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Reputation-based Interaction Promotes Cooperation
with Reinforcement Learning

Tianyu Ren, Xiao-Jun Zeng

Abstract—Dynamical interaction represents a fundamental
coevolutionary rule that addresses the intricacies of cooperation
in social dilemmas. It provides a normative account for the
changes in ties within interaction networks in response to the
behaviour of social partners. While considerable efforts have
explored the role of partner selection in fostering cooperation,
there remains a limited understanding of how agents learn to es-
tablish effective interaction patterns and adapt their connections
accordingly. To bridge this knowledge gap, we leverage recent
advancements in reinforcement learning and propose an adaptive
interaction mechanism to investigate self-organization behaviour
in the iterated prisoner’s dilemma game. Within this framework,
artificial agents are trained using a self-regarding Roth-Erev
algorithm, utilizing reputation as a dynamic signal to update their
willingness to engage with neighbours. Additionally, these agents
are endowed with the capability to sever inactive connections.
Simulation results demonstrate the effectiveness of utilizing
reinforcement learning and local information from reputation to
capture the dynamics of interactions. Notably, we discover that
the entangled coevolution of strategy and interaction network can
facilitate the emergence and maintenance of cooperation, despite
the optimal tolerance threshold for ineffective neighbours varying
depending on the strength of the social dilemma. Furthermore,
the emerging network topology presented in this work accurately
captures the assortative mixing pattern observed in previous
experiments and realistic evidence. Finally, we validate the
simulation results through theoretical analysis and confirm the
robustness of the proposed mechanism across populations of
varying sizes and initial structures.

I. INTRODUCTION

FOSTERING cooperation among self-interested agents is a
challenging task, as natural selection favours free-riding

on others’ efforts. These myriad scenarios are characterized
by so-called social dilemmas, where short-term individual
incentives can conflict with long-term group interests, leading
to collective irrationality [1]–[3]. Despite this, cooperation is
ubiquitous in both natural and artificial systems [4], and it has
played a vital role in the evolution of social species, chief
among all in human social progress and civilization. There-
fore, understanding the necessary conditions for cooperation
has been an active topic, given the contradiction involved
in such contexts [5]. The evolutionary game theory (EGT)
provides a comprehensive theoretical framework to address
social dilemmas. Among these, the prisoner’s dilemma (PD)
is widely recognized as one of the most challenging scenarios
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for pairwise cooperation and has received significant attention.
In PD scenarios, the selection often leads to a reduction in the
abundance of cooperators until the population is predominantly
composed of defectors. Therefore, a mechanism to facilitate
the evolution of cooperation is required, and many scholars
have dedicated significant effort to this pursuit. The pioneering
research of Nowak [6] identified five mechanisms that can
cause cooperation to be favoured over defection.

One essential consideration that cannot be overlooked is
that individuals typically engage in interactions within their
immediate vicinity [7]. Network reciprocity, as an expanded
framework that integrates EGT with complex network theory,
enables studying cooperative behaviour in real-world systems.
Research has demonstrated that the introduction of nontrivial
populations can help individuals achieve higher payoff and
resist exploitation from defectors by forming stable clusters
[8]. However, the assumption that the underlying interaction
network remains constant over time is often violated. In
reality, interactions are typically formed from an ever-evolving
amalgamation [9]. It is reasonable to assume that individuals
often have control over their interactions and that the patterns
of interaction change over time in response to the behaviour of
their social partners. This nature should be considered to better
understand the complexities of cooperation. Recently, coevo-
lution dynamics have received increasing attention, involving
not only the evolution of strategies but also the evolution
of game environments [10]. Among that, one of the most
effective coevolutionary strategies is the dynamical interaction
rule, where unsatisfied players sever their links and seek more
advantageous interactions with other partners. Breaking links
can be viewed as expulsion, which has been demonstrated
to be an effective means of promoting cooperation [11]. The
positive effect of link reciprocity in facilitating the evolution
of cooperation has been demonstrated through theoretical
analyses and behavioural experiments [12]–[14]. Furthermore,
the adaptability of networks provides an explanation for the
coexistence of heterogeneous characteristics at various scales
within realistic networks [15].

However, the aforementioned research findings, along with
other profound insights, are just a few of many factors high-
lighting the significance of studying coevolutionary dynamics.
One may question whether more intelligent agents rely solely
on such a simplistic mechanism. In reality, individuals have
the ability to gradually adjust their relationships with neigh-
bours, referred to as interaction intensity, rather than abruptly
changing them all at once. By combining adjustable interaction
intensity with link rewiring, players can continuously adapt
and optimize their potential interaction intensity, ultimately
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forming partnerships that maximize their fitness. Within such
models, agents modify their partnerships by utilizing local
information rather than merely copying or mimicking their
neighbour’s actions [16]. By observing past events, an intel-
ligent agent can derive valuable insights to make informed
judgments about the actions of its neighbours [17]. This infor-
mation empowers the intelligent agent to distinguish between
individuals, enabling it to respond in a more sophisticated and
intricate manner, thus improving the overall adaptability of
agents. In this context, indirect reciprocity, which relies on
reputation and norms, is regarded as a powerful mechanism
that aids individuals in distinguishing between good and bad
actions. There have been several precursors who explored
the fusion of network reciprocity combing with indirect reci-
procity mechanisms. A comprehensive discussion regarding
the reputation and reciprocity dynamic is expounded in a very
recent review paper [18]. Notably, Hu et al. [19] exemplified
this integration by incorporating adaptive reputation into a
trust game based on network interactions, thus formalising
fundamental trust mechanisms in social networks. Conversely,
Tanimoto [20] reported that the effectiveness of combining
network and indirect reciprocity mechanisms in fostering
cooperation varies depending on the specific assessment sys-
tem employed for evaluating actions. Furthermore, scholarly
investigations have affirmed that reputation offers individuals
sufficient information to adapt their interaction intensity [21].

