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Abstract

We show that a singular Riemannian foliation of codimension two on a compact simply-

connected Riemannian (n + 2)-manifold, with regular leaves homeomorphic to the n-torus,

is given by a smooth effective n-torus action. This solves in the negative for the codimension 2

case a question about the existence of foliations by exotic tori on simply-connected manifolds.

Keywords Singular Riemannian foliation · Aspherical foliations · Torus actions

Mathematics Subject Classification 53C12 · 57R30 · 53C24

1 Main results

When studying a Riemannian manifold M , an approach to understand its geometry or its

topology is to simplify the problem by “reducing" M to a lower dimensional space B. This can

be achieved by considering a partition of the original manifold M into submanifolds which

are, roughly speaking, compatible with the Riemannian structure of M . This “reduction"

approach is encompassed in the concept of singular Riemannian foliations.

This reduction approach has been applied to the long-standing open problem in Rie-

mannian geometry of classifying and constructing Riemannian manifolds of positive or

nonnegative (sectional) curvature via the Grove symmetry program, when the foliation is

given by an effective isometric action by a compact Lie group. When the leaves of a singular

Riemannian foliation are given by the orbits of a smooth Lie group action we say that the

foliation is a homogeneous foliation. By [15] and [49] it is clear that the concept of a singular

Riemannian foliation is more general than the one of a Lie group action.
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Since any compact connected Lie group contains a maximal torus as a Lie subgroup, the

study of torus actions is of importance in the study of homogeneous foliations. The classi-

fication up to equivariant diffeomorphism of smooth, closed, simply-connected, manifolds

with torus actions is a well studied problem when either the dimension of the manifolds or

the cohomogeneity of the action is low (see for example [17, 32, 43, 44, 46]).

One main difference between smooth group actions and foliations is that foliations may be

less rigid, not having several constraints natural to Lie groups (see for example [22]). This in

turn raises technical challenges, such as the fact that the leaves may carry non-standard smooth

structures. Thus an important problem in the setting of singular Riemannian foliations is to

distinguish homogeneous foliations from non-homogeneous ones (see for example [22]).

This problem does not become more tractable when the topology (and geometry) of the

manifold is simple. Even in the case of spheres, equipped with the round metric, it is not

clear how to distinguish homogeneous foliations (i.e. those coming from group actions) from

non-homogeneous ones (see for example [53]).

By focusing on compact, simply-connected manifolds with a singular Riemannian foli-

ations with closed aspherical leaves, we are able to attack this general problem. This type

of singular Riemannian foliations are denoted as A-foliations and they were introduced by

Galaz-García and Radeschi in [20] as generalizations of smooth effective torus actions on

smooth manifolds.

The main result of the present work is that A-foliations of codimension two on compact,

simply-connected manifolds are homogeneous up to foliated diffeomorphism.

Theorem A Every A-foliation of codimension two on a compact, simply-connected, Rieman-

nian n-manifold, with n ≥ 3, is homogeneous.

In the codimension one case, the same result holds. Namely, Galaz-García and Radeschi

in [20] give a classification up to foliated diffeomorphism of all compact, simply-connected

manifolds with a codimension one A-foliations. They show that these foliations are

homogeneous.

They also point out that the lack of examples of A-foliations with exotic tori as leaves on

simply-connected manifolds, and ask the following question:

Question Does there exist a non-trivial example of a singular Riemannian foliation whose

leaves are exotic tori on a simply-connected manifold?

In this context, Theorem A gives an answer in the negative to this question in the case that

the foliation has codimension two.

A possible approach to solve this question in the positive follows from the results in [20]:

we may consider a fiber bundle with fiber an exotic torus, over a manifold with sufficiently

large second homotopy group. This approach was pursued by Farrell and Wu in [14] consid-

ering as base spaces 4-dimensional simply-connected manifolds with large second homotopy

groups, but they only managed to produce manifolds with finite fundamental group. More-

over, the authors comment that they do not know of any smooth fiber bundle such that the fiber

is an exotic torus and the total space and base space are smooth simply-connected manifolds.

So at the present there is no clear way to decide this question in general.

To prove Theorem A we extend results of the theory of transformation groups to the

setting of singular Riemannian foliations. We focus on the general problem of comparing

two different manifolds, each one endowed with a singular Riemannian foliation, via the leaf

space, which is the topological space obtained as a quotient of the foliated manifold by the

equivalence relation given by the foliation. A technique for classifying compact manifolds

admitting a smooth effective compact Lie group action, up to homeomorphism is to compare
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their orbit spaces (see for example [17, 25, 32, 44, 46]). We apply the same idea to smooth

manifolds admitting a singular Riemannian foliation.

