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Summary. We investigate the issue of post-selection inference for a fixed and a mixed
parameter in a linear mixed model using a conditional Akaike information criterion as a
model selection procedure. Within the framework of linear mixed models we develop com-
plete theory to construct confidence intervals for regression and mixed parameters under
three frameworks: nested and general model sets as well as misspecified models. Our
theoretical analysis is accompanied by a simulation experiment and a post-selection ex-
amination on mean income across Galicia’s counties. Our numerical studies confirm a
good performance of our new procedure. Moreover, they reveal a startling robustness to
the model misspecification of a naive method to construct the confidence intervals for a
mixed parameter which is in contrast to our findings for the fixed parameters.

Keywords: conditional Akaike information criterion, fixed parameter, mixed parame-
ter, post-selection inference, small area estimation

1. Introduction

Model or variable selection appears to be a routine practice in a great majority of statisti-
cal and machine learning data analyses. Despite the additional randomness coming from
data-driven model selection procedures, both specialists and practitioners tend to disre-
gard it in the subsequent steps of statistical inference. Instead, they often use classical
theory to construct confidence intervals and testing procedure even though such theory
might be invalid in their context. Many authors have stressed the need to account for
selection uncertainty in the context of a classical regression (e.g., Hjort and Claeskens,
2003; Leeb and Pötscher, 2003, and in a more recent surge of articles Berk et al., 2013;
Ferrari and Yang, 2015; Charkhi and Claeskens, 2018; Bachoc et al., 2019). Moreover,
the topic has been thoroughly discussed by, among others, Belloni et al. (2015); Lee
et al. (2016); Tibshirani et al. (2016) in the field of selective inference in which both the
choice of the model and the target parameter are data-driven.

Despite the interest in the post-selection inference in many statistical domains, it
remains a largely neglected problem in the field of linear mixed models (LMMs). The
latter have been thoroughly studied, and are broadly applied for modelling clustered
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2 Claeskens et al.

or longitudinal data (Verbeke and Molenberghs, 2000; Jiang, 2007) in, among others,
ecology (Bolker et al., 2009), small area estimation (Rao and Molina, 2015; Morales et al.,
2021) or medicine (Francq et al., 2019). Recently Sugasawa et al. (2019) developed the
first contribution towards the post-selection inference under LMM, and investigated a
procedure based on a prediction error criterion for the area-level model of Fay and
Herriot (1979). Their proposal involves a simultaneous estimation and a model selection
of a mixed parameter, consisting of both fixed and random effects, and it is tailored
to minimize the estimated mean squared error. For comparison with our method, we
implement the observed best selective predictor (OBSP) of Sugasawa et al. (2019) and
study its performance in simulations in Section 6. The issue of accounting for the model
selection in the context of LMM has been also mentioned by Cunen et al. (2020), but
the authors did not approach it in their article.

Our goal is thus to investigate post-selection inference under a classical, low-dimensional
framework for fixed (regression) parameters and their linear combinations as well as a
general mixed parameter. A precise estimation of the former is indispensable in any
statistical analysis whereas the latter is essential in, among others, small area estima-
tion (SAE). In particular, we address the construction of valid post-selection confidence
intervals. Due to its practical relevance, we concentrate on the inference after the se-
lection of covariates for fixed effects when random effects are present and the variance
structure is not subject to the selection process. The selection of random effects involves
a different strand of literature and methods. Charkhi and Claeskens (2018) studied the
asymptotic distribution of estimators after model selection using Akaike’s information
criterion (AIC), proposed by Akaike (1973), and applied this distribution to construct
adjusted confidence intervals for fixed effects and linear combinations of them. Even
though their general approach is suitable for any likelihood-based model, Charkhi and
Claeskens (2018) did not consider random effects. Within the mixed model setting,
we can differentiate population and cluster foci, a distinction made already by Harville
(1977). In LMMs, a classical AIC has a population focus and is obtained by integrat-
ing out random effects and using a marginal log-likelihood. Hence, it is often referred
to as a marginal AIC (mAIC). Due to its main target, mAIC is not appropriate for
the prediction of cluster-level parameters or mixed effects. We therefore use a criterion
which selects covariates in terms of minimising the prediction errors with the focus on
specific random effects. Considering this aspect, Vaida and Blanchard (2005) proposed
a conditional AIC under the assumption of known variance parameters. Since covari-
ance matrices are usually unknown and need to be estimated, the assumption of Vaida
and Blanchard (2005) and later of Liang et al. (2008) seems to be too stringent for a
practical use. Therefore, in what follows we use a conditional AIC (cAIC) of Kubokawa
(2011) who extended the proposal of Vaida and Blanchard (2005) and accounted for
the estimation of the variability parameters. Our examination on the inference after
cAIC-selection (henceforth we refer to it as post-cAIC inference) can thus be treated as
a twofold extension of the theory of Charkhi and Claeskens (2018). First, we consider
a different model selector; second, and more importantly, we focus not only on fixed
effects, but also on mixed parameters consisting of both fixed and random effects.

After the proposal of Vaida and Blanchard (2005), scholars have developed several
extensions to the initial information criterion with a cluster focus (see Müller et al., 2013,
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for an extensive review of model selection techniques under LMM). Apart from cAIC of
Kubokawa (2011), Srivastava and Kubokawa (2010) defined an alternative conditional
Akaike information and investigated its unbiased estimator, which resulted in a modified
cAIC. Furthermore, Kawakubo and Kubokawa (2014) introduced a criterion which is
appropriate to cover underspecified cases, that is, when the list of models does not include
the true one (in Section 5 we adopt the terminology of Charkhi and Claeskens, 2018,
and call it a misspecified setting). Another modification is to use information criteria
with generalised degrees of freedom (GDF) combined with a marginal or a conditional
likelihood as in Greven and Kneib (2010) and You et al. (2016). On the other hand,
Lombard́ıa et al. (2017) employed GDF with the quasi-log-likelihood which focuses on
random effects and the total variability, combining a conditional and a marginal log-
likelihood. Hereinafter we consider only post-cAIC inference; the comparative study
of the post-selection inference using different methods with a cluster focus might be a
subject of possible future research.

For the sake of comparison, we use the framework and a similar notation of Charkhi
and Claeskens (2018) unless it is in conflict with ours. In Section 2 we present key
concepts of LMM inference. Then we investigate three settings to construct post selection
confidence intervals. We initialise with the set of nested models in Section 3 and then
move towards any set of models in Section 4. In Section 5 we consider a post-selection
inference for a set of misspecified models. In Section 6, we outline the outcomes of the
numerical study, whereas in Section 7 we apply post-cAIC inference in a study on mean
income in the counties of Galicia. We conclude with a discussion in Section 8 while
deferring certain technical details to Section 9 and the supplementary material (SM) in
Section 10.

2. Inference in linear mixed models

We examine the inference under individual cluster LMM, i.e., each observation belongs
to one cluster, and clusters are independent. To facilitate the exposition, we provide the
definition for a full model with all possible fixed parameters included, that is

yi = Xiβ +Ziui + ei, i = 1, . . . , n, (1)

where yi ∈ Rmi is a vector of target variables, Xi ∈ Rmi×(a+K) and Zi ∈ Rmi×q are
matrices of covariates, β ∈ Ra+K is a vector of fixed effects, ui ∈ Rq is a vector of random
effects and %t = (βt,ut), whereas ei ∈ Rmi is a vector of stochastic errors. Splitting the
dimension of the covariates to the sum of a + K is convenient for presenting our post-
selection analysis, and is clarified in Section 3. We assume that ui ∼ Nq(0,Gq(θ)), ei ∼
Nmi

(0,R(θ)) where θ = (θ1, . . . , θh)t is an h-dimensional vector of variance parameters.
Furthermore, we suppose that G = G(θ) and R = R(θ) are positive definite matrices
known up to the vector θ. We denote the total number of clusters by n and the total
number of units by m =

∑n
i=1mi. Expression (1) can be rewritten in a succinct form

y = Xβ +Zu+ e, (2)

whereX = (Xt
1, . . . ,X

t
n)t is an m×(a+K) matrix of rank a+K, Z = diag(Z1, . . . , Zn) is

an m×r matrix of rank r = nq, u = (ut1, . . . ,u
t
n)t, e = (et1, . . . , e

t
n)t and G = diagn(Gq)
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is block-diagonal with n blocks Gq on the diagonal. The marginal and conditional
distributions of y are y ∼ Nm(Xβ,V (θ)) and y|u ∼ Nm(Xβ+Zu,R(θ)), respectively,
where V = V (θ) = R(θ) + ZG(θ)Zt. Twice negative marginal log-likelihood and
extended log-likelihood functions for y modelled by equation (2) are:

−2`mn = −2`mn (y|β,θ) = −2 log f(y) (3)

= m log(2π) + log |V |+ (y −Xβ)tV −1(y −Xβ),

−2`en = −2`cn(y|u,β,θ)− 2`ur (u|θ) = −2 log f(y|u)− 2 log f(u) (4)

= m log(2π) + log |R|+ (y −Xβ −Zu)tR−1(y −Xβ −Zu)

+r log(2π) + log |G|+ utG−1u.

Numerous methods have been established to estimate β, u and θ. By far the most
popular are two-stage techniques such as the best linear unbiased estimator and the
best linear unbiased predictor (BLUP), mixed-model equations of Henderson (1950),
the Bayes estimation or the likelihood based inference (see, for example, Verbeke and
Molenberghs, 2000; Jiang, 2007, for all essential procedures). In what follows we con-
centrate on the former. Regarding θ, we estimate it iteratively by maximizing (3) or by
using the restricted log-likelihood version. Both of them were discussed by Laird and
Ware (1982). In addition, one can take a derivative of (3) with respect to β to obtain
β̃ = β̃(θ) = (XtV −1X)−1XtV −1y. Once θ is estimated, we plug it into β̃ to obtain

β̂ = β̂(θ̂). An alternative analysis is required if we tend to focus on the inferences with
respect to random effects u. Henderson (1950) used the extended likelihood in (4) to
obtain the estimates of β and predictions of u:(

β̃
ũ

)
=

(
XtR−1X XtR−1Z
ZtR−1X ZtR−1Z +G−1

)−1(
XtR−1y
ZTR−1y

)
, (5)

which results in the same expression for β̃ as by using the marginal likelihood in (3).
The mixed-model equations in (5) can be used to obtain a pseudo hat-matrix H

H =
(
X Z

)(XtX XtZ
ZtX ZtZ +G−1

)−1(
Xt

ZT

)
and ρ = tr(H), (6)

where ỹ = Xβ̃ + Zũ = Hy. We call ρ the effective degrees of freedom (Hodges and
Sargent, 2001). They are used as the main part of the penalty term in cAIC. It follows

that a+K 6 ρ 6 a+K + r (Vaida and Blanchard, 2005) and we have ρ̂ = ρ(θ̂).
We focus on post-cAIC inference for (i) a fixed parameter in (1), (ii) a linear combi-

nation ktiβ, ki ∈ Ra+K and (iii) a general mixed parameter

µi = ktiβ +mt
iui, µ̃i = µi(θ) = ktiβ̃ +mt

iũi and µ̂i = µi(θ̂), i = 1, . . . , n, (7)

where mi ∈ Rq, ci = (kti,m
t
i)
t and µ̂i is the EBLUP of µi. The variability of regression

parameters can be derived directly from the marginal log-likelihood in (3). Regarding
the mixed effect, Henderson (1975) employed (5) to obtain a formula for the variance of
µ̃i in (7). Due to the presence of a random effect, this variance is often referred to as
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mean squared error (MSE). We thus have MSE{µ̃i(θ)} = ctiK
−1ci, where K and K−1

are spelled out in the SM. Replacing θ in MSE{µ̃i(θ)} with θ̂ results in an estimator

mse1(µ̂i) = ctiK̂
−1ci = g1i(θ̂) + g2i(θ̂), (8)

which is called the first-order correct MSE estimator in the SAE literature. On the
contrary, an analytical second-order correct estimator is given by

mse2(µ̂i) = g1i(θ̂) + g2i(θ̂) + 2g3i(θ̂). (9)

The exact expressions for g1i, g2i and g3i can be found in, for example, Rao and Molina
(2015) and our SM. We use mse2 in (9) to construct naive confidence intervals which do
not account for the selection uncertainty. Finally, the cAIC of Kubokawa (2011)

cAIC = −2`cn(β̂m) + 2ρ(θ̂) + 2b(θ̂), (10)

is an asymptotically unbiased estimator of the conditional Akaike information (cAI)

cAI(θ) = −2
∫ ∫ ∫

log{f(y∗|û, β̂, θ̂)}f(y∗|u,β,θ)f(y|u,β,θ)f(u|θ)dy∗dydu, where y∗

is a future variable distributed according the same normal distribution as y, ρ(θ̂) is an

estimated version of the effective degrees of freedom in (6), b(θ̂) is the additional penalty
accounting for the estimation of variance parameter θ. Since the exact form of cAIC for a
general LMM is complex, we defer it to our SM (cf. Kubokawa, 2011, for the derivation).

3. Selection properties of the cAIC in nested models

We investigate the nested sequence of K + 1 likelihood models M0 ⊆ M1 · · · ⊆ MK

which depend on the parameter vector β = (βta, βa+1, . . . , βa+K) ∈ B ⊆ Ra+K . More
specifically, model M0 contains a covariates, in model M1 we employ a+1 covariates, etc.
The largest model MK contains a full vector β ∈ Ra+K . The parameter that is common
to all models and thus not subject to the selection procedure is denoted by βa ∈ Ra.
Without loss of generality, we assume that Mi adds one covariate to Mi−1. Furthermore,
there exists a single minimal true model Mp0 in the set of general modelsMnest = {Mi :
i = 0, . . . ,K}, that is, p0 is the smallest model order for which all non-zero components
of the true vector β0 are included. Models with i < p0 are underparametrised and
with i > p0 overparametrised. In addition, vs(k) = (v1, . . . , va+k)

t denotes a subvector
of v which corresponds to model Mk. Furthermore, in model Mi we define βs(i) =

(βta, . . . , βi) ∈ Ra+i, its counterparts β̂sm(i) ∈ Ra+i and β̂sc(i) ∈ Ra+i estimated using
maximum marginal `mn and conditional log-likelihoods `cn as defined in equations (3)

and (4) respectively. In addition, let β̂m(i) = [{β̂sm(i)}t,0tK−i] ∈ Ra+K and β̂c(i) =

[{β̂sc(i)}t,0tK−i] ∈ Ra+K . Last but not least, we can distinguish β0 = β0(p0), which is
the true value with β0j = 0 for j > p0, whereas βs0(p0) is composed of non-zero elements
of β0(p0). If no confusion is possible, we omit the dependence on p0 in β0(p0).

