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Abstract. Deep learning-based deformable registration methods have
been widely investigated in diverse medical applications. Learning-based
deformable registration relies on weighted objective functions trading off
registration accuracy and smoothness of the deformation field. Therefore,
they inevitably require tuning the hyperparameter for optimal registra-
tion performance. Tuning the hyperparameters is highly computationally
expensive and introduces undesired dependencies on domain knowledge.
In this study, we construct a registration model based on the gradient
surgery mechanism, named GSMorph, to achieve a hyperparameter-free
balance on multiple losses. In GSMorph, we reformulate the optimiza-
tion procedure by projecting the gradient of similarity loss orthogonally
to the plane associated with the smoothness constraint, rather than ad-
ditionally introducing a hyperparameter to balance these two competing
terms. Furthermore, our method is model-agnostic and can be merged
into any deep registration network without introducing extra parame-
ters or slowing down inference. In this study, We compared our method
with state-of-the-art (SOTA) deformable registration approaches over
two publicly available cardiac MRI datasets. GSMorph proves superior
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to five SOTA learning-based registration models and two conventional
registration techniques, SyN and Demons, on both registration accuracy
and smoothness.

Keywords: Medical image registration · Gradient surgery · Regulariza-
tion.

1 Introduction

Image registration is fundamental to many medical image analysis applications,
e.g., motion tracking, atlas construction, and disease diagnosis [5]. Conventional
registration methods usually require computationally expensive iterative opti-
mization, making it inefficient in clinical practice [1,19]. Deep learning has re-
cently been widely exploited in the registration domain due to its superior rep-
resentation extraction capability and fast inference speed [2,7]. Deep-learning-
based registration (DLR) formulates registration as a network learning process
minimizing a composite objective function comprising one similarity loss to pe-
nalize the difference in the appearance of the image pair, and a regularization
term to ensure the smoothness of deformation field. Typically, to balance the
registration accuracy and smoothness of the deformation field, a hyperparame-
ter is introduced in the objective function. However, performing hyperparameter
tuning is labor-intensive, time-consuming, and ad-hoc; searching for the optimal
parameter setting requires extensive ablation studies and hence training tens of
models and establishing a reasonable parameter search space. Therefore, alle-
viating, even circumventing, hyperparameter search to accelerate development
and deployment of DLR models remains challenging.

Recent advances [6,11,13] in DLR have primarily focused on network archi-
tecture design to boost registration performance. Few studies [9,16] investigated
the potential in preventing hyperparameter searching by hypernetwork [8] and
conditional learning [10]. Hoopes et al. [9] leveraged a hyper-network that takes
the hyperparameter as input to generate the weight of the DLR network. Al-
though effective, it introduces a large number of additional parameters to the
basic DLR network, making the framework computationally expensive. In par-
allel, Mok et al. [16] proposed to learn the effect of the hyperparameter and
condition it on the feature statistics (usually illustrated as style in computer vi-
sion [10]) to manipulate the smoothness of the deformation field in the inference
phase. Both methods can avoid hyperparameter tuning while training the DLR
model. However, they still require a reasonable sampling space and strategy of
the hyperparameter, which can be empirically dependent.

Gradient surgery (GS) projects conflicting gradients of different losses during
the optimization process of the model to mitigate gradient interference. This has
proven useful in multi-task learning [20] and domain generalization [15]. Moti-
vated by these studies, we propose utilizing the GS to moderate the discordance
between the similarity loss and regularization loss. The proposed method can
further avert searching the weight for balancing losses in training the DLR.
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– We propose GSMorph, a gradient-surgery-based DLR model. Our method
can circumvent tuning the hyperparameter in composite loss function with
a gradient-level reformulation to reach the trade-off between registration
accuracy and smoothness of the deformation field.

– Existing GS approaches have operated the parameters’ gradients indepen-
dently or integrally. We propose a layer-wise GS to group by the parameters
for optimization to ensure the flexibility and robustness of the optimization
process.

– Our method is model-agnostic and can be integrated into any DLR network
without extra parameters or losing inference speed.

2 Methodology

Moving (𝑀)

Fixed (𝐹)

Neural Network (𝑓𝜃)

Deformation (𝜙)

STN

Moved (𝑀 ∘ 𝜙)

𝓛𝒓𝒆𝒈

𝓛𝒔𝒊𝒎

Gradient Surgery

Fig. 1. Schematic illustration of our proposed GSMorph. GS modifies the gradients
computed by similarity loss Lsim and regularization loss Lreg, then updates the model’s
parameters θ.

