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Abstract. The generation of virtual populations (VPs) of anatomy is
essential for conducting in silico trials of medical devices. Typically, the
generated VP should capture sufficient variability while remaining plau-
sible and should reflect the specific characteristics and demographics of
the patients observed in real populations. In several applications, it is
desirable to synthesise virtual populations in a controlled manner, where
relevant covariates are used to conditionally synthesise virtual popula-
tions that fit a specific target population/characteristics. We propose
to equip a conditional variational autoencoder (cVAE) with normalising
flows to boost the flexibility and complexity of the approximate poste-
rior learnt, leading to enhanced flexibility for controllable synthesis of
VPs of anatomical structures. We demonstrate the performance of our
conditional flow VAE using a data set of cardiac left ventricles acquired
from 2360 patients, with associated demographic information and clinical
measurements (used as covariates/conditional information). The results
obtained indicate the superiority of the proposed method for conditional
synthesis of virtual populations of cardiac left ventricles relative to a
cVAE. Conditional synthesis performance was evaluated in terms of gen-
eralisation and specificity errors and in terms of the ability to preserve
clinically relevant biomarkers in synthesised VPs, that is, the left ven-
tricular blood pool and myocardial volume, relative to the real observed
population.

Keywords: Virtual Population · Generative Model · Normalizing Flow.

1 Introduction

In-silico trials (ISTs) use computational modelling and simulation techniques
with virtual twin or patient models of anatomy and physiology to evaluate the
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safety and efficacy of medical devices virtually [22]. Virtual patient populations
(VPs), distinct from virtual twin populations, comprise plausible instances of
anatomy and physiology that do not represent any specific real patient’s data
(as in the case of the latter, viz. virtual twins). In other words, VPs comprise
synthetic data that help expand/enrich the diversity of anatomical and physio-
logical characteristics that can be investigated within an IST for a given medical
device. A key aspect of patient recruitment in real clinical trials used to assess
device performance and generate regulatory evidence for device approval is the
clear definition of inclusion and exclusion criteria for the trial. These criteria
define the target patient population considered appropriate/safe to assess the
performance of the device of interest. Consequently, it is desirable to enable the
controlled synthesis of VPs that may be used for device ISTs, in a manner that
emulates the imposition of trial inclusion and exclusion criteria.

Virtual populations can be considered to be parametric representations of the
anatomy sampled from a generative model. Traditional statistical shape models
(SSMs), based on methods such as principal component analysis (PCA), have
been widely explored in the past decade [8,9,15]. Recent studies focus on deep
learning-based generative models due to their automatic and powerful hierar-
chical feature extraction [3,7]. For instance, Bonazzola et al. [3] used a graph
convolutional variational auto-encoder (gcVAE) to learn latent representations
of 3D left ventricular meshes and used the learnt representations as surrogates
for cardiac phenotypes in genome-wide association studies. Dou et al. [7] pro-
posed learning the shape representations of multiple cardiovascular anatomies
using gcVAE independently and then assembling them into complete whole-
heart anatomies termed virtual heart chimaeras. Other studies have investigated
conditional-generative models for synthesis of VPs of anatomies. For example,
Beetz et al. [1] employed a conditional VAE (cVAE), conditioned on gender
and cardiac phase, to allow the synthesis of VPs from biventricular anatomies.
In subsequent work [2,12], they extended their method to a multidomain VAE
to model biventricular anatomies at multiple times (across the cardiac cycle),
using patient-specific electrocardiogram (ECG) signals as additional condition-
ing information (in addition to patient demographic data and standard clinical
measurements) to guide the synthesis. All aforementioned methods model the
latent space in the VAEs/cVAEs as a multivariate Gaussian distribution with
a diagonal covariance matrix. This limits the flexibility afforded to the cVAE,
as the Gaussian distribution, being unimodal, is a poor approximation to mul-
timodal latent posterior distributions. This in turn limits the overall variability
in anatomical shape that can be captured by standard VAEs and cVAEs.