The conditional Akaike information criterion for model Mj in the set of modelsMnest

is formally given as cAIC(Mj) = −2`cn{β̂m(j)} + 2ρ̂j + 2b̂j , where `cn is the condi-

tional likelihood defined in equation (4), β̂m(j) is a vector of estimated covariates using
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the marginal likelihood, ρ̂j and b̂j are estimated penalty terms. The index of the se-
lected model is p̂0 = min{j : cAIC(Mj) = min06i6K cAIC(Mi)}. To continue with the
post-selection inference we need to rewrite the cAIC-based selection procedure using
a set of inequalities which impose geometrical restrictions on the support of the nor-
mally distributed random variables. First, we redefine p̂0 = min{j ∈ {0, . . . ,K} : j =
arg max0,...,K cAIC′(Mj)}, with

cAIC′(Mj) = 2
[
`cn,j
{
β̂m(j)

}
− `cn(β0)

]
+ 2(ρ0 − ρ̂j) + 2(b0 − b̂j)

= 2`′cn,j + 2(ρ0 − ρ̂j) + 2(b0 − b̂j),

where ρ0 + b0 − ρ̂j − b̂j can be treated as an effective difference between the degrees
of freedom imposed on the true model and on the selected model. The probability of
underselection using cAIC is asymptotically zero (see Lemma 1 in Section 4 and its proof
in our SM), which implies that p > p0. A similar result was demonstrated for AIC by
Woodroofe (1982) and generalised by Charkhi and Claeskens (2018). If we condition on
p̂0 = p, cAIC′(Mp)−cAIC′(Mj) > 0 for j = p0, . . . , p−1 and cAIC′(Mp)−cAIC′(Mj) > 0
for j = p0, . . . ,K. For a full model MK , denote by Im = Im(MK) the Fisher information
matrix in a marginal setting with all parameters, and by J c = J cn(MK) the negative
Hessian calculated from the conditional likelihood (their precise definitions are given in
Section 9.1). Unless the model is correctly specified, we have Im 6= E(Jm). Furthermore,
we define Σ = Σ(MK) = (Im)−1/2J c(Im)−1/2. Consequently, a submatrix of Σ which
corresponds to model Mi is denoted by Σ(Mi) and refers only to the covariates from
the considered model Mi. Let the diagonal and the off-diagonal elements of Σ be Σi

and Σij , i, j = 1, . . . , a + K. Furthermore, let Im(i) and K(i) be submatrices of Im
and K, respectively, corresponding to the model Mi. In addition, we denote by id(·) an

indicator function. Let ρjp = ρj − ρp and bjp = bj − bp and ρ̂jp and b̂jp their empirical
versions. Consider the sequence of nested models Mnest. It follows that the selection
region for a fixed parameter β is defined as follows:

(a) for p = p0 we have Ap(Mnest) =

⋂
j=p+1,...,K

w ∈ Ra+K :

j∑
i=p+1

w2
a+iΣa+i + 2

j∑
i=p+1

j−1∑
k=1

wa+iwkΣ(a+i)k < 2ρjp + 2bjp

 ,(11)

(b) for p > p0 we have Ap(Mnest) = B1,p ∩ B2,p where

B1,p =
⋂

j=p0+1,...,p

w ∈ Ra+K :

p∑
i=j

w2
a+iΣa+i + 2

p∑
i=j

p−1∑
k=1

wa+iwkΣ(a+i)k > 2ρjp + 2bjp

 ,

B2,p =
⋂

j=p+1,...,K

w ∈ Ra+K :

j∑
i=p+1

w2
a+iΣa+i + 2

j∑
i=p+1

j−1∑
k=1

wa+iwkΣ(a+i)k < 2ρjp + 2bjp

 .

(12)

In other words, Ap describes constraints on the domain of multidimensional normal
random variables. The specific form of Aµp is defined by the set of inequalities coming
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(1)                                                       (2)                                                       (3)                                                       (4) 

Fig. 1. Allowable domains of W1, W2 and W3 for nested model selection when cAIC selects:
(1) M0 with β1, (2) M1 with {β1,β2}, (3) M2 with {β1,β2,β3} and (4) M0 or M1 or M2.

from the asymptotic analysis of {%̂(M)− %0}. Since the random effects are not subject
to the selection procedure, the selection region for a mixed parameter Aµp (Mnest) has
almost the same form for p = p0 and p > p0. In fact, one would need to only replace
R
a+K with Ra+K+r in (11) and (12).
We illustrate the allowable domains for normal random variables W1, W2 and W3

using the restrictions imposed by the cAIC selection. The domains of the random effects
are not affected by the geometrical restrictions. Consider K = 2, a = 1, Mnest, and
suppose that M0 is a true model containing only β1, that is, M0 = {β1}. Moreover,
M1 = {β1,β2} whereas M2 = {β1,β2,β3}. To be able to plot the domains, we need to
fix or estimate the values of Σ, ρj and bj , j = 1, 2, 3. We thus constructed a simulated
dataset using a simplified setting from Section 6, the details can be found in our SM.
Figure 1 depicts geometrical regions which restrict the domains of W1, W2 and W3. The
regions are defined by the appropriate equations in (11) and (12). Once McAIC = M0,
we have p = p0 and use (1) to derive

AM0
(Mnest) = {w ∈ R3 : w2

2Σ2 + 2w1w2Σ12 < 2(ρ21 + b21),

w2
2Σ2 + w2

3Σ3 + 2w1w2Σ12 + 2w1w3Σ13 + 2w2w3Σ23 < 2(ρ31 + b31)},

which corresponds to the left panel of Figure 1. One obtains similar sets of equations if
McAIC = M1 or M2 (exact calculations are worked out in the SM). We conclude that
a data-driven model selection heavily influences the domain of asymptotic distributions
of the parameters that are subject to the selection process. The last panel of Figure 1
shows the partition of the space composed of W1, W2 and W3. The following proposition
describes the asymptotic distribution of a fixed and mixed effect after cAIC selection.

Proposition 1. Suppose that Assumptions (a)− (d) from Section 9.1 are satisfied.
Conditionally on Ap(Mnest) the limiting distribution for a post-cAIC fixed parameter is

Fp(t) = lim
n→∞

P
[
n1/2{β̂m(p)− β0} 6 t | p̂0 = p,Mnest

]
= P

[
{Im(p)}−1/2W s(p) 6 ts(p) |W ∈ Ap(Mnest)

]
id(t ∈ Tp),

where Tp ∈ Ra+p× (R+)K−p, W ∼ N(0, Ia+K), Im(p) is a submatrix whereas ts(p) and
W s(p) are subvectors corresponding to a selected model Mp. In addition, conditionally
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on Aµp (Mnest), the limiting distribution for a post-cAIC mixed parameter is

Fp(t) = lim
n→∞

P
[
n1/2{µ̂i(p)− µi} 6 t | p̂0 = p,Mnest

]
≈ P

[
{csi (p)}tK−1/2(p)W s

µ(p) 6 t |Wµ ∈ Aµp (Mnest)
]
,

where Wµ ∼ N(0, Ia+K+r), c
s
i (p) and W s

µ(p) are subvectors and K(p) a submatrix
corresponding to a selected model Mp.

Proposition 1 leads to the following corollary on the asymptotic post-selection density
of fixed effects. In the SM we illustrate the effect of the selection on the densities.

Corollary 1. Under the assumptions of Proposition 1, the post-cAIC density of
n1/2{β̂m(p)−β0} with p̂0 = p fromMnest is fp(t) = φp[t

s(p)|Ap(Mnest); {Im(p)}−1]id(t ∈
Tp). When cAIC selects the true model, p̂0 = p0, then fp0(t) = φp0{ts(p0)}id(t ∈ Tp).

Proposition 1 can be used to construct a post-cAIC confidence interval (CI) for a
mixed parameter or components of a fixed effect. Using the same ideas as Charkhi
and Claeskens (2018), we first focus on the latter. In fact, under the assumptions
of Proposition 1, the asymptotic 1 − α quantiles of the marginal distributions of βj ,
j = 1, . . . , a+K satisfy

∫
R1−α

fp(t)dt = 1−α, whereR1−α = Rj−1×[−cj(α/2), cj(α/2)]×
R
a+p−j×(R+)K−p. Regarding a mixed effect, let Sp0i = µ̂i(p)−µi and cµi (1−α) = inf{s ∈
R : P (Sp0i 6 s) > 1 − α}, where we keep the dependence on p to stress that µ̂i(p) is
calculated after cAIC selection of covariates. Post-cAIC CI for βj , j = 1, . . . , a+K, and
µi, i ∈ i = 1, . . . , n, are regions defined as

Iβj = {β̂j(p)± cj(α/2)} and Iµi = {µ̂i ± cµi (α/2)} . (13)

To retrieve critical values, we need to approximate the distribution of n1/2{β̂m(p)−β0}
and Sp0i using selection regions Ap(Mnest) and Aµp (Mnest). A detailed computational
procedure involving Monte Carlo sampling is described in Section 6. We can use classical
results to construct (1− α)-CI which do not account for the selection uncertainty

Iβ,Nj = {βj ± Φ−1(α/2)× σ̂(β̂j)} and Iµ,Ni =
{
µ̂i ± Φ−1(α/2)× σ̂(µ̂i)

}
, (14)

j = 1, . . . , a + K, i = 1, . . . , n, where Φ is a normal cumulative distribution function.
We refer to intervals in (14) as naive CI. A high quantile from the normal distribution is
sometimes replaced in (14) by a bootstrap based or analytically derived quantity which
results in the second order correct CI (see, for example, a monograph of Rao and Molina,
2015, for a detailed discussion of the second-order correctness for a mixed parameter).

4. Selection properties of cAIC in general models

The set of candidate models M substantially influences asymptotic post-selection in-
ference (see Figures 1, 2 as well as the discussion accompanying them). Suppose that
M = Mall is a set composed of all possible submodels of a largest model. Second, let
Mo ⊂ Mall be the set of overparametrised models including the true model. It imme-
diately follows that the models in Mo are overlapping, according to the definition in
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Vuong (1989). Lemma 1 is an equivalent of Lemma 1 in Charkhi and Claeskens (2018)
for cAIC. As one would expect, cAIC also exhibits an overselection property.

Lemma 1. Consider a set of models M that contains at least one overparametrised
candidate model and cAIC as a model selection criterion. Under assumptions (a)− (d)
in Section 9.1, an underparametrised model is selected with a probability converging to
zero asymptotically.

The proof is deferred to our SM. Under this generalised modelling framework, the esti-
mator of β0 in model M is denoted by β̂m(M). Furthermore, let µ̂i(M) = µ̂i{β̂m(M), θ̂}
and µ̂i(M) = µ̂i{β0(M),θ} for model M ∈ M. In addition, vs(M), Im(M), K(M)
denote a subvector and submatrices of Im and K, respectively, corresponding to model
M . If the orthogonality assumption (e) in Section 9.1 holds, we obtain a simplified set of
constraints given in (15). Otherwise, we follow the approach of Charkhi and Claeskens
(2018) for overlapping models. Define matrix E composed of two blocks. The first, E1,
is a block diagonal matrix with E(Mi,Mj) = {Im(Mi)}−1Icij{Im(Mi)}−1 on a (i, j)th
block. The second, E2, is the unitary matrix Ir. The former corresponds to the covari-
ates selected by cAIC. We define an extended selection matrix which indicates the diago-
nal and off-diagonal elements of Σ. This matrix is necessary to construct a region similar
to Ap in (11) and (12). Let Pm be a |m| × (a+K +Kb) projection matrix that selects

the elements of Σ which belong to model m, Kb =
(
a+K
2

)
, |m| the number of covariates

in model m. The extended selection matrix υM of dimension |M| × (a+K +Kb) is a
matrix composed of {0, 1} such that υM = (1t(a+K+Kb)

P t
1P1,1

t
(a+K+Kb)

P t
MPM ), where

|M| is the number of considered models and P1, . . . ,PM the projection matrices.
If assumption (e) from Section 9.1 holds, the selection region for a fixed parameter

under model M is

AM (Mo) =
{
w ∈ Ra+K :

(
1|Mo−1| ⊗

(
1ta+K+Kb

)
P t
MPM − υMo\M

)
×
(
Σ1w

2
1, . . . ,Σa+Kw

2
a+K ,Σ12w1w2, . . . ,

Σ(a+K)(a+K)wa+Kwa+K−1
)t

> 2ρM,|Mo−1| + 2bM,|Mo−1|

}
,

(15)

where ρM,|Mo−1| = ρM − ρ|Mo−1|, bM,|Mo−1| = bM − b|Mo−1|, ρM = 1|Mo−1|ρM ,

ρ|Mo−1| = (ρ1, . . . , ρ|Mo−1|)
t, bM = 1|Mo−1|bM , b|Mo−1| = (b1, . . . , b|Mo−1|)

t. Similarly

as in Section 3, one needs to replace Ra+K by Ra+K+r to obtain the region AµM (Mo) for
a mixed parameter. If the orthogonality condition (e) from Section 9.1 does not hold,
define e =

∑
M∈Mo

|M |. Consider BcAIC,i and AcAIC,i as defined in (25) and (26). Let
Mc

o =Mo \McAIC and ρbMcAIC,Mi
= ρMcAIC,Mi

+ bMcAIC,Mi
. The selection regions are

AM (Mo) = {w ∈ Re : wt(Jmo )−1/2BcAIC,i(J
m
o )−1/2w > 2ρbMcAIC,Mi

,Mi ∈Mc
o},(16)

AµM (Mo) = {w ∈ Re+r : wtE1/2AcAIC,iE
1/2w > 2ρbMcAIC,Mi

,Mi ∈Mc
o}. (17)

We follow up with the example from Section 3. Nevertheless, hereinafter we consider
Mall = {M0,M1,M2,M3} with M0, M1, M2 as in the framework of the nested models
and M3 = (β1,β3). Assuming Mall, our restrictions are defined by 4 inequalities –
in contrast to 3 inequalities for Mnest – which naturally affect the domain for random
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(1)                                                     (2)                                                     (3) 

(4)                                                     (5)       

 

 

 

 

 

 

 

 

Fig. 2. Allowable domains of W1, W2 and W3 for nested model selection when cAIC selects:
(1) M0, (2) M1, (3) M2, (4) M3 and (5) M0 or M1 or M2 or M3.

variables. Once McAIC = M0, we have

AM0
(Mnest) = {w ∈ R3 : w2

2Σ2 + 2w1w2Σ12 < 2(ρM1,M0
+ bM1,M0

),

w2
2Σ2 + w2

3Σ3 + 2w1w2Σ12 + 2w1w3Σ13 + 2w2w3Σ23 < 2(ρM2,M0
+ bM2,M0

)

w2
3Σ3 + 2w1w3Σ13 < 2(ρM3,M0

+ bM3,M0
)},

which is illustrated in panel (1) of Figure 2. Similar equations can be derived forMcAIC =
M1 in panel (2), McAIC = M2 in panel (3) and McAIC = M3 in panel (4) (see our SM
for exact expressions). It is crucial to emphasise that even though we select the same
model, the initial set, in our case Mnest or Mall, influences allowable domains. This
phenomenon is clearly visible if we compare Figures 1 and 2. Consider for example
McAIC = M2. The allowable domains assuming Mnest and Mall are shown in panel
(3) of Figures 1 and 2, respectively. We immediately conclude that the domains differ
significantly. The choice of M is of paramount importance – it affects the distribution
of all parameters, even those which are common to all models. Similarly to Figure 1,
panel (5) of Figure 2 presents the partition of the 3-dimensional space.