Deformable image registration estimates the non-linear correspondence field
ϕ between the moving, M , and fixed, F , images (Fig. 1). Such procedure is
mathematically formulated as ϕ = fθ(F,M). For learning-based registration
methods, fθ (usually adopted by a neural network) takes the fixed and moving
image pair as input and outputs the deformation field via the optimal parameters
θ. Typically, θ can be updated using standard mini-batch gradient descent as
follows:

θ := θ − α∇θ (Lsim(θ;F,M ◦ ϕ) + λLReg(θ;ϕ)) (1)

where α is the learning rate; Lsim is the similarity loss to penalize differences in
the appearance of the moving and fixed images (e.g., mean square error, mutual
information or local negative cross-correlation); Lreg is the regularization loss to
encourage the smoothness of the deformation field (this can be computed by the
gradient of the deformation field); λ is the hyperparameter balancing the trade-
off between Lsim and Lreg to achieve desired registration accuracy while preserv-
ing the smoothness of the deformation field in the meantime. However, hyper-
parameter tuning is time-consuming and highly experience-dependent, making
it tough to reach the optimal solution.
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Insight into the optimization procedure in Eq. 1, as registration accuracy and
spatial smoothness are potentially controversial in model optimization, the two
constraints might have different directions and strengths while going through
the gradient descent. Based on this, we provide a geometric view to depict the
gradient changes for θ based on the gradient surgery technique. The conflicting
relationship between two controversial constraints can be geometrically projected
as orthogonal vectors. Depending on the orthogonal relationship, merely updat-
ing the gradients of the similarity loss would automatically associate with the
updates of the regularization term. In this way, we avoid tuning the hyperparam-
eter λ to optimize θ. The Eq. 1 can then be rewritten into a non-hyperparameter
pattern:

θ := θ − αΦ(∇θLsim(θ;F,M ◦ ϕ)) (2)

where Φ(·) is the operation of proposed GS method.

2.1 Layer-wise Gradient Surgery

Figure 2 illustrates the two scenarios of gradients while optimizing the DLR net-
work via vanilla gradient descent or gradient surgery. We first define that the gra-
dient of similarity loss, gsim, and that of regularization loss, greg, are conflicting
when the angle between gsim and greg is the obtuse angle, viz. ⟨gsim, greg⟩ < 0.
In this study, we propose updating the parameters of neural networks by the
original gsim independently, when gsim and greg are non-conflicting, represent-
ing gsim has no incompatible component of the gradient along the direction of
greg. Consequently, optimization with sole gsim within a non-conflicting scenario
can inherently facilitate the spatial smoothness of deformations.

𝑔𝑠𝑖𝑚

𝑔𝑟𝑒𝑔

Vanilla Gradient Descent

𝑔

𝑔𝑠𝑖𝑚

𝑔𝑟𝑒𝑔

𝑔 = 𝑔𝑠𝑖𝑚

𝑔𝑟𝑒𝑔

Gradient Surgery

𝑔𝑠𝑖𝑚

𝑔𝑟𝑒𝑔

𝑔 = Φ(𝑔𝑠𝑖𝑚 , 𝑔𝑟𝑒𝑔)
𝑔

Non-conflicting

Conflicting

Fig. 2. Visualization of vanilla gradient descent and gradient surgery for non-conflicting
and conflicting gradients. Regarding vanilla gradient descent, the gradient, g, is com-
puted based on the average of gsim and greg. Our GS-based approach projects the gsim
onto the normal vector of greg to prevent disagreements between the similarity loss
and regularization loss. On the other hand, we only update the gsim in non-conflicting
scenarios.
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Conversely, as shown in Fig. 2, conflicting gradients are the dominant reason
associated with non-smooth deformations. Hence, deconflicting gradients in the
optimization of the DLR network to ensure high registration accuracy, as well
as smooth deformation, is the primary goal of our study. Following a simple
and intuitive procedure, we project the gsim onto the normal plane of the greg,
where the projected similarity gradient g and greg are non-conflicting along each
gradient’s direction.

Existing studies [15,20] performed the GS in terms of independent param-
eters or the entire network. Despite the effectiveness, these can be either un-
stable or inflexible. Considering that a neural network usually extracts fea-
tures through the collaboration of each parameter group in the convolution
layers, we introduce a layer-wise GS to ensure its stability and flexibility. The
parameter updating rule is detailed in the Algorithm 1. Specifically, in each
gradient updating iteration, we first compute the gradients of two losses for
the parameter group in each layer separately. Then, the conflicting relation-
ship between the two gradients is calculated based on their inner production.
Once the two gradients are non-conflicting, the gradients used to update its
corresponding parameter group will be only the original gradients of similar-
ity loss; on the contrary, the gradients will be the projected similarity gradi-
ents orthogonal to the gradients of regularization, which can be calculated as

gisim− ⟨gi
sim,gi

reg⟩
∥gi

reg∥2 gireg. After performing GS on all layer-wise parameter groups in

the network, the final gradients will be used to update the model’s parameters.

