors, we turned our attention
to the dorso-ventral (D-V) progenitor axis of the VZ. The everted structure of the zebrafish
hindbrain means that dorsal progenitors are located more laterally than medial or ventral ones
(Figure 5.4D). We compared the expression to neurog1, ascl1 and atoh1, which are markers
for ventral, medial and dorsal progenitors, respectively (Figure 5.4E) (Tambalo et al., 2020).
Remarkably, at early stages of development the cells expressing two primary transcripts were
mostly localized in the ventral progenitor region of the VZ (Figure 5.4A), whereas at later
stages the cells with three primary transcripts excluded the ventral-most domain (Figure 5.4B,C),
suggesting that miR-9 high levels are required in medial and dorsal progenitors. Pri-mir-9-5
was expressed throughout the everted D-V axis (Figure 5.4B,D,F) and was coexpressed with
her6 and her9, both of which were expressed in the progenitor domain (mainly medial and
some dorsal) and are downregulated as cells differentiate. We have previously described Her6
protein expression also in ventral progenitors, which is, however, extremely weak at late de-
velopment (36-37 hpf) and has not been detected by smiFISH here (Soto et al., 2020). Both
her6 and her9 contain miR-9 binding sites and are candidates for dynamic regulation by miR-
9 (Figure 5.4F) (Coolen et al., 2013; Leucht et al., 2008; Soto et al., 2020).

5.4.5 Knocking out the late pri-mir-1 preferentially affects neuronal differentiation from me-

dial progenitors

The spatial analysis above showed that the expression of pri-mir-9-1 is added onto to pre-existing
pri-mir-9-4 and -9-5 expression in medial and dorsal progenitors. To find out whether there is
any specificity in deleting pri-mir-9-1, we designed a CRISPR/Cas9based knockdown with
guides that were specific to pri-mir-9-1 (Figure 5.5A; Figure C.4A-C). This resulted in reduc-
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Figure 5.5: Knocking out the late pri-mir-9-1 preferentially affects neuronal differentiation from medial
progenitors.

tion of mature miR-9 and pri-mir-9-1 from 37 hpf onwards when the endogenous locus was
transcribed (Figure 5.5B,C). RT-qPCR was also performed to primir-9-3, -9-4 and -9-5 under
mutation of pri-mir-9-1. Some reduction (with high variability between samples) was also ob-
served in pri-mir-9-4 and -9-5, but it was not maintained at later stages of development (Fig-
ure C.4E,F, 48 hpf). Pri-mir-9-3 was not affected (Figure C.4D).

Exploring the potential defect further we used a panel of differentiation markers spanning the
D-V axis (Figure 5.5D). Injected fish did not show overt abnormalities; however, RT-qPCR
analysis at 3 days post-fertilisation (dpf) showed that the differentiation marker elavl4 was
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Figure 5.5: A. Pri-mir-9-1 hairpin loops with the respective primers used for quantitative PCR annotated as blue
arrows (Section 5.6.2; Table C.3). Customized guide RNA to delete specifically pri-mir-9-1 are annotated as
g1, g2 and g3. Red sequence, miR-9-5’ arm; orange sequence, miR-9-3’ arm; black letters, premir-9; grey se-
quence, partial sequence of pri-mir-9-1. B. Taqman RT-qPCR of mature miR-9 from dissected hindbrain at dif-
ferent stages of development, in wild-type conditions (black dots) and deletion of pri-mir-9-1 (red dots), relative
to wild-type at 25 hpf. C. SYBR green RT-qPCR relative quantification of primir-9-1 from dissected hindbrain
at different stages of development, in wild-type conditions (black dots) and deletion of pri-mir-9-1 (red dots).
Quantification was normalised using β-actin. D. Schematic of transverse section from zebrafish hindbrain at the
level of the otic vesicle at 48 hpf. MZ, mantle zone; VZ, ventricular zone. Within the VZ there are dorsal pro-
genitors (DP), medial progenitors (MP) and ventral progenitors (VP). The schematic shows late neuronal mark-
ers expressed in different neuronal cell types in the hindbrain: dA1, dorsal neurons expressing barhl1a; NAN,
noradrenergic neurons expressing dbmx1; dB4, GABAergic interneurons expressing pax2a; V2, interneurons ex-
pressing tal1; VN, ventral neurons expressing tal1; MN, motor neurons expressing isl1; N, pan neuronal zone
expressing elavl4; otpb is localised in the dB4 region but is a marker for dopaminergic neurons. E–K. SYBR
green relative quantification of elavl4 (E), barhl1a (F), dmbx1a (G), pax2a (H), otpb (I), tal1/scl1 (J) and isl1 (K)
from dissected hindbrain at 72 hpf, in wild-type conditions (black dots) and deletion of pri-mir-9-1 (red dots).
Quantification was normalised using β-actin. Horizontal bars indicate median with 95% confidence intervals.
*P<0.05 (Mann-Whitney two-tailed test). (B-C) N = 3, each N contain a pool of 10 hindbrain. (E-K) N = 5.
ns, not significant.

reduced (Figure 5.5E). This analysis also showed that, within the her6 domain, there was a
reduction of noradrenergic neurons (NAN) derived from medial progenitors (dmbx1a; Fig-
ure 5.5G) and adjacent GABAergic interneurons (pax2a; Figure 5.5H), while the more ventral
neuronal markers tal1 and isl1 (isl1a) were not significantly different, neither was the most
dorsal marker (barhl1a) outside the her6 domain (Figure 5.5F,I-K).

Medial/dorsal progenitors differentiate later in vertebrate development than ventral ones (Delile
et al., 2019), therefore our findings suggest that the late increase of miR-9, afforded by the ad-
ditional deployment of pri-mir-9-1, is needed for cells to adopt a late neuronal fate.

5.4.6 A miR-9 stepwise increase may be required to overcome adaptation of downstream tar-

get expression

Having shown that the increase in miR-9 in development is functionally important for differ-
entiation, we wanted to explore whether the shape of the increase is also important. In other
words, whether the way that miR-9 increases in steps can be decoded. This was motivated by
the biological evidence obtained from smiFISH and RT-qPCR experiments in which we ob-
served a stepwise sharp increase of the primary transcripts (Figure 5.6A) and the mature miR-
9 (Figure 5.1B) over time. We used a mathematical model to ask whether a simple network of
gene interactions can differentially respond to a stepwise increase of miR-9 rather than a grad-
ual increase.

Biological systems need to be robust to stochastic fluctuations that are due to low copy num-
bers, or random perturbations in the surrounding environment. This is referred to as adapta-
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Figure 5.6: A miR-9 stepwise increase may be required to overcome adaptation of downstream target ex-
pression. A. Graph representing the number of nascent transcription sites for pri-mir-9-1 (yellow), pri-mir-9-4
(magenta) and pri-mir-9-5 (cyan) at 30 hpf, 37-38 hpf and 48 hpf in 25 µm thick transverse sections. 30 hpf,
N = 4; 37-37 hpf, N = 4; 48 hpf, N = 3. Data are mean±s.d. B. Schematic of the extended mathematical
model, which combines an incoherent feedforward loop with an additional mutually repressive self-activating
downstream target, Y . The parameters αh, αX and αY represent the basal production rates of h, X and Y , re-
spectively. µh, µX and µY represent the degradation rates of h, X and Y , respectively, and βY represents the
production rate of Y under self-activation. The hi and pi are Hill coefficients and repression thresholds, respec-
tively, for each of the Hill functions G+ and G−, and G(x) = 1/x. The model is described in detail in the Sec-
tion 5.6.13 (subsection Extended model) and specific parameter values are listed in Table C.14. C,D. Dynamics
of Her6 in response to different miR-9 expression profiles, for the extended model. (C) A linear miR-9 expres-
sion profile leads to a small initial response in Her6 expression levels, which returns to steady state levels ow-
ing to the perfect adaptation. (D) Large instantaneous changes in miR-9 can result in a change in steady state
for Her6. The initial step change is not sufficient to cause a change in steady state, therefore we introduce a fold
change in the stepwise increase of miR-9, which activates Y and represses Her6 into a lower steady state.

tion in the context of a particular output of interest, making the biological system resistant to
changes in the input. However, some changes in signals are not simply due to noise or envi-
ronmental fluctuations, and adaptive systems may therefore also have to respond to specific
signals under changing conditions, especially during development, in order to move into a
new state. Thus, we explored whether a stepwise change in gene expression can allow a sys-
tem to move out of an adaptively stable state. As incoherent feed-forward loops (IFFL) are
common in biology (Goentoro et al., 2009; Shen-Orr et al., 2002) and have been shown to
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enable adaptation (Khammash, 2021), we hypothesized the existence of such a network cen-
tred around miR-9 as the input and Her6 as the output (Figure C.5A; Section 5.6.13) in which
miR-9 affects Her6 negatively (directly) but also positively (indirectly) via repressing a re-
pressor, X . Here, miR-9 directly reduces the rate of production of Her6 protein as well as
the rate of production of an intermediate (unknown) species X . Similarly, the production of
Her6 is repressed by X (Figure C.5A; parameter values, Table C.14). Mathematically, we say
that Her6 adapts perfectly to changes in miR-9 as, in this model, the steady state of Her6 is
independent of miR-9 (Section 5.6.13, Steady state calculation of Her6 in the perfect adapta-
tion model). The speed of this adaptation is controlled by the difference in reaction speed of
the direct and indirect interactions between miR-9 and Her6. If the direct interaction is much
faster than the indirect interaction, Her6 returns to steady state slowly after miR-9 copy num-
bers are perturbed. However, if the indirect interaction is faster, adaptation occurs quickly.

Such ‘perfect adaptation’ is beneficial because it allows stable mean expression of Her6 in the
presence of fluctuations of miR-9 expression (Figure C.5B,C). Conversely, no changes in miR-
9, i.e. linear or stepwise, can lead to persistent downregulation of Her6. As Her6 is downreg-
ulated in response to increasing miR-9 levels during development, there would need to be an
additional mechanism that enables the controlled escape from perfect adaptation. To investi-
gate this, we extended our model to include such a potential mechanism (Figure 5.6B). Specif-
ically, we introduced a downstream target of Her6, named Y , which self-activates and inter-
acts with Her6 through mutual repression (as we have already previously hypothesised in Soto
et al. (2020)). The different behaviours of this system can be seen in Figure 5.6C,D. A linear
increase in miR-9 leads to an initial repression of Her6, which then proceeds to return to its
unperturbed steady state, due to the perfect adaptation (Figure 5.6C; Figure C.6A). However,
following a sharp increase of miR-9, the concentration of Her6 decreases more strongly. This
is sufficient for Y to overcome the repression from Her6, so that it can self activate and in turn
repress Her6 into a new, lower steady state (Figure 5.6D; Figure C.6B). Hence, this extended
motif can indeed overcome the built-in adaptation. Importantly, the escape from adaptation is
triggered by a step-like change in miR-9 expression and cannot be achieved through gradual
changes in miR-9 expression, or small-scale fluctuations.

The qualitative behaviour of the model is not sensitive to different values of the parameter
p1, which regulates the strength of repression of Her6 by Y . The precise choice of p1 simply
modulates the level of the lower state of Her6 expression (Figure 5.6D versus Figure C.6B).
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Figure 5.7: Knocking out the late pri-mir-9-1 impairs her6 downregulation over the course of development.
A. Representative example of transverse view from whole-mount smiFISH labelling her6 transcript (yellow)
combined with cell boundary staining, Phalloidin-Alexa Fluor 488 (grey), in hindbrain from pri-mir-9-1 homozy-
gote mutant (pri-mir-9-1−/−) (bottom panels) and wild-type (top panels) embryos at 48 hpf. Insets are increased
magnification from representative images from the boxed area. The images are maximum projections of three
z-stacks, 1.89 mm. Green arrows indicate regions with high her6 expression levels in pri-mir-9-1−/− mutants.
B. Percentage of cells expressing her6 relative to total number of cells. Pairwise comparison of her6-positive
cells; dots indicate mean per experiment from wild-type (two embryos, three embryos, four embryos; three in-
dependent experiments) and pri-mir-9-1 homozygote mutant (two embryos, two embryos, three embryos; three
independent experiments); *P=0.041 (one-tailed paired t-test). Scale bars: 30 µm.

5.4.7 Knocking out the late pri-mir-1 results in failure to downregulate Her6 in late devel-

opmental stages

The prediction from the mathematical model is that a stepwise increase of miR-9 is needed for
Her6 protein to transition to a new gene expression state. We have previously shown that, dur-
ing development, Her6 expression undergoes a transition from noisy to oscillatory to down-
regulation (Soto et al., 2020). Therefore, we performed her6 smiFISH in transverse sections
of the hindbrain to quantify the percentage of her6-positive cells in a wild-type and in a pri-
mir-9-1 homozygous mutant (pri-mir-9-1−/−) stable fish line (Figure C.7A-C). In the pri-mir-
9-1 mutants, at 48 hpf her6 was not downregulated in medial progenitors (Figure 5.7A,B) nor
in ventral progenitors where the expression is normally lower (Soto et al., 2020). The lack of
her6 downregulation was confirmed with WM-ISH (Figure C.7D) and with live imaging of
homozygous Her6::Venus knock-in zebrafish (Soto et al., 2020), which were also heterozy-
gous for the pri-mir-9-1 mutation (Figure C.7E, pri-mir-9-1+/−). Therefore, our findings sug-
gest that the late activation of pri-mir-9-1 contributes to the increase of miR-9 needed to down-
regulate Her6/Her9 in late neural progenitors so that they can give rise to a spatiotemporally
appropriate neuronal fate.
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5.5 Discussion

miR-9 is expressed from several genomic loci which, after transcription and processing, pro-
duce the same 5’ mature form of miR-9 that targets the key neural progenitor transcription
factors, Her/Hes. How common is this multi-locus organisation? In humans, only 6.3% of
mature miR arms are identical across two or more loci (Kozomara et al., 2019): it is thus not
very common, but it is not unique to miR-9. In zebrafish this number rises to around 32.3%
(Kozomara et al., 2019). The higher number of miR expressed from multiple loci is possi-
bly due to the teleost-specific WGD. Evidence from rainbow trout also shows that, following
the salmonid-specific extra round of WGD, miRs appear to be retained at higher levels than
protein-coding genes (Berthelot et al., 2014). This may suggest that extra copies of miR are
evolutionarily advantageous. Here, we propose that retention of multiple miR loci could have
specific functional advantages for regulatory control of the target gene expression of an organ-
ism. By examining in detail the temporal and spatial expression at a single cell level of three
selected early and late pri-mir-9s, from across their phylogenetic tree, we offer two possible,
not-mutually exclusive, explanations for this multi-site organisation or primary transcripts.

The first explanation involves a qualitative mechanism. In this scenario, distinct pri-mir-9s
have a different spatial expression, which allows them to target different, i.e., region-specific,
gene expression. Some differences in the spatial expression of pri-mir-9s are easily discernible
at low resolution (e.g. differential expression in the forebrain), whereas others are subtle and
require posthybridisation sectioning to document, as we have done here. An example of the
latter is the expression of pri-mir-9-1 which extends more dorsally in the hindbrain than pri-
mir-9-4 at a late stage of development. This correlates well with the expression of Her6 and
Her9, which are both miR-9 targets but are expressed adjacent to each other along the D-V
axis (Soto et al., 2020).

The second explanation favours a quantitative mechanism. In this scenario, the differential
temporal expression, where some primary transcripts commence their expression early while
others are only expressed late, results in the simultaneous expression of both (or more) tran-
scriptional loci in the same cells at a particular time in development. In support of this sce-
nario, we have shown using smiFISH that pri-mir-9-1, a late onset primary transcript, is coex-
pressed in the same cells as the earlier onset pri-mir-9-4 or -9-5. This co-expression may be a
strategy to increase the amount of miR-9 available to the cell to a level more than that possible
with transcription from one locus alone.

Why would an increase in mature miR-9 over time be needed? One possibility is raised by
the recent work from Amin et al. (2021), who demonstrated that miR-dependent phenotypes
emerge at particular dose ranges because of hidden regulatory inflection points of their un-
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derlying gene networks. This indicates that the miR cellular dose is a major determinant of
in vivo neuronal mRNA target selection. A complementary scenario is supported by our pre-
vious work where we have shown that the dynamical profile of Hes1 (i.e. oscillatory expres-
sion to stable expression of different levels), as well as the amount of time that Hes1 oscillates
for, depends on the amount of miR-9 in the cell (Bonev et al., 2012; Goodfellow et al., 2014;
Phillips et al., 2016). More recently, we have also shown, using in vivo manipulations, that the
input of miR-9 changes the dynamic expression of Her6 from noisy to oscillatory and then to
decreasing (Soto et al., 2020).

Taken together, these findings suggest that variations in the dose level of a single miR achieved
by additive transcription can exert regulatory effects either by targeting different downstream
gene products or by modifying the dynamic expression of the same targets. Both scenarios
are compatible with experimental results, whereby mutating the late-onset pri-mir-9-1 pref-
erentially reduced the appearance of markers for neurons that differentiate late. This suggests
that the late miR-9 increase is important for late cell fate choices. This is further supported by
our previous work reporting a complete repression of neurogenesis along the D-V axis of the
hindbrain (Bonev et al., 2011) when total miR-9 is knocked out, whereas in this article pri-
mir-9-1 knockout (KO) has more specific effect.

In other cases where multiple paralogues of a miR have been described, differential and non-
mutually exclusive qualitative and quantitative regulation may also take place. For example,
a recent study found that miR-196 paralogues show both unique and overlapping expression
in the mouse (Wong et al., 2015). In this study, single KOs showed some unique phenotypes
(qualitative mechanisms) but combinatorial KOs showed better penetrance and additional
defects, suggesting an additive role of miR-196 paralogues in establishing vertebral number
(quantitative mechanism).

A salient finding from our analysis is that the increase in the amount of miR-9 present in the
cell is sharp, as one would perhaps expect by the onset of transcription from additional loci.
An exciting possibility, supported by our mathematical modelling, is the existence of gene
network motifs that do not respond to slow increases of miR-9 because they are designed to
show adaptation, that is, to have steady output in spite of external perturbations. Such network
motifs often involve IFFLs, which in turn are very common in biological systems because of
their multiple advantages, including fold-change detection and robustness of output (Goen-
toro et al., 2009; Khammash, 2021). However, in development, cells also need to transition
from one state to another in order to diversify cell fates, which is essential for the develop-
ment of multicellular organisms. Thus, despite the usefulness of adaptation for robustness and
homeostasis (Khammash, 2021), a mechanism must exist to be able to over-ride it. We sug-
gest that, in the case of miR-9, a sharp, nonlinear increase may be needed to push a dynami-
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cal system into a new state and this may be associated with a cell fate change. In our case, we
suggest that the increase of miR-9 during development serves to drive the dynamics of Her6
(and other targets) from one state to another, which may include temporal downregulation,
and which in turn is important for the sequential acquisition of cell fates.