The following proposition describes the asymptotic distribution of a regression pa-
rameter and a mixed parameter after cAIC selection from a general set of models.

Proposition 2. (I) Suppose that Assumptions (a)− (e) from Section 9.1 are satis-
fied. A limiting distribution for the post-cAIC fixed parameter is

FM (t) = lim
n→∞

P
[
n1/2{β̂m(M)− β0} 6 t |McAIC = M,Mall

]
= P

[
{Im(M)}−1/2W s(M) 6 ts(M) |W ∈ AM (Mo)

]
id(t ∈ TM ),
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where TM = R
|M | × (R+)K−|M |, W ∼ N(0, Ia+K), AM (Mo) defined in (15), Im(M)

is a submatrix and ts(M), W s(M) subvectors corresponding to a selected model M . In
addition, the limiting distribution for a post-cAIC mixed parameter is

FM (t) = lim
n→∞

P
[
n1/2{µ̂i(M)− µi} 6 t |McAIC = M,Mall

]
≈ P

[
{csi (M)}tK−1/2(M)W s

µ(M) < t |Wµ ∈ Aµp (Mo)
]
,

where Wµ ∼ N(0, Ia+K+r), c
s
i (M) and W s

µ(M) are subvectors, whereas K(M) is a
submatrix corresponding to model M .

(II) Suppose that Assumptions (a)− (d) from Section 9.1 are satisfied. The limiting
distribution for a post-cAIC fixed parameter is

FM (t) = P
[
{Im(M)}−1/2W s(M) 6 ts(M) |W ∈ AM (Mo)

]
id(t ∈ TM ),

where TM = R
|M | × (R+)e−|M |, W ∼ N(0, Ie) and AM (Mo), defined in (16). In

addition, the limiting distribution for a post-cAIC mixed parameter is

FM (t) ≈ P
[
{csi (M)}tK−1/2(M)W s

µ(M) < t |Wµ ∈ AµM (Mo)
]
,

where W ∼ N(0, Ie+r) and AµM (Mo) defined in (17).

Similarly as in Section 3, Proposition 1 leads to a corollary on the asymptotic post-
selection density of fixed effects.

Corollary 2. Under the assumptions of Proposition 1, the limiting post-cAIC den-
sity of n1/2{β̂sm(M)− βs0(M)} with McAIC = M from Mo is fM (ts(M)) = φM [ts(M) |
AM (Mo); {Im(M)}−1], where βm(M), β0(M) are |M |-vectors of non-zero values.

One employs the density in Corollary 2 to construct confidence intervals for post-cAIC el-
ements of βm(McAIC). The asymptotic 1−α quantile satisfies

∫
R1−α

fM (ts(M))dts(M) =

1− α, where R1−α ∈ R|M | imposes the restrictions [−cj(α/2), cj(α/2)] on the jth com-
ponents. The form of the confidence intervals is almost identical as in (13) – we only

need to replace β̂m(p) with β̂m(M). The same applies to the CI for a fixed parameter.
Proposition 2 leads us to the result on a linear combination ltβ. We have

F (t) = lim
n→∞

P
[
n1/2{ks(M)}t{β̂sm(M)− βsm(M)} 6 t |McAIC = M,Mall

]
= P

[
{ks(M)}t{Im(M)}−1/2W s(M) 6 t |W ∈ AM (Mo)

]
.

5. Selection properties of cAIC in misspecified models

In this section we provide some uniformly valid results which do not require the assump-
tion of the existence of the true model. To do so, we need to extend the misspecification
framework of Charkhi and Claeskens (2018) to account for clustered data and cAIC
model selection. In a series of papers Leeb and Pötscher (2003, 2006, 2008) proved that
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uniform results for post-selection estimators are not available for the traditional quanti-
ties β̂(M)−β0(M), M ∈M which we considered in Sections 3 and 4. These results are
general and apply to various selection procedures such as LASSO or AIC (see Tibshirani
et al., 2018; Charkhi and Claeskens, 2018). Nevertheless, under a misspecified setting
(Charkhi and Claeskens, 2018), considering nonstandard targets (Berk et al., 2013) or
modified pivots (Tibshirani et al., 2018), uniform results are attainable.

In our misspecified setting, the true parameter vector does not exist, because all
models are misspecified or the true density is not a member of a parametric family. To
be able to prove the uniform convergence, we use a framework with asymptotics based
on a pseudo triangular array adapted for dependent data. In practice we collect one data
sample. Thus our construction serves only to demonstrate the theoretical results. If we
had a possibility to collect different samples, we assume that the observed vectors y might
be represented in an extended, vector based triangular array {Yni : i = 1, . . . , n;n ∈ N},
that is, we suppose that Ynk and Ynl were independent for k 6= l and for different
samples. Let gmn and Gmn as well as gen and Gen be the true joint marginal and joint
extended density and distribution of {Yn1, . . . ,Yn}. In what follows, all probabilities are
computed with respect to the true distributions P = PGm and P = PGe . Within this
framework, the estimation of β and % often requires the same conditions imposed on
marginal and extended loglikelihoods. If no confusion is possible, we state them using
(·) which stands for m or e. Since the likelihood might be misspecified, we use White’s
(1994) quasi-likelihood framework for modelling. Models can be thus represented as

Mm
n,j =

{
n∏
i=1

fmj,i(yi;βj) : βj ∈ Θm
j ⊂ Rv

m
j

}
, M e

n,j =

{
n∏
i=1

fej,i(yi;%j) : %j ∈ Θe
j ⊂ Rv

e
j

}
,

with v
(·)
j the number of parameters in M

(·)
n,j , and Θ

(·)
j a compact set. The collection of all

models is denoted byM(·)
n = {M (·)

n,1, . . . ,M
(·)
n,J}. Following Definition 2.2 in White (1994),

the true class of distribution G(·)n is defined by
∫
g
(·)
n (y) log g

(·)
n (y)dy <∞ for each n ∈ N.

When no confusion is possible, we skip the subscript n. Furthermore, for each i ∈ N
and each j ∈ 1 . . . , J , fmj,i(·;βj) and fej,i(·;%j) are measurable for all βj ∈ Θm

j , %j ∈ Θe
j .

We suppose that f
(·)
j,i (yi; ·) is almost surely continuous and continuously differentiable on

Θ
(·)
j . The existence of the marginal and extended likelihood estimators follows from the

extension of Lemma 2.1 in Gallant and White (1988), that is we adapt their results to
account for modelling independent vectors, rather than independent scalars. The ideas
of the proof are general enough to be applied in this setting. We therefore assume that
there exist estimators β̂m,j , %̂e,j maximising

∏n
i=1 f

m
j,i(yi;βj) and

∏n
i=1 f

e
j,i(yi;%j) over

Θ
(·)
j . Furthermore, we call the pseudo-true values β′0,n(Mj) and %′0,n(Mj) the maximisers

of

EGmn

{
n−1

n∑
i=1

log fmj,i(yi;βj)

}
and EGen

{
n−1

n∑
i=1

log fej,i(yi;%j)

}
,

if such exists. These maximisers depend on the sample size n, the true joint density

and the model densities. Denote with v′(·) =
∑J

j=1 v
(·)
j . For the marginal likelihood

we have β′0,M = {β′0,n(M1)
t, . . . ,β′0,n(MK)t}t, β̂m,M = {β̂m(M1)

t, . . . , β̂m(MK)t}t, that
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is, vectors of length v′m. On the other hand, for the extended parameters the vectors
%′0,M = {%′0,n(M1)

t, . . . ,%′0,n(MK)t}t, %̂e,M = {%̂e(M1)
t, . . . , %̂e(MK)t}t are of length v′e.

Lemma 2 refers only to the extended vector of parameters due to our mixed parameter
focus. An equivalent statement is valid for fixed parameters estimated using the marginal
loglikelihood. In addition, recall that the estimating equations for the fixed parameters
using marginal and extended loglikelihood result in the same expression (see Section 2
and references therein for more details). Even though the extended likelihood is not
a proper likelihood as it includes non-observable random effects, the general results of
Lemma 2.1 in Gallant and White (1988) are applicable in this setting. Therefore,

Lemma 2. Define Hn ∼ Nv′{0,D(%′0,M)} where D(%′0,M) is a v′e × v′e block matrix

with (i, j)th block equal to J −1Mi
(%′0,Mi

)Iij(%′0,Mi
,%′0,Mj

)J −1Mj
(%′0,Mj

). We thus have

lim
n→∞

sup
t∈Rv′e

sup
Gen∈Gen

|P{n1/2(%̂e,M − %′0,M) 6 t} − P (Hn 6 t)| = 0, (18)

where JMi
and Iij as defined in Section 9.1.

We assume that there exists an estimator D̂ of D such that lim
n→∞

supGen∈Gen P (||D̂ −
D|| > ε) = 0, where ||A|| is the Euclidean matrix norm operator and we suppose that
Wv′e ∼ Nv′(0, Iv′e) (for a discussion about the existence of such estimators see White,
1994, §8.3). The uniform convergence result (18) is also valid for a pivotal statistic:

lim
n→∞

sup
t∈Rv′e

sup
Gen∈Gen

|P{D̂−1/2n−1/2(%̂e,M − %′0,M) 6 t} − P (Wv′ 6 t)| = 0.

5.1. Post-selection inference for misspecified models
As we do above, we define a selection region using pairwise comparisons between misspec-
ified models from a set M. Define `cn,Mj

(y,βj) =
∑n

i=1 log f cj,i(yi|ui;βj). Model McAIC

is selected if 2[`cn,McAIC
{y, β̂m(McAIC)} − `cn,M{y, β̂m(M)}] > 2(ρMcAIC,M + bMcAIC,M ),

for each M ∈ M \ McAIC. As it was stated in Section 3, this is equivalent with
2l′cn,McAIC

− 2l′cn,M > 2(ρMcAIC,M + bMcAIC,M ), where in this section

2l′cn,McAIC
= 2(`cn,McAIC

{y, β̂m(McAIC)} − `cn,McAIC
{y,β′0,n(McAIC)}),

and 2l′cn,M is defined in an analogous way with McAIC replaced by M . As we showed in
Sections 3 and 4, when both models are correctly specified, the difference of the condi-
tional log-likelihoods can be described using scaled chi-squared random variables. Vuong
(1989) investigated the conditions under which the difference of marginal likelihoods
converges assuming model misspecification. A full characterization of the asymptotic
distribution is possible only in case of the similarity of likelihoods. Since in our selection
procedure we only consider fixed effects, similar arguments, that is, Taylor expansions of
the conditional likelihoods around the true value can be used to prove divergence in our
setting. We thus focus on the misspecified setting in the case of the similarity of the con-
ditional likelihoods, that is `cn,Mk

{y,β′0,n(Mk)} = `cn,Ml
{y,β′0,n(Ml)} for k, l = 1, . . . ,K.

Following Charkhi and Claeskens (2018), we consider a general set of models M and
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suppose that it includes the smallest model Ms = Mpars nested in all other models. Our
strategy is to compare all models with the smallest one and then determine the final
regions using, as before, pairwise comparisons. For each M ∈M \Ms, we have

2[`cn,M{y, β̂m(M)} − `cn,M{y,β′0,n(M)}] = 2n1/2{β̂m(M)− β′0,n(M)}tRcM
{
β′0,n(M)

}
+ n{β̂m(M)− β′0,n(M)}tJ cM{β′0,n(M)}{β̂m(M)− β′0,n(M)}+ oP (1)

= n{β̂m(M)− β′0,n(M)}tJ cM{β′0,n(M)}{β̂m(M)− β′0,n(M)}+ oP (1),

whereRcM and J cM as defined in Section 9.1, the third line is a direct result ofRcn(β′0,n(M)) =
0. The expansion for Ms follows along the same lines, we just need to replace M with
Ms. Once we compare them we obtain

2l′cn,M − 2l′cn,Ms
= n{β̂m(M)− β′0,n(M)}tJ cM{β′0,n(M)}{β̂m(M)− β′0,n(M)}

− n{β̂m(Ms)− β′0,n(Ms)}tJ cMs
{β′0,n(Ms)}{β̂m(Ms)− β′0,n(Ms)}+ op(1)

= n(β̂m,M − β′0,M)tBM,Ms
(β̂m,M − β′0,M) + op(1).

In addition,BM,Ms
is a diagonal matrix with blocks J cM{β′0,n(M)} and −J cMs

{β′0,n(Ms)}
corresponding to models M and Ms. Following the same reasoning as in the proof of
Proposition 2 in Section 4, we obtain the asymptotic selection event for model McAIC.

Proposition 3. The selection region for mixed parameter assuming a set of mis-
specified models M is

AMcAIC
(M) =

{
w ∈ Rv′+r : wtE1/2(AcAIC,Ms

−AM,Ms
)E1/2w

> 2(ρMcAIC,M
+ bMcAIC,M

),M ∈M \McAIC

}
.

Suppose that the assumptions from Lemma 2 hold. Then we have

lim
n→∞

sup
Gen∈Gen

sup
t∈R

∣∣∣P [n1/2{µ̂i(McAIC)− µi} < t|McAIC} < t|McAIC

]
−P

[
{csi (McAIC)}tK−1/2(McAIC)W s(McAIC) < t|AµMcAIC

]∣∣∣ = 0.

(19)

Proposition 3 guarantees uniform convergence over t ∈ R and Gen in a class Gen in contrast
to the pointwise convergence which is valid only over t ∈ R. The construction of the
cluster-wise uniformly valid post-selection intervals follows in the same way as in (13).

6. Simulation study

We carried out an empirical simulation study to assess the performance of post-cAIC
CI for a regression parameter, a linear combination of its components and a mixed
parameter. In our analysis, we compare post-cAIC CI in (13) with naive intervals in
(14). In case of the mixed parameter, we construct them using the first- and second-
order correct MSE estimators in (8) and (9), respectively. It is well known that mixed-
parameters are quite robust to misspecification of the shape of random effects (McCulloch
and Neuhaus, 2011). We investigate the performance of our new method as well as
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the robustness of naive CI to model misspecification for fixed and mixed effects. The
literature offers us a benchmark when it comes to the post-selection inference for mixed
parameters under LMM. More specifically,, we compare our post-cAIC intervals with
post-OBSP intervals constructed using OBSP for area-level parameters and post-selected
MSE developed by Sugasawa et al. (2019). Since the authors focused on the area-level
model only and did not consider the construction of the intervals, we somewhat extend
their work regarding these two aspects.