We begin by studying the homeomorphism type of the leaves of A-foliations on com-

pact, simply-connected manifolds. We prove in Proposition 3.3 that, except in the case of

4-dimensional leaves, the leaves are all homeomorphic to tori or Bieberbach manifolds,

extending results in [20].

Theorem B Let (M, F) be an A-foliation, and consider a leaf L ∈ F . If dim(L) �= 4, then

L is homeomorphic to a Biberbach manifold.

This result is due to the positive answer to the Borel conjecture for virtually abelian

groups, except for dimension 4 (see for example [11]). In [21] the authors introduce B-

foliations. These are A-foliations such that the leaves are Biberbach manifolds. In light of

Proposition 3.3, from a topological view point any A-foliation without 4-dimensional leaves

is a B-foliation. Since Biberbach manifolds are characterized as those closed manifolds

admitting a flat Riemannian metric [8, Corollary 5.1], we propose here to modify the definition

of B-foliation in [20] to the following one: A B-foliation is an A-foliation such that the leaves

with the induced Riemannian metric are flat, see Remark 3.4.

We also study the infinitesimal foliations of an A-foliation, as well as the holonomy of the

leaves. This allows us to describe the tubular neighborhoods of the singular leaves, and we

propose a finer stratification of the manifold. Both concepts of holonomy and the infinitesimal

foliation in the case of homogeneous foliations are encoded in the isotropy subgroup of an

orbit. For an A-foliation of codimension 2 on a simply-connected manifold we define the

weights of the foliation, which encode the information of the infinitesimal foliation. The

weights defined in this present work generalize the weights of smooth effective torus actions

(defined in [17, 44, 46]), which encode the isotropy information of torus actions.

We say that two weighted leaf spaces are isomorphic, if there is a weight preserving homeo-

morphism, and prove that for compact simply-connected manifolds with singular A-foliations

of codimension 2 the weighted orbit spaces determine up to foliated homeomorphism the

foliated manifold.

Theorem C Let (M1, F1)and (M2, F2)be compact, simply-connected Riemannian manifolds

with singular A-foliations of codimension 2. If the leaf spaces M∗
1 and M∗

2 are isomorphic,

then (M1, F1) is foliated homeomorphic to (M2, F2).

We point out that in the general setting of classifying manifolds with singular Riemannian

foliations via their leaf spaces, the best one can obtain is a classification up to foliated

homeomorphism. This is because the leaf spaces are in general only metric spaces (i.e. they

may not even be topological manifolds).

For the proof of Theorem C we need the existence of a cross-section. This is a map

σ : M∗ → M such that for the natural projection π : M → M∗ we have π ◦ σ = IdM∗ .

Theorem 6.1 we give a family of topological obstruction to the existence of a cross-section

over a subset of the principal stratum M∗
prin for a general closed singular Riemannian foliation,

and in Theorem 6.2 we give a family of obstructions to extend a cross-section on a closed

subset of the principal stratum to the whole leaf space M∗. Combining these obstructions,

we give a sufficient condition for the existence of a cross-section in the following corollary

(see Sect. 6 for the necessary definitions):

Corollary D Let (M, F) be a closed singular Riemannian foliation on a simply-connected

manifold. Suppose that we have a cross-section σ̃ : M∗
prin → M, that the homotopy fiber Fπ

of π : M → M∗ is simple, and that there exist A∗ ⊂ M∗
prin closed, such that (M∗, A∗) is
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a CW -pair. If M∗
prin has the same homotopy type as M∗, then the cross-section σ̃ can be

extended to a section σ : M∗ → M.

For the case of a smooth effective torus action of cohomogeneity two (i.e. a homogeneous

foliation), on a compact simply-connected manifold Oh proved in [44] that the leaf space is

a weighted 2-disk, with the weights satisfying some conditions. Furthermore, he proves that

these conditions characterize the orbit spaces of such actions among all weighted 2-disks.

Namely, given a weighted disk satisfying the conditions he gives a procedure to construct a

closed simply-connected smooth manifold with an effective smooth torus action of cohomo-

geneity two realizing the weighted disk as an orbit space. Oh called such weighted 2-disks

legally weighted.

