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Abstract. Magnetic resonance angiography (MRA) is an imaging modal-
ity for visualising blood vessels. It is useful for several diagnostic appli-
cations and for assessing the risk of adverse events such as haemorrhagic
stroke (resulting from the rupture of aneurysms in blood vessels). How-
ever, MRAs are not acquired routinely, hence, an approach to synthesise
blood vessel segmentations from more routinely acquired MR contrasts
such as T1 and T2, would be useful. We present an encoder-decoder
model for synthesising segmentations of the main cerebral arteries in
the circle of Willis (CoW) from only T2 MRI. We propose a two-phase
multi-objective learning approach, which captures both global and local
features. It uses learned local attention maps generated by dilating the
segmentation labels, which forces the network to only extract information
from the T2 MRI relevant to synthesising the CoW. Our synthetic vessel
segmentations generated from only T2 MRI achieved a mean Dice score
of 0.79± 0.03 in testing, compared to state-of-the-art segmentation net-
works such as transformer U-Net (0.71±0.04) and nnU-net(0.68±0.05),
while using only a fraction of the parameters. The main qualitative dif-
ference between our synthetic vessel segmentations and the comparative
models was in the sharper resolution of the CoW vessel segments, espe-
cially in the posterior circulation.

Keywords: Image Synthesis · Deep Learning · Brain Vasculature · Ves-
sel Segmentation · Multi-modal Imaging

1 Introduction

A magnetic resonance angiogram (MRA) contains vital information for visualis-
ing the brain vasculature, which includes an anastomotic ring of arteries located
at the base of the brain called the circle of Willis (CoW). Multiple different
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topological variants of the CoW exist in the general population, and certain
variants of the CoW can lead to worse outcomes following a stroke [12]. To
that end, it would be useful to visualise the main cerebral blood vessels in large
imaging datasets and identify them by CoW phenotype to understand their rel-
evance to stroke in the general population. Vessel segmentation from MRA is a
well-studied problem with state-of-the-art methods achieving high quality vessel
segmentation results [13] with Dice scores as high as 0.91 [20]. However, as MRA
acquisition may require the injection of contrast agents and has longer acquisi-
tion times, it is not commonly available in population imaging studies. T1- and
T2-weighted MRI scans are the most common MR imaging modalities available
and are used to study the presence of lesions or other abnormal structures in
the brain. While the blood vessels are not explicitly visible in these modalities,
they contain latent information that can be used to synthesise the major vessels
in the brain.

Generative adversarial neural networks [4] (GANNs) have seen remarkable suc-
cess in the field of image synthesis, with networks like pix2pix [9] achieving
impressive results in paired image-to-image synthesis. GANNs have also been
widely used in medical image synthesis in various use cases such as generating
T1, T2, and FLAIR images of the brain using Wasserstein-GANNs [5]. Progres-
sively growing GANNs [1] have been used for the generation of retinal fundus
and brain images. Previous works on brain MRA synthesis used SGAN [17] to
generate MRA from paired T1 and T2 images, or used starGAN [19] to syn-
thesise MRA given T1, T2 and/or a PD-weighted MRI as input. GANN-based
approaches such as vox2vox [3] have been used to synthesise segmentations of
brain tumour directly from T1, T2, Gadolinium-enhanced T1, and T2 FLAIR
modalities. Most GANN based approaches synthesise MRA from multiple other
MR modalities, and then require the use of a separate segmentation algorithm,
such as U-net (which is popularly accepted as baseline), to segment the brain
vascular structures from the synthesised MRA. As the brain vessels form a very
small portion of the MRA image, attention mechanisms were introduced to the
segmentation algorithms to more accurately capture the small vessels. This has
been achieved in networks such as Attention U-Net [16] or more recently trans-
former based networks such as TransU-Net [2].

In spite of their successes, GANs and transformers are complex models with tens
or hundreds of millions of parameters that can be notoriously hard to train. On
top of that, GANNs tend to produce phantoms (non-existent image features),
especially when dealing with very high-resolution images with intrinsic detail
arising from medical imaging [21]. To alleviate these issues, we propose multi-
task learnable localised attention maps to directly generate vessel segmentations
based on a U-Net architecture, which can capture both global and local features
from the input domain. Our method requires only the T2 modality as in input,
which eliminates the need of multiple input modalities. The learned local at-
tention maps enable the trained model to only look for vessels in specific parts
of the image, which drastically decreases the number of parameters required
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to train the synthesis network. Our model consequently synthesises more accu-
rate CoW segmentations with fewer parameters than competing GANN-based
approaches.

2 Methodology

We propose a deep convolutional encoder-decoder model, which is trained with
two-phase multi-task learning. At training time, paired T2 images and ground-
truth MRA segmentations are available. Our encoder-decoder network captures
both global information (by encoding input images into a latent space) and local
information (by learning soft attention maps for brain vessels based on MRA
segmentations) from the given input images. We train the model using multi-
task learning in two phases, where a learned local attention map learns where
on the T2 image the vessels are most likely located to improve the synthesised
vessel segmentation masks. At run-time, the model efficiently synthesises brain
vessel segmentation masks from only T2 images.