One major weakness of EGT, however, is its proclivity
to oversimplify real-life social phenomena by reducing them
to abstract choices, neglecting the underlying structures and
self-learning adaptive behaviour involved [22]. This limitation
highlights the necessity of a more comprehensive and nuanced
description of interaction behaviour, which can reveal new
microfoundational mechanisms that shed light not only on
the interaction relationship agents choose but also on how
they adjust them. Modern methods based on Reinforcement
Learning (RL) make this possible [23]. The learning dynamic
of RL agents is aligned with real-life situations or empirical
experiments, as they must learn to take future action through
observations from the environment and the rewards received
for those actions. The reimagining of artificial intelligence as
deeply social can be considered a valuable tool for resolving
fundamental challenges of cooperation [24]–[26]. Wang et
al. [27] incorporated payoff noise and RL into a structured
population and revealed a positive influence of Lévy noise
promoting cooperation in PD games. Jia et al. [28] classified
RL agents into two categories, namely global players and local
players, based on the origin of the stimulus they encounter.
Their findings highlighted the pivotal role of global players
in driving cooperation forward. Furthermore, RL has been
recently applied to gain a better understanding of the evolution
of adaptive interaction in social dilemmas [29]–[31]. For
instance, Anastassacos et al. [32] trained RL agents in de-
centralized multi-agent scenarios and found that encouraging
norm-inducing behaviours and adopting a bottom-up approach
to partner selection can effectively promote agent cooperation.
Additionally, recent literature introduced the Bush-Mostelle
algorithm to explore the evolutionary process of adaptive
interaction intensity, demonstrating how RL can contribute to

the self-organization of social fabric [33].
We would like to point out that, based on our understanding,

the existing studies on the evolution of cooperation through
RL primarily focus on static networks. Although prior studies
on coevolutionary games have explored the dynamics of
interaction networks, there has been limited attention given
to understanding the rewiring characteristics that arise in
such scenarios. Building upon these insights, we propose
a novel coevolutionary rule that incorporates reputation as
observable information, affecting the interaction behaviour of
RL agents. The purpose of this paper is to investigate the
emergence of cooperation in a decentralized society and to
deepen our understanding of coevolutionary dynamics through
the introduction of RL with individual learning properties.
Remarkably, our observations reveal that RL agents exhibit
two distinct interaction patterns, which subsequently shape the
characteristics of the emergent network as either assortative
or disassortative. Moreover, we find the optimal tolerance
threshold and social norm, which govern the evolution of
cooperation, is contingent upon the dilemma strength.

The contribution of this work makes two-fold. Firstly, it
proposed an insightful approach that utilizes RL to capture the
dynamic nature of interaction intensity, enabling a comprehen-
sive examination of the interplay between individual learning
and social learning in a decentralized multi-agent system. The
integration of RL and EGT demonstrates superior performance
in promoting cooperation, thereby highlighting the effective-
ness of combining these two approaches. Secondly, we explain
why an assortative mixing pattern emerges in self-organizing
populations with a reputation-based interaction. It offers a
fresh understanding of the underlying adaptive interaction
and partner selection driving cooperative behaviour in multi-
agent systems. We believe these findings hold implications
not only for comprehending the emergence of cooperation in
human societies but also for enhancing cooperation in artificial
intelligence systems.

The rest of this paper is organized as follows. We begin in
Section II by introducing some formal definitions, including
PD game, adjustable interaction intensity and Roth-Erev algo-
rithm. Following that, in Section III, we describe our model
in detail. Section IV presents our simulation results followed
by a discussion. Finally, conclusions are drawn in Section V.

II. BACKGROUND KNOWLEDGE

A. Prisoner’s Dilemma Game
The story of the PD was first introduced by mathematician

Merrill Flood and Melvin Dresher in 1950 and later formalized
by Albert Tucker. In its classical form, the prisoner dilemma
describes a situation that two burglars are arrested and held
separately by the police. The prosecutor offers each prisoner
the same deal: if one confesses and the other remains silent,
the silent accomplice receives a three-year sentence while the
confessor goes free. However, both would receive a less severe
sentence if they both confess. This paradox has been increasing
attention since it arose and is considered one of the most
challenging cooperative dilemmas [34].

Game theory provided a fundamental framework for inves-
tigating the social conflict between cooperative and selfish
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behaviour. The PD game can be described as a scenario
where two players, namely the Donor and the Recipient, face
a decision-making situation. In this paradigmatic model, the
players are confronted with the choice of either cooperating
(remaining silent, denoted by C) and incurring a cost c to assist
their counterpart, who would then receive a temptation benefit
b (b > c > 0); or defecting (confess, denote by D), which
entails receiving the benefit without providing any benefit in
return. Consider a game between two strategies, C and D, the
standard payoff matrix between cooperators and defectors is
given by

M =

C D( )
C R S
D T P

(1)

where mutual cooperation and mutual defection lead to the
reward R = b− c and punishment P = 0, respectively. While
unilateral cooperation yields a cost S = c when confronting a
defector, who gets the highest payoff T = b. Within the PD
setting, these payoffs satisfy the conditions: T > R > P > S
and 2R > T+S. Since D strictly dominates C for both players,
defection is the only Nash Equilibrium, despite all individuals
would be better if they all choose cooperation. It is also worth
noting that the general version of the PD game is a one-off,
many of the situations are alleged to have an iterated structure
[35]. Thus, the one-off game can be extended into a repeated
PD form, where each player i can follow one of two strategies,
denoted by the two-dimensional unit vector, si(t) = [1, 0]T

corresponds to choose cooperation strategy, and si(t) = [0, 1]T

for defection, respectively, at each time step t.

B. Adjustable Interaction Intensity

Traditional PD games are based on a prior assumption that
players interact with their paired partners in a deterministic re-
lationship. However, the interactions between participants are
not always at the same level. Consider two paired individuals
i and j, playing an iterated prisoner’s game (IPD) in several
time series. At each time step t, they are eligible to adjust their
willingness to interact with each other dynamically. Referring
to Ref. [21], we denote the willingness that individual i [j]
to interact with j [i] at time t by wi→j(t) [wj→i(t)], where
wi→j(t) ∈ [0, 1]. Therefore, according to probability theory,
the interaction intensity between agents i and j, i.e., the
probability that these two agents successfully interact with
each other, can be denoted as follows:

Wi,j(t) = wi→j(t)× wj→i(t). (2)

The interaction intensity Wi,j depends on the interaction
willingness from both sides. If Wi,j > 0, player j becomes
the effective neighbor of player i (vice versa). Initially, all
individuals have a strong interaction willing, that is w(0) = 1.
After each time step, players independently revise and adapt
their willingness to interact with paired counterparts. The
adjustment for individual i and j is measured by △wi→j

and △wj→i, respectively, where △w ∈ [−1, 1]. Consequently,
the interaction intensity is updated in the subsequent time

step based on the revised interaction willingness between
individuals i and j, which is defined as follows:

Wi,j(t+ 1) = wi→j(t+ 1)× wj→i(t+ 1)

= [wi→j(t) +△wi→j ]× [wj→i +△wj→i].
(3)

C. Roth-Erev Algorithm

Compared with the Q-learning environment, the adjustable
interaction intensity task requires a dynamically varying envi-
ronment with a more complex set of actions. For this purpose,
the Roth-Erev (RE) algorithm, a classical reinforcement learn-
ing algorithm proposed by Roth and Erev [36], proves to be
more suitable [37]. The RE algorithm is specifically designed
based on observations of human behaviour in iterated game
play involving multiple strategically interacting players across
various game contexts. The key idea of the RE algorithm is:
The probability of choosing an action is proportional to the
total accumulated rewards from choosing it in the past. The
schematic model of the RE algorithm includes three basic
elements for agent i: action choice (ai), choice propensity
vector (qi) and normalized choice probability (pi). These
game-theoretic models consist of a probabilistic decision rule
and a learning algorithm in which game payoffs are evaluated
relative to an aspiration level, and the corresponding choice
propensities are updated accordingly. Assuming participant i
select an action (A ∈ (C,D)) can receive a payoff x from the
game setting, the reinforcement function of agent i is described
as follows:

R(x) = x− xmin (4)

where xmin is the smallest possible payoff for the agent during
one round game. Afterward, the agent i updates his propensity
according to the equations:{

qi,A(t+ 1) = (1− ξ)[qi,A(t) + Et[A,R(x)]]

qi,¬A(t+ 1) = (1− ξ)qi,¬A(t)
(5)

where qi,A is the propensity for agent i’s action A, and
qi,A(0) denotes the initial propensity. The initial propensity
level act as an ‘aspiration level’ and can be classified into
two distinct levels based on their characteristics. For the high
initial propensities, the effect of the payoff is diminished,
thereby allowing for slower learning and more experimenta-
tion. Conversely, low initial propensities encourage premature
fixation on one strategy. The forgetting (or recency) parameter
ξ reduces the influence of past experiences. When ξ → 0,
equal weight is given to all rewards received to date by the
agent. And E(A,R) is a function which determines how the
experience of adopting action A and receiving reward R(x) is
generalized to update each strategy.

III. MODEL

In the former section, we detailed the IPD among the well-
mixed population. However, in realistic multi-agent systems,
players do not interact with all other participants but only
with their immediate neighbours. We now consider a spatially
structured population in which individuals are confined on L2
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reputation

based

(d) Rewiring next-nearest neighbor

Next time step

ij

If satisfy T

(c) Break inefficient neighbor

ij

ij

(b) Strategy and Interaction adaptations

Fig. 1. The coevolutionary dynamic of strategy and topology through
reputation-based interaction. The yellow area represents the effective inter-
action range of player i. (a) Game interaction and reputation updating stages.
Individuals engage in several PD games with their effective neighbours and
update their future reputations according to social norms. (b) Strategy and
interaction adaptations stage. Entangled coevolution of individual strategy and
interaction willingness depends on the ratio Φ = τe/τa. (c) Link dismisses
stage. Individuals break the connection with one ineffective neighbour who
has not been interacted with for T rounds. (d) Neighbour rewiring stage. Indi-
viduals link with the next-nearest neighbour based on reputation preference.

square lattices with periodic boundary conditions and interact
only with their neighbours in the set Ω. Initially, we employ
square lattices where each player has four neighbours. The
nodes represent players, and the edges refer to the connection
between the corresponding players. Yet, we assume that the
network continues to evolve after the initial setting [15].
Each agent not only engages in the strategy-switching process
but also the topological evolution process. Consequently, the
coevolutionary dynamic of network heterogeneity and the
strategy complexity become the crucial factors affecting the
evolution of cooperation.

A. Framework of model

For each time step, the entangled coevolutionary dynamics
combined with strategy and topological evolution are illus-
trated and described in Fig. 1. Accordingly, the evolutionary
process can be divided into the following stages.

Stage 1 (Game Interaction): During the game interaction
process, each individual plays several PD games. The fitness
of a certain player corresponds to the total accumulated payoff
resulting from all effective pairwise interactions (Fig. 1a). For
instance, individual i obtain an overall income at time step t
as [38],

Πi(t) =
∑

j∈Ni(t)

sTi Msj (6)

where Ni(t) denotes the number of effective neighbor of agent
i at time step t. M is the payoff matrix for the PD game. For
the sake of simplicity, we accept the idea proposed by Nowak
and May [39] and adopt the weak PD by setting R = 1, P =
S = 0, T = b (b ≥ 1).

Stage 2 (Reputation Updating): In accordance with the
convention [40], we employ a simple model based on binary
scores, taking only the value ”good” and ”bad” to assess the
reputation of individuals. For the sake of clarity, we refer to a
score of 1 as good and 0 as bad. At the outset, the good and
bad labels are devoid of any prior meaning. The assessment
of binary reputation depends on the actions and reputation
between the player and the co-player. For instance, the action
of player i to j is captured and evaluated by the bystander,
who attributes a new reputation to the player according to
her/his action, as well as the reputation of co-player. Players
can communicate what has transpired or their assessment
to others, meaning reputation becomes common knowledge
throughout the system. This can be viewed as a rudimentary
system of moral assessment. The significance of the reputation
label emerges in conjunction with individual behaviour. To
perform this task, the bystander uses a second-order social
norm that encodes and translates the information about the
player’s action and the co-players reputation involved in an
interaction into the future reputation for the player. It is
worthwhile to notice that the social norm can be extended to
the third order by including the current reputation of the central
player or considering past reputation [41]. During the main
experiments, we employ an efficient second-order social norm,
called stern-judging (SJ), to generate the reputation dynamic,
which assigns a good reputation to agents with prosocial
behaviour and a bad reputation to agents performing antisocial
behaviour [42]. Accordingly, the reputation of individual i
at time step t can be determined using the following utility
function:

Ri(t) = (1− θ)Ri(t− 1) + θ
∑

j∈Ni(t)

d[si(t), Rj(t− 1)]

ki
(7)

where θ is the evaluation factor regarding to individual be-
haviour, and ki is the actual degree of i. Here the d(s,R)
function determined the updated reputation according to the
SJ norm, which can be described as:

d(si, Rj) =


1, si = C ,Rj > 0

1, si = D ,Rj ≤ 0

−1, si = D ,Rj > 0

−1, si = C ,Rj ≤ 0

. (8)

Stage 3 (Coevolution of Strategy and Interaction): The
coevolutionary game model proposed in this study integrates
individual strategy and interaction intensity during pairwise
interactions. By combining link reciprocity and indirect reci-
procity, the model entangles strategy and interaction, allowing
for updates in both variables. The update dynamics employed
in this study were derived from the method suggested by
Perc and Szolnoki[10], which does not rely on predetermined
discriminative rules for cooperation and defection strategies.
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We first introduce two different time scales: strategy update
process (τs) and interaction intensity revise process (τi). De-
pending on the ratio between them, Φ = τs/τi determines the
coevolutionary dynamics of strategy and interaction intensity,
which can be updated asynchronously (Fig. 1b). The proba-
bility of selecting a strategy update process is (1+Φ)−1, and
an interaction intensity revision process is chosen otherwise.
(The specific approaches to implement the above coevolution
process, see Refs.[7], [43], [44] ). The parameter Φ reflects the
inertia of individuals to react to rational choices, and its value
can influence the fate of the evolution. Specifically, as Φ→ 0,
the evolution process approaches the static graph cases [45],
whereas with increasing Φ, individuals become more efficient
in adapting their interaction intensity toward neighbours.