In this study, we address the limitations of the state-of-the-art conditional
generative models used to synthesise VPs of anatomical structures. In particular,
we propose a method to relax the constraint on modelling the latent distribution
as a unimodal multivariate Gaussian, to boost the flexibility of the generative
model, and to enable conditional synthesis of diverse and plausible VPs gener-
ation. Recent advances in normalising flows [14,16,21] introduce a new solution
for this limitation by leveraging a series of invertible parameterized functions
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to transform the unimodal distribution to a multimodal one. Motivated by this
technique, we propose the first conditional flow VAE (parameterised as a graph-
convolutional network) for the task of controllable synthesis of VPs of anatomy.
The contributions are as follows: (i) we introduce normalising flows to learn
a multimodal latent posterior distribution by transforming the latent variables
from a simple unimodal distribution. This helps the generative model capture
greater anatomical variability from the observed real population, leading to the
synthesis of more diverse VPs; (ii) we condition the flow-based VAE on patient
demographic data and clinical measurements. This enables conditional synthesis
of plausible VPs (given relevant covariates/conditioning information as inputs),
which reflect the observed correlations between nonimaging patient information
and anatomical characteristics in the real population.

2 Methodology

In this study, we propose a cVAE model equipped with normalising flows for
controllable synthesis of VPs of cardiovascular anatomy. A schematic of the
proposed conditional flow VAE network architecture is shown in Figure 1. We
employ normalising flows in the latent space of the cVAE to transform the initial
Gaussian posterior to a complex multimodal distribution.

Demographic Data

Mesh Data

Normalizing Flow

𝑧0

P
la

n
n
er

P
la

n
n
er…

Demographic Data

Concatenate𝑧𝑘

Latent Flow Model

𝑧𝑘+1

C
o
nv

N
o
rm

Demographic Data

C
o
nv

R
eL
U

N
o
rm

R
es
id
u
a
l

Basic Block

Mesh Data

Fig. 1. Schematic illustration of our proposed conditional flow VAE

Conditional Variational Autoencoder: A VAE is a probabilistic gen-
erative model/network [11] that comprises an encoder and a decoder network
branch. The encoder learns a mapping from the input data to a low-dimensional
latent space that abstracts the semantic representations from the observations,
and the decoder reconstructs the original data from the low-dimensional latent
representation. The latent space from which the observed data is generated is
given by approximating the posterior distribution of the latent variables using
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variational inference. The VAE network is trained by maximising the evidence
lower bound (ELBO), which is a summation of the expected log-likelihood of
the data and the Kullback-Leibler divergence between the approximate poste-
rior and some assumed prior distribution over the latent variables (typically a
multivariate Gaussian distribution). Despite its effectiveness in capturing some of
the observed variability in the training population (e.g. of anatomical shapes or
images), VAEs do not provide any control over the generation process and hence
cannot guarantee that the generated population anatomical shapes are repre-
sentative of target patient populations with specific inclusion/exclusion criteria.
Controllable synthesis of anatomical VPs is essential for constructing meaningful
cohorts for use in ISTs. Conditional VAE [18] is a VAE-variant that uses addi-
tional covariates/conditioning information in addition to the input data (e.g.
anatomical shapes) to learn a conditional latent posterior distribution (condi-
tioned on the covariates), enabling controllable synthesis of VPs during inference
(given relevant covariates/conditioning information as input).

Our conditional flow VAE (cVAE-NF) is a graph-convolutional network which
takes as input a triangular surface mesh representation of an anatomical struc-
ture of interest, i.e., the Left Ventricle (LV) in this study, and its associated
covariates/conditioning variables, i.e., the patient demographic data and clinical
measurements, such as gender, age, weight, blood cholesterol, etc., and outputs
the reconstructed surface mesh. Each mesh is represented by a list of 3D spatial
coordinates of its vertices and an adjacency matrix defining vertex connectiv-
ity (i.e. edges of mesh triangles). The encoder and decoder contain five residual
graph-convolutional blocks, respectively. Each block comprises two Chebyshev
graph convolutions, each of which is followed by batch normalisation and ELU
activation. A residual connection is added between the input and the output
of each graph-convolutional block. Hierarchical mesh down/up-sampling opera-
tions proposed in CoMA [13] are adopted after each block to capture the global
and local shape context. The VAE model is conditioned on covariates by scaling
the hidden representations in the encoder similar to adaptive instance normal-
ization [10] given the covariates as input to generate the scaling factor, and by
concatenating the covariates with the latent variables before decoding.