At present, our computational model is qualitative, rather than quantitative, and the identities
of some interacting genes in the network motif are not known. For example, we postulate the
existence of a gene X that lies between miR-9 and Her6. Interestingly, a preliminary bioinfor-
matic screen using transcription factor binding profiles from JASPAR (Castro-Mondragon et
al., 2022) and miR target predictions for miR-9 from TargetScanFish (Release 8.0) (McGeary
et al., 2019) has identified Onecut, among others, as a potential candidate for factor X , which
is a predicted regulator of Her6 and a direct target of miR-9. This is encouraging because
Onecut is expressed in the zebrafish hindbrain, is a validated miR-9 target (Bonev et al., 2011;
Madelaine et al., 2017) and a temporal factor for mammalian neurogenesis (Sagner et al., 2021).

Despite these limitations, this model was conceptually useful to illustrate the existence of a
system that can decode and distinguish between specific upstream signalling profiles. Inter-
estingly, miRs are very commonly involved in transcription factor network motifs, including
IFFLs (Tsang et al., 2007). However, the regulation of each pri-mir-9 is presently unknown,
but miRs are often involved in reciprocal interactions with transcription factors (Minchington
et al., 2020). A fully parameterized model based on experimental evidence and identification
of the unknown components/genes would be needed before it can be tested further.

In conclusion, by providing evidence for both a quantitative and qualitative mechanism, we
have shed light on the possible roles of organising pri-mir-9s in several distinct genomic loci,
which may have led to their evolutionary conservation. An added benefit of our work is that
the detailed characterisation we have described here will enable the selection of the correct
genomic locus for genetic manipulation of miR-9 production, depending on the precise spa-
tiotemporal expression. It would be interesting to see whether the same mechanism is ob-
served in mammalian species that have three distinct primary miR-9s.

5.6 Materials and Methods

5.6.1 Research animals

Animal experiments were performed under UK Home Office project licences (PFDA14F2D)
within the conditions of the Animal (Scientific Procedures) Act 1986. Animals were only han-
dled by personal licence holders.
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5.6.2 mRNA extraction and RT-qPCR

miRs and total mRNA were extracted from a pool of ten zebrafish hindbrains using the miR-
Vana miRNA Isolation kit and gDNA removed using DNase1 (New England Biolabs). Re-
verse transcription was performed with either TaqMan MicroRNA Reverse Transcription kit
(Applied Biosystems) for mature miR-9 or SuperScript III (Invitrogen) with random hexamers
for primirs. Each qPCR reaction was prepared in triplicate in a 96-well plate with the relevant
TaqMan MicroRNA assay or using POWER SYBR Green Mastermix (Thermo Fisher Scien-
tific), 0.2 µM each forward and reverse primer (see Table C.3 for respective primers) and 50
ng cDNA. Reactions were run on Step One Plus Real-time PCR System (Applied Biosystems)
alongside negative controls. The data for each sample were normalized to the expression level
of U6 snRNA for mature miR-9 or b-actin for pri-mir-9s and analysed by the 2−∆∆Ct method.
For each primer pair, the PCR product was examined by gel electrophoresis and its melting
curve to ensure a single fragment of the predicted molecular weight.

5.6.3 Molecular cloning

RNA probes for pri-mir-9-1, pri-mir-9-2, pri-mir-9-4, pri-mir-9-5 and pri-mir9-7 were PCR
amplified and cloned into pCRII vector using primers described in Table C.1. Except for pri-
mir-9-2 probe, they were designed to distinguish the primary transcripts by including sequences,
intron and exon, before and after each miR processing, while also covering the sequence cor-
responding to mature miR-9 (Figure C.2). As the mature miR-9 sequence is conserved be-
tween paralogues, to avoid any cross-binding of probes to this sequence we mutated it on each
probe using QuikChange II XL Site-Directed Mutagenesis assay. This allowed us to introduce
deletions and single nucleotide exchange in specific regions of the mature miR-9 sequence
(Table C.2; Figure C.2, sequence highlighted in red). pri-mir-9-3 and pri-mir-9-6 probes were
generated from plasmids kindly gifted by Laure Bally-Cuif (Nepal et al., 2016).

5.6.4 Whole-mount chromogenic and fluorescence in situ hybridization and sectioning

Chromogenic in situ hybridisation was performed as previously described (Thisse & Thisse,
2008) using specific probes for each pri-mir-9 (described in Section 5.6.3) and her6 (previ-
ously used in Soto et al. (2020)). The antibody used to detect the riboprobes was AP-anti-DIG
(Roche, 11093274910, 1:1000). Multicolour fluorescence in situ hybridisation was modified
from Lea et al. (2012) by developing with tyramide amplification (Perkin Elmer) after addi-
tion of antisense RNA probes and antibodies conjugated to horseradish peroxidase, anti-DIG-
POD (Roche, 11207733910, 1:1000) and anti-FITC-POD (Roche, 11426346910, 1:500) (Lea
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et al., 2012).

Transverse sections were obtained as described in Dubaissi et al. (2012) with modifications.
Embryos were embedded in 25% fish gelatine and 30% sucrose for a minimum of 24 h. We
collected 18µm thickness hindbrain sections and transferred them onto superfrost glass slides.
The slides were air dried overnight under the fume hood and mounted with Prolong Diamond
Antifade.

5.6.5 Imaging

Chromogenic in situs were imaged using a Leica M165FC with a DFC7000T camera. Flu-
orescent in situ sections were imaged using Leica TCS SP5 upright confocal with HCX PL
APO LU-V-I 20×0.5 water UV lens or Olympus FLUOVIEW FV1000 confocal with UP-
LSAPO 20× NA:0.75 lens.

5.6.6 smiFISH probe design and synthesis

The smiFISH probes were designed using the probe design tool at http:// www.biosearchtech.com/stel-
larisdesigner/. The software can assign a varied size of probes, 18–22 nt, therefore we gave a
size of 20 nt for all designed probes with the maximum masking level available for zebrafish.
Using the respective pri-mir-9 sequence we designed 36 probes for pri-mir-9-1, 35 probes for
pri-mir-9-4 and 35 probes for pri-mir-9-5 (Tables C.5 to C.7, respectively). Using the respec-
tive gene mature mRNA sequence, we designed 29 probes for her6, 33 probes for her9, 40
probes for neurog1, 39 probes for atoh1a and 40 probes for ascl1a (Tables C.8 to C.12, re-
spectively). The designed probes were X-FLAP tagged (5’-CCTCCTAAGTTTCGAGCTGG-
ACTCAGTG-3’) at the 5’ of each gene-specific sequence. The gene-specific probes were or-
dered from Integrated DNA Technologies (IDT) in a 96-well format in nuclease-free water,
100 µM concentration. Upon arrival, we combined 100 µl of the gene-specific probes together,
mixed, split into 100 µl aliquots and stored at −20◦C. In addition, we ordered fluo-FLAP se-
quences (5’-CACTGAGTCCAGCTCGAAACTTAGGAGG-3’) from either IDT or Biosearch
Technology. These were labelled with either Atto-550, CalFluor-610 or AlexaFluor-647. Each
gene-specific probe mix was labelled by mixing 2 µl of the gene-specific X-FLAP probe mix
(100 µM), 2.5 µl of fluo-FLAP (100 µM) and 5 µl of 10× NEBuffer 3 (New England Bio-
labs) in a final volume of 50 µl. The hybridisation cycle was 85◦C for 3 min, 65◦C for 3 min
and 25◦C for 3 min. The labelled probe was stored at −20◦C.
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5.6.7 Whole mount smiFISH

The whole-mount smiFISH protocol for zebrafish embryos was developed by adapting smi-
FISH protocol from Marra et al. (2019). Embryos were fixed in 4% formaldehyde in 1× PBS.
After the smiFISH protocol, embryos were stained with Phalloidin-Alexa Fluor 488 (400× di-
lution in PBS 1× Tween 0.1%) for 1h at room temperature and followed by three washes with
PBSTween. Embryos were embedded in 4% low melting point agarose (SigmaAldrich) to col-
lect 250 µm thickness hindbrain transverse sections.

5.6.8 smiFISH microscopy and deconvolution

smiFISH images were collected using a Leica TCS SP8 upright confocal with HC APO L
U-V-I 63×/0.9 water lens, magnification 0.75×. We acquired three-dimensional stacks of
1024×1024 pixels and z-size 0.63 µm, magnification 0.75×, 16 bits per pixel, pinhole of 1
airy unit and scan speed of 200. Channels were sequentially imaged. smiFISH images were
collected with frame accuracy 3 and line average 6.

To quantify her6-positive cells from smiFISH images we acquired three-dimensional stacks of
1024×1024 pixels and z-stacks 43-51, covering a total of 27-32 µm, that is approximately the
size of half to one rhombomere (voxel size x:0.229, y:0.229, z:0.63 µm).

Deconvolution of confocal images was performed using Huygens Professional Software. As
pre-processing steps, the images were adjusted for ‘microscopic parameters’ and ‘object stabi-
lizer’ as additional restoration, the latter was used to adjust for any drift during imaging. Fol-
lowing this, we used the deconvolution Wizard tool, the two main factors to adjust during de-
convolution were the background values and the signal-to-noise ratio. Background was manu-
ally measured for every image and channel, and the optimal signal-to-noise ratio identified for
the images was value 3. After deconvolution the images were analysed using Imaris 9.5.

5.6.9 smiFISH segmentation

Segmentation was performed using Phalloidin-AlexaFluor 488 as a membrane marker. Using
Imaris 9.5 software we selected the ‘Cells tool’ from which ‘Cells only’ was used as detection
type and ‘Cell boundary’ was selected as cell detection type. Automated segmentation was
performed, followed by manual curation to identify any incorrectly segmented cells.

To quantify pri-mir-9 nascent transcriptional sites and her6 transcripts we used the ‘Spot tool’.
The estimated spot diameter size was xy 1 µm and z 2 µm. We used the default parameters to
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identify the nascent transcriptional sites and further manual curation was performed to correct
for minimal errors carried out by the software. Further on, spots were imported into the seg-
mented cells to identify the cells that contained one, two or three pri-mir-9s.

Following membrane segmentation and quantification of her6 transcripts, the percentage of
her6-positive cells was calculated over the total number of cells segmented from the hindbrain
transverse section (covering 27-32 µm).

5.6.10 Expression analysis of Hes/Her genes and miR hosts

For the in silico analysis of the miR host gene expression we downloaded the time course RNA-
seq data (TPM) from White et al. (2017). Here, we used the overlapping host genes as a proxy
for the expression of the miR. miR would not show up in standard RNA-seq analysis and there
is no current miR time course data. Host genes were identified as those with overlapping an-
notations with the miR-9 genes. The host genes for each pri-mir-9 are in Table C.4. Pri-mir-9-
7 has no overlapping annotation at this time and is thus not reported on in these data.

We filtered the RNA-seq data removing genes which were neither the host genes of the miR
or members of the Her family. Three repeats for each stage of development are included in
the data and we averaged the expression across the three repeats for each stage. The stages re-
ported in the data are based on standard embryonic stages in zebrafish development. However,
we wanted to visualize the expression in terms of hours and the stages were converted accord-
ingly. Finally, before plotting, these data were z-scored to normalize the expression of each of
the genes so that we could compare changes in expression over time rather than absolute lev-
els. These data were then plotted using the heatmap.3 package in R.

5.6.11 Deletion of pre-mir-9-1 using CRISPR/Cas9

Preparation of Cas9nls and sgRNAs

For pre-mir-9-1 deletion using CRISPR/Cas9, sgRNA target sites were identified using the
CRISPRdirect (http://crispr.dbcls.jp/) and Target Finder (Feng Zhang lab; http://crispr.mit.edu/).
sgRNAs were generated following CRISPRscan protocol (Moreno-Mateos et al., 2015) using
the oligonucleotides described in Table C.13. Transcription of sgRNA was carried out using
MEGAshortscript T7 kit (Ambion/Invitrogen) with 100-400 ng of purified DNA following
the manufacturer’s instructions. After transcription sgRNA was purified using MEGAclear™
Transcription Clean-Up Kit. The Cas9nls protein was obtained from New England Biolabs
(M0646T).

131



Microinjection and genotyping

One-cell stage wild-type embryos were injected with ∼ 1 nl of a solution containing 185
ng/µl Cas9nls protein, 125 ng/µl sgRNA, 40 ng/µl caax-mRFP mRNA in 0.05% Phenol Red.
To evaluate if each sgRNA was generating mutation, genomic DNA was extracted from 3-4
dpf embryos using 50 µl NP lysis buffer per embryo (10 mM Tris (pH 8), 1 mM EDTA, 80
mM KCl, 0.3% NP40 and 0.3% Tween) and 0.5 µg/µl Proteinase K (Roche) for 3-4 h at 55◦C,
15 min at 95◦C and then stored at 4◦C. Then, High Resolution Melt (HRM) was performed
(Figure C.4A) using the Melt Doc kit (Applied Biosystems) following the manufacturer’s in-
structions. Specific primers were designed to generate an amplicon of 395 bp in wild-type
conditions: forward primer 5’-ACAGTTGACTTTCTAATTACAACCC-3’ and reverse primer
5’-AGCAGGAGGAGATAATCACAGC-3’.

To analyse the effect of pre-mir-9 deletion in F0 embryos we combined three different sgRNA
flanking the region of the mature miR-9 region and they were microinjected as described above.
We chose to use three sgRNAs to increase our probability of deleting the mature miR-9 se-
quence. The embryos were injected with 125 ng/µl of each sgRNA: this low concentration
of sgRNA was used to not have overt phenotype at the macroscopic level during the experi-
mental period (24hpf-72 hpf), minimizing the chances of non-specific toxicity. Further on, the
amplicons with deletion were identified by agarose gel and sequencing (Figure C.4B,C), as
described below.

To identify F1 progeny with germ line transmission (GLT), 3-5 dpf embryos were fin clipped
following the protocol described by Robert Wilkinson (R. N. Wilkinson et al., 2013) with
modifications. Sylgard (SigmaAldrich, 761028)-coated 10 cm dishes were prepared for dis-
sections. Embryos were placed into Sylgard-coated dishes containing L15 medium with 0.1%
Tricaine (Sigma-Aldrich, UK) and 5% fetal bovine serum (Sigma-Aldrich). Once fin clipped,
the embryo was rinsed in E3 medium and transferred to a fresh well; the biopsy was trans-
ferred to a PCR tube for genomic extraction. Genomic extraction was carried out in 10 µl
volume using Phire Animal Tissue Direct PCR kit (Thermo Fisher Scientific, F-140WH).
PCR reaction was carried out with 1 µl of the genomic extraction and primers used for HRM.
An amplicon of 395 bp indicates a wild-type band and 275 bp indicates a pri-mir-9-1 mu-
tant band. To evaluate the region deleted in the F1 pri-mir-9-1 mutants, PCR was performed
per embryo, and the amplicon obtained was cloned into pCRII and transformed into bacteria
Top10. Three bacterial colonies were miniprepped and sequenced.
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5.6.12 Live imaging of whole developing hindbrain

The F1 adult animals were kept as Her6::Venus+/−;pri-mir-9-1+/− and were inbred to obtain
and compare offspring such as Her6::Venus+/+;pri-mir-91+/− or −/− with Her6::Venus+/+;pri-
mir-9-1+/+. To perform a comparative analysis of overall Her6 expression during hindbrain
development on the mixed genotype population, a pool of ten embryos were laterally mounted
in 1% low-melting agarose on glass-bottom dishes (MatTek Corporation P50G-1.5-14-F) and
imaged using a Zeiss LSM 880 fast Airyscan microscope, followed by genotyping. Only pairs
(wild type and mutant) that were found within the same pool were analysed, to allow compari-
son between similar developmental stages. Parameters used were ×1 zoom; image size x: 425
mm, y: 425 mm, z: 150 mm. Images were subject to 2D maximum projection in FIJI.

5.6.13 Mathematical modelling

Steady state calculation of Her6 in the perfect adaptation model

The perfect adaptation model can be described by a set of differential equations (Figure C.5A;
Table C.14):

dh
dt

= αhG(X)G(m)− µhh, (5.1)

dX
dt

= αXG(m)− µXX, (5.2)

where h is Her6,m is miR-9 and αh, µh, αX and µX are positive real constants which repre-
sent the production and degradation rates of Her6 and X, respectively. The negative interac-
tion between each of these model components is given by an arbitrary function G. To identify
a possible shape of G, we consider the steady state of Equations (5.1) and (5.2), which leads
to

h∗ =
αhG(X∗)G(m)

µh

,

X∗ =
αXG(m)

µX

,

which combine to give

h∗ =
αhG

(︂
αXG(m)

µX

)︂
G(m)

µh

=
αhµX

αXµh
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if G is defined by the negative interaction, G(m) = 1/m. Hence, in our chosen model the
steady state of Her6, h∗, is independent of miR-9. To achieve this, we made the assumption
that G is a nonlinear negative interaction, which agrees with previous models of miR-9 in-
teractions (Goodfellow et al., 2014). In order to explore the adaptation properties of this net-
work, we made certain simplifications over previous models (Goodfellow et al., 2014) such as
omitting the her6 autorepression, transcriptional delays and noise. Thus, this simplified Her6
network does not reproduce the oscillatory expression of Her6 but instead explores the transi-
tion between different stable steady states.

Extended model

The extended system can be described by the following set of differential equations (Figure C.6A;
Table C.14):

dh
dt

= αhG(X)G(m)G−(Y, h1, p1)− µhh, (5.3)

dX
dt

= αXG(m)− µXX, (5.4)

dY
dt

= αYG
−(h, h2, p2) + βYG

+(Y, h3, p3)− µY Y, (5.5)

G(x) = 1/x,

G−(p, n, p0) =
1

1 +
(︂

p
p0

)︂n ,
G+(p, n, p0) =

1

1 +
(︂

p
p0

)︂−n .