We show that the weights of an A-foliation of codimension two on a compact, simply-

connected manifold M are legal weights in the sense of Oh. Moreover for a singular A-

foliation of codimension two on a compact, simply-connected manifold it was proved in [20]

that the leaf space is homeomorphic to a 2-dimensional disk, and the boundary points of the

leaf space correspond exactly to the singular leaves of the foliation. By studying closely the

weight of the foliation we conclude that the results in [44] apply. Namely, that there is a torus

action on M with the same weights as the ones of the foliation. By Theorem C we conclude

that a singular A-foliation of codimension two on a compact, simply-connected manifold is,

up to foliated homeomorphism, a homogeneous foliation.

As mentioned before, in the problem of classifying manifolds with singular Riemannian

foliations via their leaf spaces, in general the best one can obtain is a classification up to

foliated homeomorphism. In the case of singular A-foliations of codimension two on compact,

simply-connected manifolds since the leaf space is a 2-disk, it is a smooth manifold with

boundary in a unique way (it admits a unique smooth structure). Thus we can expect in this

case to get a classification up to foliated diffeomorphism.

The next obstacle to obtaining a smooth classification, and obtaining Theorem A, is the

existence of exotic smooth structures on tori (see, for example [30, 31]). As stated before, there

exists regular A-foliations of codimension 4 on compact manifolds with finite fundamental

group and leaves consisting of exotic tori [14]. To finish the proof of Theorem A we study the

diffeomorphism type of the leaves of a singular A-foliation of codimension two on a compact

simply-connected smooth manifold, and prove that they are diffeomorphic to standard tori.

We remark that A-foliations of codimension 2 with singular leaves are a priori infinitesi-

mally polar due to a general argument by Lytchak [36, Proposition 3.1]. But since they are

given by torus actions by Theorem A, they are polar by [25, Example 4.4]. Grove and Ziller

showed in [25] that a Coxeter polar action is determined by the orbit space together with the

isotropy information. This is an analogous statement of Theorem C for such polar actions

(in this case the weights are the isotropy information of each orbit). Thus it is natural to if an

analogous statement to Theorem i holds for more general A-foliations.

Question Are polar closed singular Riemannian foliations (or A-foliations) determined by

the leaf space, and information about the infinitesimal foliation over the strata corresponding

to the singular leaves?

Our article is organized as follows. In Sect. 2 we give an overview of the theory of Lie

group actions and singular Riemannian foliations, such as the infinitesimal foliation and

the holonomy. In Sect. 3 we study the homeomorphism type of the leaves of a general A-

foliation on a compact simply-connected manifold. In Sect. 4 we define the weights of an

A-foliation and prove Theorem C. We finish the proof of Theorem A in Sect. 5, where we

study the diffeomorphism type of the leaves of a singular A-foliation of codimension two on a
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simply-connected manifold. We end this manuscript with the presentation of the topological

sufficient conditions for the existence of cross-sections in Sect. 6.

2 Preliminaries

2.1 Group actions

Let G × M → M , p 	→ g⋆p, be a smooth action of a compact Lie group G on a smooth

manifold M . The isotropy group at p is defined as G p = {g ∈ G | g⋆p = p}. We say that

the orbit G(p) is principal if the isotropy group G p acts trivially on the normal space to the

orbit at p. It is a well known fact that the set of principal orbits is open and dense in M .

Since the isotropy groups of principal orbits are conjugate in G, and since the orbit G(p) is

diffeomorphic to G/G p , all principal orbits have the same dimension. If G(p) has the same

dimension as a principal orbit but the isotropy group acts non-trivially on the normal space

to the orbit at p we say that the orbit is exceptional. If the dimension of the orbit G(p) is

less than the dimension of a principal orbit, we say that the orbit is singular. We denote the

set of exceptional orbits by E and the set of singular orbits by Q. We denote the orbit space

M/G by M∗ and we define the cohomogeneity of the action to be the dimension of the orbit

space M∗ (or, equivalently, the codimension in M of a principal orbit). Let π : M → M∗ be

the orbit projection map onto the orbit space. We denote by X∗ the image of a subset X of

M under the orbit projection map π . The action is called effective if the intersection of all

isotropy subgroups of the action is trivial, i.e if ∩p∈M G p = {e}. We say that a Riemannian

metric is invariant under the action if the group acts by isometries with respect to this metric.

For every effective smooth action of a compact Lie group G on a smooth manifold M there

exists an invariant Riemannian metric (see, for example [1, Theorem 3.65]).