Stage 4 (Linking Updating): To achieve the evolution of
network structure, we introduce an additional mechanism for
updating links. At the end of each time step, a rewiring round
takes place, during which players decide whether to alter their
network connections with existing neighbours. In this study,
we aim to implement a reputation-based rewiring model based
on an extension of a previous empirical experiment [12]. For
each edge with paired individuals, i break the link with j if
this neighbour has been inefficient for the last T rounds (Fig.
1c), maintaining the edge otherwise. If i dismisses the link,
i switches from this inefficient neighbour either to another
player chosen among i’s next-nearest neighbour preferentially
according to their reputation or to a random member of
the entire population (Fig. 1d. The specific approaches for
the rewiring process can be found at Ref. [46]). Without
loss of generality, a randomly rewiring action happens with
probability 1 − ϵ; otherwise, with probability ϵ, the player
forms a new connection with the highest reputation among all
neighbours’ neighbours. The intuition behind this reasoning is
as follows: rational individuals tend to maximize their game
payoff with limited information and are more likely to choose
a good-reputation partner who can potentially enhance their
future payoff. In this model, individuals cannot reject the
formation of new connections, and there are no costs for
disconnection and rewiring links. However, we do enforce a
crucial condition: nodes in the graph must remain connected at
all times. To achieve this condition, we stipulate that individu-
als with only one edge cannot disconnect or be disconnected.

B. Method of Strategy Updating

In the evolutionary game, all individuals experience the
strategy updating phase synchronously. Specifically, an indi-
vidual i revises its strategy si by pairwise comparison with
randomly chosen neighbour j, who can choose to pass their
strategy with a probability of [47]

f(si ← sj) = (Πsj −Πsi)/(△ · kq) (9)

where kq represents the larger of the two degrees ki and
kj , and △ is defined as the difference between temptation
to defection T and the sucker’s payoff S. Since we adopt a
weak PD game in this model, we have △ = b.

C. Method of Adjusting Interaction Intensity

As discussed in Section II-B, the interaction intensity be-
tween pairwise players is determined by their mutual interac-
tion willingness. To obtain adaptive dynamics of interaction
intensity along with the proposed reputation mechanism, we
employ the RE algorithm to train a population of independent
RL agents. These agents have different propensities regarding
two optional actions toward their neighbours: interact (I,
denoted by 0) or separate (S, denoted by 1). For instance,
the propensity vector of player i toward its neighbor j at a
given time step t is denoted as: qi,j(t) = [qIi,j (t), qSi,j (t)]

T .
Initially, at t = 0, every player has an equal propensity to ac-
tions I and S, denoted by qAi,j

(0) = [0.5, 0.5]T . An individual
i engages in several games with its effective neighbours and
collects their current reputation. Assuming that individual i
chooses action A towards j during the learning process, then
i updates its propensity vector for j using this information
according to{
qAi,j (t+1) = (1−ξ)qAi,j(t)+sgn(A) tanh(β[Rj(t)−Ri,Ω(t)])

q¬Ai,j
(t+1) = (1− ξ)q¬Ai,j

(t)
(10)

where Ri,Ω(t) =
∑

j∈Ωi(t)
Rj/ki is the aspiration level

of reputation average over all its neighbours, β represents
the degree of reputation sensitivity, which also reflects the
learning intensity of the RL agent. sgn(x) is a sign function:
sgn(x) = 1 if x = 0, otherwise sgn(x) = −1. Subsequently,
the interaction willingness of individual i concerning j at time
t can be derived from the corresponding propensity vector
qi,j(t). Since the reputation could be negative or zero, we use
the Softmax function to normalize the above propensity vector.
Therefore, the willingness of individual i to interact with j in
the next time step is

wi→j(t+ 1) = wi→j(t) +△wi→j (11)

where

△wi→j = sgn(A)

[
exp(qAi,j (t+ 1))∑

A∈{I,S} exp(qAi,j (t+ 1))
− 1

2

]
.

See Section I of the supplementary material for detailed
information regarding the RL step diagram and training al-
gorithm, involving the process of updating the interaction
intensity.

IV. RESULTS

In this section, we will show the detailed results of the
evolution of cooperation induced by the proposed reputation-
based interaction mechanism. We started the simulation from
a homogeneous partner network [48], where the linear size
of the entire lattice L was chosen between 100 and 400,
and the population size was denoted as N = L × L.
Initially, cooperators and defectors are randomly distributed
in the population with the same probability. To facilitate the
following discussion, we used the fraction of cooperators fc
in the population to characterize the general cooperative level.
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We maintain the parameters as ξ = 0.01, ϵ = 0.9, θ = 0.5
and Φ = 0.5 throughout this work unless explicitly stated
otherwise. To ensure validity and minimize variability, the
results are computed by averaging over the last 103 generations
across the entire simulation, which is encompassed a range of
time spanning from 104 to 106. Moreover, the final stable
states are obtained by conducting up to 10 independent runs
for each set of parameters to eliminate deviations.

To capture the evolving nature of the networks as individuals
alter their connections, we employ two metrics to assess
network dynamics. First, the degree of heterogeneity in the
networks is as follows

h =

∑
k k

2N(k)− ⟨k⟩
N

(12)

where N(k) determine the number of vertices with k degree,
and ⟨k⟩ =

∑N
i=1 ki/N represents the average degree. Fur-

thermore, the degree-degree pattern of the emerging network
is investigated using the Pearson associativity coefficient r
[49], which quantifies the correlation between the degrees
of adjacent nodes. Here, we use pk to denote the degree
distribution of the graph as a whole, which is the probability
that a randomly chosen vertex will have degree k. Accordingly,
the excess degree of the vertex at the end of an edge is
distributed according to

µk =
(k + 1)pk+1∑

j jpj
. (13)

Then the assortativity coefficient for mixing by vertex
degree is

r =

∑
jk jk(ejk − µjµk)

σ2
µ

(14)

where ejk refers to the joint probability distribution of the
remaining degrees of the two vertices, and σµ is the standard
deviation of the distribution µk. This equation allows us to
evaluate the mixing pattern for a given network, where r > 0
indicates that nodes with similar degrees tend to be connected
to each other. In contrast, r < 0 indicates that nodes tend to
connect to other nodes with dissimilar degrees. r = 0 means
the network is non-assortative.

A. Effectiveness of RL in promoting cooperation

We begin by examining the overall performance of RL
agents, who can dynamically adjust their interaction willing-
ness and neighbours based on reputation information. Consider
that temptation to defection b and reputation sensitivity β
are two key parameters for the weak PD and RE algorithm,
respectively, the contour plots in Fig. 2 demonstrate how coop-
erator survive as a function of b and β for different tolerance
threshold values. Specifically, when β = 0, indicating that
the interaction willingness of players is not influenced by
the reputation of their neighbours. In this case, our results
follow the conventional expectations of the standard iterated
PD game, as reported in [39].