We pre-define the profile of miR-9 expression over time to interrogate both stepwise and lin-
ear expression, and then solve the system for h, X , and Y . The parameters αh, αX and αY

represent the basal production rates of h, X , and Y , respectively. Similarly, µh, µX , and µY

represent the degradation rates of h, X , and Y , respectively, and βY represents the produc-
tion rate of Y under self-activation. The hi and pi are Hill coefficients and repression thresh-
olds, respectively, for each of the Hill functions. For the activating Hill function G+(p, n, p0)

with arbitrary input parameter p, Hill coefficient n and repression threshold p0, as p grows
much larger than p0, G+ tends to 1, and as p goes to 0, G+ tends to 0. For G− the limits are
reversed, i.e. G− tends to 1 for small values of p and goes to 0 for p ≫ p0. The Hill coef-
ficient n determines the sensitivity of the function to changes in p, i.e. larger n corresponds
to higher sensitivity. All parameters introduced here are constants, and their values are listed
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in Table C.14. These parameters are chosen such that Y is repressed and has no effect on the
system when Her6 is at its high steady state h∗.

5.6.14 Statistical testing

Statistical tests were performed in GraphPad Prism 9. Data were tested for normality with
D’Agostino–Pearson test. Discrete scatter plots show the median with 95% confidence inter-
val where multiple independent experiments are analysed. Statistical significance between
two datasets was tested with Mann–Whitney test (non-parametric). For paired experiments the
data was tested for normality with Kolmogorov–Smirnov test followed by a one-tailed paired
t-test. Sample sizes, experiment numbers and P-values <0.05 are reported in each figure leg-
end.
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Chapter 6

Discussion

It is by now well established that gene expression is noisy and heterogeneous across a clonal
population (Altschuler & Wu, 2010; Elowitz et al., 2002; Huang, 2009; Phillips et al., 2016;
Raj & van Oudenaarden, 2008). More recently, evidence that important information is en-
coded within gene expression, in the form of oscillations, is becoming increasingly available
(Goodfellow et al., 2014; Isomura & Kageyama, 2014; Levine et al., 2013; Manning et al.,
2019). Of specific interest is that cell fate specification may depend on the dynamic expres-
sion of individual transcription factors. For example, murine embryonic neurogenesis de-
pends on the dynamics of HES5 expression (Manning et al., 2019). Decrypting the informa-
tion contained in these signals requires a mixture of advanced experimental and theoretical
techniques. Success in this approach will elucidate the mechanisms which control differentia-
tion and provide a groundwork from which we can investigate the occurrence of developmen-
tal disorders.

Mathematical modelling and parameter inference are becoming increasingly important for
analysing and understanding detailed single-cell data. A wide selection of different mathe-
matical approaches towards understanding single-cell data have been developed, but a number
of open challenges remain. Methods which reduce dynamic data into summary statistics fail
to capture time-dependent heterogeneity and thus will perform poorly as predictors of cell fate
specification (Cao & Grima, 2019). Other methods which account for fluctuations over time
do not account for the essential mechanisms, like transcriptional delay, which underlie the dy-
namics (Golightly & Wilkinson, 2011), or only simulate mRNA – not considering protein-
mRNA interactions (Dattani & Barahona, 2017). Recent developments which account for de-
lays (Calderazzo et al., 2019) have yielded promising results but have not yet been widely ap-
plied. So far these methods have taken advantage of Bayesian inference methods to perform
parameter inference, in particular using MCMC to sample from posterior distributions. Effi-
cient and fast implementations of these sampling algorithms are required to be more applica-
ble in practice, especially as the amount of data or the model size increases.

The overall aim of this thesis has been to develop and analyse statistical models of gene ex-
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pression dynamics, with a focus on a stochastic delayed negative feedback model, in order to
understand how oscillatory gene expression dynamics emerge and drive cell state specifica-
tion in murine brain development. First, we extended the existing literature by developing a
method for parameter inference via gradient-based MCMC using a delay-adjusted extended
Kalman filter to interpret gene expression time-series data. We showed how this method can
be used to inform experimental design choices for live imaging, as well as incorporate data
from multiple sources. For example, with only a few additional lines of code, we were able
to include snapshot data giving information about mRNA concentration in a population of
cells at a fixed time point, which greatly improved the accuracy of inference for certain pa-
rameters of interest. We found that although we could infer kinetic parameters for single cells,
the uncertainty was too high to distinguish cells with qualitatively different dynamics. Subse-
quently, we significantly improved the computational implementation of our method by accu-
rately accounting for the fact that the time delay parameter is continuous. This gave us access
to higher-order ODE solvers with advanced interpolation, improving the accuracy of infer-
ence. We further implemented a variational inference algorithm to improve the speed of infer-
ence, which allowed us to infer kinetic parameters more accurately by combining time-series
data from multiple cells with qualitatively similar dynamics.

We showed that mature miR-9, which regulates Her6 (Soto et al., 2020), increases in a step-
wise manner during zebrafish neurogenesis. In light of these experimental observations, we
developed a mathematical model to explore potential mechanisms for this behaviour. We pro-
posed a model that was robust to linear increases in miR-9 but could transition into a new
steady state with a sharp, nonlinear increase in miR-9 expression. We used this model to pro-
vide an explanation for cell state transitions and predict developmental mechanisms in the
early zebrafish hindbrain.

In this section, we discuss the benefits and drawbacks of a filtering approach for parameter
inference in stochastic delay models. We offer an alternative approach to filtering in order
to perform Bayesian inference. Then we briefly consider alternative MCMC sampling algo-
rithms and consider our work in the context of a modern Bayesian workflow. Lastly, we offer
a number of suggestions for extending our model.

6.1 Simulation and inference in stochastic delay models

Ordinary differential equation models of gene regulation are deterministic – solving the equa-
tions with fixed parameters will always give the same result. Conceptually, parameter infer-
ence can be performed by simulating data, ysim, using the model for a proposed parameter
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combination and using, for example, a multivariate normal likelihood of the form

p(ysim | θ) ∼ MVNormal(ydata, σ2Id), (6.1)

where ydata is the observed data, θ are the unknown model parameters, σ is the (known or un-
known) noise term, and Id is the d-dimensional identity matrix where d is the number of data
points.

Conversely, simulating a stochastic model multiple times with the same parameters will yield
different results (Figure 6.1). This makes parameter inference much more difficult since there
is often no clear way to define the likelihood function. Using the above approach will mean
the likelihood will change for the same set of parameters, which will cause problems when
doing MCMC sampling. It is also not an accurate mathematical representation of the data,
since it fails to account for the intrinsic stochasticity of the model.

(a) (b)

Figure 6.1: Two simulations of the SDDE defined in Equations (2.21) and (2.22) using the parameter values
(P0, h, µm, µp, αm, αp, τ) = (5413, 3.17, log(2)/30, log(2)/90, 1.86, 1.27, 30), showing both (a) mRNA con-
centration and (b) protein concentration over time.

Since a closed-form likelihood function typically does not exist for stochastic models, a num-
ber of methods have been developed for performing inference using either likelihood-free or
approximate likelihood approaches (Ghosh et al., 2022; Golightly & Wilkinson, 2011; Man-
ning et al., 2019; C. J. Oates & Mukherjee, 2012; Picchini, 2014; Ryder et al., 2018; Wang &
Li, 2018). Amongst these methods, filtering algorithms are the standard choice for inference
in SDE’s (McKee & Neale, 2019; Mider et al., 2021; Särkkä et al., 2015). In general, filtering
algorithms provide an estimate of the state of a time-varying system which is indirectly ob-
served via noisy measurements (Särkkä, 2013). The delay-adjusted Kalman filtering approach
presented in Calderazzo et al. (2019) and further developed in this thesis provides an approxi-
mate likelihood function for non-linear stochastic delay differential equation (SDDE) models.
This has allowed us to infer the parameters of an SDDE using time-dependent data from sin-
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gle cells, which was not previously possible.

However, due to the inclusion of delayed interactions, as model size and complexity increase,
the required computational work may become infeasible, even with access to high-performance
computing clusters. The emerging field of simulation-based inference methods offers an alter-
native approach where the underlying model acts as a data simulator (Avecilla et al., 2021;
Cranmer et al., 2020; Lueckmann et al., 2021). Neural networks and other machine learning
(ML) approaches can then be used to learn the posterior distribution from this simulated data.
Once a neural network has been trained for a model, posterior distributions for new data can
be evaluated immediately, without the need to redo inference. The key advantage of this ap-
proach is that there is no need for a likelihood function, meaning inference can be performed
with only the data-generating process. This would be of particular interest in the case of our
model, since simulating data is much faster (∼ 100 times) than likelihood evaluation via filter-
ing, so the consequences of increased model complexity will not be as severe.

6.2 Inference methods

The results presented in this thesis show that accurate parameter inference for a non-linear de-
layed stochastic model of gene expression is achievable with a likelihood-based approach, and
at the scale of a single cell. In order to achieve these results, we have taken advantage of ad-
vanced MCMC sampling algorithms.

The Metropolis random walk algorithm is common due to the simplicity of its implementa-
tion. We have shown that using a Kalman filter and random walk algorithm together can allow
us to make accurate predictions about specific properties of single cells, such as mean mRNA
expression, which agrees with previously reported results (Calderazzo et al., 2019). However,
this simplicity presents a trade-off – posterior distributions may reflect complex correlations
between model parameters, which makes them difficult to explore with MCMC algorithms.
Nonetheless, accurate inference requires a high number of samples. Incorporating geometric
properties of the posterior probability space into the inference scheme can result in more effi-
cient sampling (Roberts & Rosenthal, 2001). We took advantage of the Metropolis-adjusted
Langevin algorithm in Chapter 3 and the state-of-the-art No-U-Turn sampler in Chapter 4.
Both of these algorithms use the gradient of the log-likelihood to guide the exploration of the
posterior. In Chapter 3 we found that the use of the gradient based MALA did not appear to
speed up the sampling in comparison to RWM. This may, in part, be due to the direct calcu-
lation of gradients. A more efficient approach to calculating the gradients is the adjoint state
method. With this approach, the calculation of the gradient is equivalent to one additional for-
ward model solve. For our direct implementation of the gradients, the scaling was propor-
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tional to the number of parameters. Recent work has shown that for small ODE systems (i.e.
less than ∼ 100 equations) forward-mode automatic differentiation is more efficient than both
reverse-mode and continuous adjoint methods (Ma et al., 2021). The Julia programming lan-
guage, which was used in Chapter 4, has access to these advanced auto-differentiation tools.
However, in Chapter 3, the computational experiments were written using the Python pro-
gramming language, which does not have these approaches readily available. It may be worth-
while to further explore the comparison between the performance of RWM and MALA us-
ing this approach. Alternatively, it may be that the lack of gradient information for the tran-
scriptional time delay parameter τ resulted in reduced performance of the MALA sampler.
This provided clear motivation for the work in Chapter 4 in order to model τ as a continu-
ous parameter, which resulted in significant performance gains. Extensions to gradient-based
MCMC algorithms exist which use Riemann manifolds, eliminating the problem of tuning
whilst exploring the space even more efficiently than first-order algorithms (Girolami & Calder-
head, 2011). These methods rely on the computation of the Hessian i.e. the second derivative
of the log-likelihood function. The added computational cost of these calculations may dimin-
ish the efficiency gain in the MCMC sampling. Hence, the additional effort in implementing
and potentially deriving closed-form expressions for the second derivative may not be worth-
while.

6.3 Model comparison

Mathematical models should aim to capture key behaviours of a physical process, whilst min-
imising the number of assumptions made. Model evaluation and comparison are typically
done using a number of different information criteria methods (Bayesian, Akaike, deviance,
etc.) (Stoica & Selen, 2004). For example, the Akaike information criteria (AIC) is calculated
as

AIC = 2k − 2 log(L̂), (6.2)

where k is the number of model parameters and L̂ is the maximum likelihood value calculated
from the posterior samples. For a set of models fit to the same data, the preferred model is the
one with the smallest AIC value. This process is highly data-dependent i.e. given a different
data set a different model may be selected.

An alternative approach is the iterative model building described by Gelman et al. (2020).
This approach advocates starting from a simple model and performing posterior predictive
checks to check for misspecification. Additionally, leave-one-out cross-validation (LOO-CV)
using Pareto smoothed importance-sampling can be used to identify difficult-to-predict obser-
vations, as well as model diagnostics such as under- or over-dispersion (Gelman et al., 2020;
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Vehtari et al., 2017; Vehtari et al., 2022).

It is hoped that the open-source implementation of our delay-adjusted Kalman filter will pro-
vide a general framework for iterative model development. It is an achievement of our method
that it can computationally interface with a number of other open-source Julia packages to
perform Bayesian inference, as well as posterior predictive checking and model checking us-
ing LOO-CV.

6.4 A number of model extensions are possible

The ability to infer biophysical properties of a cell from live gene expression will allow us
to determine how cells make decisions in a wide range of systems. The implications of this
work are not limited only to a single gene in a single model system but to any situation in-
volving an auto-repressive feedback motif for which gene expression time course data can be
captured. Delay models can be used to understand more general transcriptional-translational
feed-forward loops (TTFL), where intermediate interactions are unobserved. For example,
Calderazzo et al. (2019) investigated the TTFL that drives the dynamics of the circadian gene
cry1. A key strength of the work presented in this thesis is the extent of its applicability. In a
recent study of a gene interaction network constructed from over 28 human tissues, the auto-
negative feedback motif was associated with over 3800 transcription factors (Minchington et
al., 2020).

In this work I have defined the delay term as a constant value. Other models that incorpo-
rate delay terms represent them as distributions (Calderazzo et al., 2019; Cortez et al., 2021;
Unosson et al., 2021). This reflects the natural view that transcription factor molecules are
formed and enter the nucleus over an unknown range of delay times. However with this ap-
proach a distribution must be chosen for the delay times, and additional hyper-parameters
must be inferred which introduces further complexity into the model. One criticism of using
a constant delay term is that this assumption might force such a model into a periodic regime
(Forger, 2017). In Figure 6 of (Manning et al., 2019), the delayed negative feedback model
was analysed for coherence in protein dynamics (a measure of the strength of oscillation where
0 is pure noise and 1 is purely periodic) for a range of parameter values. The model was shown
to only exhibit oscillations under very specific conditions, controlled by a bifurcation point
between oscillatory and non-oscillatory in the rate of protein degradation which was traversed
by noise inherent to the biological system. What was also shown in this figure was that the ex-
pected coherence of generated traces was typically between 0.1 and 0.2. In other words, the
oscillations that were generated by the model did not tend toward a single dominant frequency
when fit to experimental data, but to a range of frequencies that are reflected in the simulated

142



data, and there are parameter regimes in which no oscillations occur despite the presence of a
delay term.

Furthermore, it may be the case that the process of transcription and translation are highly
regulated and make up the majority of the transcriptional delay time τ , so fluctuations in the
transport time of the protein may not have significant or observable downstream effects. In
this case the assumption that all TF molecules are formed and enter the nucleus after exactly
the same delay may be a simplifying assumption without severe consequences, whilst also al-
lowing for easier inference due to a lower number of model parameters. Posterior predictive
checks can also be employed to further investigate whether the model assumptions are suffi-
cient, and this can be done easily with modern probabilistic programming software.

Mathematical models of protein expression dynamics typically interpret transcription as a rate
process with Poissonian dynamics. However, promoters can be in on- and off-states, which are
associated with different transcription rates. This stochastic pulsatile behaviour has been anal-
ysed quantitatively from single-cell reporter imaging data (Harper et al., 2011). The model
considered in this thesis does not account for this pulsatile behaviour, and experimental pre-
dictions may not provide us with new insights. In this case, our model could incorporate bursty
transcription via promoter switching states (Dattani & Barahona, 2017; Gorin & Pachter, 2022;
Lipshtat et al., 2006; Thomas et al., 2014) and smFISH snapshot data of mRNA counts could
identify dynamics of transcriptional bursting (Halpern et al., 2015). This will improve the ac-
curacy of the method and enable the identification of changes in transcriptional dynamics.
Alternatively, methods have been developed which allow for bursting to be simulated via the
Langevin equation, which may prove more effective (Yan et al., 2017).

In the example application we focused on in this thesis, HES5 protein expression in murine
neural stem cells is not always oscillatory. A number of different dynamics have been iden-
tified from experimental data, and single cells can be clustered within a population based on
their qualitative gene expression dynamics (Manning et al., 2019). These dynamics corre-
spond to cell fate, therefore inferring parameters from cells exhibiting different dynamics should
identify which biophysical properties determine specific cell state transitions. Discovering
these properties will allow us to make experimental predictions about which parameters in-
fluence differences in gene expression dynamics, and validate the parameter change with ex-
perimental techniques appropriate to the prediction.

In HES5 protein expression data, there are often long-term trends present which are not ac-
counted for by the negative feedback model. These trends may be due to interactions with the
cell cycle, or the circadian clock. Indeed in ER+ breast cancer cells, oscillations in Hes1 are
closely linked with the cell cycle (Sabherwal et al., 2021). In our computational experiments,
we detrended experimental data using Gaussian process regression, and only considered data
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for which there was little to no long term trend. It may be worthwhile to check that the re-
sults are not sensitive to the method of trend removal. Furthermore, it may be possible to ex-
tend the negative feedback model to account for an additional long term trend, for example
by including interactions from micro-RNA’s as in Goodfellow et al. (2014), which have been
shown to drive long term decreasing trends, as observed in some of the experimental data in
Chapter 3 (Manning et al., 2019).

In Chapter 3, we showed that data from a single cell does not provide enough information to
detect differences between cells within a population. In Chapter 4, we explored the possibil-
ity of performing inference using the combined data from a cluster of cells, which has yielded
promising results. Alternative methods exist that measure population variability using data
from a whole population of single-cell gene expression (Finkenstädt et al., 2013). Bayesian
hierarchical modelling then provides a natural framework to account for the cell-to-cell vari-
ability of kinetic parameters and can be used to improve single-cell inference. For example,
hierarchical non-stationary models (Monterrubio-Gómez et al., 2020) could be used to in-
form single-cell parameters using a whole population. More recently, a hierarchical Bayesian
approach has been shown to improve estimates of individual cell parameters for a simple de-
layed birth-death process (Cortez et al., 2021).

In Chapter 5, we developed a perfect adaptation model that focused on the expression of miR-
9. Since our aim was to understand the sharp increases in miR-9, we did not explicitly con-
sider interactions which define the Her6 auto-repressive feedback loop. However, miR-9 has
been shown to change the dynamic expression of Her6 (Soto et al., 2020), and it may be pos-
sible to combine elements of the perfect adaptation model and the auto-repressive feedback
loop in order to characterise this behaviour. However, this may require additional experimen-
tal data and the identification of the unknown components of this model.