2.2 Effective torus actions

From now on we denote the n-torus with a Lie group structure by T
n in order to dis-

tinguish it from its underlying topological space T n . By identifying the torus group T
n

with R
n/Z

n we note that a circle subgroup of T
n is determined by a line through the

origin given by a vector v = (a1, . . . , an) ∈ Z
n , with a1, . . . , an relatively prime, via

G(a) = {(e2π i ta1 , . . . , e2π i tan ) | 0 ≤ t ≤ 1} (for a more detailed discussion see [44]). Recall

that a smooth, effective action of a torus on a smooth manifold always has trivial principal

isotropy. Therefore, a smooth, effective action of an n-torus on a smooth (n + 2)-manifold

has cohomogeneity two.

Let M be a closed, simply-connected, smooth (n+2)-manifold, n ≥ 2, on which a compact

Lie group G acts smoothly and effectively with cohomogeneity two. It is well known that, if

the set Q of singular orbits is not empty, then the orbit space M∗ is homeomorphic to a 2-disk

D∗ whose boundary is Q∗ (see [6, Chapter IV]). Moreover, the interior points correspond

to principal orbits (i.e. the action has no exceptional orbits). The orbit space structure was

analyzed in [32, 44] when G = T
n for n ≥ 2 (see also [19]). In this case the only possible

non-trivial isotropy groups are circle subgroups and 2-torus subgroups of T
n . Furthermore,

the boundary Q∗ decomposes as a a finite union of m ≥ n open edges Ŵi and m-vertices Fi ,

where Fi sits between Ŵi−1 and Ŵi if i ≥ 2 and F1 sits between Ŵm and Ŵ1. The interior

points in an edge Ŵi correspond to orbits with a fixed circle subgroup G(vi ) determined by

a vector vi = (a1i , . . . , ani ) ∈ Z
n . For i ≥ 2, the orbit corresponding to a vertex Fi is an

123



63 Page 6 of 32 D. Corro

Fig. 1 Orbit space structure of a cohomogeneity-two torus action on a closed, simply-connected manifold

orbit with isotropy equal to the product of circle subgroups G(vi ) × G(vi+1), i.e. a 2-torus

in T
n ; for i = 1, the isotropy of the orbit corresponding to F1 is given by G(vm) × G(v1).

This structure is illustrated in Fig. 1(cf. [19, Figure 1]).

The vectors {v1, . . . , vm} of the isotropy invariants G(vi ) are called the weights of the

orbit space. The weight vi associated to a singular orbit is given by the following principal

bundle (see [1, Proposition 3.41]):

G(vi ) → T
n → T

n−1. (2.1)

The weight vi determines the embedding of the isotropy subgroup G(vi ) into T
n . Following

Oh [43], we say that the the orbit space M∗ is legally weighted, if we can find a sub-collection

of n weights {vi1 , vi2 , . . . , vin

}
such that the matrix

⎛
⎝

| | | |

v̄i1 v̄i2 · · · v̄in

| | | |

⎞
⎠ =

⎛
⎜⎜⎜⎝

a1i1 a1i2 · · · a1in

a2i1 a2i2 · · · a2in

...
...

. . .
...

ani1 ani2 · · · anin

⎞
⎟⎟⎟⎠

has determinant ±1. By [44] any effective smooth T
n-action on a simply-connected (n + 2)-

manifold has legal weights. Conversely, given a disk N∗ equipped with legally weighted

orbit data, there is a closed, simply-connected smooth (n + 2)-manifold N with an effective

action of a torus T
n such that N∗ is the orbit space of N (see [44, Section 4]). We state this

fact for future reference.

Theorem 2.1 (Remark 4.7 in [44]) For n ≥ 2 and a family of legal weights {v̄1, . . . , v̄m} ⊂

Z
n with m ≥ n there exists a closed, simply-connected (n + 2)-manifold admitting a

cohomogeneity two T
n-action that realizes the family (ai1, . . . , aim) as weights.

Let M and N be two closed, simply-connected smooth (n + 2)-manifolds with effective

T
n actions, with n ≥ 2. Observe that both M∗ and N∗ are closed 2-disk, and thus have a

unique smooth structure. A diffeomorphism f ∗ : M∗ → N∗ is called weight preserving if the

isotropy subgroup of the orbit in N corresponding to f ∗(x∗) equals the isotropy subgroup of

the orbit in M corresponding to x∗. We say that the orbit spaces M∗ and N∗ are isomorphic

if there exists a weight-preserving diffeomorphism between them. From the work of Oh

given a weight-preserving diffeomorphism f ∗ : M∗ → N∗, then there exists an equivariant

diffeomorphism f : M → N which covers f ∗. More generally, one has the following

equivariant classification theorem.
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Theorem 2.2 ([32, Theorem 2.4], and [44, Theorem 1.6]) Two closed, simply-connected

smooth (n + 2)-manifolds with an effective T
n-action are equivariantly diffeomorphic if and

only if their orbit spaces are isomorphic.