As β becomes greater, the “wave of cooperation” gradually
spreads to the east in each contour plot, demonstrating that
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Fig. 2. Equilibrium fraction of cooperators in dependence on the
temptation and reputation sensitivity for different tolerance threshold
values. Incorporating adaptive interaction intensity and partner selection
has effectively enhanced cooperation. There are three distinct phases: full
cooperation, mixed strategy, and full defection phase. (a) Reputation-based
coevolutionary dynamics with ineffective threshold T = 10. (b) Adjustable
interaction intensity without evolving population (T = ∞). From red to
blue, the colour bar indicates that the cooperation level changes from 0 to
1 accordingly.

RL cooperators can outcompete defectors by adjusting the
interaction willingness without considering structural evolu-
tion. This result is consistent with previous research in EGT
[21]. However, the fraction of cooperators is greatly enhanced
if agents have the ability to rewire links. As shown in Fig.
2a, the positive effect of increased reputation sensitivity on
the evolution of cooperation is more evident under coevolu-
tionary dynamics. Additional insights provided in Fig. 5 also
demonstrate the critical role of structural evolution, where the
entangled coevolutionary dynamics promote the evolution of
cooperation. Similar conclusions have been reported in previ-
ous research [10]. An intriguing aspect that deserves attention
within coevolutionary dynamics is that even if cooperators
make up the majority, they are usually unable to completely
eliminate defectors (represented by the light and white area).
However, we can observe in Fig. 2b a sharper transition from
the phase of full cooperation, represented by the blue area,
to the phase of full defection, represented by the red area.
Altogether, individuals utilizing reinforcement learning can
achieve greater fitness by adjusting interaction intensity with
neighbours, and the coevolution of population structure leads
to the strengthening of the cooperation level.

B. Coevolution of strategy and structure

1) Dynamic change of individual behaviour: We first se-
lected two typical temptation values to study the evolution
of the strategy resulting in the coexistence (see Fig. 3a) and
full defection phases (see Fig. 3d). It is worth noticing that
under such a reputation-based adjustable interaction model,
the learning process of RL agents can be characterized by two
evident EGT processes: enduring (END) period and expanding
(EXP) period [50]. As depicted in the graphs, cooperation
experienced a sharp decline across all cases during the former
period. In the bottom graph, the subsequent period illustrates
instances where the defectors prevailed in the preceding period
and absorbed, while the upper graph showed an increase in
the proportion of cooperation. Considering we select a critical
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Fig. 3. Coevolutionary dynamics of strategy and network structure. The utilization of reputation-based interaction fosters heterogeneity. Evolving networks
exhibit assortativity in weak dilemma-strength scenarios but disassortativity in strong dilemma-strength scenarios. The temptation values are set to b = 1.45
in the upper row and b = 1.80 in the bottom row, respectively, with β = 0.1 and T = 10. Each column presents the fraction of cooperators and defectors,
indicated by the blue and red lines; the cumulative degree distribution of the evolving network and the degree-dependent reputation score at the final state,
depicted by blue and yellow dots; the distribution of cooperators and defectors with degree k ≤ 10, represented by blue and red bars. The subgraph in (c)
and (f) displays the average degree of each strategy and the evolution of the associativity coefficient (yellow line) over time.

value as b = 1.45, cooperators take a considerable amount of
time to endure the invasion of defection effectively. As a con-
sequence, during the END period, defectors almost dominate
the population, with cooperators struggling to gain a foothold.
However, in the EXP period, cooperators become more evolu-
tionary competitive and expand by dynamically adjusting their
interaction willingness and neighbours. Notably, the reputation
mechanism provides positive feedback to promote cooperation.
As shown in Figs. 3b and 3c, the degree of individuals is
positively correlated with their reputation level. This finding
is consistent with previous reputation research on reputation
[46], which suggests that individuals with higher degrees tend
to have correspondingly higher reputation levels. Moreover,
the highest degree nodes in the network are predominantly
occupied by cooperators, in accord with empirical evidence
[12]. Indeed, the survival and expansion of cooperation are
largely attributed to the heterogeneity of the network (see Refs
[14], [51], [52]), whereby the remaining defectors among the
population can only survive on low-degree nodes. Therefore,
we confirm that the well-established result that a heterogeneity
degree distribution enhances cooperation in static networks
also holds true for evolving networks [47].

2) Evolution of network structure: To provide a more precise
quantification of the entangled dynamics between strategies
and networks in promoting cooperation, we examined several

network characteristics. The degree distribution had a sharp
cutoff around k = 10, with two distinct types of hetero-
geneity: single-scale heterogeneity (Fig. 3b) and broad-scale
heterogeneity (Fig. 3e). Furthermore, the associativity of the
evolving network is tuned by the temptation parameter b,
as illustrated in Figs. 3c and 3f. During the END period,
the resulting networks generally displayed assortative mixing,
although disassortativity was occasionally observed. In the
following EXP period, the network continues to assortativity
mix for b = 1.45, while becoming extremely heterogeneous
for b = 1.8, with network heterogeneity degrees of h = 34.3
and h = 972.53, respectively. Similar phenomena have been
reported in previous coevolutionary models [53]. The intuition
behind this phenomenon is as follows: in order to avoid ex-
ploitation by defectors, the surviving cooperators tend to form
clusters, which typically maintain good reputations according
to social norms. As a result, individuals from outside the
cluster who have severed ties with their defective neighbours
prefer to join these alliances. However, the initial clusters can
be too fragile to withstand invasion due to the high temptation
value, and defectors occupy the hub node. It is important to
note that the hub defectors may also have a good reputation
(Fig. 3e) as long as they adopt defective behaviour toward
other bad-reputation neighbours. In such cases, the reputation
cannot maintain a consistent level among the entire population.
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Fig. 4. Snapshots of structure and strategy for a small subset N = 900 individuals from the entire population. In the presence of reputation-based
interaction, network heterogeneity is further exacerbated when the temptation value is high. Snapshots are taken at time steps 0, 500, and 1000, and are
displayed from left to right. Panel (a) illustrates the initial state for all cases. Panels (b) and (c) depict the evolution of the network with a temptation value of
b = 1.45, while panels (d) and (e) show the network evolution with a temptation value of b = 1.80. Blue and red nodes represent cooperators and defectors,
respectively, with node size indicating the number of connections. The parameters are fixed at T = 10 and β = 0.1.

Consequently, frequent changes in interaction willingness and
link occur, further exacerbating network heterogeneity.