Kinetic parameters of gene expression in single cells do not remain constant, which follows
from the fact that key properties of the dynamics, such as expression levels and period of os-
cillation, tend to change over time. In Figure 6.2 we see gene expression dynamics which are
initially aperiodic and then begin to oscillate. The negative feedback model can stochastically
change between oscillatory and non-oscillatory dynamics if it is close to a bifurcation point.
However, the fact these dynamics have been observed in multiple cells and between multi-
ple experiments suggests a targeted biological mechanism. A natural explanation for this is
that one or more of the biophysical properties within the cell have changed. For example, an
increase in the protein degradation rate or a decrease in the repression threshold could ex-
plain a transition towards oscillatory behaviour. An assumption made by the current method
is that these values remain constant throughout the entire time series, which is unlikely to be
the case. Extending the method to account for this will allow us to identify the key parameters
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which influence cell fate decisions.

Methods for inference using regression models with time-varying parameters have been de-
veloped with applications to Economics (Dangl & Halling, 2012; Primiceri, 2005), and more
recently Gaussian processes with time-varying hyperparameters have been used to estimate
non-linear state space models (Liu & Djurić, 2020). These methods would be natural candi-
dates to extend our existing work. This may identify which parameters are changing and also
what their time dependency is.

Figure 6.2: An example of a cell exhibiting protein expression dynamics which transition from one regime (ape-
riodic and noisy) to another (oscillatory).

An approach which may be simpler to implement is to incorporate change-point analysis into
the MCMC, which will identify a point in the data at which one or more parameters change,
and also determine that change (Eckley et al., 2011). Recent approaches to change-point anal-
ysis have been developed that are directly applicable to oscillatory signals (Hadj-Amar et al.,
2020).

6.5 Concluding remarks

In this thesis, I have presented novel methods for modelling and analysing gene expression
time-series data. The core theme of this work has been to establish a Bayesian framework for
the fast inference of kinetic parameters of gene regulation from state-of-the-art time series
data, in order to decode the mechanisms driving cell fate transitions during development. Our
results have illustrated that methods that capture time-varying behaviour can reveal new infor-
mation from existing data, making them potentially very powerful tools in studying cell state
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transitions and kinetics of gene expression. Further, we have demonstrated that our framework
can be used to inform the design of live-imaging experiments using simulated data, which will
be useful in other contexts. We hope that our framework will pave the way to widespread in-
ference and model comparison on time-series data, leading to novel insights into key mecha-
nisms driving cell fate.
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Appendix A

Inferring kinetic parameters of oscillatory

gene regulation from single cell time-series

data supplementary

Here we provide full derivations for the prediction and update step in the non-linear, delay-
adapted Kalman filter. We detail the MCMC sampling algorithms discussed in the main text,
as well as our chosen method for adaptive step size selection within the MCMC. Then, we
show how the gradient of the likelihood can be computed within the Kalman filter. We fur-
ther describe our process for choosing prior distributions, and for assessing the convergence of
our Markov chains, before discussing how the oscillation quality of time series data is quanti-
fied, and how the likelihood function is extended to account for data on mRNA copy numbers.
Finally, we give details about the data collection and analysis. Supplementary figures are pro-
vided at the end.

A.1 Kalman filter prediction and update step

In order to predict the probability distribution over the state space X at observation k, it is
necessary to calculate ρt and Pt as defined in the main manuscript (Section 3.4.2). Here, we
show how we derive delay differential equations for both quantities, closely following Calder-
azzo et al. (2019).
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A.1.1 Prediction Step

We first rewrite eqs. (3.2) and (3.3) in the general form of a vector-valued, delayed stochastic
differential equation:

dX(t) = g(X(t))dt+ f (X(t− τ)) dt

+
√︁

l(X(t)) + q (X(t− τ))dB(t), (A.1)

where B(t) is a 2-dimensional Wiener process, and

g(X(t)) =

[︄
−µmm(t)

αpm(t)− µpp(t)

]︄
,

f(X(t− τ)) =

[︄
αmG(p(t− τ))

0

]︄
,

l(X(t)) =

[︄
µmm(t) 0

0 αpm(t) + µpp(t)

]︄
,

q(X(t− τ)) =

[︄
αmG(p(t− τ)) 0

0 0

]︄
.

Next, we aim to use this definition to derive delay differential equations for ρ and P . To do so,
we employ Taylor expansions. The first order Taylor expansions of g(·) and f(·) about ρt are

g(Xt) ≈ g(ρt) + Jg(ρt) · (Xt − ρt),

and
f(Xt−τ ) ≈ f(ρt−τ ) + Jf (ρt−τ ) · (Xt−τ − ρt−τ ).

We can hence write

Xt+δt = Xt + g(Xt)δt + f(Xt−τ )δt +
√︁

l(Xt) + q(Xt−τ )N (0, δt) +O(δ2t ), (A.2)

where N (0, δt) is a Gaussian distribution with mean zero and variance δt. Inserting this into
the definition of ρt, we find

dρt = g(ρt)dt+ f(ρt−τ )dt. (A.3)

Similarly, we insert eq. (A.2) into the definition of P to find

dPt =
[︁
Jg(ρt)Pt + P T

t Jg(ρt)
T
]︁
dt
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+ [Jf (ρt−τ )Pt−τ,t] dt

+
[︁
Pt,t−τJf (ρt−τ )

T
]︁
dt

+ A (ρt, ρt−τ ) dt, (A.4)

where A(ρt, ρt−τ ) = l(ρt) + q(ρt−τ ) and Pt,s = Cov(X(t),X(s) | y0:t−1).

Lastly, we have
dPs,t = Ps,tJ

T
g (ρt)dt+ Ps,t−τJ

T
f (ρt−τ )dt. (A.5)

We can then use a standard forward Euler method with a time step which represents the ab-
solute time difference between consecutive hidden states, to numerically integrate these delay
differential equations between observations. Before the first prediction step can be executed,
it is necessary to define initial and past conditions for these delay differential equations. The
state space mean is initialised at negative times with the steady-state solutions to the determin-
istic approximation of the model, i.e. eqs. (3.2) and (3.3) of the main manuscript without their
respective noise terms. At steady state, we have

p∗ =
αmαp

µmµp

G(p∗) (A.6)

and
m∗ =

µp

αp

p∗. (A.7)

The state space variance is initialised with a multiple of this mean. Specifically, the variance
of the mRNA is initialised at 20 times its mean value, and the variance of the protein is ini-
tialised at 100 times its mean value. These are chosen to reflect the variance of protein and
mRNA expression from the Chemical Langevin Equations. For simplicity, off-diagonal el-
ements of the state space covariance are initialised at zero. We expect the influence of these
initial and past conditions to diminish after the first update step has been applied and as the
number of data points increases.

A.1.2 Update Step

For our update step, we derive an expression for the mean and variance of the state space dis-
tribution π(xt−τ :t | y0:t), denoted ρ∗t−τ :t and P ∗

t−τ :t respectively. That is, the likelihood of our
state space estimates from the past time t − τ to the current time, t, given all of our current
observations. This is necessary in order to accurately predict the state space distribution at the
next observation time point, π(xt+∆t | y0:t), as past states can affect future states due to the
presence of delays.
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Assuming approximate Gaussianity of the joint distribution π(xt+∆t, yt+∆t | y0:t), following
Särkkä (2013), we can obtain the following expression for the updated state space mean and
variance:

ρ∗t−τ :t = ρt−τ :t +Kt−τ :t (yt − Fρt) , (A.8)

P ∗
t−τ :t = Pt−τ :t −Kt−τ :tStK

T
t−τ :t, (A.9)

Kt−τ :t = Pt−τ :t,tF
TS−1

t , (A.10)

where St = FPtF
T + Σϵ.

A.2 Markov Chain Monte Carlo sampling algorithms

For completeness, we provide here the algorithms for the Metropolis-Hasting random walk,
and the Metropolis-adjusted Langevin Algorithm.

A.2.1 Metropolis-Hastings Random Walk

We initialise the algorithm with a set of the model parameters, θ0, chosen by minimising the
log-likelihood function using Powell’s method (Powell, 1964). In the case of our model, each
parameter vector is composed as θ = [P0, h, µm, µp, αm, αp, τ ]

T . At each iteration, i, we pro-
pose a combination of parameters, θ′, from a symmetric distribution, q(·), centered around
the current parameters, θi. In this paper we use the normal distribution N (θ, ϵΣ), where ϵ is
called the step size, and Σ is the proposal covariance matrix. An acceptance ratio, α(θi,θ

′),
defined by

α(θi,θ
′) = min

{︃
1,

π(θ′ | y)
π(θm | y)

}︃

= min
{︃
1,

π(y | θ′)π(θ′)

π(y | θi)π(θm)

}︃
is calculated, and a uniform random number, u, is generated on [0, 1].

1. If u ≤ α(θi,θ
′), we accept the proposal θ′ and set θ′ = θi+1.

2. If u ≥ α(θi,θ
′), we reject the proposal θ′ and set θt = θi+1.

The distribution of random draws {θi | i ∈ {0, 1, . . . , Ns}} converges to our posterior distri-
bution, π(θ | y), as Ns → ∞. In practice, the number of iterations necessary for accurate in-
ference depends on a number of factors, including the complexity of the problem, the number
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of parameters to be inferred, and the relationship between the posterior and proposal distribu-
tions. We outline our choice of Ns in Section A.3

A.2.2 Metropolis-adjusted Langevin Algorithm (MALA)

Whilst the MH algorithm is relatively simple to understand and implement, it can fail to iden-
tify the posterior if it has a non-trivial, curved correlation structure (Haario et al., 2001), or if
it is multi-modal (Roberts et al., 2003). It can also become slow when the dimensionality is
high, i.e. when there are a large number of parameters to infer. In these cases, the algorithm
typically requires a very large number of samples, which is time-consuming, especially if the
likelihood calculation is slow. One way to address this is to use a sampling algorithm that uses
the gradient of the posterior distribution, as well as its absolute values, to draw new samples.
The gradient can help guide the search towards the modes of the posterior distribution, mak-
ing for a more efficient algorithm which typically needs fewer samples. A number of differ-
ent MCMC approaches utilise the gradient of the distribution, such as MALA, and the NO-U-
Turn sampler (M. D. Hoffman & Gelman, 2014), which is an extension of the original Hamil-
tonian Monte Carlo (HMC) (Betancourt, 2017).

We use MALA, since it is well-established that it has better convergence properties than the
MH algorithm (Durmus et al., 2017). Our algorithm for MALA iterates over the same steps
as the MH algorithm, with an adjusted expression for the proposed parameter combination.
Where MH uses the proposal

θ′ = θ +
√
ϵΣ1/2ξ, (A.11)

MALA instead uses
θ′ = θ − (ϵ/2)ΣU(θ) +

√
ϵΣ1/2ξ, (A.12)

where ξ ∼ φ(0, Id), with Id denoting the d-dimensional identity matrix, d is the dimension of
the posterior distribution, and U(θ) = −∇ log π(y | θ).

A.3 Implementation of adaptive sampling strategies

We seek to generate Ns independent samples that accurately characterise our posterior distri-
bution, but samples are dependent on the starting point of the Markov chain. As increasingly
many samples are generated, this dependence diminishes. The correlation between samples
can be reduced if an appropriate covariance matrix is chosen for the proposal distribution.
One suitable covariance matrix is the covariance of the target posterior distribution, which
may be estimated from samples of the MCMC itself. To do so, we warm up the Markov chains
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in two steps by drawing Nw1 samples and discarding the first Nb1 samples as burn-in. With
the remaining samples we construct a proposal covariance matrix, and repeat the process with
Nw2 samples and a burn-in of size Nb2 . The adaptive MCMC is then started using the co-
variance matrix estimated in this way as the proposal covariance matrix. We adaptively up-
date our step size at iteration i, ϵi, using a modified version of Algorithm 4 from Andrieu and
Thoms (2008).

At each iteration i, the step size is updated using

γ1 =
1

ic1
,

γ2 = c0γ1,

log(ϵ2i+1) = log(ϵ2i ) + γ2(αi − 0.574), (A.13)

where c0 = 1, c1 = log(10)/ log(Ns/5), and αi is the current acceptance probability. We use
0.574 as the target acceptance rate for MALA, as shown above, and 0.234 for MH (Roberts &
Rosenthal, 2001).

In our experience, this approach results in far better performance than without warm up or
adaptively updating the step size. In practice, we found that consistent posteriors are obtained
by running 8 Markov chains in parallel, where each chain has Ns = 80, 000, Nw1 = 0.3 ×
Ns, Nw2 = 0.7×Ns, and Nbi = 0.5×Nwi

, i = 1, 2. Warm up samples from all eight chains are
pooled to calculate the covariance matrix for the final run of MCMC. This approach to warm
up is used in the same way when either sampler, MH or MALA, is chosen.

A.4 Computing the gradient of the log-posterior

The Kalman filter has previously been used within gradient based sampling schemes (Mbal-
awata et al., 2013), which illustrated that it is possible to calculate the gradient with an it-
erative scheme similar to the scheme for the direct likelihood calculation. In the following,
we show that these previous approaches can be extended to derive the gradient of the delay-
mediated Kalman filter used here.

For MALA, we compute the derivative of the negative log-posterior U = − log(π(θ|y) with
respect to the parameters, θ,

∂U(θ)

∂θ
=

∂(− log(π(y | θ)π(θ)))
∂θ
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=

∂

(︃
− log

(︃∏︁
t∈T

φ(yt;Fρt, FPtF
T + Σϵ)π(θ)

)︃)︃
∂θ

= − ∂

∂θ
log

(︄∏︂
t∈T

exp
(︁
−1

2
(yt − Fρt)

T (FPtF
T + Σϵ)

−1(yt − Fρt)
)︁
π(θ)√︁

det(2π(FPtF T + Σϵ))

)︄

=
∂

∂θ

[︄∑︂
t∈T

1

2
log (det(2πSt(θ))) +

1

2

∑︂
t∈T

(yt − Fρt(θ))
T (St(θ))

−1(yt − Fρt(θ))− log(π(θ))

]︄
,

where S = FPtF
T + Σϵ has been used in the last line, and the dependence of ρ and S on

θ has been emphasized. T denotes the set of time points for each observation, {i · l | i ∈
{0, 1, . . . , n− 1}}. For a single parameter, this simplifies to

∂U(θ)

∂θk
=

1

2

∑︂
t∈T

(︃
Tr
(︃
S−1
t

∂St

∂θk

)︃)︃
− 1

2

∑︂
t∈T

(︃
F
∂ρt
∂θk

)︃T

S−1
t (yt − Fρt)

− 1

2

∑︂
t∈T

(yt − Fρt)
TS−1

t

∂St

∂θk
S−1
t (yt − Fρt)

− 1

2

∑︂
t∈T

(yt − Fρt)
TS−1

t F
∂ρt
∂θk
− ∂(log(π(θ)))

∂θk
. (A.14)

This expression can be explicitly calculated if dρt/dθk and dPt/dθk are known at each ob-
servation time point t. These quantities are the predicted state space mean and variance in
the prediction step of the Kalman filter. This implies that eq. (A.14) can be calculated if the
prediction step is adjusted to predict the derivative of ρ and P in addition to their absolute
values. To enable this adjustment of the prediction step, we derive differential equations for
d
dt(dρt/dθk) and

d
dt(dPt/dθk):

d
dt

(︃
∂ρt
∂θk

)︃
=

∂

∂θk

(︃
dρt
dt

)︃
=

∂

∂θk
(g(ρt) + f(ρt−τ ))

=
∂g(ρt)

∂ρt

∂ρt
∂θk

+
∂g(ρt)

∂θk
+

∂f(ρt−τ )

∂ρt−τ

∂ρt−τ

∂θk
+

∂f(ρt−τ )

∂θk

= Jg(ρt)
∂ρt
∂θk

+
∂g(ρt)

∂θk
+ Jf (ρt−τ )

∂ρt−τ

∂θk
+

∂f(ρt−τ )

∂θk
, (A.15)
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and

d
dt

(︃
∂Pt

∂θk

)︃
=

∂

∂θk

(︃
dPt

dt

)︃

=
∂

∂θk

(︃
Jg(ρt)Pt + P T

t Jg(ρt)
T

+ Jf (ρt−τ )Pt−τ,t + Pt,t−τJf (ρt−τ )
T

+ l(ρt) + q(ρt−τ )

)︃

= Jg(ρt)
∂Pt

∂θk
+

∂P T
t

∂θk
Jg(ρt)

T + Jf (ρt−τ )
∂Pt−τ,t

∂θk
+

∂Pt,t−τ

∂θk
Jf (ρt−τ )

T

+

(︄
2∑︂

j=1

(︃
∂Jg(ρtj)

∂ρtj

∂ρtj
∂θk

)︃
+

∂Jg(ρt)

∂θk

)︄
Pt + P T

t

(︄
2∑︂

j=1

(︃
∂Jg(ρtj)

∂ρtj

∂ρtj
∂θk

)︃
+

∂Jg(ρt)

∂θk

)︄T

+

(︄
2∑︂

j=1

(︃
∂Jf (ρt−τj)

∂ρt−τj

∂ρt−τj

∂θk

)︃
+

∂Jf (ρt−τ )

∂θk

)︄
Pt−τ,t

+ Pt,t−τ

(︄
2∑︂

j=1

(︃
∂Jf (ρt−τj)

∂ρt−τj

∂ρt−τj

∂θk

)︃
+

∂Jf (ρt−τ )

∂θk

)︄T

+

(︄
2∑︂

j=1

(︃
∂l(ρtj)

∂ρtj

∂ρtj
∂θk

)︃
+

∂l(ρt)

∂θk

)︄
+

(︄
2∑︂

j=1

(︃
∂q(ρtj)

∂ρtj

∂ρtj
∂θk

)︃
+

∂q(ρt)

∂θk

)︄
(A.16)

where ρtj means the jth element of ρt. Similarly,

d
dt

(︃
∂Ps,t

∂θk

)︃
=

∂

∂θk

(︃
dPs,t

dt

)︃
=

∂

∂θk

(︁
Ps,tJ

T
g (ρt) + Ps,t−τJ

T
f (ρt−τ )

)︁
=

∂Ps,t

∂θk
JT
g (ρt) +

∂Ps,t−τ

∂θk
JT
f (ρt−τ )