Flexible Posterior using Normalizing Flow: Vanilla cVAEs model the
approximate posterior distribution using Gaussian distributions with a diagonal
covariance matrix. However, such a unimodal distribution is a poor approxima-
tion of the complex true latent posterior distribution in most real-world appli-
cations (e.g. for shapes of the LV observed across a population), limiting the
anatomical variability captured by the model. In this study, we introduce nor-
malising flows to construct a flexible multi-modal latent posterior distribution
by applying a series of differentiable, invertible/diffeomorphic transformations
iteratively to the initial simple unimodal latent distribution. As shown in Fig. 2,
a two-dimensional Gaussian distribution can be transformed into a multi-modal
distribution by applying several normalising flow steps to the former.

Consider an invertible and smooth mapping function f : Rd → Rd with
inverse f−1 = g, and a random variable z with distribution q(z). The transformed
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Flow Step 0 Flow Step 1 Flow Step 2 Flow Step 3 Flow Step 4 Flow Step 5

Fig. 2. Effect of normalising flow on Gaussian distribution. Step 0 is the initial two-
dimensional Gaussian distribution, and step 1-5 represents the distribution of latent
variables transformed by the normalising flow layers (i.e., planar flow).

variable z′ = f(z) follows a distribution given by:

q(z′) = q(z)

∣∣∣∣det∂f∂z
∣∣∣∣−1

(1)

where the det ∂f∂z is the Jacobian determinant of f . Therefore, we can obtain
a complex multi-modal density by composing multiple invertible mappings to
transform the initial, simple and tractable density sequentially, as follows,

zi = fi ◦ . . . ◦ f2 ◦ f1(z0) (2)

ln qi(zi) = ln q0(z0)−
i∑

ln

∣∣∣∣det ∂fi
∂zi−1

∣∣∣∣ (3)

The specific mathematical formulation of the normalising flow function is im-
portant and must be chosen with care to allow for efficient gradient computation
during training, scalable inference, and efficiency in computing the determinant
of the Jacobian. In this study, we leverage the planar flow in [16] as a basic unit
of our latent normalising flow net. Specifically, each transformation unit is given
by,

f(z) = z+ uh(w⊤z+ b) (4)

where w ∈ Rd, u ∈ Rd and b ∈ R are learnable parameters; h(·) is a smooth
element-wise non-linear function with derivative h′(·) (we use tanh in our study)
and z denotes the latent variables sampled from the posterior distribution.
Therefore, we could compute the log determinant of the Jacobian term in O(D)
time as follows:

ϕ(z) = h′(w⊤z+ b)w (5)∣∣∣∣det ∂fi
∂zi−1

∣∣∣∣ = ∣∣det(I+ uϕ(z)⊤)
∣∣ = ∣∣1 + u⊤ϕ(z)

∣∣ (6)

Finally, the network is trained by optimizing the modified ELBO based on
equation 3:

ln p(x|c) ≥ Eq(z0|x,c)

[
ln p(x|zi, c) +

i∑
ln

∣∣∣∣det ∂fi
∂zi−1

∣∣∣∣
]
−KL(q(z0|x, c)∥p(zi))

(7)



6 Haoran Dou et al.

where, ln p(x|c) is the marginal log-likelihood of the observed data x (i.e. here x
represents an LV graph/mesh), conditioned on the covariates of interest (i.e. pa-
tient demographics and clinical measurements) c; i is the steps of the normalizing
flows. p(x|zi, c) is the likelihood of data parameterised by the decoder network,
which reconstructs/predicts x given the latent variables zi, transformed by latent
(planar) normalising flows, and the conditioning variables c; KL(q(z0|x)∥p(zi))
is the Kullback-Leibler divergence of the approximate posterior initial q(z0|x, c)
from the prior, p(z) = N (z | 0, I).

3 Experimental setup and Results

Data: In this study, we created a cohort of 2360 triangular meshes of the left
ventricle (LV) based on a subset of cardiac cine-MR imaging data available
from the UK Biobank (UKBB) by registering a cardiac LV atlas mesh [17] in
manual contours (as described in [23]). We randomly split the data set into
422/59/1879 for training, validation, and testing, respectively. All meshes have
the same and fixed graph topology, sharing the same edges and faces but differing
in the position of vertices; i.e. there is pointwise correspondence across all shapes.
We used 14 covariates available for the same subjects in UKBB as conditioning
variables for our model, including, gender, age, height, weight, pulse, alcohol
drinker status, smoking status, HbA1c, cholesterol, C-reactive protein, glucose,
high-density lipoprotein cholesterol (HDL), insulin-like growth factor 1 (IGF-
1), and low-density lipoprotein (LDL) cholesterol. These covariates were chosen
because they are known cardiovascular risk factors.