2.1 Data and Pre-processing

The model was trained on the IXI dataset [7] using the 3T scans acquired at
Hammersmith Hospital, and includes paired T2 and MRA scans of 181 patients.
The T2 and MRA images were first registered using rigid registration. The im-
ages were centered, cropped from 512×512 to 400×400, and intensity-normalised.
Ground-truth segmentations were then generated from the MRA images for each
corresponding T2 slice using a residual U-Net [11]. The segmentations were then
dilated to form a binary mask and multiplied pixelwise with the corresponding
T2 slice to create the ground truth local attention map (see Fig. 1)

2.2 Network Architecture

The proposed model follows the general architecture of the pix2pix-model [9]
with one encoder branch and two output branches (Fig. 3). The encoder branch
combines U-net and Resnet [6] architectures with a latent space consisting of
three consecutive residual blocks, similar to the vox2vox-model [3]. The encoder
has four convolution + max-pooling -blocks, where each block consists of three
strided convolution layers followed by a max-pooling layer. Each convolution
layer is followed by an instance-normalisation -layer. The latent space branches
out into two output branches: the decoding branch and the synthesis branch.
In case of multiple input modalities (eg. T1 + T2) we have a separate decod-
ing branch for each modality. The output branches have the same structure as
the encoding branch with the max-pooling layers replaced by up-sampling layers
and with skip connections from corresponding encoding blocks. The first con-
volution block of the synthesis branch receives a skip connection from both the
corresponding encoder branch and the decoder branch.
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Fig. 1. Process for the generation of the local attention masks. Vessel segmentations
are generated from the MRA and dilated. We then multiply this dilation with the
corresponding T2 slice to create the mask.

Local Attention Mask The output of the segmentation branch consists of fine
vessel information. The small dimensions of the vessels make the segmentation
masks unsuitable for generating the local attention maps. For this reason, we di-
late these vessel segments to 10 pixels in each direction to create a local attention
mask. The optimal dilation width was found through experimentation as shown
in Table 1. We then perform pixel-wise multiplication of this local attention mask
with the output of the decoder to generate a local attention map as shown in
Fig. 1. This local attention map is compared to the ground truth local attention
maps during model training to calculate loss. This dependency between these
two tasks adds a collaborative element between what would otherwise be two
contrastive tasks. The use of a local attention mask forces the network to learn
from a very small portion of the input image, which contains information about
the blood vessels and ignore the rest of the image. This property allows us to
greatly reduce the number of parameters required to train the model.

2.3 Training and Losses

The network is trained in two phases to effectively capture both the global and
local features required to synthesise the vessels from T2 images.

Phase 1: We pre-train the network on T2 images by freezing the synthesis branch
and only training the decoder branch, effectively training an autoencoder for T2
images. The network is trained with an early stopping criteria based on the loss
slope. The only loss calculated in this stage is the T2 reconstruction loss from
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Fig. 2. Overview of our network architecture. The encoder takes T2-weighted MRI
as input and compresses it into a latent space. The latent space branches out into
the decoding branch, which reconstructs the input, and the synthesis branch, which
generates the segmentation.

the decoder branch.The loss function used is L1 and is specified below where
XT2

is the ground truth T2 image and X̂T2
is the generated T2 image:

Lphase 1 = MAE(XT2
, X̂T2

) (1)

Phase 2: After we finish the pre-training step, we unfreeze the synthesis branch
and train it in conjunction with the decoder branch. Although the decoder
branch is being trained in this step, the loss calculated for this branch is not
the reconstruction loss but local loss, which is calculated over the dot product
of the output of the decoder branch and the dilated segmentation obtained from
the output of the synthesis branch.

In order to train these two contrasting branches together, we tested our model
with various multi-task learning (MTL) approaches: Nash-MTL [15] (average
Dice after evaluation 0.76), CAGrad [14] (average Dice after evaluation 0.74),
and uncertainty-based MTL [10] (average Dice after evaluation 0.79). The best
performing version was the uncertainty-based MTL, where both the losses are
weighted based on the assumption of homoscedastic uncertainty for each task.
The loss function for our multi-output model is described in (2), where W are
the model parameters and we interpret minimising the loss with respect to σ1

and σ2 as learning the relative weights for the losses Lseg and Lloc adaptively.
We used Dice score as the loss for Lseg and MAE as the loss for Lloc

Lphase 2 =
1

2σ2
1

Lseg(W) +
1

2σ2
2

Lloc(W) + log σ1σ2 (2)
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3 Experiments and results

3.1 Implementation Details

All the models were implemented in TensorFlow 2.8 and Pytorch (for nnU-Net)
and Python 3. Out of the 181 cases in the dataset we used 150 for training and
31 for testing and validation. All the models were pre-trained on T2 images and
grid search was used to optimise the following hyperparameters: (1) batch size,
(2) learning rate, (3) number of epochs, and (4) momentum. To train the trans-
former network, we first used the parameters recommended in [2] and applied
further fine-tuning of the parameters to achieve comparative performance in the
segmentation task.

Fig. 3. Local attention maps learned by the network compared against the ground
truth local attention maps.