The data generation process was inspired by Charkhi and Claeskens’s (2018) proce-
dure. Namely, we assume a nested error regression model (NERM) yij =

∑5
d=1 βdxdij +

ui + eij with a true vector of fixed parameters β = (2.25,−1.1, 2.43, 0, 0), eij ∼ N(0, σ2e)
and ui ∼ N(0, σ2u), i = 1, . . . , n, j = 1, . . . ,mi. We consider two settings for σ2e and σ2u;
under setting 1 (S1) (σ2e , σ

2
u) = (1, 1) whereas under setting 2 (S2) (σ2e , σ

2
u) = (1, 0.5). We

wish to mimic two types of asymptotic regimes. In the first case, we assume that n→∞
with mi fixed such that n : mi = {(15 : 5), (30 : 5), (60 : 5), (90 : 5)}. Then, in the second
case we suppose that n is fixed and mi →∞ such that n : mi = {(30 : 5), (30 : 10), (30 :
20)}. The former scenario is popular in SAE (Rao and Molina, 2015) and longitudinal
studies (Verbeke and Molenberghs, 2000), whereas the latter in repeated cross-sectional
studies. Further, x1ij = 1 and x2ij , . . . , x5ij ∼ N(04,Ω), where Ω is a positive definite
matrix with 1 on the diagonal and 0.25 elsewhere. In case of post-cAIC inference for
a linear combination of fixed effects ktiβ, we computed n linear combinations in each
simulation, and set ki = x̄i, that is, vectors ki were means of cluster covariates. Under
NERM, the computation of the second term of the penalty in cAIC defined in (10) is
simplified (a spelled out formula can be found in Kubokawa, 2011, Section 4.3). We
consider three different model sets. Denote by υiall the extended selection matrix when
the first i parameters are present in all models. In our empirical study we examine υ2

all
which is a 23× 15 matrix (5 covariates and 10 covariance terms), υ3

all (a 22× 15 matrix)
and υ4

all (a 2× 15 matrix). Since all model sets led to the same conclusions, the results
under υ3

all and υ4
all are deferred to the SM. We run our simulations until model M with

parameters β1, β2, . . . , β5 had been selected I = 1000 times. In each simulation run,
we estimate the matrix Σ defined in Section 3 for a full model. Its submatrix Σ(M)
corresponds to the model selected in a particular simulation. We apply a result derived
from Proposition 2 (I) to calculate the confidence intervals. Observe that one should
employ (II) if the orthogonality condition from Section 9.1 does not hold. Nevertheless,
following the practice of Charkhi and Claeskens (2018), we use (I) which leads to good
numerical outcomes. In the SM, we describe a procedure to obtain post-cAIC CI as a
practical algorithm. Furthermore, we provide some practical guidance on sampling from
a multivariate truncated normal.

Table 1 presents coverage probabilities (CP) and lengths (L) for post-cAIC (p.-cAIC)
and naive (N) CI for the components of fixed parameters βj . CP and L were calculated
as an average over simulation runs. The superiority of post-cAIC is unquestionable as
its coverage always oscillates around the nominal level. In contrast, the naive CI for β5
never surpasses 71%, which is a consequence of treating a chosen model as given. Our
results are in alignment with those in Charkhi and Claeskens (2018), in which post-AIC
CI are studied for fixed parameters in a modelling setting without random effects. Let us
investigate the effect of including covariates to our parameter of interest. Table 2 displays
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Table 1. Coverage probabilities and average lengths (in parenthesis) of post-cAIC and naive
confidence intervals for βj . Nominal coverage probability: 95%, selection matrix: υ2

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. βj CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)
S1 p.-cAIC β1 93.2 (1.144) 94.4 (0.818) 95.9 (0.582) 96.2 (0.467) 95.9 (0.831) 94.1 (0.768)

β5 94.8 (0.806) 96.2 (0.531) 95.8 (0.379) 96.5 (0.320) 96.8 (0.363) 96.0 (0.251)
N β1 92.9 (1.099) 93.8 (0.796) 95.0 (0.560) 95.8 (0.456) 93.9 (0.748) 93.0 (0.727)

β5 66.8 (0.569) 72.3 (0.377) 69.6 (0.267) 70.4 (0.218) 69.2 (0.256) 66.9 (0.175)

S2 p.-cAIC β1 92.4 (0.849) 93.6 (0.622) 95.0 (0.439) 97.1 (0.355) 94.3 (0.589) 94.3 (0.540)
β5 93.1 (0.807) 93.1 (0.521) 95.7 (0.378) 96.7 (0.323) 97.2 (0.371) 96.4 (0.254)

N β1 92.3 (0.837) 93.5 (0.618) 94.9 (0.435) 97.1 (0.353) 93.1 (0.558) 93.7 (0.527)
β5 64.5 (0.562) 68.3 (0.373) 70.8 (0.264) 67.2 (0.216) 68.1 (0.255) 66.7 (0.175)

Table 2. Coverage probabilities and average lengths (in parenthesis) of post-cAIC and naive
confidence intervals for ktiβ̂ and k̄tβ̂. Nominal coverage probability: 95%, selection matrix: υ2

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. Par. CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)

S1 p.-cAIC kt1β̂ 95.4 (1.411) 97.7 (0.990) 94.7 (0.711) 98.6 (0.577) 96.6 (0.891) 93.9 (0.751)

kt2β̂ 96.6 (1.631) 94.5 (0.923) 96.3 (0.669) 98.0 (0.575) 96.2 (0.870) 94.5 (0.793)

k̄tβ̂ 95.3 (1.374) 95.8 (0.998) 96.7 (0.711) 97.1 (0.572) 96.5 (0.891) 94.5 (0.786)

N kt1β̂ 89.6 (1.155) 94.2 (0.820) 91.0 (0.608) 95.5 (0.467) 92.9 (0.765) 93.6 (0.731)

kt2β̂ 88.9 (1.186) 91.9 (0.837) 94.1 (0.596) 94.2 (0.480) 93.3 (0.752) 93.3 (0.728)

k̄tβ̂ 92.0 (1.159) 92.3 (0.844) 93.4 (0.594) 94.1 (0.487) 93.5 (0.758) 93.3 (0.731)

S2 p.-cAIC kt1β̂ 94.1 (1.155) 97.3 (0.864) 94.1 (0.534) 97.0 (0.451) 96.8 (0.672) 94.2 (0.568)

kt2β̂ 95.0 (0.997) 96.6 (1.053) 96.7 (0.538) 97.8 (0.625) 96.0 (0.665) 94.5 (0.548)

k̄tβ̂ 95.2 (1.117) 97.0 (0.844) 97.0 (0.597) 97.6 (0.485) 96.0 (0.661) 94.5 (0.560)

N kt1β̂ 87.4 (0.910) 94.0 (0.697) 91.7 (0.460) 95.1 (0.406) 91.5 (0.571) 93.3 (0.537)

kt2β̂ 92.3 (0.841) 86.9 (0.769) 94.7 (0.479) 87.2 (0.437) 93.1 (0.580) 93.9 (0.530)

k̄tβ̂ 91.0 (0.912) 92.3 (0.677) 92.9 (0.477) 93.9 (0.390) 93.1 (0.571) 93.5 (0.532)

coverage probabilities and average lengths for linear combinations of the components of
fixed parameters. We present two randomly selected linear combinations and k̄tβ̂ which
stands for the average over n parameters. While we can observe an improvement of
the performance of the naive CI in comparison with Table 1, the undercoverage still
persist. In contrast, post-cAIC CI perform better overall with a coverage close to the
nominal level. Finally, we study the performance of CI for mixed effects which are
linear combinations of fixed and random effects; the latter are partly intended to smooth
model misspecifications. Table 3 shows coverage probabilities and lengths for post-cAIC
(p.-cAIC), post-OBSP (p.-OBSP) and naive confidence intervals constructed using the
first-(N1) and the second-(N2) order correct MSE estimators under selection matrix υ2

all.
CP and L were calculated as an average over the simulation runs and mixed parameters.
Regarding post-cAIC confidence intervals, they attain a nominal coverage or suffer from
a minor undercoverage when a sample size is small. The performance of post-OBSP
intervals is similar. In addition, in both cases the intervals are very often narrower than
in the case of a naive method N2. Yet, the most striking feature is a surprisingly good
performance of the second-order naive intervals. They almost always reach the nominal
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Table 3. Coverage probabilities and average lengths (in parenthesis) of post-cAIC, post-
OBSP and naive confidence intervals for µi. Nominal coverage probability: 95%, selection
matrix: υ2

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)
S1 p.-cAIC 94.9 (1.646) 95.5 (1.660) 95.4 (1.645) 95.5 (1.641) 95.3 (1.213) 95.1 (0.871)

N1 93.6 (1.564) 94.8 (1.607) 95.1 (1.615) 95.2 (1.619) 94.9 (1.192) 94.9 (0.864)
N2 95.1 (1.648) 95.2 (1.636) 95.3 (1.629) 95.3 (1.629) 95.1 (1.202) 95.0 (0.868)

p.-OBSP 94.8 (1.628) 95.2 (1.632) 95.2 (1.626) 95.3 (1.627) 95.1 (1.200) 94.3 (0.867)

S2 p.-cAIC 93.4 (1.518) 94.9 (1.550) 95.5 (1.539) 95.5 (1.529) 95.2 (1.161) 95.0 (0.849)
N1 91.7 (1.422) 93.7 (1.481) 94.9 (1.502) 95.1 (1.503) 94.7 (1.140) 94.9 (0.843)
N2 96.4 (1.669) 95.5 (1.567) 95.5 (1.537) 95.5 (1.526) 95.3 (1.165) 95.1 (0.851)

p.-OBSP 93.5 (1.516) 94.5 (1.524) 95.3 (1.523) 95.3 (1.516) 95.1 (1.154) 94.3 (0.848)

level and they are only slightly wider than the post-selection intervals. Although the
naive CI are not theoretically valid, because they ignore the selection step in their
asymptotic distributions, it seems that the are extremely robust to this misspecification.

7. Post-cAIC inference of income data in Galicia

We illustrate our post-cAIC procedure by constructing confidence intervals for the aver-
age of rescaled household incomes in 52 counties of Galicia in north-western Spain. We
make use of the 2015 Structural Survey of Homes in Galicia (SSHG) with 9203 house-
holds, yet with certain areas where the number of units is small with mi < 20, see Reluga
et al. (2021) for a detailed study about household income on the original scale using the
same data set. Galicia is subdivided into 53 counties (comarcas), but the data were not
collected in county Quiroga. The SSHG contains covariates on different sources of in-
come, personal characteristics (for example, age, education level) as well as information
on the household status (such as number of household members, mortgage situation,
etc.). The originally observed ydj is the yearly family household income per capita. It is
well known that income data are right skewed, and our dependent variable exhibits this
feature too. As our theory relies on normality, we follow a standard practice in the SAE
literature and transform it by yl,dj = log(ydj + c), where constant c > 0 minimises the
Fisher skewness of the model residuals with yl,dj as a response. Constant c is selected
from a grid within the range of household incomes [min(ydj),max(ydj)] (the same ap-
proach was used, among others, by Marhuenda et al., 2017). We analyse two estimators
for the cluster-level means of the household income which are popular in SAE: EBLUP
of a mixed parameter and a linear combination of the estimated regression parameters
in (7). The latter is called the regression-synthetic estimator in the survey statistic and

SAE literature (Rao and Molina, 2015). More specifically, we consider µ̂i = ˆ̄Xdir
i β + ûi

and µ̂Fi = ˆ̄Xdir
i β, where ˆ̄Xdir

i is the official estimate of covariate means which we cal-
culate from the SSHG (the details of the calculations are deferred to the SM). As was
illustrated in Sections 3 and 4, the initial set of models is crucial in the post-cAIC in-
ference. We therefore did not use all possible covariates in the SSHG. In contrast, we
selected eight covariates which are the most correlated to the outcome variable. We then
constructed 16 models, and each of them contained an intercept and a subset of four co-
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Fig. 3. Post-cAIC, post-OBSP and naive confidence intervals for the EBLUPs of the county-
level averages of transformed household income in Galicia.
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Fig. 4. Post-cAIC and naive confidence intervals for the regression-synthetic estimates of the
county-level averages of transformed household income in Galicia.

variates with the highest correlation (correlation coefficients, the inclusion of covariates
in considered models and the results of the selection criteria can be found in our SM).
cAIC selected Model 1 with an intercept and four covariates whereas OBSP of Sugasawa
et al. (2019) Model 12 with an intercept and seven covariates.

Figure 3 presents naive confidence intervals constructed using the second-order correct
MSE, post-cAIC and post-OBSP confidence intervals for the mixed parameter. We did
not plot naive CI with first-order correct MSE because they were indistinguishable from
the second-order intervals. First, some of the post-OBSP confidence intervals do not
overlap with naive or post-cAIC intervals, because distinct models were selected by cAIC
and OBSP. In the majority of counties, the post-cAIC CI are narrower than their naive
and post-OBSP counterparts. This conclusion is confirmed by the descriptive statistics
shown in our SM and in accordance with our simulation findings. Different widths of
naive and post-cAIC intervals are related to the sample size of each county. Figure 4
shows naive and post-cAIC confidence intervals for the synthetic-regression estimates. In
contrast to Figure 3, post-cAIC CI are wider than naive CI. Even though the difference
between post-cAIC and naive intervals in this study is minor, the latter have a tendency
to undercover because they do not account for the model selection, cf. Table 2.
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8. Discussion

We developed the asymptotic theory for post-cAIC inference. We employed our theoreti-
cal derivation to construct post-cAIC confidence intervals for mixed and fixed parameters
under LMM. To the best of our knowledge, this is the first contribution which addresses
post-selection inference under a general LMM framework. We tested finite sample prop-
erties of our proposal in simulations and a data example. In simulation scenarios, our
post-cAIC CI performed well in terms of the coverage probability and average length.
In contrast, the naive intervals performed very poorly in the numerical analysis of fixed
parameters. Surprisingly, though, naive intervals for mixed parameters yielded satisfac-
tory results. This demonstrates their robustness to possible model misspecifications and
may justify their usage among practitioners. Nevertheless, we believe that theoretically
valid methods, which are generally applicable, should always be preferred if they perform
equally good as naive methods and they are not too intricate to implement. In follow-up
studies, more extensive simulations will be needed to thoroughly examine the startling
feature of naive intervals.

Finally, we developed post-cAIC after model selection with cluster focus, using the
cAIC of Kubokawa (2011). The post-cAIC methodological advancements might be put
forward in a similar way for other conditional Akaike information criteria, because the
majority of them is composed of twice the conditional log-likelihood and a penalty func-
tion. Consider, for example, the cAIC of Srivastava and Kubokawa (2010), that is

cAICSK = −2`cn{β̂m}+ (2n[tr{(X,Z)Ĥ}+ 1])/(n− rank{(X,Z)} − 2). To derive the
selection region and hence post-cAICSK CI, we could follow analogous steps as those
for the cAIC of Vaida and Blanchard (2005) and modify the penalty function. A com-
prehensive account of the conditional Akaike criteria for which post-selection analysis is
similar to ours is included in the review paper of Müller et al. (2013).