To provide an intuitive understanding of the interplay be-
tween strategy and structure, a series of evolving network
snapshots are presented in Figure 4. The network layout is
achieved using a Force-directed algorithm, where edges are
modelled as springs between nodes, and nodes with high
degrees are positioned closer together. The snapshots support
the earlier conclusions and illustrate that network updates
promote assortative interactions between good-reputation in-
dividuals and disassortative interactions between good and
bad-reputation individuals. As the evolutionary trail depicted
in Figs. 4b and 4c, the evolving cooperation causes assor-
tative topology [53]. However, disassortative interactions are
favoured in the full-defection network, leading to a gradual
increase in network heterogeneity over time. Altogether, these
results indicate that adaptive interactions between RL agents
increase network heterogeneity, which is instrumental for the
evolution of cooperation if cooperative clusters are capable of
forming stable alliances and reaching a consistent reputation
level.

C. Relation of tolerance threshold

As illustrated in Fig. 2, when the dilemma strength is strong,
the coevolutionary model that relies solely on adjustable
interaction intensity depicts inferior cooperation compared
to the model that incorporates both strategy and topological
structure. This highlights the crucial role of severing adverse
connections in maintaining cooperation. In order to assess the
significance of rewiring behaviour, we evaluate the effect of
tolerance threshold in the partner-switching process, as shown
in Fig. 5. A comparison between numerical simulation and
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Fig. 5. The influence of tolerance thresholds in relation to different
temptation values. Cooperation is favoured when individuals are able to adapt
their interactions based on the reputation of their partner. As the temptation
value increases, individuals are compelled to switch partners more frequently.
The curve for T = ∞ represents dynamical interactions without link
adaptations. The right-hand subgraph illustrates the fraction of CC/CD/DD
links over time for b = 1 and T = 2. The reputation-sensitive parameter is
fixed at β = 0.1.

theoretical analysis is given in Section II of the supplementary
material. Clearly, if no link adaptations are involved (T =∞),
the cooperation level is much lower. The introduction of an
evolving network mechanism greatly enhances cooperation;
however, the optimal threshold condition may vary depending
on the temptation to defect. As demonstrated, if b > 1.6,
increased sensitivity to ineffective neighbours (at T = 2)
can enhance the survival of cooperation. On the flip side,
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Fig. 6. The effect of time scale separation and social norm on cooperation
levels under varying dilemma strength. Cooperation is facilitated when
individuals become more efficient in adapting their interaction intensity. The
less benevolent social norm demonstrates better performance under strong
dilemma conditions. The upper panels display the evolution of cooperation
with respect to Φ in two scenarios: T = 10 [panel (a)] and T = ∞ [panel
(b)]. The lower panels (c) and (d) illustrate the performance of four social
norms when Φ is fixed at 0.5 and T is set to 10 and ∞, respectively. The
reputation-sensitive parameter remains fixed at β = 0.1

when faced with a low temptation to defect, a population
is more likely to achieve the highest level of cooperation if
they rarely switch neighbours, as in the case where T = 500.
Noteworthy, in the no-dilemma case depicted in the leftmost
area, frequent rewiring behaviour inhibits the emergence of a
full-cooperation phase. The interplay between the tolerance
threshold and the temptation to defect can be understood
as follows: for the fixed parameter setting of T = 2 and
b = 1, network adaptability enables cooperators to interact
with their cooperative neighbours in an assortative mixing
pattern, leading to a rapid decrease in the fraction of defectors
to a significantly low level. However, complete elimination
of defectors is hard to achieve, and the link-strategy config-
uration plotted in Fig. 5b confirms that the number of C-D
links is limited once the system reaches a stable state. As
a result, the failure of high-connected cooperative clusters
to convert defectors to cooperators leads to the coexistence
equilibrium of cooperation and defection. However, the lower
tolerance threshold is required in addition to strategy updating
to promote cooperation as b increases. Ultimately, the present
results convey a simple yet powerful message for the evolving
network: as the temptation to defect increases, individuals
need to adjust the connections of ineffective neighbours more
frequently.

D. The role of time scale and social norm

During the aforementioned experiments, we maintained a
fixed Φ = 0.5 ratio for the strategy update process and

the interaction intensity revision process. Previous studies
have demonstrated that coevolutionary dynamics can be sig-
nificantly affected by the time scale separation [15], [46].
Therefore, we investigate the effect of the update time scale
between strategy and interaction intensity on the evolution
of cooperation, as shown in the upper panels of Fig. 6. As
the time scale Φ increase, a corresponding increase in the
cooperation level within the population. However, the impact
of time scale separation appears to be highly dependent on the
temptation to defect b. Specifically, as b increases, the opti-
mal cooperation level decreases, and the interaction intensity
updating needs to occur more frequently to ensure optimal
conditions are met. Furthermore, the temptation of defection
plays a decisive role in the evolution of cooperation, as
achieving full cooperation becomes increasingly challenging
even for sufficiently large values of Φ. It is noteworthy that,
although introducing link rewiring (T = 10) results in a higher
fraction of cooperation with only a small Φ, the conclusion
drawn from Fig. 5 is still applicable. Frequently rewiring
ineffective neighbours may not necessarily favour cooperation
in weak dilemma conditions. As shown in Fig. 6b, for b = 1.1,
frequently adjusting interaction intensity without modifying
the network structure can encourage higher cooperation.

Thus far, we have provided aggregate information on the
promotion effect of adjustable interaction intensity and part-
ner selection, yet we did not pay sufficient attention to the
generation of reputation. Specifically, the reputation of each
participant is attributed solely according to the SJ norm, while
other social norms could be considered. In the lower panels
of Fig. 6, we present a comparison of the SJ norm with
three other effective norms, as described in Ref. [54]. The
first norm, Simple-Standing (SS), is similar to SJ but assigns
a good reputation to any players who cooperate, making it
more benevolent. The second norm, Shunning (SH), is similar
to SJ but assigns a bad reputation to any player who exhibits
defective behaviour, making it less benevolent. The third norm,
Image Score (IS), is based solely on a player’s actual behaviour
and is independent of their opponent’s behaviour. Based on
the information presented in Fig. 6c, it is clear that despite SJ
leading to a cooperation level systematically lower than SS in
strong dilemma situations, these two norms are still the most
effective in promoting cooperation within the coevolutionary
interplay of strategy and network. The advantage of SS lies
in its greater benevolence towards unconditional cooperation
compared to SJ, which enhances the reputation of cooperators.
As a result, cooperators can form stable clusters to resist
exploitation by defectors and prevent the emergence of highly
heterogeneous interaction networks. Conversely, the IS norm,
in which only the action of the focal agent matter, has been
proven to be the most effective in promoting cooperation under
time-invariant interaction network conditions, as shown in Fig.
6d. Furthermore, SH is detrimental to cooperation in all cases,
as it often results in the indiscriminate assignment of negative
reputations. This negative effect has been observed not only in
small-scale societies but also in more complex environments
[41], [54].
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Fig. 7. Equilibrium fraction of cooperators in D′
r − D′

g diagrams. A
similar promotion effect of the proposed mechanism in a weak PD game
is observed in three social dilemma models. (a) Conventional interaction
model with network reciprocity (T = ∞ and β = 0). (b) Reputation-based
interaction model with RL for the fixed parameters at T = 10 and β = 0.1.
From red to blue, the colour bar indicates that the cooperation level changes
from 0 to 1 accordingly.