Implementation Details: The framework was implemented using PyTorch
on a standard PC with a NVIDIA RTX 2080Ti GPU. We trained our model using
the AdamW optimizer with an initial learning rate of 1e-3 and batch size of 16
for 1000 epochs. The feature number for each graph convolutional block in the
encoder was 16, 32, 32, 64, 64, and in reverse order in the decoder. The latent
dimension was set at 16. The down/up-sampling factor was four, and we used a
warm-up strategy [19] to the weight of the KL loss to prevent model collapse.

Evaluation metrics: We compared our model (cVAE-NF) with a tradi-
tional PCA-based SSM, two generative models without conditioning information
including a vanilla VAE and a VAE with normalising flow (VAE-NF) and the
vanilla cVAE. Comparison of the vanilla cVAE can also validate the performance
of existing approaches [1,2] because they are built on the cVAE with different
covariates and basic units in the network. We evaluated the performance of all
methods using three different metrics: 1) the reconstruction error, which eval-
uates the generalisability of the trained model to reconstruct/represent unseen
shapes, using the distance between the reconstructed mesh with the ground
truth/original mesh; 2) the specificity error, which measures the anatomical
plausibility of the virtual cohorts synthesised, using the distance between the
generated meshes and its nearest neighbour in the unseen real population [6];
and 3) the variability in the left ventricular volume in the synthesised cohorts,
to assess the diversity of the instances generated in terms of a clinically relevant
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cardiac index. The variability in LV volume was quantified as the standard de-
viation of the volumes of LV blood pools (BPVols). The Euclidean distance was
used to evaluate all three metrics. Additionally, we measured the activity of the
latent dimension using the statistic A = Covx(Ez∼q(z|x)[z]) of the observations
x [4]. A higher activity score indicates that a given latent dimension can capture
greater population-wide shape variability.

Table 1. The quantitative results of the investigated methods in a hold-out test
dataset. The bold values represent the results are significantly better than those of
other methods.

Methods Reconstruction Error↓ Specificity Error↓ Volume Variability↑
PCA 0.82±0.16 1.48±0.26 32.74
VAE 1.29±0.21 1.39±0.98 3.00

VAE-NF 0.90±1.76 1.60±0.34 16.03

cVAE 1.43±0.26 1.32±0.21 28.39
Ours 1.23±0.23 1.38±0.20 29.91

The results of our method are presented in Table 1. Our model outperforms
the cVAE in terms of reconstruction error and the amount of volume variability
captured in the synthesised VP (the reference volume variability for the real
UKBB population was 33.38 mm3). However, the cVAE achieved lower speci-
ficity errors than our model. This indicates that our method is better at cap-
turing the population’s shape variability, but it also creates some instances that
are further away from the real population, resulting in higher specificity errors.
We attribute this to the normalising flow’s ability to learn a more flexible ap-
proximate posterior latent distribution of the observed shapes than the cVAE.
This is also seen when comparing the performance of VAE and VAE-NF, where
the latter can synthesise significantly more diverse VPs (e.g. it improves the
volume variability from 3.00 to 16.03). Figure 3 shows the variability captured
in each latent dimension. We observe that VAE-NF has higher activity scores in
all latent dimensions compared to vanilla cVAE. The normalising flow allows for
the approximation of multimodal latent distributions in the generative model,
resulting in greater shape variability. Although PCA outperforms our method in
terms of generalisation error and volume variability captured, it does not allow
for controllable synthesis of VPs based on relevant patient demographic infor-
mation and clinical measurements, making it less useful for our application of
synthesising VPs for use in ISTs.

It is essential to capture the distribution of clinically relevant biomarkers
(e.g. BPVol) in the synthesised virtual populations (VPs) based on the specified
covariates/conditioning information available for real patients, in order to effec-
tively replicate the inclusion/exclusion criteria used during trial design in ISTs.
For example, the BPVol of women is known to be lower than that of men [20].
To verify this, we generated VPs using cVAE and our method, conditioned on
real patient data (covariates) from the UK Biobank. Figure 3 summarises the
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Fig. 3. Left: Comparison of the activity scores in different latent dimensions between
the cVAE and cVAE-NF; right: Kernel density plots for BPVol from the VPs generated
by cVAE and cVAE-NF and the real patient population (UKBB).