9. Technical details

9.1. Assumptions
We denote by BK(ε) an (a+K)-dimensional sphere centred at β0 with radius ε, and by
BcK(ε) its complement. In addition, (·) stands for c or m which refer to a conditional or
a marginal framework.

(a) For each ε(·) > 0, as n→∞, supβ∈BcK(ε(·)){`
(·)
n (β)− `(·)n (β0)} → −∞ in probability.

(b) There exists ε(·)0 > 0 such that `
(·)
n (β) is twice continuously differentiable in

BK(ε0(·)) for all large n. We define the score vector R(·)
n (β) = (∂/∂β)`

(·)
n (β) and

the negative Hessian matrix J (·)
n (β) = −(∂2/∂β∂βt)`

(·)
n (β).

(c) For some 0 < ε(·)1 < ε(·)0, as n→∞, there exist nonrandom positive-definite con-

tinuous matrices J (·)(β) such that for β in BK(ε(·)1) supβ∈BK(ε(·)1) tr{J
(·)
n (β)/n−

J (·)(β)} → 0 in probability.
(d)
√
nRmn (β)→ N{0, Im(β0)} in distribution once n→∞.

(e) Orthogonality of the models under cAIC: for Mi,Mj ∈ Mo, i 6= j, we have that
Icij = E({∂/∂β(Mi)}[`c{β(Mi)}]{∂/∂β(Mj)}[`c{β(Mj)

t}]) = 0|Mi|×|Mj |, where the
expectation is taken with respect to the true model.
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The derivation of the cAIC of Kubokawa (2011), and first- and second-order correct
MSE estimators require additional regularity conditions. Since we do not use them
explicitly in the following derivations, they are deferred to the SM together with algebraic
derivations, the proof of Lemma 1, and details on the structure of matrices K and K−1.

9.2. Asymptotic post-selection derivations
9.2.1. Statement and proof of Lemma 3

We need to guarantee a joint convergence of estimators which is obtained in Lemma 3.

Lemma 3. Suppose that Assumptions (a)−(b) in Section 9.1 are valid. For any fixed

ordering of Mo, we denote by o = |Mo| the size of Mo. It follows that n1/2(β̂m,Mo
−

β0,Mo
) = n1/2{β̂m(M1)

t−β0(M1)
t, . . . , β̂m(Mo)

t−β0(Mo)
t}t → N(0,TMo

) in distribu-
tion, where TMo

is partitioned such that Iij{β0(Mi),β0(Mj)} is the (i, j)th block.

The proof follows from the Taylor expansion applied to `mn as in Charkhi and Claeskens

(2018), that is 0 = n−1/2Rmn {β0(Mi)}+Jmn {β0(Mi)}n1/2{β̂m(Mi)
t−βt0}+op(1), Mi ∈

Mo. The asymptotic distribution of the estimators is immediate using the multivariate

central limit theorem n−1/2
[
Rmtn {β0(M1)} , . . . ,Rmtn {β0(Mo)}

]t n→∞−−−→ N(0,TMo
).

9.2.2. Proof of Proposition 1

By Lemma 3, there is a joint convergence of estimators β̂m from different models. Geo-
metrical regions can be defined by pairwise comparisons of the cAIC′ values. Therefore,
for j = p0, . . . , a+K we write

`cn{β0(j)} = `cn{β̂m(j)}+ n1/2{β0(j)− β̂m(j)}tRcn,j{β̂m(j)} (20)

+
n

2
{β0(j)− β̂m(j)}tJ cj {β̂m(j)}{β0(j)− β̂m(j)}+ op(1).

We focus on the second term on the right-hand side in the first line of (20). Considering
the model with a full set of parameters and by condition (b) from Section 9.1, we have

Rcn,K(β) =
∂`cn,K
∂β = XtR−1y−XtR−1Xβ−XtR−1Zu, J cn,K(β) =

∂2`cn,K
∂β∂βt = XtR−1X.

We thus obtain βc = (XtR−1X)−1(XtR−1y −XtR−1Zu) and β̃c(θ) with u replaced
with ũ. On the other hand, it follows that

n1/2{β0(j)− β̂m(j)} → N [0, {Imj (β0)}−1] in distribution, (21)

Rcn,j{β̂m(j)} = Rcn,j{β̂c(j)}+ n1/2{β̂m(j)− β̂c(j)}tJ cj {β̂c(j)}+ op(1). (22)

Since we used maximum likelihood to estimate β̂c(j), the first term on the right-hand

side of (22) isRcn,j{β̂c(j)} = 0. Similarly the second term is also 0 which is a consequence
of algebraic derivations in the SM. Moreover, J cn,j does not include the random effect.

Since θ̂−θ = Op(n
−1/2), the convergence in probability of ρ(θ̂), b(θ̂) to ρ(θ), b(θ) follows

from the continuous mapping theorem, and the rate Op(n
−1/2) was proven in Theorem
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2.3 of Kubokawa (2011). Combining results of (20), (21) and (22), it follows that

2l′cn,j = −2[`cn{β0(j)} − `cn{β̂m(j)}]

= n{β0(j)− β̂m(j)}tJ cj {β̂m(j)}{β0(j)− β̂m(j)}+ op(1)
n→∞−−−→W st

j Σ(Mj)W
s
j ,

(23)

where W s
j , Σ(Mj) as defined in Section 3. Furthermore, observe that cAIC′(Mp) −

cAIC′(Mj) > 0 is equivalent to 2(l′cn,p− l′cn,j) > 2(ρ̂pj + b̂pj). On the other hand, applying

Lemma 3 and the reasoning above we have a joint convergence of (2l′cn,p0 , . . . , 2l
′c
n,K) to

(W st
p0 Σ(Mp0)W

s
p0 . . . ,W

st
KΣ(MK)W s

K), that is, 2l′cn,(·) converges to a scaled, chi-square

distribution, where W s
(·) is distributed according to a multivariate normal distribution,

and (·) stands for p0, . . . ,K. As a result, the difference between two conditional likeli-
hoods corresponds to the difference between these two chi-square random variables, and
can be written using a summation sign. We use these sums to define the selection region
Ap(Mnest), and by continuous mapping theorem we have (W1, . . . ,WK) ∈ Ap(Mnest).

We concentrate now on the post-cAIC CI for a mixed parameter µi. Since u ∈ Rr
is not subject to the selection process, no geometrical restrictions are imposed on the
support of the asymptotic normal distribution of random effects. Hence, to construct
Aµp (Mnest) we need to enlarge the dimensionality of w to account for random effects,
that is w ∈ Ra+K+r. We have µ̂i(p) − µi(p) = µ̃i(p) − µi(p) + Op(n

−1/2) and the first
term on the right hand side converges to a normally distributed random variable. Denote
E = {p0, . . . , a+K} and consider the selection of model p:

lim
n→∞

P
[(
n1/2

[
{csi (p)}t{%̂(p)− %(p)}

]
< t
)
∩
{

2(l′cn,p − l′cn,j) > 2(ρpj + bpj), j ∈ E
}]

P
{

2(l′cn,p − l′cn,j) > 2(ρpj + bpj), j ∈ E
}

≈
P
([
{csi (p)}tK−1/2(p)W s

µ(p) 6 t
]
∩ {Wµ ∈ Aµp (Mnest)}

)
P {Wµ ∈ Aµp (Mnest)}

(24)

= P
[
{csi (p)}tK−1/2(p)W s

µ(p) 6 t|Wµ ∈ Aµp (Mnest)
]
,

where the second line is a consequence of {%̂(p)− %(p)} ≈ N
{
0,K−1(p)

}
.

9.2.3. Proof of Proposition 2
Similarly as forMnest, we calculate the set with constraints by pairwise comparisons of
the cAIC′ values. Therefore we slightly rewrite the expression in (23). Consider 2l′cn,Mi

=

−2{`cn(β0(Mi)) − `cn(β̂m)}, Mi ∈ Mo. It follows that cAIC′(McAIC) − cAIC′(Mi) > 0
which implies 2(l′cn,McAIC

− l′cn,Mi
) > 2(ρMcAIC

− ρMi
) + 2(bMcAIC

− bMi
). The region in

Proposition 2 (I) is defined using the extended selection matrix and an analogous analysis
as in (24). Regarding Proposition 2 (II), observe that

n(β̂m,Mo
−β0,Mo

)tBcAIC,i(β̂m,Mo
−β0,Mo

)+op(1) > 2(ρMcAIC
−ρMi

+bMcAIC
−bMi

), (25)

whereBcAIC,i is a diagonal matrix with blocks J cMcAIC
and−J cMi

corresponding to models
McAIC and Mi. J

m
o is a diagonal matrix with the same structure as BcAIC,i with blocks
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ImMcAIC
, ImMi

. Using Lemma 3 and a continuous mapping theorem, equation (25) equals

asymptotically W t(Jmo )−1/2BcAIC,i(J
m
o )−1/2W > 2(ρMcAIC

− ρMi
) + 2(bMcAIC

− bMi
).

To obtain a selection region for a mixed parameter, denote by AcAIC,i a diagonal
matrix with two blocks, that is

AcAIC,i =

(
A1cAIC,i 0

0 A2cAIC,i

)
=

(
(Jmo )−1/2BcAIC,i(J

m
o )−1/2 0

0 Ir

)
. (26)

Finally, we need to account for the lack of orthogonality multiplying AcAIC,i by E which

leads to W t
µE

1/2AcAIC,iE
1/2Wµ > 2(ρMcAIC

− ρMi
) + 2(bMcAIC

− bMi
).

9.2.4. Proof of Lemma 2

The result follows from a uniform version of the Lindeberg-Feller central limit theorem
and the continuous mapping theorem demonstrated by Kasy (2018) for a general vector
and applied by Charkhi and Claeskens (2018) to a likelihood based model. The same
arguments outlined in the latter are valid within our settings with misspecified models.

9.2.5. Proof of Proposition 3

The proof of Proposition 3 proceeds along identical steps as the proof of Proposi-
tion 4 in Charkhi and Claeskens (2018) changing the types of likelihoods and parame-
ters of interest. Consider α = [n1/2{csi (McAIC)}t{%̂e(McAIC) − %′0(McAIC)}] and γ =⋂
M∈M{n(%̂e,M−%′0,M)t(AMcAIC ,Ms

−AMi,Ms
)(%̂e,M−%′0,M)}+oP (1),where AMcAIC ,Ms

as defined in Proposition 2. It follows that

P
[
n1/2{µ̂i(McAIC)− µi} < t|McAIC

]
= P (α ∩ γ)/P (γ). (27)

If we combine equation (24) and Lemma 2, it follows that the difference between the
expression in equation (27) and

P
(
[{csi (McAIC)}tK−1/2(McAIC)W s(McAIC) < t] ∩

{
W ∈ AµMcAIC

(M)
})

P
{
W ∈ AµMcAIC

(M)
}

converges to 0, as stated in equation (19).

10. Supplementary material

This section contains additional theoretical derivations and numerical results. Specif-
ically, in Section 10.1 and Section 10.2 we present spelled-out formulas of the mean
squared error and the cAIC of Kubokawa (2011). The selection properties of cAIC are
presented in Section 10.3. Afterwards, we present more numerical results of the simula-
tions in Section 10.4 and additional details on the data example in Section 10.5. Finally
in Section 10.6 we provide an extended list of assumptions and further technical proofs.
To facilitate the readability of additional results, all tables are included at the end of
this document.
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10.1. MSE of mixed parameter
In this section we present explicitly the constituents of matricesK andK−1. The former
follows immediately if we rewrite the mixed model equations in (5) using the strategy of
Gilmour et al. (1995).

K%̃ = CtR−1y, %̃ =
(
β̃t, ũt

)t
, C = [X Z] , K = CtR−1C +G+,

G+ =

(
0(a+K)×(a+K) 0(p+1)×n

0n×(p+1) G−1n×n

)
.

Regarding K−1, we have:

K−1 =

(
K−111 K−112

K−121 K−122

)
=

(
(XtV −1X)−1 − (XtV −1X)−1XtV −1ZG

−(XtV −1X)−1XtV −1ZG F +GZtV −1(XtV −1X)−1XtV −1ZG

)
,

where F = (ZtRZ+G−1)−1. The direct calculation under linear mixed models (LMM)
can be found in Gumedze and Dunne (2011).

On the other hand, the first order MSE estimator for a mixed parameter is given by

mse1(µ̂i) = ctiK̂
−1ci = g1i(θ̂) + g2i(θ̂),

where

mt
i(Gi −GiZ

t
iV
−1
i ZiGi)mi + dti

(
n∑
i=1

Xt
iV
−1
i Xi

)−1
di =: g1i(θ) + g2i(θ),

with dti = kti −mt
iGZ

t
iV
−1
i Xi. In the small area estimation (SAE) literature, this

estimator is called first-order correct, because E{mse1(µ̂i)} = MSE(µ̂i) + O(n−1). In
addition, g1i accounts for the variability of µ̃i once β is known, and g2i for the variability
arising from the estimation of β̃. An analytical second-order correct estimator is given
by

mse2(µ̂i) = g1i(θ̂)+g2i(θ̂)+2g3i(θ̂), g3i(θ) = tr
{

(∂ati/∂θ)Vi(∂a
t
i/∂θ)tVA(θ̂)

}
, (28)

where ati = mt
iGZ

t
iV
−1
i with VA(θ̂) denoting the asymptotic covariance matrix, and

E {mse2(µ̂i)} = MSE(µ̂i) + o(n−1).

10.2. cAIC of Kubokawa (2011)
Before spelling out the exact form of cAIC, we define the derivatives with respect to θ
and differential operators with respect to y

A(i)(θ) =
∂A(θ)

∂θi
, A(ij)(θ) =

∂2A(θ)

∂θi∂θj
, A(ijk)(θ) =

∂3A(θ)

∂θi∂θj∂θk
,

∇y =
∂

∂y
, ∇y∇ty =

∂

∂y

∂

∂yt
,

(29)
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where A(θ) may denote a scalar, a vector or a matrix. In addition, the ith element of
∇y and (i, j)th of ∇y∇ty are ∂/∂yi and ∂2/∂yi∂yj . cAIC of Kubokawa (2011) defined

in (10) includes a correction term b(θ̂). We have

b(θ) =− 1

2

h∑
i=1

tr{V (V −1RV −1)(i)V E(∇y∇ty θ̂∗i )} −
h∑
i=1

tr{R(i)(R
−1 − V −1)}E(θ̂∗∗i )

−
h∑
i=1

h∑
j=1

tr

[
1

2
R(ij)(R

−1 − V −1) +R(i){(R−1)(j) − (V −1)(j))}
]
E(θ̂∗i θ̂

∗
j ),

(30)

where θ̂∗, θ̂∗∗ are defined in Section 9.1 and b̂ = b(θ̂).