To evaluate the results of our model against other methods, we used the seg-
mentation metrics of Dice score and Hausdorff distance (hd95). The results were
averaged over the 3D volumes of the 11 leave-out cases and are shown in Table 2.
Our method clearly outperforms conventional GANN-based synthesis methods,
such as vox2vox, and also performs slightly better than state-of-the-art segmen-
tation models like transformer U-Net [2] and nnU-net [8], while also being easier
to train with fewer trainable parameters. We experimented with training our
model with different input modalities, which showed that using only T1 as an
input had the worst performance (average dice 0.64 ±0.04) while the perfor-
mance of using only T2 (average dice 0.79 ±0.04) and both T1 + T2 (average
dice 0.78 ±0.05) was essentially the same, with T1 + T2 requiring additional
parameters (33.4 million) compared to using just T2 (26.7 million) as we would
need an additional decoding branch for the T1 decoder. A crucial hyperparame-
ter in our model is the dilation width of the segmentations to generate the local
attention maps, which was optimised in a separate experiment. (Table 1).

3.2 Qualitative Results

Fig. 4 shows a qualitative comparison of our method against pix2pix, vox2vox,
U-Net, nnU-net, and transformer U-Net for two samples from the unseen test
set. It can be observed that pix2pix and the base U-Net are only able to capture



Learned Local Attention Maps for Synthesising Vessel Segmentations 7

Table 1. Difference in loss with different values of dilation for the local attention mask

Attention mechanism used Dice (95% CI) Area covered by mask
No local attention mask 0.62 ±0.04 NA
Mask with no dilation 0.59 ±0.04 1.5%
Mask with dilation by 5 pixels 0.74 ±0.03 8.5%
Mask with dilation by 10 pixels 0.79 ±0.03 18%
Mask with dilation by 15 pixels 0.75 ±0.02 28%
Mask with dilation by 20 pixels 0.75 ±0.03 37%

Table 2. Accuracy of synthesised vessel segmentation masks in a test set of 11 leave-
out cases

Model Model Dice HD95 Model Type
params. (×106) (95% CI) (95% CI)

Our model 26.7 0.79 ±0.03 9.1 ±0.5 Segmentation/synthesis
Transformer U-Net [2] 105.8 0.71 ±0.04 10.4 ±0.5 Segmentation
nnU-Net [8] 127.8 0.68 ±0.03 9.3 ±0.4 Segmentation
Vox2vox [3] 78.8 0.67 ±0.05 17.2 ±1.4 Segmentation/synthesis
Pix2pix [9] 36.9 0.55 ±0.04 23.1 ±3.0 Synthesis
U-Net [18] (base) 9.1 0.57 ±0.05 42.6 ±4.2 Segmentation

the overall structure of the CoW with a lot of noise. The vox2vox model synthe-
sises the vessels slightly better, but is still unable to capture the finer details and
suffers from noise. The nnU-net and transformer U-Net are able to synthesise
the vessels with high quality, but struggle to synthesise smaller vessels such as
the posterior communicating arteries (PComA) in the first case. An interesting
observation can be made in the second case, where the ground truth has faults
in the segmentation (especially in the posterior circulation). The Transformer
U-Net, nnU-net, and our model attempt to fix these faults by synthesising a
continuous PCA, but our model does better in restoring vessel continuity. Fig. 5
shows the CoW synthesis results for the best case, worst case, and median case
scenarios. It can be observed that in the worst case the model struggles to syn-
thesise the smaller vessels towards the end of the posterior cerebral circulation,
whereas in the median case scenario most of the major vessels are synthesised
with only the small PComA artery missing. The best case is that all the major
arteries of the CoW are synthesised while also removing noise from the input
image.

3.3 Limitations

While our method outperforms state-of-the-art approaches with a much smaller
number of trainable parameters and is able to generated the complete structure
of the CoW, it can be seen that in come cases the model can struggle to gen-
erate some of the finer vessels branching from the main arteries (especially the
posterior communicating arteries). This could be either because the input data
is of insufficient resolution (T2 images were acquired at 3T) or because the T2
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Fig. 4. CoW synthesis results compared between models. Pix2pix and U-Net are able
to capture the overall structure of the Cow but with a lot of noise. Vox2vox performs
comparatively better, but still suffers from noise in the outputs. NnU-Net, Transformer
U-Net and our method show good results with our method capturing more details and
dealing better with noise.

Fig. 5. CoW synthesis results for the average case, the best case, and the worst case
in our unseen test set.

modality does not contain information that could be used to synthesise the ante-
rior circulation. It is possible that additional MR modalities, such as multi-view
T1, or a fully-3D neural network architecture could add more information about
the posterior and anterior vessels and recover a complete CoW.

4 Conclusion

We proposed a multi-output encoder-decoder -based network that learned to
effectively synthesise vessels from only T2-weighted MRI using local attention
maps and multi-task learning. The qualitative and quantitative results show that
our method outperformed both the state-of-the-art and conventional segmenta-
tion/synthesis algorithms, while at the same time being easier to train with fewer
parameters. In future work, we are extending our model to a fully 3D synthesis
model to achieve better connectivity of the CoW structure.
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