2.3 Singular Riemannian foliations

A singular Riemannian foliation on a Riemannian manifold M , which we denote by (M, F),

is the decomposition of M into a collection F = {L p | p ∈ M} of disjoint connected, com-

plete, immersed submanifolds L p , called leaves, which may not be of the same dimension,

such that the following conditions hold:

(i) Every geodesic meeting one leaf perpendicularly, stays perpendicular to all the leaves

it meets.

(ii) For each point p ∈ M there exist local smooth vector fields spanning the tangent space

of the leaves.

If (M, F) satisfies the first condition, then we say that (M, F) is a transnormal system.

If it satisfies the second one, we say that (M, F) is a smooth singular foliation. When the

dimension of the leaves is constant, we say that the foliation is a regular Riemannian foliation

or just a Riemannian foliation. We refer the reader to [2] for a more in depth discussion of

singular Riemannian foliations.

A natural class of examples of singular Riemannian foliations is given by effective actions

of groups by isometries. If we only have a compact Lie group G acting smoothly on M , the

existence of an invariant Riemannian metric, guarantees that we may consider G acting

by isometries (see [1, Theorem 3.65]). A singular Riemannian foliation that arises from a

group action is called a homogenous foliation. We say that a singular Riemannian foliation

is closed if all the leaves are closed. The dimension of a foliation F , denoted by dim F , is

the maximal dimension of the leaves of F . We call the foliation trivial when dim F = 0 or

dim F = dim M . In the first case the leaves are collections of points, and in the second case

there is only one leaf, the total manifold. The codimension of a foliation is,

codim(M, F) = dim M − dim F .

The leaves of maximal dimension are called regular leaves and the remaining leaves are

called singular leaves. Since F gives a partition of M , for each point p ∈ M there is a unique

leaf, which we denote by L p , that contains p. We say that L p is the leaf through p. The

quotient space M/F obtained from the partition of M , is the leaf space and the quotient map

π : M → M/F is the leaf projection map. The topology of M yields a topology on M/F ,

namely the quotient topology. With respect to this topology the quotient map is continuous.

We denote the leaf space M/F from this point onward by M∗ as in the homogeneous case.

We denote by S∗ the image π(S) of a subset S ⊂ M under the leaf projection map.

A singular Riemannian foliation (M, F) induces a stratification on M . For k ≤ dim F we

define the k-dimensional stratum as:

�(k) = {p ∈ M | dim L p = k}.

The regular stratum �reg = �(dim F) is an open, dense and connected submanifold of M

(see [48, Lemma 2.2.2]). The foliation restricted to the regular stratum yields a Riemannian

foliation (�reg, F), and �∗
reg is open and dense in the leaf space M∗. Furthermore, by [40,

Proposition 3.7], if (M, F) is a singular Riemannian foliation with closed regular leaves,

then �∗
reg is an orbifold. Note that the foliation is regular if and only if �reg = M .
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2.4 Infinitesimal foliation

We start by fixing a point p ∈ M , and consider the normal tangent space νp L p to the leaf

L p ⊂ M . Next we consider ε > 0 small enough and set νε
p = expp(νp L p) ∩ Bε(0), with

Bε(0) the ball of radius ε in Tp M . Taking Sp = expp(ν
ε
p L p) we consider the intersection of

the leaves of F with Sp . This induces a foliation F |Sp on Sp by setting the leaves of F |Sp to be

the connected component of the intersection between the leaves of F and Sp . This foliation

may not be a singular Riemannian foliation with respect to the induced metric of M on Sp , i.e

the leaves of F |Sp may not be equidistant with respect to the induced metric. Nevertheless,

by [40, Proposition 6.5], the pull-back foliation F
p = exp∗

p(F |Sp ) is a singular Riemannian

foliation on νε
p L p equipped with the Euclidean metric. We call this foliation (νε

p L p, F
p)

the infinitesimal foliation at p. By [40, Lemma 6.2] the infinitesimal foliation is invariant