+ Ps,t

(︄
2∑︂

j=1

(︃
∂Jg(ρtj)

∂ρtj

∂ρtj
∂θk

)︃
+

∂Jg(ρt)

∂θk

)︄T

+ Ps,t−τ

(︄
2∑︂

j=1

(︃
∂Jf (ρt−τj)

∂ρt−τj

∂ρt−τj

∂θk

)︃
+

∂Jf (ρt−τ )

∂θk

)︄T

. (A.17)
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Similar to the delay differential equations for the state space mean and variance, it is neces-
sary to define values for non-positive times for the delay differential equations provided here
before the first prediction step can be executed. To do so, we need to provide derivatives of the
initialisation of the state space mean and variance provided in Section A.1. We calculate the
derivatives of p∗ andm∗ with respect to each parameter, θk, as follows:

∂p∗

∂θk
=

− ∂

∂θk

(︃
αmαp

µmµp

)︃
G(p∗)−

(︃
αmαp

µmµp

)︃
∂

∂θk
(G(p∗))(︂

αmαp

µmµp

)︂ ∂

∂p∗
G(p∗)− 1

, (A.18)

∂m∗

∂θk
=

∂

∂θk

(︃
µp

αp

p∗
)︃
. (A.19)

A.5 Update step derivatives

The delay differential equations given by eqs. (A.15) to (A.17) can be used to predict the deriva-
tives of the state space mean and variance with respect to each model parameter, using dρ∗t/dθk
and dP ∗

t /dθ as initial (and past) conditions. We incorporate the integration of these ODEs
into the prediction step of our Kalman filter. The derivatives of dρ∗t/dθk and dP ∗

t /dθ at each
observation can be calculated by extending the update step. Using eqs. (A.8) to (A.10), we
have

∂ρ∗t−τ :t

∂θk
=

∂

∂θk
(ρt−τ :t +Kt−τ :t (yt − Fρt))

=
∂ρt−τ :t

∂θk
+

∂Kt−τ :t

∂θk
(yt − Fρt)−Kt−τ :tF

∂ρt
∂θk

, (A.20)

∂P ∗
t−τ :t

∂θk
=

∂

∂θk

(︁
Pt−τ :t −Kt−τ :tStK

T
t−τ :t

)︁
=

∂Pt−τ :t

∂θk
− ∂Kt−τ :t

∂θk
StK

T
t−τ :t −Kt−τ :t

∂St

∂θk
KT

t−τ :t −Kt−τ :tSt

(︃
∂Kt−τ :t

∂θk

)︃T

,

(A.21)

∂Kt−τ :t

∂θk
=

∂

∂θk

(︁
Pt−τ :t,tF

TS−1
t

)︁
=

∂Pt−τ :t,t

∂θk
F TS−1

t − Pt−τ :t,tF
TS−1

t

∂St

∂θk
S−1
t

=
∂Pt−τ :t,t

∂θk
F TS−1

t − Pt−τ :t,tF
TS−1

t F
∂Pt

∂θk
F TS−1

t . (A.22)
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Here,
∂ρt−τ :t

∂θk
and

∂Pt−τ :t

∂θk
are the derivatives for the state space mean and variance that have

been predicted in the previous prediction step. Hence, we can evaluate eq. (A.14) for each of
the parameters iteratively by evaluating eqs. (A.15) to (A.17), (A.20) and (A.21) at each up-
date step, and integrating eqs. (A.3) to (A.5) within each prediction step of the Kalman filter.

A.6 Choice of priors and reparameterisation of variables

Bayesian methods require the choice of prior parameter distributions. For the mRNA and pro-
tein degradation rates, µm and µp, we use fixed values throughout, which are based on previ-
ously identified experimental measurements (Manning et al., 2019). This facilitates our anal-
ysis of experimental time course data from the same paper in Figure 3.4. For the transcription
and translation rates, αm and αp, we use prior distributions that are log-uniform. For all other
parameters, we choose uniform prior distributions. Our chosen parameter ranges are informed
by existing literature values (M. Suter et al., 2011; Manning et al., 2019; Monk, 2003; Phillips
et al., 2016; Schwanhüusser et al., 2011; J. Singh & Padgett, 2009), and summarised in Ta-
ble A.1.

Parameter Range of Values
Repression threshold, P0 0 - 120,000 (Monk, 2003)

Hill Coefficient, h 2 - 6 (Monk, 2003; Phillips et al., 2016)
Protein degradation rate, µp log(2)/(90 min) (Manning et al., 2019)
mRNA degradation rate, µm log(2)/(30 min) (Manning et al., 2019)
Basal transcription rate, αm 0.01/min - 60/min (M. Suter et al., 2011; J. Singh & Padgett, 2009)

Translation rate, αp 1/min - 40/min (Schwanhüusser et al., 2011)
Transcriptional delay, τ 5 min - 40 min (Monk, 2003; Phillips et al., 2016)

Table A.1: The values each of the parameters of the model can take, in relation to the HES5 system, informed by
experimental work and biophysical limitations. These values define the prior distributions which we use in our
parameter inference algorithms.

The choice of log-uniform priors for the transcription and translation rates, αm and αp, is mo-
tivated by the fact that possible values for these parameters span multiple orders of magni-
tude, from 0.01 – 120/min and 0.01 – 40/min respectively. To enable sampling from these log-
uniform priors, we convert the parameters into logarithmic space using

θ̃ = ln(θ),

where θ represents the parameter that is being transformed into logarithmic space, i.e. αm or
αp.

Let P1(θ | y) and P2(θ̃ | y) define the posterior distributions for the original and transformed
parameter respectively. A transformation of variables changes the shape of the posterior distri-
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bution according to
P2(θ̃ | y)dθ̃ = P1(θ | y)dθ

which in turn gives

P2(θ̃ | y) = θP1(θ | y)

= eθ̃P1(e
θ̃ | y), (A.23)

since
dθ̃
dθ

=
1

θ
.

Using P1(θ | y) = L(y | θ)π1(θ) and considering a prior that is uniform in logarithmic space,
i.e. π1(θ) = C/θ with an appropriately chosen constant C, eq. (A.23) leads to

ln(P2(θ̃ | y)) = θ̃ + ln(L(y | eθ̃)) + ln
(︃
C

θ

)︃
= ln(L(y | eθ̃)) + ln(C)

= ln(L(y | θ)) + ln(C). (A.24)

Lastly, taking the derivative gives

∂

∂θ̃
ln(P2(θ̃ | y)) = θ

∂

∂θ
ln(L(y | θ)). (A.25)

A.7 MCMC success is qualified by multiple convergence diagnostics

When using MCMC samplers such as MH and MALA, it is necessary to check for conver-
gence of the sampled distribution and to identify whether a sufficient number of samples has
been generated. A combination of convergence diagnostics gives confidence that the obtained
samples are useful and represent the posterior accurately. Specifically, we use the split-R̂ and
effective sample size (ESS) methods (Gelman et al., 1992; Vehtari et al., 2020). We follow the
guidance of Vehtari et. al. (Vehtari et al., 2020), running multiple chains (m > 4), and con-
clude convergence when split-R̂ < 1.01 and the total ESS is at least 50× 2×m.

When testing our algorithm on in silico data, we use test diagnostics to determine inference
uncertainty and accuracy. Specifically, for a given set of in silico data, let µθi define the true
value of each parameter that generated the data set, and let µ̂θi

, σ̂θi define the posterior mean
and standard deviation, respectively, for each parameter. Throughout, we discuss the relative
uncertainty (RU)

RUθ =
∑︂
θi

σ̂i

|supp{π(θi)}|
, (A.26)
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where |supp{π(θi)}| is the size of the support of the prior for parameter θi. The relative un-
certainty hence measures how the marginal standard deviations of the posterior distribution
compare to their respective prior widths. Similarly, we introduce the mean error (ME) as

MEθ =
∑︂
θi

|µθi − µ̂θi
|

|supp{π(θi)}|
, (A.27)

which measures how strongly the inferred posterior mean differs from the ground truth. For
any parameters that are sampled in logarithmic space (supplementary Section A.6 above), we
consider the samples and prior distributions in the original, non-transformed, space.

A.8 Oscillation quality is quantified by the coherence measure

In the presence of noise, time series can exhibit oscillations of varying quality. Here we in-
troduce a measure to quantify the oscillatory properties of a time series, the coherence. We
define coherence as the area under the power spectrum, f(ω), within a 20% band around the
peak frequency, divided by the total area under the curve, following previous approaches (Alonso
et al., 2007; Phillips et al., 2016). The power spectrum is defined by

f(ω) = ⟨p̂(w)p̂∗(w)⟩,

where p̂(ω) is the Fourier transform of the individual protein expression time course data, and
∗ denotes complex conjugation. Values of the coherence around zero suggest a lack of any pe-
riodic behaviour, and values around one suggest sine-wave-like behaviour. For in silico data
we estimate coherence by averaging the power spectra from 200 traces, which individually
were simulated for 8500 minutes. The initial 1000 minutes of the simulation were discarded,
and not used in the averaging, to minimise any influence from the initial conditions. The use
of the power spectrum to define coherence ensures that coherence is robust to changes in the
sampling interval, provided that this interval is shorter than the dominant period of oscilla-
tion.

The parameter combinations that correspond to different coherence values in Figure 3.5 are
listed in supplementary Table A.2.

Coherence value P0 h αm αp τ
0.00599 (low) 88288.602 5.589 0.644 17.321 34.0
0.200 (high) 30108.800 4.950 20.006 20.540 13.0

Table A.2: Parameter combinations for specific coherence values. The first row corresponds to ‘low’ coher-
ence, and the second to ‘high’ coherence in Figure 3.5. To simulate noisy measurements, each synthetic data set
is generated using a measurement variance of Σϵ = 106.
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A.9 Extension of the likelihood function to account for data on mRNA expres-

sion levels

Our method generates posterior distributions from single-cell time series data of gene expres-
sion dynamics, using the likelihood function introduced in Section 3.4.2. It may be desirable
to extend this likelihood function to account for further types of data, if these are available, in
order to further constrain the model parameters. Here, we briefly describe how our likelihood
function can be extended if, in addition to measurements of protein expression over time, data
on the population-level distribution of mRNA copy numbers is available. Such data may for
example be collected via single-molecule fluorescence in situ hybridisation (smFISH) experi-
ments (Femino et al., 1998; Raj et al., 2008).

Let us assume a population-level distribution of mRNA copy numbers has been observed, and
that this distribution can be approximated by a Gaussian with mean µ̂m and variance σ̂2

m. We
can use these data to define an extended likelihood function as

π(y, µ̂m, σ̂
2
m | θ) = π(y | θ)× φ(m̂; µ̂m, σ̂

2
m), (A.28)

where m̂ is the time-average of the mean inferred mRNA copy number from the Kalman filter
(i.e. the first entry of ρt in Section 3.4.2 averaged over all discretisation time points), π(y | θ)
is defined in eq. (3.6), and φ(·) is a Normal density function, defined in eq. (3.7).

To generate data from in silico smFISH experiments, we generate the distribution of observed
mRNA copy numbers numerically by simulating data from the same parameter combination
that is used to generate a given in silico protein expression time series. Specifically, we sim-
ulate 5000 traces of time course data with a duration of 6000 minutes each, using eqs. (3.2)
and (3.3). The first 1000 minutes of each time series are discarded to avoid any influence of
the initial and past conditions. The mean and standard deviation are then calculated from all
remaining simulated mRNA values, considering all simulated time points in all time series.

Our extended likelihood function designed in this way penalises parameter combinations for
which the mean inferred mRNA copy numbers are outside the experimentally observed range.
Hence, we expect our method to be applicable even if the mean mRNA copy number varies
between cells. If the experimental setup is able to precisely measure the mean mRNA copy
number for a specific time series of protein expression, our population-level variance σ̂2

m may
instead be replaced with the variance of the measured mean, thus enabling a more restrictive
inference.
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A.10 Data collection and analysis

A.10.1 Imaging of Primary NS cells

To generate data in Figure 3.1A, primary NS cells were isolated from the dissected cortex of
E12.5 Venus::HES5 embryos (Imayoshi et al., 2013) and cultured as previously described
(Pollard, 2013). 200,000 cells up to passage 15 were plated on laminin (Sigma, UK) coated
35mm glass-bottom dishes (Greiner-Bio One) and imaged in NS proliferation media at 37°C
in 5% CO2 using a Plan Fluor 40x 1.3NA oil objective on a Nikon A1-R inverted confocal
microscope. A 25µm z-range was used to ensure cells were maintained in focus. Maximum
projections in z direction were generated before manual cell tracking using Imaris spot func-
tion (Bitplane).

A.10.2 Conversion of Venus::HES5 intensity to molecule number

Here, we briefly describe how we translate time series of fluorescent intensity from Manning
et al. (2019) into time series of molecule numbers. Throughout our analysis, we use time se-
ries data of fluorescent intensity that were published by Manning et al. (2019) and which have
been corrected for (i) photobleaching and (ii) for weaker intensity signals at deeper z-positions
of the imaged nuclei. A quantile-quantile plot was generated between the distribution of tracked
Venus::HES5 intensities and the distribution of nuclear Venus::Hes5 concentrations across
the tissue. The distribution of tracked Venus::Hes5 intensities was generated from cells in
tissues with heterozygous Venus::Hes5 reporter. All recorded single cells at all time points
were used. The distribution of nuclear Venus::HES5 concentrations was generated using flu-
orescence correlation spectroscopy (FCS) on cells in tissue slices from the same domain of
the E10.5 spinal cord and with a homozygous Venus::Hes5 reporter. Data from multiple tis-
sue slices and multiple experiments was used. The required FCS data was also published by
Manning et al. (2019). Linear regression on the quantile-quantile plot was used to generate
a calibration curve between Venus::HES5 intensity and Venus::HES5 concentration over the
middle 90% of the range. The gradient of the line was used as a scaling factor and applied to
the intensity values in the Venus::HES5 expression time-series to transform intensity into con-
centrations. Finally, the average nuclear volume from Manning et al. (2019) was taken into
account to convert concentrations into nuclear molecule numbers.
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A B

Figure A.1: Our algorithm accurately samples posterior distributions. A, B. Posterior distributions for one-
dimensional inference. For individual model parameters, posterior distributions were inferred while keeping all
other parameters fixed, respectively. Shown above are the inferred marginal posteriors for the repression thresh-
old (A) and translation rate (B) respectively as histograms, using MALA as the underlying sampling algorithm
for 2500 samples. The blue lines are the analytical likelihood calculations. The sampled and analytical distribu-
tions coincide. Other parameters are shown in Figure 3.2.

BA

C

Figure A.2: Our algorithm accurately samples posterior distributions. A, B, C. Histograms for both MALA
and MH on the 1-dimensional problem for the transcription rate (A), translation rate (B) and transcriptional de-
lay (C). Histograms and kernel density estimates are plotted, alongside the mean from each chain and the ground
truth value. Other parameters are shown in Figure 3.2.

Parameter True Value µ (MALA) µ (MH) σ (MALA) σ (MH)
log Transcription rate, log(αm) 2.764 2.784 2.782 0.054 0.052

log Translation rate, log(αp) 0.239 0.259 0.255 0.055 0.053
Transcriptional delay, τ 30.0 30.546 30.652 6.653 6.578

Table A.3: The true values for the parameters which were used to generate the data in Figure 3.3A, alongside the
means, µ, and standard deviations, σ of the corresponding one-dimensional posterior distributions, from both
the MALA and MH algorithms (Figure A.2).
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DC

Figure A.3: Increasing the length of time course data improves inference more than increased sampling
frequency. A. MEθ for low coherence data sets sampled with different lengths, from 12 hours to 60 hours. B.
MEθ for low coherence data sets sampled with different intervals. C Same as A with the high coherence data
sets. D. Same as B with the high coherence data sets.
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A B

Figure A.4: Additional measurements of mRNA copy numbers do not improve overall inference accuracy.
A. Values of MEθ (see equation (A.27)) for low coherence data sets from Figure 3.5 with and without additional
data on mRNA copy numbers (see supplementary Section A.9 for details). B. MEθ for high coherence data sets
from Figure 3.5 with and without additional data on mRNA copy numbers. The coloured lines and shaded areas
represent the mean and standard deviation across observed values of MEθ, respectively.
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A

B

Figure A.5: Inclusion of data on mRNA copy numbers reduces uncertainty on estimated mRNA time se-
ries.

Figure A.5: Inclusion of data on mRNA copy numbers reduces uncertainty on estimated mRNA time se-
ries. A. The distribution of posterior inferred mRNA copy numbers from the Kalman filter is shown (pink line:
mean, pink shaded area: 95% confidence interval). The mean was calculated using mean inferred mRNA copy
number across 1000 randomly chosen posterior samples at each time point, and the variance was calculated from
the same samples using the law of total variance, thus accounting for uncertainty on the model parameters and
for uncertainty on mRNA copy numbers at each posterior parameter combination. Additionally, we show the
inferred mRNA copy numbers if only the ground truth parameter combination is considered in the Kalman fil-
ter (green line: inferred mean, green shaded area: 95% confidence interval). The posterior mean estimates are
far from the ground truth levels, with the confidence interval covering values up to three times larger than the
ground truth mean. Ground truth parameters are as in the high coherence parameter set of Table A.2. B. If we
include mRNA distribution information from an in silico smFISH experiment, the uncertainty on the inferred
mRNA copy number is significantly reduced (orange dots: inferred mean, orange shading: 95% confidence inter-
val), and also centered on the ground truth estimate (green dots and shading as in A).
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A B

Figure A.6: Additional data on mRNA copy numbers constrains relationships between parameters. A.
Joint posterior distributions for the P0 and log(αm) parameters, corresponding to the data set analysed in Fig-
ure 3.6A. The parameters are not highly correlated. B. Posterior distribution on the same data as in A and with
mRNA distribution information included in the inference method. The relationship between the parameters is
now more strongly defined. However, the support of the individual marginal posteriors remains large. This illus-
trates that the relative uncertainty RUθ may not be reduced despite improvements in the estimation of αT (Fig-
ure 3.6D).