10.3. Selection properties of cAIC
10.3.1. Nested models
In Figure 1 we presented the allowable domains for random variables W1, W2 and W3

using the restrictions imposed by the cAIC selection. These figures were plotted based
on our simulated dataset with yij =

∑3
d=1 βdxdij + ui + eij , n = 30, mi = 5, σ2u = 1,

σ2e = 0.5 and β = (2.25,−1.1, 2.43). Under this model, the expression to estimate b
in equation (30) is substantially simplified and spelled out in Kubokawa (2011). We
estimated Σ using empirical versions of V and R defined in Section 2, and we obtained
(the numbers are rounded to 3 digits)

Σ̂ =

 9.263 −0.309 −0.053
−0.309 1.233 −0.027
−0.053 −0.027 1.225

 ,

This exemplary setting was chosen in a subjective way, and other choices are possible
too. Table 4 displays estimated values of ρ, b and cAIC for the models from sets Mnest

defined above andMall defined in Section 4. Figure 1 depicts geometrical regions which
restrict the domains of W1, W2 and W3. The regions are defined by the appropriate
equations from Section 3 applied to the selection between models M0, M1 and M2

defined therein. Once McAIC = M0, the exact sets of inequalities was derived in Section
3. In addition, it was depicted in panel (1) of Figure 1. If McAIC = M1, we have

AM1
(Mnest) = {w ∈ R3 : w2

2Σ2 + 2w1w2Σ12 > 2(ρ21 + b21),

w2
3Σ3 + 2w1w3Σ13 + 2w2w3Σ23 < 2(ρ32 + b32)},

which is presented in panel (2) of Figure 1. Finally, for McAIC = M2, we have

AM2
(Mnest) = {w ∈ R3 : w2

3Σ3 + 2w1w3Σ13 + 2w2w3Σ23 > 2(ρ32 + b32),

w2
2Σ2 + w2

3Σ3 + 2w1w3Σ13 + 2w2w3Σ23 + 2w1w2Σ12 > 2(ρ31 + b31)},

which is illustrated in panel (3) of Figure 1.
Figure 5 shows the partition of 3-dimensional space composed of W1, W2 and W3.

In the remaining three panels, we provide the partition of the space made by two of
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Fig. 5. Allowable domains of W1, W2 and W3 for nested model selection when cAIC selects:
(top, left) M0 or M1 or M2, (top, right) M1 or M2, (bottom, left) M2 or M3, (bottom, right) M1 or
M3.

selected models. The purpose of Figure 5 is to show that the restrictions partition the
3-dimensional space and that there is no overlap. Of course, in practice we select only
one model which would correspond to only one of these regions.

−6 −4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

n0.5(β̂1−β01)

f 1
|M

2

−4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

n0.5(β̂2−β02)

f 2
|M

2

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

n0.5(β̂3−β03)

f 3
|M

2

Fig. 6. Marginal post-selection densities fj|M2
of n1/2(β̂d − β0d), conditional on p̂0 = 3 when

p0 = 1 (d = 1, 2, 3).

Finally, we illustrate the effect of the selection on the limiting densities. Figure 6
depicts post-selection densities of β1, β2 and β3 assuming that we select model M2

with p̂0 = 3, whereas the true model is M0 with p0 = 1 (see Figure 3 in Charkhi
and Claeskens, 2018, which depicts AIC post-selection densities). We can immediately

notice several features. First of all, the asymptotic density of n1/2(β̂1 − β01) does not
seem to be affected, which is plausible since the true model includes β01. Furthermore,
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n1/2(β̂2− β02) seems to be affected only slightly in the centre of its density. In contrast,

the post-selection density of n1/2(β̂3 − β03) is heavily influenced by the cAIC selection
procedure – the density is bimodal with much larger high quantiles than in case of the
normal distribution presented in the left panel of Figure 6. This clearly shows that the
application of standard quantiles might lead to wrong conclusions, for example while
constructing confidence intervals or carrying out tests.

10.3.2. General models
The choice of M is of paramount importance – it affects the distribution of all param-
eters, even those which are common to all models. We follow up with the example in
Section 10.3.2. In particular, we considerMall = {M0,M1,M2,M3} with M0, M1, M2 as
in the framework of the nested models, and M3 = (β1,β3) (see Table 4 for specific values
of estimated ρ, b and cAIC). We derive a set of inequalities which impose the restric-
tions on the domain of random variables once McAIC = M1, M2 or M3 (the inequalities
under McAIC = M0 were given in Section 10.3.2). If McAIC = M1, the allowable domain
is presented in panel (2) of Figure 2 which was constructed using the following set of
equations

AM1
(Mall) = {w ∈ R3 : w2

2Σ2 + 2w1w2Σ12 > 2(ρM1,M0
+ bM1,M0

),

w2
3Σ3 + 2w1w3Σ13 + 2w2w3Σ23 < 2(ρM2,M1

+ bM2,M1
),

w2
2Σ2 + 2w1w2Σ12 − w2

3Σ3 − 2w1w3Σ13 > 2(ρM1,M3
+ bM1,M3

)}.

For McAIC = M2, we have

AM2
(Mall) = {w ∈ R3 : w2

3Σ3 + 2w1w3Σ13 + 2w2w3Σ23 > 2(ρM2,M1
+ bM2,M1

),

w2
2Σ2 + w2

3Σ3 + 2w1w3Σ13 + 2w2w3Σ23 + 2w1w2Σ12 > 2(ρM2,M0
+ bM2,M0

),

w2
2Σ2 + 2w1w2Σ12 + 2w2w3Σ23 > 2(ρM2,M3

+ bM2,M3
)},

presented in panel (3) of Figure 2. Finally, if our selection process chooses McAIC = M3,
it follows that

AM3
(Mall) = {w ∈ R3 : w2

3Σ3 + 2w1w3Σ13 > 2(ρM3,M0
+ bM3,M0

),

w2
2Σ2 + 2w1w2Σ12 + 2w2w3Σ23 < 2(ρM2,M3

+ bM2,M3
),

w2
3Σ3 + 2w1w3Σ13 − w2

2Σ2 − 2w1w2Σ12 > 2(ρM3,M1
+ bM3,M1

)},

which is presented in panel (4) of Figure 2.

10.4. Additional results of our simulation study
In this section we provide the simulation results obtained for two extended selection
matrices υ3

all and υ4
all, i.e. when the first three (respectively four) covariates are included

in all models. The simulation setting is the same as described in Section 6. We consider
three model sets. Selection matrix υ2

all correspond to a model set in which some models
exclude truly nonzero covariates. In contrast, υ3

all describes a model set in which all
models are forced to include truly nonzero covariates, whereas υ4

all corresponds to a set
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in which we force all models to include truly nonzero parameters, but also an irrelevant
covariate β4. Before presenting additional simulations, we describe a practical procedure
to obtain post-selected confidence intervals in a form of an algorithm:

(a) In a numerical study, generate a suitable dataset to fit NERM.

(b) Define the initial set of candidate models M.

(c) Fit the model to the data and obtain consistent estimators β̂m, σ̂2e and σ̂2u using
maximum likelihood (or restricted maximum likelihood for σ̂2e and σ̂2u).

(d) Estimate cAIC for all models inM and select model M with the smallest value of
the information criterion.

(e) Calculate matrices Σ̂, K̂ and Îm which are the empirical counterparts of the ma-
trices Σ, K and Im in the model with all parameters.

(f) Retrieve matrices K̂(M) and Îm(M), which are submatrices of K̂ and Îm, respec-
tively, corresponding to model M .

(g) Calculate quadratic constrains that define selection regions AM AµM for the set of
general models in Section 4.

(h) Using for instance an R package tmg, select B = 10000 Monte Carlo samples from a
truncated, multivariate normal distribution such thatW s

(b) ∈ AM andW s
µ(b) ∈ A

µ
M ,

b = 1, . . . , B.

(i) Retrieve high quantiles cµi (α/2) and cj(α/2) from the empirical post-cAIC distri-
butions of µi and β, that is

c̄si (M)tK̂−1/2(M)W s
µ(b)(M), i = 1, . . . , n, b = 1, . . . , B,

{Îm(M)}−1/2W s
(b)(M), b = 1, . . . , B.

(j) Construct post-cAIC confidence intervals for µi and βj , j ∈ |M |.

It might be quite difficult to find starting values to sample from (|M |+n)-dimensional
truncated multivariate distribution which is necessary to construct post-cAIC intervals
for mixed parameters. We suggest thus selecting them randomly. In addition, since the
constraints are imposed only on the asymptotic distribution of the fixed effects, it seems
to be more efficient to first sample from |M |-dimensional truncated distribution and
afterwards from n-dimensional multivariate normal to mimic the asymptotic distribution
of the random effects. The former serves in the construction of the post-cAIC intervals
for fixed effects. These are not subject to restrictions because they are not involved in the
selection procedure. Then we merge them into a matrix with the first |M | columns from
the truncated normal distribution and the next n columns from the multivariate normal
distribution. The aforementioned procedure is valid for all contexts we considered in
Sections 3, 4 and 5, that is, when assuming nested models, a general set of models and
for misspecified models.
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We turn to the additional simulation results. Tables 5, 6 and 7 present coverage
probabilities (CP) and lengths (L) for post-cAIC (p.-cAIC) and naive (N) confidence
intervals for the components of fixed parameters βj within three different model sets
which correspond to selection matrices υ2

all, υ
3
all, and υ4

all. Table 5 completes the results
in Table Table 1 under υ2

all. The results for β2 and β4 resemble those we found for β1
and β5 respectively. In this case, covariate β3 is relevant, i.e. truly nonzero, but not
included in all models. Regarding Table 6 it is remarkable that although all truly nonzero
covariates are included in each model, the naive CI fails to provide a good coverage not
only for β4 and β5, but also for β3. In contrast, when the irrelevant covariate β4 is always
included, Table 7 shows that the naive CI fails mainly for β5 which is truly zero. In sum,
while the post-cAIC intervals lead to a close to nominal coverage under all settings, the
undercoverage of the naive method is the most striking feature in the tables. Tables
8, 9 and 10 present coverage probabilities and lengths of CI for linear combinations
of the components of fixed parameters under the same three selection matrices υ2

all,
υ3
all, and υ4

all. The performance of post-cAIC intervals is better overall than the one of
the naive intervals except for the small sample sizes. Tables 11 and 12 show coverage
probabilities and lengths for post-cAIC (p.-cAIC), post-OBSP (p.-OBSP) and naive
intervals constructed using the first-order (N1) and the second-order (N2) correct MSE
estimators for a mixed parameter under two different selection matrices υ3

all and υ4
all.

We can draw the same conclusions as in case of Table 3.

10.5. Post-cAIC inference with income data from Galicia
In this section, we provide additional details about the post-cAIC inference applied to
study the average household income in counties of Galicia. First, we focus on the esti-
mation of the parameters of interest. Second, we complete the model selection analysis.

In Section 7, we calculate the EBLUP using the survey estimates of covariate means
ˆ̄Xdir
i and the means of transformed household income. The SSHG does include the

official estimates of total Xdir
di and mean X̄dir

di at the county level, but we retrieved them
using the standard formulas:

X̂dir
ik =

∑
j∈Ri

wjxjk,
ˆ̄Xdir
ik = X̂dir

ik /N̂
dir
i and N̂dir

d =
∑
j∈Ri

wj , (31)

where N̂dir
i refers to the estimated county size Ndir

i , Ri to the sample in county i and
wj to the sample weight.

In Section 7 we admitted not to having used all covariates available form the SSHG.
On the basis of the previous, related studies (Boubeta et al., 2016; Reluga et al., 2021),
we selected a set of 16 covariates which included those describing characteristics of the
household and a member of this household who was considered as a main person. We
analysed five binary variables describing the type of the household: household with 1
person (Typ1), household with more than one person (Typ2), household with a couple
with children (Typ3), household with a couple without children (Typ4) and household
with a single parent (Typ5). Furthermore we considered variables regarding the status
of the property: without mortgage (Ten1) and with mortgage (Ten2), and the difficulties
of the household at the end of the month: some difficulties (Dif2) and a lot of difficul-
ties (Dif3). When it comes to the covariates describing the main person, we analysed
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a variable indicating the place of birth: Galicia (Birth1) and Spain except for Galicia
(Birth2), and the eduction: primary (Edu1) and secondary (Edu2). We have also anal-
ysed a covariate indicating if the size of the municipality was smaller than ten thousands
inhabitants (Size), a biological gender (Sex) as well as age: less than forty four years
old (Age1) and between forty five and sixty four years old (Age2). Figure 7 shows the
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Fig. 7. Spearman’s correlation coefficients between outcome variable and covariates

Spearman’s correlation coefficients between transformed income and covariates. We can
see that the correlation between the transformed income and variables Typ1, Edu1, Dif2
and Typ3 is the strongest. We thus included them into each model. After that we
inserted to the final set of models only those covariates with the correlation coefficients
higher than the median value. We ended up with the set of eight variables and 24 = 16
models. Table 13 presents the inclusion of covariates into different models, whereas the
selection criteria are outlined in Table 14. In the left part of Table 15 we can see the
descriptive statistics of the lengths of the post-cAIC, post-OBSP and naive intervals
for a mixed parameter in the left. The descriptive statistics for the regression-synthetic
estimates are presented in the right part of Table 15.

10.6. Additional assumptions
The derivation of the extended cAIC of Kubokawa (2011) as well as the first- and
second-order correct MSE estimators requires some additional regularity conditions. Let

λ1(V ) 6 · · · 6 λm(V ) be the eigenvalues of V , and λil(V ), λijl (V ), λijkl (V ) the eigen-
values of V(i), V(ij) and V(ijk) defined in (29), 0 6 i, j, k 6 h, l = 1, . . . ,m ordered such

that |λi1(V )| 6 · · · 6 |λin(V )|, |λij1 (V )| 6 · · · 6 |λijn (V )|, |λijk1 (V )| 6 · · · 6 |λijkm (V )|.
Moreover we assume

R.1 Rate of convergence: supi>1mi <<∞, supi>1 qi <<∞, n→∞, i.e., m and n are
of the same asymptotic order.

R.2 Xi, Zi, R(θ) > 0 and V (θ) > 0, i = 1, . . . , n contain only finite values.

R.3 Covariance matrices Gi and Ri have a linear structure with respect to θ.
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R.4 eti = kti −mt
iGZ

t
iV
−1
i Xi with edi = O(1) for i = 1, . . . , a+K.

R.5 { ∂
∂θj
mt

iGZ
t
iV
−1
i Xi}i = O(1) for j = 1, . . . , h and i = 1, . . . , a+K.

R.6 θ̂ satisfies: (i) θ̂ − θ = Op(n
−1/2), (ii) θ̂(y) = θ̂(−y) and (iii) θ̂(y +Xr) = θ̂(y)

for any r ∈ Ra+K .

R.7 θ̂ − θ can be expanded as θ̂ − θ = θ̂∗ + θ̂∗∗ + Op(n
−3/2), where θ̂∗ = Op(n

−1/2),

θ̂∗∗ = Op(n
−1) and E(θ̂∗) = 0.