Algorithm 1 Gradient surgery

Require: Parameters θi in ith layer of the network; Number of
layers in the network N .

1: gsim ← ∇θLsim

2: greg ← ∇θLreg

3: for i = 1→ N do
4: if ⟨gisim, gireg⟩ > 0 then
5: gi = gisim
6: else

7: gi = gisim −
⟨gisim,gireg⟩

∥gireg∥2
gireg

8: end if
9: ∆θi = gi
10: end for
11: Update θ

2.2 Network Architecture

Our network architecture (seen in Fig. 1) is similar to VoxelMorph [7] that com-
prises naive U-Net [18] and spatial transform network (STN) [12]. The U-Net
takes the moving and fixed image pair as input and outputs the deformation
field, which is used to warp the moving image via STN. The U-Net consists of
an encoder and a decoder with skip connections, which forward the features from
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each layer in the encoder to the corresponding layer in the decoder by concate-
nation to enhance the feature aggregation and prevent gradient vanishing. The
number of feature maps in the encoder part of the network is 16, 32, 64, 128,
and 256, increasing the number of features as their size shrinks, and vice versa in
the decoder part. Each convolutional block in the encoder and decoder has two
sequential convolutions with a kernel size of 3, followed by a batch normalization
and a leaky rectified linear unit.

3 Experiments and Results

3.1 Datasets and Implementations

Datasets In this study, we used two public cardiac cine-MRI datasets for in-
vestigation and comparison: ACDC [3] and M&M [4]. ACDC and M&M contain
100 and 249 subjects, respectively. We followed a proportion of 75%, 5%, and
20% to split each dataset for training, validation, and testing. We selected the
image from the cine-MRI cardiac sequence at the End Systole (ES) time point
of the cardiac cycle as the moving image, and that at the End Diastole (ED)
as the fixed one. All images were cropped into the size of 128×128 centralized
to the heart. We normalized the intensity of images into the range from 0 to 1
before inputting them into the model.

Implementation details We implemented our model in PyTorch [17], using
a standard PC with an NVIDIA GTX 2080ti GPU. We trained the network
through Adam optimizer [14] with a learning rate of 5e-3 and a batch size of
32 for 500 epochs. We also implemented and trained alternative methods for
comparison with the same data and similar hyper-parameters for optimization.
Our source code is available at https://github.com/wulalago/GSMorph.

3.2 Alternative Methods and Evaluation Criteria

To demonstrate the advantages of our proposed method in medical image regis-
tration, we compared it with two conventional deformable registration methods,
i.e.,Demons [19] and SyN [1], and a widely-used DLRmodel,VoxelMorph [7].
These methods usually need laborious effort in hyperparameter tuning. Addi-
tionally, we reported the results of VoxelMorph trained with different λ (i.e., 0.1,
0.01, and 0.001, denoted as VoxelMorph-l, VoxelMorph-m, VoxelMorph-
s). Meanwhile, we compared our approach to one alternative DLR model based
on the hyperparameter learning, i.e., HyperMorph [9]. This method only re-
quire additional validations in searching the optimal hyperparameter without
necessarily tuning it from scratch. Finally, we reformulated two variations of GS
based on our concept for further comparison. Specifically, GS-Agr [15] treats
the gradient of each parameter independently. It updates the parameter with
the gradient of similarity loss in the non-conflicting scenario, and a random

https://github.com/wulalago/GSMorph
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gradient sampled from the Gaussian distribution when conflicting. While GS-
PCGrad [20] uses the same GS strategy as ours, but with respect to the whole
parameters of the entire network. The Initial represents the results without any
deformation.

In this study, we used six criteria to evaluate the efficacy and efficiency of the
investigated methods, including Dice score (Dice) and 95% Hausdorff distance
(HD95) to validate the registration accuracy of the regions of interest, Mean
square error (MSE) to evaluate the pixel-level appearance difference between
the moved and fixed image-pairs, the percentage of pixels with negative Jacobian
determinant (NJD) values to compare the smoothness and diffeomorphism of the
deformation field, the number of parameters (Param) of the neural network and
inference speed (Speed) to investigate the efficiency.

3.3 Results

As summarized in Table 1, our method could obtain the best MSE in the ACDC
dataset and Dice in the M&M dataset while achieving comparable performance
with the tuned VoxelMorph over other metrics. The Dice and HD95 reported
in Table 1 were averaged over three anatomical regions of interest in the heart,
i.e., Left ventricle, Myocardium, and Right Ventricle (LV, Myo, and RV). Conse-
quently, the proposed model achieved superior registration accuracy and spatial
regularization with faster inference speed than the two conventional registration
methods. We also observed that our approach gained higher registration perfor-
mance than HyperMorph in both datasets. Regarding the GS-based methods,
GS-Agr totally collapsed, as the conflicting gradients accounted for most have
been replaced by random noise. On the other hand, GS-PCGrad only yielded an
inadequate registration performance with an inclination of over-regularization.
The comparison in the GS-based method shows the flexibility and robustness of
our approach.