A B

Figure A.7: MH and MALA converge to the true posterior distribution at a similar rate. Relative error
in the A standard deviation and B mean of the posterior distribution as an increasing number of samples are
drawn using MALA or MH, for an in silico data set of protein expression with a duration of 12 hours and with
a sampling interval of 15 minutes, as well as assuming five unknown parameters. Note, that the data in Fig-
ures 3, 4 and 5 have the same structure. The in silico data set was generated using the parameter combination
P0 = 47515, h = 4.77, µm = log(2)/30, µp = log(2)/90, αm = 2.65, αp = 17.61, τ = 38.0,Σϵ = 106. To
calculate the error, a ground truth posterior distribution is generated by drawing 1,600,000 samples using MH.
Errors are averaged over 8 chains for each sampler. For each chain, relative differences from the ground truth are
calculated on each unknown parameter and then summed, to obtain an error estimate for the standard deviation
and the mean. Before errors are calculated, chains are warmed up as described in supplementary Section A.3.
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Appendix B

Continuous-time filtering and variational

inference of combined single cell

time-series data supplementary

B.1 MCMC

To perform MCMC sampling we used the Turing.jl Julia package (Ge et al., 2018). Specifi-
cally, we use the NUTS sampler (M. D. Hoffman & Gelman, 2014) with a target acceptance
ratio of 0.8, and adaptation steps equal to half the desired number of samples per chain. For
example, if we ran 4 chains to get 2000 samples from each, the number of adaptation steps
would be 1000 per chain. The adaptation steps, often referred to as the burn-in phase, allow
the sampler to learn the geometry of the posterior distribution, and find optimal tuning param-
eters for the HMC. These initial steps are discarded from the final sample. All other parame-
ters were left as default.

For our prior distributions, we used a Normal(µ = 4, σ = 2) truncated to be between 2 and
6 for the Hill coefficient, h, a Normal(µ = 18, σ = 10) truncated to be between 5 and 40 for
the transcriptional delay τ , and a Normal(µ = P̄ , σ = 5002) truncated to be between 1000
and 2 × P̄ , where P̄ is the mean protein expression calculated either for a single time-series
or across multiple time-series. These are uninformative priors which slightly favour parameter
values that are not close to the boundary of the accepted values.
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B.2 Reporting on the accuracy of variational inference

We use the root-mean-square error statistic to report on the accuracy of posterior samples for
each parameter using Pathfinder, defined by

RMSEθ =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(θi − θ)2, (B.1)

where θ is the true value of the parameter and {θi}ni=1 are the posterior samples.

Number of cells 1 10 20 30 40

RMSE (h) 0.69 0.58 0.55 0.62 0.53

SD (h) 0.63 0.40 0.24 0.26 0.15

RMSE (τ ) 5.0 4.8 5.6 2.8 4.9

SD (τ ) 5.0 1.7 1.2 0.98 0.83

Table B.1: Root-mean-sqaure error and standard deviation values for the parameters h, and τ , as the amount of
cells increases. These are calculated for the posterior samples shown in Figure 4.5. Values for P0 are given in
Table 4.6.

B.3 Continuous variance derivation

Here we derive the general form of the updated covariance for some arbitrary time point (t, s).
In other words, P∗(s, t). Recall the notation

P1:T =

⎡⎢⎢⎢⎢⎣
P1,1 P1,2 · · · P1,T

P2,1 P2,2 · · · P2,T

...
... . . . ...

PT,1 PT,2 · · · PT,T

⎤⎥⎥⎥⎥⎦ .

Writing out the discretised version we derived above over a range [1, T ], we have

P∗
1:T = P1:T − P1:T,TF

T (FPTF
T + Σϵ)

−1FPT,1:T (B.2)

= P1:T − S−1
T

(︁
P1:T,TF

TFPT,1:T

)︁
(B.3)
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= P1:T − S−1
1:T

⎡⎢⎢⎢⎢⎣
P1,TF

T

P2,TF
T

...
PT,TF

T

⎤⎥⎥⎥⎥⎦
[︂
FPT,1 FPT,2 · · · FPT,T

]︂
(B.4)

= P1:T − S−1
T

⎡⎢⎢⎣
P1,TF

TFPT,1 · · · P1,TF
TFPT,T

... . . . ...
PT,TF

TFPT,1 · · · PT,TF
TFPT,T

⎤⎥⎥⎦ . (B.5)

where ST = FPTF
T + Σϵ ∈ R. The (i, j)-th entry of the matrix in eq. (B.5) is given by

Pi,j − S−1
T Pi,TF

TFPT,j.

The continuous version can therefore be written as

P∗(s, t) = P(s, t)− S−1
T P(s, T )F TFP(T, t) (B.6)

= P− C(s)FP(T, t) (B.7)

where
C(s) = P(s, T )F T (FP(T, T )F T + Σϵ)

−1.

A B

Figure B.1: Increasing the solver step size does not significantly improve accuracy across parameter space.
A. Relative log-likelihood error using the RK4 solver with a solver step size and off-diagonal step size of 10.0.
B. Relative log-likelihood error using the RK4 solver with a solver step size and off-diagonal step size of 5.0. In
both cases, the log-likelihood is compared to the value calculated when the solver and off-diagonal step sizes are
1.0.
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A B

C D

E F

Figure B.2: Posterior predictive checks using posterior samples from Figure 4.5. We use the posterior
samples obtained from both HMC and Pathfinder to simulate experimental data (blue lines) which are plotted
alongside experimental data simulated using the true parameter values (pink line). A. Simulated experimental
data from samples obtained using HMC. For the most part, the mean expression levels are captured, but there
are some outliers indicating the posterior is inconsistent with the data. B. Same as A but with samples from
Pathfinder. C–F. Posterior predictions improve when more data is used in the inference, and both the mean ex-
pression and periodicity of oscillations in the data are captured.
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A B

Figure B.3: Joint posterior plots show the correlation between parameters. A. Joint posterior plots for the
posterior samples from Pathfinder when using data from 1 cell. B. Joint posterior plots for the posterior samples
from Pathfinder when using data from 40 cells. The relationship between P0 and h becomes more constrained
when more data is taken into account. This agrees with previous results (see Figure A.6, (Burton et al., 2021)).
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Appendix C

Sequential and additive expression of

miR-9 precursors control timing of

neurogenesis supplementary

Gene Oligonucleotides sequence 5 > 3
Pri-mir-9-1 f cagattgacagagttgtgag
Pri-mir-9-1 r cagtgctgactactctaatg
Pri-mir-9-2 f gttcaatcctcttccgtttg
*Pri-mir-9-2 r cagcatcccgttacacattc
*Pri-mir-9-3 f aatgctgagttttgccacct
Pri-mir-9-3 r tgctgcggaaaataacacaa
Pri-mir-9-4 f ttccacaagggtatcgatag
Pri-mir-9-4 r tattatatgagaaccacgtg
Pri-mir-9-5 f gatgttatttccgcgtgcac
Pri-mir-9-5 r tcagctctctctatatgtcc
*Pri-mir-9-6 f gagagacaacatcgcatcca
*Pri-mir-9-6 r tcaaacatagcaggatagggtct
Pri-mir-9-7 f tactaattaacctataacgcttgc
Pri-mir-9-7 r tctactttcggttctctagc

Table C.1: Sequences of primers used to generate probes for in situ hybridisation. * Primers for Pri-mir-9-3
and Pri-mir-9-6 were used to clone the probes that were kindly provided by the Bally-Cuif lab.

Number Gene name Primer sequence 5 > 3
1 Pri-mir-9-1 aggggttggctgttatctttgatctagcagtatcagtgttattc
2 Pri-mir-9-4 tgggttagtttttctcttaggtaatcctgtatgagtttatgtgatatcataaa
3 Pri-mir-9-5 aaatactcatacagcaagataaaacataacaactcgcttccaattcc
4 Pri-mir-9-7 acgggttagtttttctctttcgttttcttgtatgagttatgaaatatcataaag

Table C.2: Primers for site-directed mutagenesis.

202



Figure S1
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Figure C.1: miR-9 host gene expression negatively correlates with Hes/Her gene expression over devel-
opmental time. A. Map of miR-9 paralogues in Danio rerio produced with information from Vega genome
browser, data was collated from ensembl genome browser GRCz10, showing chromosomal loci. Red arrowhead
indicates location of respective pri-mir-9. B. Table showing the genomic loci of the seven Danio rerio miR-9
paralogues, their host gene, exonic or intronic location within the host gene and strand orientation. C. Heatmap
showing z-scored expression data over developmental time for the miR-9 host / pri-mirs and Hes/Her genes over
developmental time in the zebrafish embryo. Data is from White et al. (2017)
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Figure C.2: Probe design for in situ hybridisations of pri-mir-9s. The probes are indicated by the orange
blocks. Where probes are on exons, introns are indicated by dashed lines. Forward (F) and reverse (R) are visu-
alised by blue arrows. Overlapping transcripts are indicated by the black boxes and dashed lines. The microRNA
hairpin is indicated by a small orange box broken by two blue boxes indicating the mature sequences. Probes for
pri-mir-9-3 and pri-mir-9-6 were based on those from Nepal et al. (2016). Mutations in the mature sequence are
indicated by lightning bolts and also annotated underneath.
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Figure C.3: All seven miR-9 paralogues are expressed at 48hpf. A. Schematic of the seven miR-9 paralogues
hairpin loops with the respective primers used for qRTPCR annotated as blue arrows (Section 5.6.2; Table C.3).
Red sequence: miR-9-5’ arm, orange sequence: miR-9-3’ arm, black letters: pre-mir-9, grey sequence: partial
sequence of pri-mir-9. B. Bar plot showing relative expression of the seven miR-9 paralogues at 48hpf, N = 3.
Error bar represent mean and SEM. C. Amplicons of the seven miR-9 paralogues generated by qRT-PCR us-
ing the respective primers (Table C.3). D. Evolutionary relationship of pri-mir-9 family modified from Alwin
Prem Anand et al. (2018) phylogenetic analysis. Highlighted in red letter are the seven miR-9 paralogues. The
zebrafish miR-9 paralogues cluster into two Clades: Clade I that is divided into 2 subgroups: Subgroup I corre-
sponding to the group in which human (h) and mouse (m) pri-mir-9-2 precursor cluster with Danio rerio (dre)
pri-mir-9-2 and pri-mir-9-5 precursors and subgroup II corresponding to the group where h/m-pri-mir-9-1 pre-
cursor clusters with dre-pri-mir9-1. Interestingly, dre-pri-mir-9-6 is closely related to clade I but doesn’t group
with any subgroup. Clade II correspond to the branch where m/h-pri-miR-9-3 group with dre-pri-mir-9-3, dre-
pri-mir-9-4 and dre-pri-mir-9-7.
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Figure C.4: Deletion of pre-mir-9-1. A. (A-left) Schematic representation of experimental procedure used to
delete premir-9-1, (A-right) high resolution melt graphs obtained from: wt (wildtype) versus sgRNA 1, 2 or 3
injected fish, respectively. B. Agarose gel showing the size of the amplicon in wt fish (395bp) and in injected
with three sgRNA fish, ∼250bp and 395bp in fish1 and ∼190bp and 395bp in fish2. C. Representative examples
of sequences obtained from F0 embryos showing deletion of pre-mir-9-1. Red underline indicates premir-9-1
sequence. Green highlighted indicates mature miR-9 sequence. D–F. SYBR green relative quantification of pri-
mir-9-3 (D), pri-mir-9-4 (E) and pri-mir-9-5 (F) from dissected hindbrain at different stages of development, in
wild-type conditions (black dots) and deletion of pre-mir-9-1 (red dots), quantification was normalised using β-
actin. N = 3.
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Figure C.5: Her6 is not down-regulated by miR-9 in the perfect adaptation model. A–C. Perfect adaptation
model. (A) A schematic of the perfect adaptation model based on an incoherent feed forward loop. The parame-
ters µh, αh and αX are positive real constants. µh represents the degradation rates of Her6 and αh and αX rep-
resent the basal production rate of Her6 and X respectively. See Section 5.6.13, parameter values are given in
Table C.14. B. A linear mir-9 expression profile leads to a small initial response in Her6 expression levels, which
returns to steady state levels due to the perfect adaptation. C. Large instantaneous changes in miR-9 cause a large
drop in Her6 levels, which then returns to steady state. The model detects fold changes in miR-9 and repetitive
steps result in a diminished response from Her6.
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Figure C.6: Her6 is down-regulated by miR-9 stepwise increase in extended adaptation mathematical
model. A–B. Dynamics of Her6 in response to linear increase in miR-9 (A) or stepwise increase in miR-9 (B)
with increased repression strength from Y . The stepwise increase in miR-9 under high repression strength from
Y causes Her6 to switch off given a large enough increase in miR-9.
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Figure C.7: A. Schematic of pri-miR-9-1 hairpin loops with the customized guide RNAs used to specifically
delete pre-mir-9-1, annotated as g1, g2 and g3. Left panel, sequence of wild type pri-miR-9-1 hairpin loop.
Right panel, sequence of mutant pri-miR-9-1 after CRISPR deletion with dashed line indicating the deleted re-
gion and loss of hairpin loop. B. Amplicons obtained from F1 generation of wildtype (green arrow) and pri-miR-
9-1 mutant (black arrow) embryos, 395bp and 273bp, respectively. wt: wildtype; het: heterozygote; home: ho-
mozygote. C. Sequence showing the region deleted in the pri-miR-9-1 mutant. (A and C) Red: miR-9 5’ arm,
orange: miR-9 3’ arm, black: pre-mir-9, grey: partial sequence of pri-mir-9-1. D. Representative image of Chro-
mogenic WM-ISH performed at 48hpf showing her6 expression in wild type embryos and in pri-miR-9-1−/−

mutant embryos. Note ventral extension of her6 expression in pri-miR-9-1−/− embryos (9/13) compared to
wildtype embryos (3/10) as indicated by white arrowheads; longitudinal view, scale bar 30µm. E. Representa-
tive confocal images of wild type and pri-miR-9-1+/− embryos showing Her6::Venus+/+ expression in the hind-
brain, rhombomeres 3 to 6 (r3-r6) over the course of development; longitudinal view, scale bar 30µm. Images are
representing 2D maximum projection; N = 3 independent experiments with 1 embryo, 1 embryo, 2 embryos
per experimental condition, Her6::Venus+/+;pri-mir-9-1+/+ or Her6::Venus+/+;pri-mir-9-1−/+or−/−. Note:
The in-cross of Her6::Venus+/−;pri-mir-9-1+/− adults had low rate of Her6::Venus+/+;pri-mir-9-1−/+or−/−

embryos explaining the low number of embryos analysed per independent experiment. (D-E) White arrowheads
indicate increased Her6::Venus expression in pri-miR-9-1 mutants.

Number Name Sequence 5’ > 3’ Amplicon size (bp)
1 pri-mir-9-1 f agttcagccctggttgg 149
2 pri-mir-9-1 r tgatgcctttcaggtgtg 149
3 pri-mir-9-2 f acttggaggcgtgttg 120
4 pri-mir-9-2 r gtttacgcaatgctccatac 120
5 pri-mir-9-3 f agcagaaaaccaacagtgg 150
6 pri-mir-9-3 r tctcttgctgtcttccaaag 150
7 pri-mir-9-4 f tttaaggcacatgggttag 135
8 pri-mir-9-4 r tcctgcctcgttccaattc 135
9 pri-mir-9-5 f cacaagacacggaggtatcc 166
10 pri-mir-9-5 r tcttcgtgtcaataggcagcc 166
11 pri-mir-9-6 f acaggaggtagttgctatc 104
12 pri-mir-9-6 r tgtatgcagttaaggaggac 104
13 pri-mir-9-7 f atctgaccgcacatgtgac 146
14 pri-mir-9-7 r tctactttcggttctctagc 146
15 β-actin f cgtgctgtcttcccatcca 176
16 β-actin r tcaccaacgtagctgtctttctg 176
17 elavl4 f ccgtcaacaatgtcaaggtg 147
18 elavl4 r acacttgcaagacacggtca 147
19 barhl2 f ttcggtcacgatggagcatc 120
20 barhl2 r agcagatgaggctgaggtga 120
21 dmbx1a f gcgaccccatcatctataccat 105
22 dmbx1a r cgcgtggtgagatagagactga 105
23 pax2a f gtgacaggtcgagagatggc 198
24 pax2a r acttaataacgcggggttgct 198
25 otpb f tgttggagcgatttttcagg 107
26 otpb r ttcctgttgatcccgtttgaa 107
27 tal1/scl f gcacgacggcggagaca 226
28 tal1/scl r ggaggcagtggcaagggaa 226
29 isl1 f gcagcagcaacccaacgacaa 224
30 isl1 r ttgagcctggaccaccttcagaa 224

Table C.3: Sequences of primers used for qRT-PCR.
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MicroRNA ensembl gene code Host name
dre-mir-9-1 ENSDARG00000095906 CR848047.1
dre-mir-9-2 ENSDARG00000098512 si:ch73-215f7.1
dre-mir-9-3 ENSDARG00000098395 CU929451.2
dre-mir-9-4 ENSDARG00000095557 BX664610.1
dre-mir-9-5 ENSDARG00000095715 BX465834.1
dre-mir-9-6 ENSDARG00000101584 CU467822.2
dre-mir-9-7 NA NA

Table C.4: microRNA host genes.