R.8 θ̂∗ and θ̂∗∗ satisfy that E
{

tr(∇y∇ty θ̂∗∗i )
}

= O(n−1), E
[
{tr(∇y∇ty θ̂∗i )θ̂∗j}

]
= O(n−1)

and E
[
tr
{

(∇y θ̂∗i )(∇y θ̂∗j )t
}]

= O(n−1), where θ̂∗ = (θ̂∗1, . . . , θ̂
∗
h)t, θ̂∗∗ = (θ̂∗∗1 , . . . , θ̂

∗∗
h )t.

10.7. Additional derivations and proofs
First, we provide a proof of Lemma 1. Second, we present two algebraic properties.

10.7.1. Proof of Lemma 1
To prove the stated overselection property of cAIC, we proceed along similar steps as in
the proof of Lemma 1 in Charkhi and Claeskens (2018). Let Mpars be the smallest true
model. For all M ′ 6∈ Mo it holds

P(McAIC = M ′)

6 P

{
cAIC(M ′) > max

M∈MO

cAIC(M)

}
6 P

{
cAIC(M ′) > cAIC(Mpars)

}
= P

[
`cn{β̂m(M ′)} − ρ̂M ′ − b̂M ′ > `cn{β̂m(Mpars)} − ρ̂Mpars

− b̂Mpars

]
= P

[
`cn{β̂m(M ′)} − `cn {β0m(Mpars)} − ρ̂M ′ − b̂M ′

> `cn{β̂0m(Mpars)} − `cn {β0m(Mpars)} − ρ̂Mpars
− b̂Mpars

]
→ 0

where the last line follows from

`cn

{
β̂0m(Mpars)

}
− `cn {β0m(Mpars)} > `cn

{
β̂m(M ′)

}
− `cn {β0m(Mpars)}

as well as ρ̂Mpars
> ρ̂M ′ and b̂Mpars

> b̂M ′ .

10.7.2. Algebraic derivations
The purpose of this section is to show the equivalence between the marginal and the
conditional fixed parameters, that is β̂m = β̂c. Recall that β̂m is the estimated EBLUE
defined as a solution of minimisation of equation 3, whereas β̂c is an empirical coun-
terpart of βc = (XtR−1X)−1(XtR−1y − XtR−1Zu) derived from the equation for
Rcn,K below equation (20). In addition, we have u = GZtV −1(y −Xβ), and define
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L = XtR−1X, LZ = XtR−1Z, GX = GZtV −1X, Ky = XtR−1y, Gy = GZtV −1y.
Recall that u is EBLUP, which might be estimated using a two-stage procedure or
the extended likelihood. We make use of Properties 1 and 2 to obtain the equivalence
between β̂m and β̂c.

Property 1. For matrices Bp×m, Dm×p and for non-singular matrices Cn×n, Ap×p,
Rao (1973) showed that

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (32)

Property 2.

V −1 = R−1 −R−1Z(ZtR−1Z +G−1)−1ZtR−1,

(ZtR−1Z +G−1)−1ZtR−1 = GZV −1,

(Iq −GXL
−1LZ)−1GXL

−1 = GX(L−LZGX)−1.

Property 2 is left without proof, because it only consists of simple but tedious algebraic
transformations. In what follows, we show the equivalence between β̃m and β̃c. We have

β̃m = (XtV −1X)−1(XtV −1y) =
{
XtR−1X −XtR−1Z

(
ZtR−1Z

+G−1
)−1

ZtR−1X
}−1 {

XtR−1y −XtR−1Z(ZtR−1Z +G−1)−1ZtR−1y
}

=
(
XtR−1X −XtR−1ZGZtV −1X

)−1
(XtR−1y −XtR−1ZGZtV −1y)

= (L−LZGX)−1(Ky −LZGy)

= L−1Ky −L−1LZGy +L−1LZ(Iq −GXL
−1LZ)−1GXL

−1Ky

−L−1LZ(Iq −GXL
−1LZ)−1GXL

−1LZGy,

where we used Property 2 in the first equation and Property 1 in the last equation. On
the other hand

β̃c = (XtR−1X)−1(XtR−1y −XtR−1ZGZtV −1y +XtR−1ZGZtV −1Xβ)

= (XtR−1X)−1XtR−1y − (XtR−1X)−1XtR−1ZGZtV −1y

+(XtR−1X)−1XtR−1ZGZtV −1Xβ

= L−1Ky −L−1LZGy +L−1LZGX(L−LZGX)−1Ky

−L−1LZGX(L−LZGX)−1LZGy

The desired result follows applying the third line of Property 2 and replacing R, G and
V with R̂, Ĝ and V̂ .
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Table 4. Estimated values of ρ, b and cAIC for the
models from setsMnest andMall.

Model M0 M1 M2 M3

ρ̂+ b̂ 24.386 25.449 26.450 25.369
cAIC 429.245 430.323 431.334 430.236

Table 5. Coverage probabilities and average lengths (in parenthesis) of post-cAIC and naive
confidence intervals for βj . Nominal coverage probability: 95%, selection matrix: υ2

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. βj CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)
S1 p.-aAIC β2 94.9 (0.500) 94.1 (0.401) 94.6 (0.270) 95.2 (0.229) 93.5 (0.262) 94.1 (0.179)

β3 98.7 (0.819) 98.9 (0.649) 99.9 (0.441) 99.6 (0.384) 99.3 (0.369) 99.6 (0.245)
β4 87.4 (0.742) 97.1 (0.570) 94.3 (0.388) 92.2 (0.310) 92.2 (0.318) 88.3 (0.217)

N β2 94.6 (0.487) 93.3 (0.389) 94.3 (0.265) 94.4 (0.222) 92.6 (0.258) 93.9 (0.176)
β3 93.2 (0.517) 93.0 (0.366) 94.0 (0.252) 93.8 (0.207) 93.6 (0.244) 94.2 (0.173)
β4 70.0 (0.577) 72.7 (0.361) 70.2 (0.264) 66.5 (0.220) 71.5 (0.249) 67.2 (0.178)

S2 p.-cAIC β2 94.0 (0.495) 94.8 (0.399) 94.2 (0.270) 95.5 (0.228) 93.4 (0.263) 94.1 (0.179)
β3 99.1 (0.854) 99.6 (0.691) 99.7 (0.466) 99.8 (0.402) 99.6 (0.400) 99.5 (0.245)
β4 89.5 (0.759) 97.5 (0.616) 95.1 (0.419) 92.6 (0.321) 93.7 (0.341) 86.2 (0.214)

N β2 93.6 (0.483) 94.2 (0.384) 93.3 (0.262) 94.1 (0.220) 92.6 (0.257) 94.0 (0.175)
β3 93.9 (0.510) 92.5 (0.361) 94.1 (0.249) 93.1 (0.205) 93.5 (0.243) 94.1 (0.173)
β4 70.4 (0.571) 74.3 (0.354) 72.0 (0.261) 69.5 (0.217) 69.1 (0.248) 67.4 (0.177)

Table 6. Coverage probabilities and average lengths (in parenthesis) of post-cAIC and naive
confidence intervals for βj . Nominal coverage probability: 95%, selection matrix: υ3

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. βj CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)
S1 p.-cAIC β1 92.9 (1.131) 94.1 (0.786) 94.3 (0.561) 94.1 (0.454) 94.7 (0.782) 94.0 (0.744)

β2 94.2 (0.499) 93.5 (0.396) 94.8 (0.269) 95.5 (0.225) 93.3 (0.263) 94.2 (0.177)
β3 94.3 (0.526) 93.4 (0.385) 95.2 (0.259) 95.3 (0.211) 94.4 (0.253) 93.7 (0.333)
β4 92.2 (0.758) 94.5 (0.471) 93.4 (0.349) 92.7 (0.292) 93.7 (0.333) 93.9 (0.339)
β5 91.3 (0.746) 93.1 (0.497) 93.6 (0.353) 92.3 (0.290) 93.9 (0.339) 95.2 (0.237)

N β1 92.6 (1.103) 94.1 (0.779) 94.3 (0.555) 94.1 (0.453) 93.5 (0.745) 93.4 (0.727)
β2 93.9 (0.488) 92.7 (0.388) 94.6 (0.265) 95.1 (0.222) 92.1 (0.258) 93.9 (0.176)
β3 93.6 (0.517) 91.6 (0.365) 94.4 (0.252) 94.4 (0.207) 93.7 (0.244) 69.8 (0.249)
β4 69.4 (0.578) 71.9 (0.360) 68.5 (0.265) 67.5 (0.220) 69.8 (0.249) 67.8 (0.256)
β5 66.4 (0.569) 72.5 (0.377) 69.8 (0.267) 68.9 (0.218) 67.8 (0.256) 67.1 (0.175)

S2 p.-cAIC β1 92.2 (0.844) 94.2 (0.598) 94.1 (0.425) 94.1 (0.346) 93.6 (0.562) 94.1 (0.532)
β2 94.4 (0.493) 94.2 (0.392) 94.9 (0.267) 95.2 (0.222) 93.6 (0.263) 94.6 (0.177)
β3 93.2 (0.519) 93.8 (0.380) 94.9 (0.256) 93.3 (0.209) 95.0 (0.252) 93.7 (0.332)
β4 92.5 (0.751) 96.4 (0.466) 93.5 (0.345) 92.6 (0.290) 93.7 (0.332) 93.5 (0.341)
β5 88.7 (0.739) 93.0 (0.495) 92.2 (0.352) 91.0 (0.288) 93.5 (0.341) 95.1 (0.237)

N β1 92.2 (0.839) 94.2 (0.598) 93.9 (0.425) 94.3 (0.346) 92.9 (0.552) 94.0 (0.527)
β2 94.0 (0.483) 94.0 (0.384) 94.5 (0.262) 95.0 (0.219) 92.7 (0.257) 94.5 (0.175)
β3 92.8 (0.510) 91.6 (0.361) 94.2 (0.249) 92.7 (0.205) 93.8 (0.243) 68.2 (0.248)
β4 69.9 (0.570) 74.6 (0.354) 68.5 (0.260) 67.4 (0.217) 68.2 (0.248) 66.7 (0.255)
β5 65.5 (0.561) 72.0 (0.373) 67.8 (0.264) 66.7 (0.215) 66.7 (0.255) 66.7 (0.175)
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Table 7. Coverage probabilities and average lengths (in parenthesis) of post-cAIC and naive
confidence intervals for βj . Nominal coverage probability: 95%, selection matrix: υ4

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. βj CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)
S1 p.-cAIC β1 92.4 (1.118) 94.5 (0.787) 93.8 (0.559) 95.3 (0.453) 94.6 (0.780) 93.1 (0.742)

β2 94.1 (0.496) 94.8 (0.394) 94.5 (0.268) 94.3 (0.223) 94.7 (0.261) 94.0 (0.176)
β3 94.7 (0.521) 93.4 (0.372) 95.0 (0.255) 95.5 (0.209) 95.4 (0.247) 95.0 (0.175)
β4 94.8 (0.586) 95.1 (0.364) 94.6 (0.268) 93.2 (0.223) 95.3 (0.250) 94.7 (0.179)
β5 91.4 (0.754) 93.2 (0.502) 93.9 (0.354) 94.3 (0.288) 94.4 (0.340) 94.5 (0.236)

N β1 92.0 (1.106) 94.5 (0.781) 93.7 (0.554) 95.2 (0.452) 94.1 (0.746) 92.7 (0.726)
β2 94.1 (0.491) 94.7 (0.392) 94.3 (0.266) 94.3 (0.222) 94.4 (0.259) 94.0 (0.176)
β3 94.6 (0.520) 93.1 (0.369) 94.8 (0.254) 95.5 (0.208) 95.2 (0.245) 94.9 (0.173)
β4 94.6 (0.581) 95.0 (0.363) 94.4 (0.266) 93.1 (0.220) 95.2 (0.249) 94.6 (0.178)
β5 69.1 (0.573) 71.4 (0.380) 71.3 (0.268) 70.5 (0.218) 70.6 (0.257) 70.2 (0.176)

S2 p.-cAIC β1 92.7 (0.852) 94.8 (0.597) 93.3 (0.426) 95.3 (0.346) 94.4 (0.561) 94.4 (0.561)
β2 93.7 (0.492) 95.8 (0.388) 94.9 (0.266) 93.7 (0.221) 94.1 (0.260) 94.1 (0.260)
β3 94.7 (0.515) 92.7 (0.367) 94.6 (0.252) 94.7 (0.207) 95.7 (0.246) 95.7 (0.246)
β4 95.2 (0.579) 94.9 (0.356) 94.2 (0.263) 93.6 (0.220) 95.7 (0.249) 95.7 (0.249)
β5 91.0 (0.754) 93.6 (0.499) 93.3 (0.352) 93.8 (0.286) 94.3 (0.342) 94.3 (0.342)

N β1 92.6 (0.850) 95.0 (0.597) 93.3 (0.426) 95.3 (0.346) 94.0 (0.552) 94.0 (0.552)
β2 93.5 (0.486) 95.8 (0.387) 94.8 (0.263) 93.7 (0.220) 94.0 (0.258) 94.0 (0.258)
β3 94.5 (0.514) 92.4 (0.363) 94.0 (0.250) 94.4 (0.205) 96.0 (0.244) 95.6 (0.244)
β4 95.1 (0.574) 94.9 (0.356) 93.9 (0.261) 93.4 (0.217) 95.3 (0.248) 95.3 (0.248)
β5 69.7 (0.565) 73.5 (0.375) 71.0 (0.265) 70.7 (0.216) 70.1 (0.256) 70.2 (0.256)

Table 8. Coverage probabilities and average lengths (in parenthesis) of post-cAIC and naive
confidence intervals for ktiβ̂ and k̄tβ̂. Nominal coverage probability: 95%, selection matrix: υ2

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. βj CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)

S1 p.-cAIC kt1β̂ 91.5 (1.152) 94.3 (1.018) 97.7 (0.699) 97.2 (0.515) 96.6 (0.891) 93.9 (0.751)

kt2β̂ 91.4 (1.305) 97.9 (1.118) 94.0 (0.572) 96.3 (0.500) 96.2 (0.870) 94.5 (0.793)

kt3β̂ 97.8 (1.571) 96.2 (0.967) 97.0 (0.690) 95.7 (0.464) 97.1 (0.904) 96.0 (0.864)

k̄tβ̂ 95.3 (1.374) 95.8 (0.998) 96.7 (0.711) 97.1 (0.572) 96.5 (0.891) 94.5 (0.786)

N kt1β̂ 91.8 (1.171) 90.7 (0.886) 94.7 (0.574) 96.0 (0.469) 92.9 (0.765) 93.6 (0.731)

kt2β̂ 88.9 (1.211) 93.7 (0.868) 94.5 (0.577) 95.1 (0.470) 93.3 (0.752) 93.3 (0.728)

kt3β̂ 92.7 (1.179) 93.4 (0.835) 93.9 (0.572) 95.6 (0.459) 93.4 (0.750) 93.6 (0.737)

k̄tβ̂ 92.0 (1.159) 92.3 (0.844) 93.4 (0.594) 94.1 (0.487) 93.5 (0.758) 93.3 (0.731)