E. Universal scaling for dilemma strength

It should be noted that the discussions regarding reputation-
based interaction have primarily focused on a simplified payoff
matrix M , where the value for R and S are set to 0. Although
this weak version of the PD game has been widely used due
to its consistent qualitative outcome, it would be beneficial
to compare the findings presented in this study with Donor
and Recipient (D&R) game, as well as other 2 × 2 games.
Nowak [55] utilized c/b as a scaling parameter to quantify the
dilemma strength as indicated in the payoff matrix mentioned
in Eq. 1. However, this particular representation is applicable
only within the context of the D&R game. Inspired by this
concept, Tanimoto and Sagara [56] categorized pairwise games
into two types: gamble-intending dilemmas (GID) and risk-
averting dilemmas (RAD), defined by Dg = T − R and
Dr = P − S, respectively. However, Dr and Dg are insuf-
ficient for accurately indicating the dilemma strength when a
specific reciprocity mechanism is introduced into the game.
To address this limitation, Wang et al. [57] introduced a new
set of scaling parameters to measure the dilemma strength,
D′

g = (T −R)/(R−P ) and D′
r = (P −S)/(R−P ) for any

matrix game. Consequently, the payoff matrix is rescaled as

M =

(
R P − (R− P )D′

r

R+ (R− P )D′
g P

)
. (15)

Depending on these two dilemma strengths, the game can
be classified into four classes using a RAD-GID diagram
[58]. The quadrants in the diagram represent different game
structures: the PD, chicken (CH), harmony (H) and stag hunt
(SH) games, respectively. A detailed description of each game
class and its corresponding region can be found in Ref. [59].
To maintain mathematical generality, we assume P = 0 and
R = 1, consistent with the setting defined in Eq. 6.

In Fig. 7, we verify the promoting effect of the proposed
model on above 2 × 2 games by adjusting the parameters
of dilemma strength (D′

g and D′
r). Aligning with previous

conclusions drawn from the weak PD, the cooperation level
is still enhanced as reputation-based interaction is considered,
effectively mitigating both GID and RAD. As shown in Fig.
7b, the boundary points between the four game classes shift
upward and to the right. Additionally, this mechanism exhibits
superior performance in the CH game compared to the PD and
SH games. Last but not least, although our simulation results
are obtained on a large interaction network where the initial
structure is a square lattice with von Neumann neighbourhood,
we conducted validation experiments to assess the robustness
and generalizability of our findings. The results demonstrate
the consistent performance and effectiveness of our proposed
model across various population sizes and structures. Further
details and numerical analyses can be found in Section III of
the supplementary material.

V. CONCLUSION

To investigate the interplay between evolving networks and
the evolution of cooperation, we study the reputation-based
interaction dynamics of RL agents in PD games. Our proposed
model aligns conceptually with the interaction-updating co-
evolutionary rules proposed in Ref. [10]. Building upon prior
work regarding strategy-dependent propensity to change links,
we developed a novel framework that allows for modifying
social connections based on observed reputation information.
Specifically, RL agents can adjust their interaction intensity
with neighbours and rewire connections accordingly. The fun-
damental concept for severing a link remains the same, where
an agent disconnects with the most significantly malfunction-
ing relationship to gain a better payoff. The combination of
RL and traditional EGT in this study could contribute to the
advancement of cooperative behaviour modelling and sheds
light on the potential applications in artificial intelligence
systems.

It is worth mentioning that disconnecting from dissatisfied
neighbours in a dynamic network can be viewed as a type of
expulsion [11], [60]. These studies assume that players have
the ability to relocate uncooperative individuals to other inac-
tive nodes within the network. However, network heterogene-
ity in our experiments is exacerbated because individuals are
able to form new links based on reputation. Indeed, the success
of our proposed coevolutionary rule in prompting cooperation
can be attributed to the emergence of heterogeneous interaction
networks and the assortative mixing among cooperative agents
(more detail can be found in Ref. [61]). Moreover, the resulting
interaction topology of a heterogeneous network varies under
different dilemma strengths, which is consistent with previous
findings showing that cooperators are more likely to establish
relationships and exhibit loyalty due to their consistently
positive reputation levels [62].

Our proposed model incorporates social norms that gov-
ern reputation dynamics through the mechanism of indirect
reciprocity [40]. The emergent dynamic population structure
is the outcome of reputation-based partner switching and
interaction processes, which depends on a simple rule: helping
others increases the likelihood of receiving help from someone
else later on. Our works highlight the significant role of
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indirect reciprocity [63] in enabling RL agents to adjust their
interaction intensity and social ties with others. While our
experiments have primarily focused on a reputation dynamic
in which individuals help their right neighbours to receive
a good reputation, we find a more benevolent norm in the
adaptive interaction pattern can create more effective social
selection forces, thereby promoting cooperation. Noteworthy,
the framework regarding reputation assignment developed here
can be extended to higher-order social norms, such as past
reputation [41]. Meanwhile, the use of local reputation and
selection may lead to different outcomes in establishing and
maintaining large-scale cooperation [64].

Furthermore, our investigation into the interplay of adaptive
interaction intensity and link adaption has confirmed that
dynamic networks produce a substantial amount of cooper-
ation [12]. The optimal threshold for ineffective neighbours
is contingent upon changes in the dilemma strength. The
emergence of the interaction network in our model also gives
an explanation regarding the formation of high heterogeneity
networks in realistic societies. It is noteworthy to acknowledge
that our approach does not impose any constraints on the
growth of node degrees within the network, thereby generating
a highly heterogeneous network structure. This, in turn, yields
a negative assortative coefficient when the dilemma conditions
are strong. Consequently, introducing a maximal degree may
yield significantly different outcomes in the formation of the
interaction system [65]. Furthermore, in our model, reputation
assessment is grounded in the social preference hypothesis. A
potential avenue for future research could involve investigating
whether the domain of morality enhances the understanding of
human decision-making in artificial intelligence systems [66].
Ongoing studies have commenced analyzing the emergent
behaviour of intrinsically-motivated RL agents whose rewards
are derived from moral theories [67]. As intelligent artificial
agents are anticipated to engage in various coevolutionary dy-
namics, how cooperation can evolve has become increasingly
complex.

REFERENCES

[1] G. Hardin, “The tragedy of the commons,” Science, vol. 162, no. 3859,
pp. 1243–1248, 1968.