Table 1. Quantitative comparison of investigated methods on the testing datasets over
ACDC and M&M.

Methods

Dataset ACDC M&M

Dice(%) HD95(mm) MSE(10−2) NJD(%) Dice(%) HD95(mm) MSE(10−2) NJD(%)

Initial 61.81±8.68 4.40±1.33 1.58±0.52 - 61.03±10.16 4.79±1.82 1.90±1.08 -

Demons 85.38±3.52 1.67±0.75 0.46±0.21 1.31±0.59 75.66±10.30 17.79±6.23 0.71±0.61 1.84±1.19

SyN 79.28±8.23 2.24±1.28 0.65±0.21 0.30±0.27 81.97±9.36 2.45±2.04 0.84±0.12 0.49±0.47

VoxelMorph-s 86.69±2.17 1.30±0.24 0.39±0.14 2.01±0.96 77.12±9.36 3.43±2.18 0.42±0.29 3.45±2.33

VoxelMorph-m 87.47±2.21 1.29±0.30 0.42±0.15 0.67±0.48 79.93±8.57 2.91±1.98 0.48±0.32 1.31±1.10

VoxelMorph-l 82.12±4.30 1.87±0.64 0.59±0.18 0.10±0.14 77.18±8.69 2.81±1.60 0.74±0.43 0.16±0.22

HyperMorph 83.44±3.55 1.75±0.64 0.47±0.20 1.60±0.86 77.21±8.45 3.28±1.99 0.59±0.37 2.50±1.22

GS-Agr 63.40±9.15 4.20±1.35 1.33±0.43 0 63.41±9.85 4.50±1.77 1.55±0.86 <0.001

GS-PCGrad 84.59±3.53 1.62±0.53 0.51±0.16 0.11±0.17 80.67±8.18 2.48±1.67 0.59±0.36 0.41±0.44

GSMorph 87.45±2.27 1.34±0.40 0.31±0.11 0.87±0.52 82.26±6.59 2.66±1.93 0.49±0.27 0.98±0.84
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ACDC

M&M

Fig. 3. Visual comparison of the registration results of the investigated methods for
two representative test cases in ACDC and M&M datasets. The top rows are the fixed
images and moved images from different methods; the bottom rows are the moving
images and deformation fields. (We encourage you to zoom in for better visualization)

Figure 3 illustrates the sample cases of the warped images and the corre-
sponding deformation fields from the compared methods. It can be observed our
methods could obtain the moved images most similar to the fixed ones. Voxel-
morph could achieve comparable results to us but still require a time-consuming
hyperparameter tuning. Overall, the results of the comparisons in Table 1 and
Fig. 3 indicate that our method performed the best among all the techniques
that we implemented and examined, showing the effectiveness of our model in
balancing the trade-off between registration accuracy and smoothness of defor-
mations.

Table 2. Number of parameters and inference speed of investigated methods on the
testing datasets over ACDC and M&M.

Methods Demons SyN VoxelMorph HyperMorph GSMorph

Params - - 1.96M 126M 1.96M

Speed 7.55±1.79 16.59±5.48 2.29±0.83 2.96±1.09 2.29±0.83

In Table 2, we have also reported the number of parameters and inference
speed. We observed that DLR methods could obtain faster speed compared with
conventional ones in general. As our proposed approach only modified the op-
timization procedure of the backbone network, it could maintain the original
inference speed and the number of parameters. Conversely, HyperMorph intro-
duced tremendous extra parameters and loss of inference speed as they adopted
the secondary network to generate the conditions or weights of the main network
architecture.
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4 Conclusion

This work presents a gradient-surgery-based registration framework for medical
images. To the best of our knowledge, this is the first study to employ gradient
surgery to refine the optimization procedure in learning the deformation fields.
In our GSMorph, the gradients from the similarity constraint were projected
onto the plane orthogonal to those from the regularization term. In this way,
merely updating the gradients in optimizing the registration accuracy would
result in a joint updating of the gradients from the similarity and regularity
constraints. Then, no additional regularization loss is required in the network
optimization and no hyperparameter is further required to explicitly trade off
between registration accuracy and spatial smoothness. Our model outperformed
the conventional registration methods and the alternative DLR models. Finally,
the proposed method is model-agnostic and can be integrated into any DLR
network without introducing extra parameters or compromising the inference
speed. We believe GSMorph will facilitate the development and deployment of
DLR models and alleviate the influence of hyperparameters on performance.
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