S2 p.-cAIC kt1β̂ 96.1 (1.071) 97.5 (0.723) 97.9 (0.584) 96.9 (0.389) 96.3 (0.721) 94.4 (0.548)

kt2β̂ 96.1 (1.329) 98.0 (0.904) 99.2 (0.568) 96.9 (0.451) 97.6 (0.728) 93.7 (0.538)

kt3β̂ 98.3 (1.334) 97.5 (0.785) 95.2 (0.618) 98.7 (0.495) 95.1 (0.625) 96.2 (0.585)

k̄tβ̂ 95.2 (1.117) 97.0 (0.844) 97.0 (0.597) 97.6 (0.485) 96.0 (0.661) 94.5 (0.560)

N kt1β̂ 93.6 (0.934) 94.9 (0.623) 92.4 (0.476) 95.7 (0.366) 91.8 (0.581) 93.5 (0.529)

kt2β̂ 86.4 (0.946) 89.5 (0.675) 95.7 (0.453) 94.0 (0.393) 93.4 (0.572) 93.5 (0.529)

kt3β̂ 92.4 (0.937) 94.7 (0.670) 90.1 (0.493) 96.4 (0.379) 93.3 (0.569) 94.1 (0.535)

k̄tβ̂ 91.0 (0.912) 92.3 (0.677) 92.9 (0.477) 93.9 (0.390) 93.1 (0.571) 93.5 (0.532)
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Table 9. Coverage probabilities and average lengths (in parenthesis) of post-cAIC and naive
confidence intervals for ktiβ̂ and k̄tβ̂. Nominal coverage probability: 95%, selection matrix: υ3

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. βj CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)

S1 p.-cAIC kt1β̂ 95.4 (1.287) 92.5 (1.030) 92.1 (0.618) 94.6 (0.496) 95.9 (0.833) 94.7 (0.772)

kt2β̂ 96.8 (1.552) 94.7 (0.895) 96.3 (0.714) 94.2 (0.551) 96.3 (0.865) 93.8 (0.748)

kt3β̂ 93.1 (1.151) 96.4 (0.989) 95.3 (0.618) 94.6 (0.505) 94.7 (0.817) 94.3 (0.760)

kt4β̂ 96.1 (1.330) 95.2 (0.849) 95.8 (0.623) 94.4 (0.516) 94.3 (0.760) 95.4 (0.869)

kt5β̂ 93.9 (1.295) 93.4 (0.948) 95.2 (0.582) 94.3 (0.567) 95.4 (0.869) 94.0 (0.740)

k̄tβ̂ 93.7 (1.285) 94.3 (0.898) 94.7 (0.643) 94.7 (0.519) 95.1 (0.823) 94.3 (0.756)

N kt1β̂ 92.9 (1.109) 86.1 (0.913) 90.3 (0.575) 94.0 (0.488) 94.4 (0.757) 93.4 (0.730)

kt2β̂ 92.9 (1.232) 93.0 (0.819) 90.9 (0.599) 93.2 (0.516) 93.0 (0.749) 93.2 (0.731)

kt3β̂ 93.1 (1.133) 91.7 (0.820) 93.8 (0.559) 93.3 (0.475) 92.2 (0.754) 94.0 (0.750)

kt4β̂ 93.5 (1.120) 93.1 (0.783) 93.9 (0.559) 92.7 (0.472) 94.0 (0.750) 92.3 (0.762)

kt5β̂ 91.0 (1.139) 91.6 (0.870) 94.5 (0.569) 90.7 (0.503) 92.3 (0.762) 93.8 (0.730)

k̄tβ̂ 91.7 (1.163) 92.3 (0.828) 92.5 (0.589) 92.9 (0.484) 93.2 (0.755) 93.6 (0.731)

S2 p.-cAIC kt1β̂ 93.3 (0.998) 95.4 (0.846) 94.5 (0.496) 95.9 (0.515) 93.6 (0.588) 94.6 (0.565)

kt2β̂ 92.1 (0.968) 96.0 (0.772) 95.7 (0.545) 94.7 (0.528) 95.6 (0.630) 94.2 (0.535)

kt3β̂ 95.0 (0.971) 96.0 (0.685) 95.2 (0.527) 94.9 (0.448) 95.6 (0.679) 94.1 (0.596)

kt4β̂ 93.9 (0.943) 93.6 (0.634) 95.6 (0.523) 95.3 (0.625) 94.1 (0.596) 93.0 (0.583)

kt5β̂ 92.5 (0.890) 96.0 (0.673) 95.6 (0.451) 94.4 (0.424) 93.0 (0.583) 95.3 (0.575)

k̄tβ̂ 93.2 (1.013) 94.6 (0.727) 94.6 (0.518) 94.7 (0.422) 94.4 (0.607) 94.4 (0.546)

N kt1β̂ 90.6 (0.885) 87.4 (0.681) 91.4 (0.440) 89.8 (0.404) 92.6 (0.568) 93.8 (0.537)

kt2β̂ 91.5 (0.951) 90.6 (0.653) 94.4 (0.506) 86.3 (0.430) 93.5 (0.576) 93.7 (0.529)

kt3β̂ 91.4 (0.844) 91.8 (0.610) 91.8 (0.460) 91.6 (0.401) 92.4 (0.575) 92.9 (0.559)

kt4β̂ 93.9 (0.936) 93.6 (0.629) 94.9 (0.477) 86.0 (0.503) 92.9 (0.559) 92.2 (0.568)

kt5β̂ 91.7 (0.843) 92.4 (0.607) 94.8 (0.427) 91.2 (0.379) 92.2 (0.568) 94.1 (0.540)

k̄tβ̂ 90.5 (0.914) 91.5 (0.658) 91.8 (0.467) 92.1 (0.385) 92.7 (0.565) 93.9 (0.532)
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Table 10. Coverage probabilities and average lengths (in parenthesis) of post-cAIC and naive
confidence intervals for ktiβ̂ and k̄tβ̂. Nominal coverage probability: 95%, selection matrix: υ4

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. βj Cov. (L.) Cov. (L.) Cov. (L.) Cov. (L.) Cov. (L.) Cov. (L.)

S1 p.-cAIC kt1β̂ 95.7 (1.463) 93.6 (0.843) 96.7 (0.613) 95.2 (0.479) 94.7 (0.790) 93.3 (0.742)

kt2β̂ 93.6 (1.239) 94.2 (0.904) 96.3 (0.640) 96.2 (0.490) 94.2 (0.793) 94.2 (0.762)

kt3β̂ 95.1 (1.284) 96.1 (0.921) 95.8 (0.594) 95.3 (0.483) 96.2 (0.818) 93.1 (0.743)

kt4β̂ 94.1 (1.193) 94.2 (0.871) 93.1 (0.588) 95.1 (0.469) 95.7 (0.829) 93.7 (0.746)

kt5β̂ 94.8 (1.210) 95.3 (0.914) 96.2 (0.679) 95.2 (0.476) 96.4 (0.874) 93.6 (0.742)

k̄tβ̂ 93.4 (1.228) 94.7 (0.871) 94.6 (0.622) 95.5 (0.503) 95.2 (0.815) 93.6 (0.751)

N kt1β̂ 90.2 (1.193) 93.8 (0.846) 94.8 (0.577) 95.3 (0.483) 94.1 (0.758) 93.1 (0.729)

kt2β̂ 93.0 (1.196) 94.4 (0.917) 95.1 (0.596) 95.3 (0.466) 93.4 (0.754) 93.1 (0.728)

kt3β̂ 93.2 (1.141) 93.6 (0.824) 94.2 (0.556) 95.5 (0.487) 94.3 (0.758) 93.0 (0.727)

kt4β̂ 92.4 (1.122) 93.6 (0.847) 93.2 (0.590) 95.3 (0.471) 94.3 (0.764) 93.2 (0.726)

kt5β̂ 92.9 (1.112) 95.1 (0.893) 93.4 (0.598) 95.4 (0.479) 93.3 (0.763) 92.7 (0.728)

k̄tβ̂ 92.3 (1.166) 93.8 (0.831) 93.5 (0.589) 94.6 (0.483) 93.5 (0.755) 92.9 (0.730)

S2 p.-cAIC kt1β̂ 93.6 (0.878) 95.6 (0.638) 94.7 (0.450) 95.6 (0.356) 95.9 (0.597) 95.9 (0.597)

kt2β̂ 93.2 (0.866) 96.6 (0.761) 94.0 (0.449) 95.9 (0.374) 96.3 (0.657) 96.3 (0.657)

kt3β̂ 93.5 (0.857) 93.8 (0.654) 93.0 (0.440) 96.7 (0.448) 95.1 (0.615) 95.1 (0.615)

kt4β̂ 93.0 (0.948) 95.9 (0.653) 93.6 (0.478) 95.0 (0.364) 94.8 (0.588) 94.8 (0.588)

kt5β̂ 94.1 (1.020) 94.5 (0.603) 95.2 (0.463) 96.5 (0.434) 95.9 (0.589) 95.9 (0.589)

k̄tβ̂ 93.2 (0.916) 95.0 (0.693) 94.2 (0.497) 95.2 (0.405) 95.1 (0.598) 95.1 (0.598)

N kt1β̂ 93.3 (0.872) 94.5 (0.604) 93.5 (0.427) 95.7 (0.356) 94.4 (0.560) 94.4 (0.560)

kt2β̂ 93.1 (0.856) 92.5 (0.648) 93.5 (0.444) 95.7 (0.361) 92.5 (0.566) 92.5 (0.566)

kt3β̂ 93.2 (0.849) 93.9 (0.656) 93.3 (0.443) 91.3 (0.382) 93.5 (0.577) 93.5 (0.576)

kt4β̂ 92.7 (0.950) 94.1 (0.607) 93.9 (0.482) 95.0 (0.364) 93.4 (0.554) 93.4 (0.554)

kt5β̂ 93.7 (0.997) 94.6 (0.606) 93.9 (0.446) 93.1 (0.382) 94.7 (0.556) 94.7 (0.556)

k̄tβ̂ 93.0 (0.909) 93.7 (0.658) 93.0 (0.469) 94.0 (0.384) 93.9 (0.565) 93.9 (0.565)

Table 11. Coverage probabilities and average lengths (in parenthesis) of post-cAIC, post-
OBSP and naive confidence intervals for µi. Nominal coverage probability: 95%, selection
matrix: υ3

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)
S1 p.-cAIC 94.3 (1.609) 95.0 (1.621) 95.2 (1.626) 95.3 (1.624) 95.0 (1.202) 95.0 (0.868)

N1 93.7 (1.567) 94.6 (1.597) 95.0 (1.613) 95.2 (1.616) 94.8 (1.191) 94.9 (0.864)
N2 95.0 (1.650) 95.1 (1.629) 95.2 (1.628) 95.3 (1.626) 95.1 (1.202) 95.0 (0.868)

p.-OBSP 94.7 (1.631) 95.0 (1.623) 95.2 (1.625) 95.3 (1.624) 95.1 (1.200) 94.9 (0.868)

S2 p.-cAIC 92.5 (1.465) 94.6 (1.499) 94.9 (1.500) 95.0 (1.501) 94.8 (1.146) 95.0 (0.847)
N1 91.6 (1.422) 94.3 (1.473) 94.7 (1.486) 94.9 (1.492) 94.6 (1.136) 95.0 (0.843)
N2 96.3 (1.667) 95.7 (1.556) 95.3 (1.524) 95.3 (1.516) 95.1 (1.163) 95.1 (0.851)

p.-OBSP 93.5 (1.517) 95.1 (1.520) 95.0 (1.508) 95.1 (1.506) 94.8 (1.156) 95.4 (0.851)
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Table 12. Coverage probabilities and average lengths (in parenthesis) of post-cAIC, post-
OBSP and naive confidence intervals for µi. Nominal coverage probability: 95%, selection
matrix: υ4

all.
(15 : 5) (30 : 5) (60 : 5) (90 : 5) (30 : 10) (30 : 20)

S Meth. CP (L) CP (L) CP (L) CP (L) CP (L) CP (L)
S1 p.-cAIC 94.0 (1.599) 94.8 (1.622) 95.1 (1.626) 95.2 (1.622) 95.2 (1.203) 95.1 (0.868)

N1 93.7 (1.578) 94.6 (1.611) 95.0 (1.620) 95.1 (1.617) 95.0 (1.195) 95.0 (0.866)
N2 95.1 (1.656) 95.1 (1.644) 95.2 (1.635) 95.3 (1.627) 95.2 (1.206) 95.2 (0.869)

p.-OBSP 94.8 (1.642) 95.0 (1.638) 95.2 (1.632) 95.2 (1.625) 95.2 (1.204) 95.1 (0.868)

S2 p.-cAIC 92.5 (1.451) 94.6 (1.489) 94.8 (1.498) 95.1 (1.496) 94.9 (1.146) 94.8 (0.845)
N1 92.2 (1.438) 94.4 (1.476) 94.7 (1.491) 95.0 (1.492) 94.8 (1.140) 94.8 (0.843)
N2 96.2 (1.654) 95.8 (1.563) 95.3 (1.530) 95.4 (1.516) 95.4 (1.166) 95.0 (0.852)

p.-OBSP 94.4 (1.545) 95.2 (1.525) 95.0 (1.513) 95.2 (1.506) 95.1 (1.157) 94.9 (0.849)

Table 13. Inclusion of covariates into different models.
Covariate M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
Intercept X X X X X X X X X X X X X X X X
Typ1 X X X X X X X X X X X X X X X X
Edu1 X X X X X X X X X X X X X X X X
Dif3 X X X X X X X X X X X X X X X X
Typ3 X X X X X X X X X X X X X X X X
Ten2 X X X X X X X X
Age2 X X X X X X X X
Sex X X X X X X X X
Size X X X X X X X X

Table 14. Selection criteria.
Model M1 M2 M3 M4 M5 M6 M7 M8
cAIC 26097.45 26098.00 26098.40 26098.92 26104.15 26102.78 26103.18 26101.71
OBSP 995.658 983.52 990.50 977.97 995.76 983.58 990.61 978.05
Model M9 M10 M11 M12 M13 M14 M5 M16
cAIC 26103.39 26102.20 26102.24 26101.04 26102.42 26101.21 26101.26 26100.06
OBSP 993.55 982.06 988.42 976.55 993.61 982.09 988.48 976.58

Table 15. Descriptive statistics of lengths of naive and post-selection CI for mixed and
regression-synthetic estimates of the log of the county-level averages of household income.

Mixed parameter Linear combination
Meth. Min Max Median Mean SD Min Max Median Mean SD

p.-cAIC 0.042 0.169 0.110 0.111 0.035 0.040 0.043 0.041 0.041 0.001
N1 0.040 0.176 0.108 0.112 0.038 0.034 0.041 0.038 0.037 0.002
N2 0.040 0.178 0.109 0.113 0.039 - - - - -

p.-OBSP 0.028 0.215 0.113 0.119 0.053 - - - - -
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