Ground Truth Reconstruction

Patient #2

Gender: Female

Age: 59 y.o.

Weight: 50kg

Height: 1.61m

MyoVol : 72.46 

BPVol : 80.67

Weight +20kg-20kg Age +10 yrs-10 yrs

Patient #1

Gender: Male

Age: 54 y.o.

Weight: 102kg

Height: 1.88m

MyoVol : 78.90 

BPVol : 83.29

MyoVol : 71.93 

BPVol : 76.91

MyoVol : 85.38 

BPVol : 84.91

MyoVol : 76.41 

BPVol : 84.91

MyoVol : 78.77 

BPVol : 80.61

MyoVol : 153.86

BPVol : 192.16

MyoVol : 138.75 

BPVol : 198.75

MyoVol : 153.51 

BPVol : 194.92

MyoVol : 147.71 

BPVol : 196.99

MyoVol : 165.04

BPVol : 196.69

MyoVol : 151.71

BPVol : 198.38

Fig. 4. Two representative examples of the reconstructed shapes and their variations
through manipulation over two demographic attributes, i.e., weight and Age. MyoVol
and BPVol are shown in the bottom right corner.

BPVol distribution for both genders in the synthesised VPs and the real UKBB
population, and the former accurately reflects the known trend of women having
lower BPVol than men. Compared to cVAE, our model generates a VP that more
closely matches the distribution of the volume of the LV blood pool observed in
the real population. We also visualised the effect of manipulating individual at-
tributes on two real patients in Fig. 4. We selected two representative attributes
that are significantly associated with BPVol and myocardial volume (MyoVol):
weight and age. We observe that BPVol and MyoVol of the LV are positively
correlated with the weight of the patients (as expected). On the other hand,
increasing the individual’s age results in a smaller BPVol, but an increased My-
oVol (as visualised in Fig. 4), which is known to be due to cardiac hypertrophy
caused by aging [5].

4 Conclusion

We proposed a conditional flow VAE model for the controllable synthesis of
VPs of anatomy. Our approach was demonstrated to increase the flexibility of
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the learnt latent distribution, resulting in VPs that captured greater variability
in the LV shape than the vanilla cVAE. Furthermore, our model was able to
model the relationship between covariates/conditional variables and the shape
of the LV, and synthesise target VPs that fit the desired criteria (in terms of
demographics of the patient and clinical measurements) and closely matched the
real population in terms of a clinically relevant biomarker (LV BPVol). These
results suggest that our approach has potential for the controllable synthesis of
diverse, yet plausible, VPs of anatomy. Future work will focus on modelling the
whole heart and exploring the impact of individual covariates on VP synthesis
in more detail.
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Supplementary Material
A Conditional Flow Variational Autoencoder for

Controllable Synthesis of Virtual Populations of Anatomy

Haoran Dou, Nishant Ravikumar, and Alejandro F. Frangi

Table 1: Wasserstein distance between the synthetic cohorts from different meth-
ods (cVAE and cVAE-NF) and real cohorts in terms of gender. We can observe
that the distance of the virtual cohort synthesised from cVAE-NF to the UKBB
is significantly smaller than that of cVAE, which shows the superiority of the
normalizing flow in boosting the capacity of the latent space to capture the char-
acteristic of the real population.

Comparison cVAE v.s. UKBB cVAE-NF v.s. UKBB
Male 19.14 11.06

Female 12.52 2.81

Fig. 1: Examples of bi-ventricle of the virtual patients generated by our proposed
conditional flow auto-encoder
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Fig. 2: The comparisons of virtual population and real clinical population (UKBB) on
correlations between LV Volume and ten demographic attributes. Pearson’s correla-
tions are computed on attributes and their associated volumes in each population. The
virtual population was generated by decoding the randomly sampled latent variables
conditioned to the same demographic data of UKBB.
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Fig. 3: The comparisons of virtual population and real clinical population (UKBB) on
correlations between RV Volume and ten demographic attributes. Pearson’s correla-
tions are computed on attributes and their associated volumes in each population. The
virtual population was generated by decoding the randomly sampled latent variables
conditioned to the same demographic data of UKBB.
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