Probe sequence name Probe sequence (5’ to 3’)
pri-mir-9-1 smiFISH_1 CCTCCTAAGTTTCGAGCTGGACTCAGTGcactcactttctttctcaca
pri-mir-9-1 smiFISH_2 CCTCCTAAGTTTCGAGCTGGACTCAGTGgaggtctttctctctctcag
pri-mir-9-1 smiFISH_3 CCTCCTAAGTTTCGAGCTGGACTCAGTGcacagcaaagtgctagaatc
pri-mir-9-1 smiFISH_4 CCTCCTAAGTTTCGAGCTGGACTCAGTGgatttaccctcaagttgttg
pri-mir-9-1 smiFISH_5 CCTCCTAAGTTTCGAGCTGGACTCAGTGctagttgctttagttttccg
pri-mir-9-1 smiFISH_6 CCTCCTAAGTTTCGAGCTGGACTCAGTGaataggggggaaaagaccct
pri-mir-9-1 smiFISH_7 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgcaaaggctgggatttatt
pri-mir-9-1 smiFISH_8 CCTCCTAAGTTTCGAGCTGGACTCAGTGgagagatggcttcaaacgca
pri-mir-9-1 smiFISH_9 CCTCCTAAGTTTCGAGCTGGACTCAGTGattgcaggctgatcattctc
pri-mir-9-1 smiFISH_10 CCTCCTAAGTTTCGAGCTGGACTCAGTGttcttgttgtctctgtctta
pri-mir-9-1 smiFISH_11 CCTCCTAAGTTTCGAGCTGGACTCAGTGagatgcaaagagtccattca
pri-mir-9-1 smiFISH_12 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaccagcctgaactggttta
pri-mir-9-1 smiFISH_13 CCTCCTAAGTTTCGAGCTGGACTCAGTGctatgacttcaccagtctgt
pri-mir-9-1 smiFISH_14 CCTCCTAAGTTTCGAGCTGGACTCAGTGctcttgattgggtagcttaa
pri-mir-9-1 smiFISH_15 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgatcacagtgctgagactg
pri-mir-9-1 smiFISH_16 CCTCCTAAGTTTCGAGCTGGACTCAGTGactgacgtaggttatctgta
pri-mir-9-1 smiFISH_17 CCTCCTAAGTTTCGAGCTGGACTCAGTGggctgaactgcaacctgaaa
pri-mir-9-1 smiFISH_18 CCTCCTAAGTTTCGAGCTGGACTCAGTGctttcaggtgtgtaatggga
pri-mir-9-1 smiFISH_19 CCTCCTAAGTTTCGAGCTGGACTCAGTGagtacagatctcaaggtggg
pri-mir-9-1 smiFISH_20 CCTCCTAAGTTTCGAGCTGGACTCAGTGagaggagaagaggagagggg
pri-mir-9-1 smiFISH_21 CCTCCTAAGTTTCGAGCTGGACTCAGTGgagagagggagacttgggag
pri-mir-9-1 smiFISH_22 CCTCCTAAGTTTCGAGCTGGACTCAGTGtggcttgctctcacaataaa
pri-mir-9-1 smiFISH_23 CCTCCTAAGTTTCGAGCTGGACTCAGTGagcactgatggaggccattt
pri-mir-9-1 smiFISH_24 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaaatgctgcttaccttcca
pri-mir-9-1 smiFISH_25 CCTCCTAAGTTTCGAGCTGGACTCAGTGggaggagataatcacagctt
pri-mir-9-1 smiFISH_26 CCTCCTAAGTTTCGAGCTGGACTCAGTGagcaatgagagagactgggt
pri-mir-9-1 smiFISH_27 CCTCCTAAGTTTCGAGCTGGACTCAGTGacgcaccttttacaatagca
pri-mir-9-1 smiFISH_28 CCTCCTAAGTTTCGAGCTGGACTCAGTGtagatttgtgaggaggggtg
pri-mir-9-1 smiFISH_29 CCTCCTAAGTTTCGAGCTGGACTCAGTGagtgctgactactctaatgt
pri-mir-9-1 smiFISH_30 CCTCCTAAGTTTCGAGCTGGACTCAGTGattccgcgtattaaacgctt
pri-mir-9-1 smiFISH_31 CCTCCTAAGTTTCGAGCTGGACTCAGTGccctacggagagtgaaatga
pri-mir-9-1 smiFISH_32 CCTCCTAAGTTTCGAGCTGGACTCAGTGcattcagcttctccgtatcg
pri-mir-9-1 smiFISH_33 CCTCCTAAGTTTCGAGCTGGACTCAGTGcactccagaatgttgtcttg
pri-mir-9-1 smiFISH_34 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaatatgcgcgtgcgagctg
pri-mir-9-1 smiFISH_35 CCTCCTAAGTTTCGAGCTGGACTCAGTGattcaggaccgatcgtaatg
pri-mir-9-1 smiFISH_36 CCTCCTAAGTTTCGAGCTGGACTCAGTGcctatcctcgagcatcgatg

Table C.5: smiFISH Probe sequences for pri-mir-9-1.
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Probe sequence name Probe sequence (5’ to 3’)
pri-mir-9-4 smiFISH_1 CCTCCTAAGTTTCGAGCTGGACTCAGTGctatcgatacccttgtggaa
pri-mir-9-4 smiFISH_2 CCTCCTAAGTTTCGAGCTGGACTCAGTGtggaaacgttgcgtttggtt
pri-mir-9-4 smiFISH_3 CCTCCTAAGTTTCGAGCTGGACTCAGTGacactgtcaagacactgcta
pri-mir-9-4 smiFISH_4 CCTCCTAAGTTTCGAGCTGGACTCAGTGatggttagcatttgttcgtg
pri-mir-9-4 smiFISH_5 CCTCCTAAGTTTCGAGCTGGACTCAGTGatgcacctcaaaaaactgct
pri-mir-9-4 smiFISH_6 CCTCCTAAGTTTCGAGCTGGACTCAGTGcagtatgtaggcgcttaagg
pri-mir-9-4 smiFISH_7 CCTCCTAAGTTTCGAGCTGGACTCAGTGtcttttatgtttggagctgg
pri-mir-9-4 smiFISH_8 CCTCCTAAGTTTCGAGCTGGACTCAGTGgcatcgcagttgtttacaat
pri-mir-9-4 smiFISH_9 CCTCCTAAGTTTCGAGCTGGACTCAGTGctcttgcgtttgcactttta
pri-mir-9-4 smiFISH_10 CCTCCTAAGTTTCGAGCTGGACTCAGTGtagtctaggtgttattgcgc
pri-mir-9-4 smiFISH_11 CCTCCTAAGTTTCGAGCTGGACTCAGTGtacgctcatattatgtgcgt
pri-mir-9-4 smiFISH_12 CCTCCTAAGTTTCGAGCTGGACTCAGTGcacacacacatacacgtggg
pri-mir-9-4 smiFISH_13 CCTCCTAAGTTTCGAGCTGGACTCAGTGatacagtctcactcactctt
pri-mir-9-4 smiFISH_14 CCTCCTAAGTTTCGAGCTGGACTCAGTGatggagctattgcattcact
pri-mir-9-4 smiFISH_15 CCTCCTAAGTTTCGAGCTGGACTCAGTGcagatgcagcttctgttgtg
pri-mir-9-4 smiFISH_16 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaaactaacccatgtgcctt
pri-mir-9-4 smiFISH_17 CCTCCTAAGTTTCGAGCTGGACTCAGTGtaatctcaaggtctacgggg
pri-mir-9-4 smiFISH_18 CCTCCTAAGTTTCGAGCTGGACTCAGTGtcaaacgacagcactcacaa
pri-mir-9-4 smiFISH_19 CCTCCTAAGTTTCGAGCTGGACTCAGTGacatccagaacatccatttc
pri-mir-9-4 smiFISH_20 CCTCCTAAGTTTCGAGCTGGACTCAGTGccatccagcgttttacaaaa
pri-mir-9-4 smiFISH_21 CCTCCTAAGTTTCGAGCTGGACTCAGTGaattcaaagcgctccgaagt
pri-mir-9-4 smiFISH_22 CCTCCTAAGTTTCGAGCTGGACTCAGTGggattcgatgctctttgtag
pri-mir-9-4 smiFISH_23 CCTCCTAAGTTTCGAGCTGGACTCAGTGggaaacgcattaacgcagcg
pri-mir-9-4 smiFISH_24 CCTCCTAAGTTTCGAGCTGGACTCAGTGacagcttttggtattccagt
pri-mir-9-4 smiFISH_25 CCTCCTAAGTTTCGAGCTGGACTCAGTGacgtaaaatccacgtcttcc
pri-mir-9-4 smiFISH_26 CCTCCTAAGTTTCGAGCTGGACTCAGTGtatgtagccggaggcagatt
pri-mir-9-4 smiFISH_27 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgtactgccagcgtactaac
pri-mir-9-4 smiFISH_28 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtatccgcctgaataccaag
pri-mir-9-4 smiFISH_29 CCTCCTAAGTTTCGAGCTGGACTCAGTGcttgagaatgatcgcgaagt
pri-mir-9-4 smiFISH_30 CCTCCTAAGTTTCGAGCTGGACTCAGTGggaatgttgcccagcacaag
pri-mir-9-4 smiFISH_31 CCTCCTAAGTTTCGAGCTGGACTCAGTGacatcatcatcacgtctatg
pri-mir-9-4 smiFISH_32 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtcatcccgaattcatacat
pri-mir-9-4 smiFISH_33 CCTCCTAAGTTTCGAGCTGGACTCAGTGaacacctcgatgaaccgatt
pri-mir-9-4 smiFISH_34 CCTCCTAAGTTTCGAGCTGGACTCAGTGagagatccgaccaatcggtt
pri-mir-9-4 smiFISH_35 CCTCCTAAGTTTCGAGCTGGACTCAGTGtatatgagaaccacgtgacc

Table C.6: smiFISH Probe sequences for pri-mir-9-4.
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Probe sequence name Probe sequence (5’ to 3’)
pri-mir-9-5 smiFISH_1 CCTCCTAAGTTTCGAGCTGGACTCAGTGacggaggagatcggtaatgc
pri-mir-9-5 smiFISH_2 CCTCCTAAGTTTCGAGCTGGACTCAGTGttagttttggccgagtggtg
pri-mir-9-5 smiFISH_3 CCTCCTAAGTTTCGAGCTGGACTCAGTGactgaatggagggatcgctc
pri-mir-9-5 smiFISH_4 CCTCCTAAGTTTCGAGCTGGACTCAGTGataacatcgcgtttgtttcg
pri-mir-9-5 smiFISH_5 CCTCCTAAGTTTCGAGCTGGACTCAGTGaggaaaaaaagtgcacgcgg
pri-mir-9-5 smiFISH_6 CCTCCTAAGTTTCGAGCTGGACTCAGTGgaggggaaaaatccgattcc
pri-mir-9-5 smiFISH_7 CCTCCTAAGTTTCGAGCTGGACTCAGTGgaaccagcagcgagattata
pri-mir-9-5 smiFISH_8 CCTCCTAAGTTTCGAGCTGGACTCAGTGtggcagcagcgatagatatc
pri-mir-9-5 smiFISH_9 CCTCCTAAGTTTCGAGCTGGACTCAGTGgctcctttggctctattaaa
pri-mir-9-5 smiFISH_10 CCTCCTAAGTTTCGAGCTGGACTCAGTGttacctcccaatctcacaaa
pri-mir-9-5 smiFISH_11 CCTCCTAAGTTTCGAGCTGGACTCAGTGtacaggccatcatttgcatt
pri-mir-9-5 smiFISH_12 CCTCCTAAGTTTCGAGCTGGACTCAGTGcctgtcgaataagaagcagt
pri-mir-9-5 smiFISH_13 CCTCCTAAGTTTCGAGCTGGACTCAGTGtatgagagttggagtgaggg
pri-mir-9-5 smiFISH_14 CCTCCTAAGTTTCGAGCTGGACTCAGTGaccggagcagttaacgttaa
pri-mir-9-5 smiFISH_15 CCTCCTAAGTTTCGAGCTGGACTCAGTGtggatatgctcgcaaccaaa
pri-mir-9-5 smiFISH_16 CCTCCTAAGTTTCGAGCTGGACTCAGTGggcaatggacttcacaattg
pri-mir-9-5 smiFISH_17 CCTCCTAAGTTTCGAGCTGGACTCAGTGtccaagtggagaagttgcta
pri-mir-9-5 smiFISH_18 CCTCCTAAGTTTCGAGCTGGACTCAGTGctccgtgtcttgtgtaagaa
pri-mir-9-5 smiFISH_19 CCTCCTAAGTTTCGAGCTGGACTCAGTGcacaacagtaatcccaggat
pri-mir-9-5 smiFISH_20 CCTCCTAAGTTTCGAGCTGGACTCAGTGgataacaactcgcttccaat
pri-mir-9-5 smiFISH_21 CCTCCTAAGTTTCGAGCTGGACTCAGTGctcatacagctagataacca
pri-mir-9-5 smiFISH_22 CCTCCTAAGTTTCGAGCTGGACTCAGTGgaggcagtttttactttcgg
pri-mir-9-5 smiFISH_23 CCTCCTAAGTTTCGAGCTGGACTCAGTGcagccagagtttcgatgagc
pri-mir-9-5 smiFISH_24 CCTCCTAAGTTTCGAGCTGGACTCAGTGagctactgacacaggctata
pri-mir-9-5 smiFISH_25 CCTCCTAAGTTTCGAGCTGGACTCAGTGtctaacatgttgtgtagcca
pri-mir-9-5 smiFISH_26 CCTCCTAAGTTTCGAGCTGGACTCAGTGttatagcaccaagtgaagcc
pri-mir-9-5 smiFISH_27 CCTCCTAAGTTTCGAGCTGGACTCAGTGcccgcgagctatgagaaata
pri-mir-9-5 smiFISH_28 CCTCCTAAGTTTCGAGCTGGACTCAGTGtttgtttgcttgagttaccg
pri-mir-9-5 smiFISH_29 CCTCCTAAGTTTCGAGCTGGACTCAGTGttcctccacaaggaaaagga
pri-mir-9-5 smiFISH_30 CCTCCTAAGTTTCGAGCTGGACTCAGTGccagtctattcgtctatttg
pri-mir-9-5 smiFISH_31 CCTCCTAAGTTTCGAGCTGGACTCAGTGttcacgtgtcagtttcagta
pri-mir-9-5 smiFISH_32 CCTCCTAAGTTTCGAGCTGGACTCAGTGaatagtgagcacgtgggttc
pri-mir-9-5 smiFISH_33 CCTCCTAAGTTTCGAGCTGGACTCAGTGcaaaggcgaccgagctgaaa
pri-mir-9-5 smiFISH_34 CCTCCTAAGTTTCGAGCTGGACTCAGTGatttctgtttgggatgccag
pri-mir-9-5 smiFISH_35 CCTCCTAAGTTTCGAGCTGGACTCAGTGgctctctctatatgtcctaa

Table C.7: smiFISH Probe sequences for pri-mir-9-5.
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Probe sequence name Probe sequence (5’ to 3’)
her6 smiFISH_1 CCTCCTAAGTTTCGAGCTGGACTCAGTGtccatgatatcggcaggcat
her6 smiFISH_2 CCTCCTAAGTTTCGAGCTGGACTCAGTGgaccggagaagaggagtttt
her6 smiFISH_3 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgggtttatcaggtgtagtg
her6 smiFISH_4 CCTCCTAAGTTTCGAGCTGGACTCAGTGagactttctgtgttccgaag
her6 smiFISH_5 CCTCCTAAGTTTCGAGCTGGACTCAGTGtcttttctccataatgggtt
her6 smiFISH_6 CCTCCTAAGTTTCGAGCTGGACTCAGTGtttcgttgattctcgctctt
her6 smiFISH_7 CCTCCTAAGTTTCGAGCTGGACTCAGTGattaacgttttcagctgacc
her6 smiFISH_8 CCTCCTAAGTTTCGAGCTGGACTCAGTGatcttttttcagagcatcca
her6 smiFISH_9 CCTCCTAAGTTTCGAGCTGGACTCAGTGggctttctcaagtttagagt
her6 smiFISH_10 CCTCCTAAGTTTCGAGCTGGACTCAGTGtcactgtcatctccaggatg
her6 smiFISH_11 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgctgcatgtttctgagatg
her6 smiFISH_12 CCTCCTAAGTTTCGAGCTGGACTCAGTGtttagggcagcggtcatttg
her6 smiFISH_13 CCTCCTAAGTTTCGAGCTGGACTCAGTGttcccaagaacggtgggatc
her6 smiFISH_14 CCTCCTAAGTTTCGAGCTGGACTCAGTGattcactgaatccagctcgg
her6 smiFISH_15 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaccgggtaacctcgttcat
her6 smiFISH_16 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgttaaccccttcacatgtg
her6 smiFISH_17 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgttgatctgtgtcatgcag
her6 smiFISH_18 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgctgtgttggatagttcat
her6 smiFISH_19 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgaaggatggatgaggaggc
her6 smiFISH_20 CCTCCTAAGTTTCGAGCTGGACTCAGTGgggatctgaaccatgggttg
her6 smiFISH_21 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgctaagaggcacaacgttg
her6 smiFISH_22 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtcaaattggaggatgagcc
her6 smiFISH_23 CCTCCTAAGTTTCGAGCTGGACTCAGTGccatatactttagttgcgtc
her6 smiFISH_24 CCTCCTAAGTTTCGAGCTGGACTCAGTGttgccggcacaagctggaaa
her6 smiFISH_25 CCTCCTAAGTTTCGAGCTGGACTCAGTGcaaaaaggcgaactgtccgt
her6 smiFISH_26 CCTCCTAAGTTTCGAGCTGGACTCAGTGttggagcaaaggcagcgttg
her6 smiFISH_27 CCTCCTAAGTTTCGAGCTGGACTCAGTGtagactggaataacagggcc
her6 smiFISH_28 CCTCCTAAGTTTCGAGCTGGACTCAGTGgaaccggtgtgttggaattg
her6 smiFISH_29 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaacggagtctgacgtgacg

Table C.8: smiFISH Probe sequences for her6.
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Probe sequence name Probe sequence (5’ to 3’)
her9 smiFISH_1 CCTCCTAAGTTTCGAGCTGGACTCAGTGcttctccatattatcggctg
her9 smiFISH_2 CCTCCTAAGTTTCGAGCTGGACTCAGTGcagcaataggtgatgctgtc
her9 smiFISH_3 CCTCCTAAGTTTCGAGCTGGACTCAGTGgcttgtcaggagtatgagat
her9 smiFISH_4 CCTCCTAAGTTTCGAGCTGGACTCAGTGagactttctatgctcgctgg
her9 smiFISH_5 CCTCCTAAGTTTCGAGCTGGACTCAGTGgcttttccatgattggcttt
her9 smiFISH_6 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaggctctcgttgattctcg
her9 smiFISH_7 CCTCCTAAGTTTCGAGCTGGACTCAGTGgaatgagagtcttcagctgc
her9 smiFISH_8 CCTCCTAAGTTTCGAGCTGGACTCAGTGgctatcttttttaagagcat
her9 smiFISH_9 CCTCCTAAGTTTCGAGCTGGACTCAGTGtctccaatttagagtgtctg
her9 smiFISH_10 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtcatctccagaatatcagc
her9 smiFISH_11 CCTCCTAAGTTTCGAGCTGGACTCAGTGtaaattgcgcaggtgcttga
her9 smiFISH_12 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaggctgcgctcatctgaac
her9 smiFISH_13 CCTCCTAAGTTTCGAGCTGGACTCAGTGtacttgctgaggacgtttgt
her9 smiFISH_14 CCTCCTAAGTTTCGAGCTGGACTCAGTGcatgcactcgttgaatcctg
her9 smiFISH_15 CCTCCTAAGTTTCGAGCTGGACTCAGTGagagaaatcgagtcacctcg
her9 smiFISH_16 CCTCCTAAGTTTCGAGCTGGACTCAGTGtctgacctctgtattcactc
her9 smiFISH_17 CCTCCTAAGTTTCGAGCTGGACTCAGTGacaggtggttaagaagtcgc
her9 smiFISH_18 CCTCCTAAGTTTCGAGCTGGACTCAGTGcatcatctgtcccatacaac
her9 smiFISH_19 CCTCCTAAGTTTCGAGCTGGACTCAGTGcaggctgagggtagttcatg
her9 smiFISH_20 CCTCCTAAGTTTCGAGCTGGACTCAGTGagccaaatgagcctgttgag
her9 smiFISH_21 CCTCCTAAGTTTCGAGCTGGACTCAGTGgaagctgcacgtgaagaggc
her9 smiFISH_22 CCTCCTAAGTTTCGAGCTGGACTCAGTGccgttgatgggtaacgttga
her9 smiFISH_23 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgagtttggaacccattgag
her9 smiFISH_24 CCTCCTAAGTTTCGAGCTGGACTCAGTGtggtgagaccgcttctgaag
her9 smiFISH_25 CCTCCTAAGTTTCGAGCTGGACTCAGTGagctggaatcctccaaagac
her9 smiFISH_26 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaaagcaaactgtccgtccg
her9 smiFISH_27 CCTCCTAAGTTTCGAGCTGGACTCAGTGcaaacgctgggttggggata
her9 smiFISH_28 CCTCCTAAGTTTCGAGCTGGACTCAGTGaatgaccggagttgtggcag
her9 smiFISH_29 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgcttgcgtttgcgtacaag
her9 smiFISH_30 CCTCCTAAGTTTCGAGCTGGACTCAGTGactggcgttgacagtcactg
her9 smiFISH_31 CCTCCTAAGTTTCGAGCTGGACTCAGTGcattccctggacaggagatg
her9 smiFISH_32 CCTCCTAAGTTTCGAGCTGGACTCAGTGcttgtggaacgcccgagaag
her9 smiFISH_33 CCTCCTAAGTTTCGAGCTGGACTCAGTGctgacaccaacgggactgac

Table C.9: smiFISH Probe sequences for her9.
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Probe sequence name Probe sequence (5’ to 3’)
neurog1 smiFISH_1 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgctcttaaccctcaatcag
neurog1 smiFISH_2 CCTCCTAAGTTTCGAGCTGGACTCAGTGaagataatggcacgcgtctg
neurog1 smiFISH_3 CCTCCTAAGTTTCGAGCTGGACTCAGTGatcctgcagatagtttgtgt
neurog1 smiFISH_4 CCTCCTAAGTTTCGAGCTGGACTCAGTGgagatgcttgaggttttgca
neurog1 smiFISH_5 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgataaccttattggtgggc
neurog1 smiFISH_6 CCTCCTAAGTTTCGAGCTGGACTCAGTGcggagtatacgatctccatt
neurog1 smiFISH_7 CCTCCTAAGTTTCGAGCTGGACTCAGTGtagtcacagcttgaggtttc
neurog1 smiFISH_8 CCTCCTAAGTTTCGAGCTGGACTCAGTGatcatccgtgtgcgaaaagg
neurog1 smiFISH_9 CCTCCTAAGTTTCGAGCTGGACTCAGTGtggagacgcaggtggttttc
neurog1 smiFISH_10 CCTCCTAAGTTTCGAGCTGGACTCAGTGttcttcttcacgacgtgcac
neurog1 smiFISH_11 CCTCCTAAGTTTCGAGCTGGACTCAGTGttaaggttgtgcatcctgtt
neurog1 smiFISH_12 CCTCCTAAGTTTCGAGCTGGACTCAGTGgcttctcaaagcatccaatg
neurog1 smiFISH_13 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgtgtcgtcaggaaacgcag
neurog1 smiFISH_14 CCTCCTAAGTTTCGAGCTGGACTCAGTGgagtctcaattttggtcagc
neurog1 smiFISH_15 CCTCCTAAGTTTCGAGCTGGACTCAGTGatgtagttgtgagcgaagcg
neurog1 smiFISH_16 CCTCCTAAGTTTCGAGCTGGACTCAGTGatccggatggtctccgaaag
neurog1 smiFISH_17 CCTCCTAAGTTTCGAGCTGGACTCAGTGatgaagacgacgaggatgcc
neurog1 smiFISH_18 CCTCCTAAGTTTCGAGCTGGACTCAGTGggtctgagttgcagtaagac
neurog1 smiFISH_19 CCTCCTAAGTTTCGAGCTGGACTCAGTGtatccaaaatcgtccatggc
neurog1 smiFISH_20 CCTCCTAAGTTTCGAGCTGGACTCAGTGctgtacactacgtcggtttg
neurog1 smiFISH_21 CCTCCTAAGTTTCGAGCTGGACTCAGTGagatgctaggcacgaagttg
neurog1 smiFISH_22 CCTCCTAAGTTTCGAGCTGGACTCAGTGaccgacatgagaacgcttaa
neurog1 smiFISH_23 CCTCCTAAGTTTCGAGCTGGACTCAGTGtacatacttctggagattct
neurog1 smiFISH_24 CCTCCTAAGTTTCGAGCTGGACTCAGTGagtaacagtggtcttacact
neurog1 smiFISH_25 CCTCCTAAGTTTCGAGCTGGACTCAGTGgttgtgctcttggttctaat
neurog1 smiFISH_26 CCTCCTAAGTTTCGAGCTGGACTCAGTGaggcaaacagtgaataccta
neurog1 smiFISH_27 CCTCCTAAGTTTCGAGCTGGACTCAGTGtctcatttgcagactgtcat
neurog1 smiFISH_28 CCTCCTAAGTTTCGAGCTGGACTCAGTGcacgctccaaggaatgcaaa
neurog1 smiFISH_29 CCTCCTAAGTTTCGAGCTGGACTCAGTGattttctctaacggggttct
neurog1 smiFISH_30 CCTCCTAAGTTTCGAGCTGGACTCAGTGcaatctgccttgctttttaa
neurog1 smiFISH_31 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgacttttcaccttggacag
neurog1 smiFISH_32 CCTCCTAAGTTTCGAGCTGGACTCAGTGtcagctttatcgctctacaa
neurog1 smiFISH_33 CCTCCTAAGTTTCGAGCTGGACTCAGTGaactgatttttcacgctcgt
neurog1 smiFISH_34 CCTCCTAAGTTTCGAGCTGGACTCAGTGttcagtctattgtcacagcg
neurog1 smiFISH_35 CCTCCTAAGTTTCGAGCTGGACTCAGTGcataaggccagatctttgtc
neurog1 smiFISH_36 CCTCCTAAGTTTCGAGCTGGACTCAGTGtttcttcgggtcaaaataca
neurog1 smiFISH_37 CCTCCTAAGTTTCGAGCTGGACTCAGTGggatcagttggacagatgag
neurog1 smiFISH_38 CCTCCTAAGTTTCGAGCTGGACTCAGTGcatgagagctggttaactgt
neurog1 smiFISH_39 CCTCCTAAGTTTCGAGCTGGACTCAGTGagaaaagtggtgggaaagcc
neurog1 smiFISH_40 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgtacaaacatgtttgcacc

Table C.10: smiFISH Probe sequences for neurog1.
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Probe sequence name Probe sequence (5’ to 3’)
atoh1a smiFISH_1 CCTCCTAAGTTTCGAGCTGGACTCAGTGggtgaaggggatttctttac
atoh1a smiFISH_2 CCTCCTAAGTTTCGAGCTGGACTCAGTGagatttctcttcttacacct
atoh1a smiFISH_3 CCTCCTAAGTTTCGAGCTGGACTCAGTGtacagggacggatattttgc
atoh1a smiFISH_4 CCTCCTAAGTTTCGAGCTGGACTCAGTGttgggaggaaagtttgtggc
atoh1a smiFISH_5 CCTCCTAAGTTTCGAGCTGGACTCAGTGatccattctgttggtttgtg
atoh1a smiFISH_6 CCTCCTAAGTTTCGAGCTGGACTCAGTGttcaaccacctctcttgtat
atoh1a smiFISH_7 CCTCCTAAGTTTCGAGCTGGACTCAGTGaagctcgaatgctggacgtc
atoh1a smiFISH_8 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgaagttggaggcagaggac
atoh1a smiFISH_9 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgtactttgacaggactctt
atoh1a smiFISH_10 CCTCCTAAGTTTCGAGCTGGACTCAGTGgttggtggatttgctggatg
atoh1a smiFISH_11 CCTCCTAAGTTTCGAGCTGGACTCAGTGttcaatccgtgcattcttcg
atoh1a smiFISH_12 CCTCCTAAGTTTCGAGCTGGACTCAGTGcaaaggctgggatgacactg
atoh1a smiFISH_13 CCTCCTAAGTTTCGAGCTGGACTCAGTGttggagagtttcttgtcgtt
atoh1a smiFISH_14 CCTCCTAAGTTTCGAGCTGGACTCAGTGttgatgtagatctgggccat
atoh1a smiFISH_15 CCTCCTAAGTTTCGAGCTGGACTCAGTGctgtagtaagtcggacaggg
atoh1a smiFISH_16 CCTCCTAAGTTTCGAGCTGGACTCAGTGtttctaacacgttggcatgc
atoh1a smiFISH_17 CCTCCTAAGTTTCGAGCTGGACTCAGTGctcgtactggtacgggtaac
atoh1a smiFISH_18 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtcttgctccatgaaagagt
atoh1a smiFISH_19 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgaaccagacttgctcgttc
atoh1a smiFISH_20 CCTCCTAAGTTTCGAGCTGGACTCAGTGaccgaggcgagtctttactg
atoh1a smiFISH_21 CCTCCTAAGTTTCGAGCTGGACTCAGTGcgagtgaggcgagaactctc
atoh1a smiFISH_22 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtttcgtctgagtcactgaa
atoh1a smiFISH_23 CCTCCTAAGTTTCGAGCTGGACTCAGTGgacagctcgtcttcactctg
atoh1a smiFISH_24 CCTCCTAAGTTTCGAGCTGGACTCAGTGtttcttaaaaagcgcggcgc
atoh1a smiFISH_25 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgacacgattgagggacagt
atoh1a smiFISH_26 CCTCCTAAGTTTCGAGCTGGACTCAGTGaagcaacccattacaaagcc
atoh1a smiFISH_27 CCTCCTAAGTTTCGAGCTGGACTCAGTGtctattggcgtcagacacaa
atoh1a smiFISH_28 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtcaatgtcacgagaaggca
atoh1a smiFISH_29 CCTCCTAAGTTTCGAGCTGGACTCAGTGttatgcatgacattcgagcc
atoh1a smiFISH_30 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtctcaaaacagtttgcgga
atoh1a smiFISH_31 CCTCCTAAGTTTCGAGCTGGACTCAGTGaggtccatgacaatcatgtg
atoh1a smiFISH_32 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtcgcaaattgttacagggt
atoh1a smiFISH_33 CCTCCTAAGTTTCGAGCTGGACTCAGTGccgttttttaaagtgcaagt
atoh1a smiFISH_34 CCTCCTAAGTTTCGAGCTGGACTCAGTGgaatatttctcaagcctacg
atoh1a smiFISH_35 CCTCCTAAGTTTCGAGCTGGACTCAGTGcacatcatttcttgttccat
atoh1a smiFISH_36 CCTCCTAAGTTTCGAGCTGGACTCAGTGattggcattacttctacata
atoh1a smiFISH_37 CCTCCTAAGTTTCGAGCTGGACTCAGTGgcagaacacaacttctttgc
atoh1a smiFISH_38 CCTCCTAAGTTTCGAGCTGGACTCAGTGatagcttacttcagctacag
atoh1a smiFISH_39 CCTCCTAAGTTTCGAGCTGGACTCAGTGgctcatttccaatgtaacac

Table C.11: smiFISH Probe sequences for atoh1a.
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Probe sequence name Probe sequence (5’ to 3’)
ascl1a smiFISH_1 CCTCCTAAGTTTCGAGCTGGACTCAGTGtctcgacctgttctgagttg
ascl1a smiFISH_2 CCTCCTAAGTTTCGAGCTGGACTCAGTGgttcacgtgtggcttcaatg
ascl1a smiFISH_3 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaagttttctttggactgcc
ascl1a smiFISH_4 CCTCCTAAGTTTCGAGCTGGACTCAGTGtccatttcgcggagtcaaaa
ascl1a smiFISH_5 CCTCCTAAGTTTCGAGCTGGACTCAGTGtggtttacgcttatttccat
ascl1a smiFISH_6 CCTCCTAAGTTTCGAGCTGGACTCAGTGaagcaagcaggtggcatgaa
ascl1a smiFISH_7 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgagttggatgctctgagag
ascl1a smiFISH_8 CCTCCTAAGTTTCGAGCTGGACTCAGTGttgacgcggacttgttgctg
ascl1a smiFISH_9 CCTCCTAAGTTTCGAGCTGGACTCAGTGattgagtcttcttttgcacc
ascl1a smiFISH_10 CCTCCTAAGTTTCGAGCTGGACTCAGTGgggtaagctgtagccgaaac
ascl1a smiFISH_11 CCTCCTAAGTTTCGAGCTGGACTCAGTGcaaagccgttgttcacaagc
ascl1a smiFISH_12 CCTCCTAAGTTTCGAGCTGGACTCAGTGctccattgggaacgtgttcg
ascl1a smiFISH_13 CCTCCTAAGTTTCGAGCTGGACTCAGTGctttgctcatcttcttgttg
ascl1a smiFISH_14 CCTCCTAAGTTTCGAGCTGGACTCAGTGgtagttttgggagatggtgg
ascl1a smiFISH_15 CCTCCTAAGTTTCGAGCTGGACTCAGTGgccatagagttcatgtcatt
ascl1a smiFISH_16 CCTCCTAAGTTTCGAGCTGGACTCAGTGctcatccgatgagtatgagg
ascl1a smiFISH_17 CCTCCTAAGTTTCGAGCTGGACTCAGTGttgttcttctggactcagag
ascl1a smiFISH_18 CCTCCTAAGTTTCGAGCTGGACTCAGTGaaaccagttggtgaagtcca
ascl1a smiFISH_19 CCTCCTAAGTTTCGAGCTGGACTCAGTGagtttccttttacgaacgct
ascl1a smiFISH_20 CCTCCTAAGTTTCGAGCTGGACTCAGTGccaagcgagtgctgatattt
ascl1a smiFISH_21 CCTCCTAAGTTTCGAGCTGGACTCAGTGttgtgttcttggaggacatc
ascl1a smiFISH_22 CCTCCTAAGTTTCGAGCTGGACTCAGTGcttggctctttgacactcgg
ascl1a smiFISH_23 CCTCCTAAGTTTCGAGCTGGACTCAGTGatagatttcttgggcgagtg
ascl1a smiFISH_24 CCTCCTAAGTTTCGAGCTGGACTCAGTGggtgtcgtggaaagtctttt
ascl1a smiFISH_25 CCTCCTAAGTTTCGAGCTGGACTCAGTGcaacgtttgcttgttgttgt
ascl1a smiFISH_26 CCTCCTAAGTTTCGAGCTGGACTCAGTGagggcaaaccttctttgatt
ascl1a smiFISH_27 CCTCCTAAGTTTCGAGCTGGACTCAGTGagagttttgagagaggggtc
ascl1a smiFISH_28 CCTCCTAAGTTTCGAGCTGGACTCAGTGaattcgccaagttggaagca
ascl1a smiFISH_29 CCTCCTAAGTTTCGAGCTGGACTCAGTGcggcaggctataggtcaaaa
ascl1a smiFISH_30 CCTCCTAAGTTTCGAGCTGGACTCAGTGctgcgatgcatttgagacta
ascl1a smiFISH_31 CCTCCTAAGTTTCGAGCTGGACTCAGTGctccacaaccgtaaagggaa
ascl1a smiFISH_32 CCTCCTAAGTTTCGAGCTGGACTCAGTGttgagcattacactcctcta
ascl1a smiFISH_33 CCTCCTAAGTTTCGAGCTGGACTCAGTGataagacacgttggtgctga
ascl1a smiFISH_34 CCTCCTAAGTTTCGAGCTGGACTCAGTGtcactctgagtcacattaca
ascl1a smiFISH_35 CCTCCTAAGTTTCGAGCTGGACTCAGTGggacaatagctgcataacct
ascl1a smiFISH_36 CCTCCTAAGTTTCGAGCTGGACTCAGTGgagacacaaaacacctccgt
ascl1a smiFISH_37 CCTCCTAAGTTTCGAGCTGGACTCAGTGgcaaagtggaacaggcagtg
ascl1a smiFISH_38 CCTCCTAAGTTTCGAGCTGGACTCAGTGtgactgcaacacgtaaagca
ascl1a smiFISH_39 CCTCCTAAGTTTCGAGCTGGACTCAGTGttagcaggatggcttatcac
ascl1a smiFISH_40 CCTCCTAAGTTTCGAGCTGGACTCAGTGttggcattcattaagagcgc

Table C.12: smiFISH Probe sequences for ascl1a.

sgRNA number Target sequence 5’-3’ with PAM CRISPRscan Primer 5’-3’

1 GGACGGGTGGCCGGAGGGGTTGG taatacgactcactataGGACGGGTG
GCCGGAGGGGTgttttagagctagaa

2 AAGGTGGGGTGATGCCTTTCAGG taatacgactcactataGGGGTGGGGTG
ATGCCTTTCgttttagagctagaa

3 AGAGAGAGGGAGACTTGGGAGGG taatacgactcactataGGAGAGAGGG
AGACTTGGGAgttttagagctagaa

Table C.13: CRISPR/Cas9 Target sequences for pre-mir-9-1 and primers used to generate respective
sgRNA. PAM region is highlighted in red.
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Parameter Value
h1 3.0
h2 3.0
h3 3.0
p1 (low, high) 2.0, 10.0
p2 1.0
p3 1.0
αX 0.1
µX 0.1
αh 6.0
µh 2.0
αY 30.0
βY 100.0
µY 10.0

Table C.14: The parameter values used for the mathematical model. Highlighted in grey are the additional
parameters used for the extended model. αX , µX , αh and µh parameters were used in both, adaptation and ex-
tended, models.
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