[2] E. Pennisi, “On the origin of cooperation,” Science, vol. 325, no. 5945,
pp. 1196–1199, 2009.

[3] M. Perc, J. J. Jordan, D. G. Rand, Z. Wang, S. Boccaletti, and A. Szol-
noki, “Statistical physics of human cooperation,” Physics Reports, vol.
687, pp. 1–51, 2017.

[4] S. A. Rhoads, K. M. Vekaria, K. O’Connell, H. S. Elizabeth, D. G.
Rand, M. N. Kozak Williams, and A. A. Marsh, “Unselfish traits and
social decision-making patterns characterize six populations of real-
world extraordinary altruists,” Nature Communications, vol. 14, no.
1807, pp. 1–15, 2023.

[5] D. G. Rand and M. A. Nowak, “Human cooperation,” Trends in
Cognitive Sciences, vol. 17, no. 8, pp. 413–425, 2013.

[6] M. A. Nowak, “Five rules for the evolution of cooperation,” Science,
vol. 314, no. 5805, pp. 1560–1563, 2006.

[7] N. Hanaki, A. Peterhansl, P. S. Dodds, and D. J. Watts, “Cooperation
in evolving social networks,” Management Science, vol. 53, no. 7, pp.
1036–1050, 2007.

[8] A. Szolnoki and X. Chen, “Alliance formation with exclusion in the
spatial public goods game,” Physical Review E, vol. 95, no. 5, p. 052316,
2017.

[9] A. Li, L. Zhou, Q. Su, S. P. Cornelius, Y.-Y. Liu, L. Wang, and
S. A. Levin, “Evolution of cooperation on temporal networks,” Nature
Communications, vol. 11, no. 2259, pp. 1–9, 2020.

[10] M. Perc and A. Szolnoki, “Coevolutionary games—a mini review,”
Biosystems, vol. 99, no. 2, pp. 109–125, 2010.

[11] T. Ren and J. Zheng, “Evolutionary dynamics in the spatial public goods
game with tolerance-based expulsion and cooperation,” Chaos, Solitons
& Fractals, vol. 151, p. 111241, 2021.

[12] D. G. Rand, S. Arbesman, and N. A. Christakis, “Dynamic social net-
works promote cooperation in experiments with humans,” Proceedings
of the National Academy of Sciences, vol. 108, no. 48, pp. 19 193–
19 198, 2011.

[13] Y. Murase, C. Hilbe, and S. K. Baek, “Evolution of direct reciprocity
in group-structured populations,” Scientific Reports, vol. 12, no. 18645,
pp. 1–16, 2022.

[14] J. Zheng, Y. He, T. Ren, and Y. Huang, “Evolution of cooperation in
public goods games with segregated networks and periodic invasion,”
Physica A: Statistical Mechanics and its Applications, vol. 596, p.
127101, 2022.

[15] F. C. Santos, J. M. Pacheco, and T. Lenaerts, “Cooperation prevails when
individuals adjust their social ties,” PLOS Computational Biology, vol. 2,
no. 10, pp. 1284–1291, 2006.

[16] I. S. Lim and N. Masuda, “To trust or not to trust: evolutionary
dynamics of an asymmetric n-player trust game,” IEEE Transactions
on Evolutionary Computation, 2023 (Early Access).

[17] J. Wang and C. Xia, “Reputation evaluation and its impact on the human
cooperation—a recent survey,” Europhysics Letters, vol. 141, no. 2, p.
21001, 2023.

[18] C. Xia, J. Wang, M. Perc, and Z. Wang, “Reputation and reciprocity,”
Physics of Life Reviews, vol. 46, pp. 8–45, 2023.

[19] Z. Hu, X. Li, J. Wang, C. Xia, Z. Wang, and M. Perc, “Adaptive
reputation promotes trust in social networks,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 4, pp. 3087–3098, 2021.

[20] J. Tanimoto, “Does information of how good or bad your neighbors are
enhance cooperation in spatial prisoner’s games?” Chaos, Solitons &
Fractals, vol. 103, pp. 184–193, 2017.

[21] J. Li, C. Zhang, Q. Sun, Z. Chen, and J. Zhang, “Changing the intensity
of interaction based on individual behavior in the iterated prisoner’s
dilemma game,” IEEE Transactions on Evolutionary Computation,
vol. 21, no. 4, pp. 506–517, 2016.
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“Lévy noise promotes cooperation in the prisoner’s dilemma game with
reinforcement learning,” Nonlinear Dynamics, vol. 108, no. 2, pp. 1837–
1845, 2022.

[28] D. Jia, H. Guo, Z. Song, L. Shi, X. Deng, M. Perc, and Z. Wang, “Local
and global stimuli in reinforcement learning,” New Journal of Physics,
vol. 23, no. 8, p. 083020, 2021.

[29] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel,
“Multi-agent reinforcement learning in sequential social dilemmas,”
in Proceedings of the 16th Conference on Autonomous Agents and
Multiagent Systems, 2017, pp. 464–473.

[30] R. Merhej, F. P. Santos, F. S. Melo, M. Chetouani, and F. C. Santos,
“Cooperation and learning dynamics under risk diversity and financial
incentives,” in Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, 2022, pp. 908–916.

[31] A. D. Martinez, J. Del Ser, E. Osaba, and F. Herrera, “Adaptive multifac-
torial evolutionary optimization for multitask reinforcement learning,”
IEEE Transactions on Evolutionary Computation, vol. 26, no. 2, pp.
233–247, 2021.

[32] N. Anastassacos, S. Hailes, and M. Musolesi, “Partner selection for the
emergence of cooperation in multi-agent systems using reinforcement



AUTHOR ACCEPTED MANUSCRIPT 12

learning,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2020, pp. 7047–7054.

[33] Z. Song, H. Guo, D. Jia, M. Perc, X. Li, and Z. Wang, “Reinforcement
learning facilitates an optimal interaction intensity for cooperation,”
Neurocomputing, vol. 513, pp. 104–113, 2022.

[34] A. Rapoport, A. M. Chammah, and C. J. Orwant, Prisoner’s dilemma: A
study in conflict and cooperation. University of Michigan Press, 1965.

[35] D. W. Stephens, C. M. McLinn, and J. R. Stevens, “Discounting and
reciprocity in an iterated prisoner’s dilemma,” Science, vol. 298, no.
5601, pp. 2216–2218, 2002.

[36] A. E. Roth and I. Erev, “Learning in extensive-form games: Experimental
data and simple dynamic models in the intermediate term,” Games and
Economic Behavior, vol. 8, pp. 164–212, 1995.

[37] P. Kiran and K. V. Chandrakala, “New interactive agent based reinforce-
ment learning approach towards smart generator bidding in electricity
market with micro grid integration,” Applied Soft Computing, vol. 97,
p. 106762, 2020.
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