under homotheties that fix the origin. Furthermore the origin {0} ⊂ νε
p L p is a leaf of the

infinitesimal foliation. Since the leaves of F
p stay at a constant distance from each other,

the fact that the origin is a leaf implies that any leaf of F
p is at a constant distance from the

origin, and thus it is contained in a round sphere centered at the origin. From this last fact it

follows that we may consider the infinitesimal foliation restricted to the unit normal sphere

of νp L p , which we denote by S
⊥
p , yielding a foliated round sphere (S⊥

p , F
p) with respect to

the standard round metric of S
⊥
p which is also called the infinitesimal foliation. From here on

when we say “infinitesimal foliation" we refer to (S⊥
p , F

p), or equivalently, to (νp L p, F
p),

since (νp L p, F
p) is invariant under homothetic transformations and thus it can be recovered

from (S⊥
p , F

p).

For the particular case of a homogeneous singular Riemannian foliation by an action of a

compact Lie group G, the infinitesimal foliation at a point p is given by taking the connected

components of the orbits of the action of the isotropy group G p on S
⊥
p via the isotropy

representation. Therefore, denoting by G0
p the connected component of G p containing the

identity element, the infinitesimal foliation is given by considering only the action of G0
p on

S
⊥
p given by the isotropy representation.

2.5 Holonomy

Given a leaf L ⊂ M , a point p ∈ L , and a path γ : [0, 1] → L starting at p, the following

theorem gives us a foliated transformation from νp L to the total space νL of the normal

bundle νL → L .

Theorem 2.3 (Corollary 1.5 in [37]) Let L be a closed leaf of a singular Riemannian foliation

(M, F), and let γ : [0, 1] → L be a piecewise smooth curve with γ (0) = p. Then there is a

map G : [0, 1] × νp L → νL such that:

(i) G(t, v) ∈ νγ (t)L for every (t, v) ∈ [0, 1] × νp L.

(ii) For every t ∈ [0, 1], the restriction G : {t}×νp L → νγ (t)L is a linear isometry preserving

the leaves of νL .

(iii) For every s ∈ R, the map expγ (t)(sG(t, v)) belongs to the same leaf as expp(sv).

We denote by O(S⊥
p , F

p) the group of foliated isometries of the infinitesimal foliation, i.e.

all the isometries which preserve the foliation. Thus from Theorem 2.3 given a loop γ at p,

we have a foliated linear isometry Gγ : νp L → νp L by setting Gγ (v) = G(1, v). Therefore,

we have a group homeomorphism ρ : �(L, p) → O(S⊥
p , F

p) from the loop space of L p at p

to the foliated isometries of the infinitesimal foliation by setting ρ(γ ) = Gγ . We note that an
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isometry in O(S⊥
p , F

p) may map a leaf to a different leaf. By O(F p) we denote the foliated

isometries which leave the foliation invariant, i.e. the isometries f ∈ O(S⊥
p , F

p) such that

for any leaf L of (S⊥
p , F

p)s we have f (L) ⊂ L. There is a natural action of O(S⊥
p , F

p) on

the quotient S
⊥
p /F p . The kernel of this action is O(F p).

We now show that if two loops, γ1 and γ2, are homotopic, then G−1
γ1

◦ Gγ2 is in the kernel

of the action of O(S⊥
p , F

p) on S
⊥
p /F p . Therefore we obtain a group morphism from π1(L, p)

to O(S⊥
p , F

p).

Lemma 2.4 Let γ0 and γ1 be two curves in a closed leaf L which are homotopic relative

to the end points, with γ0(0) = p = γ1(0), and γ0(1) = q = γ1(1). Then (G1)
−1 ◦

G0 : νp L → νq L is homotopic to the identity map. Furthermore this map takes every leaf of

the infinitesimal foliation F
p to itself.

Proof Let H : [0, 1] × I → L be the homotopy between γ0 and γ1. By applying Whitney’s

Approximation Theorem (see for example [35, Theorem 9.27]), we can assume that H is

a smooth map. For s ∈ I fixed we consider the smooth curve γs(t) = H(t, s). From the

compactness of [0, 1]× I we can find a partition 0 = t0 < t1 < · · · tN = 1 of [0, 1] such that

for any s ∈ I the curve γs restricted to [ti−1, ti ] is an embedding. By extending the vector field

γ ′
s (t) for t ∈ [ti−1, ti ] to L , we obtain smooth vector fields (Vs)i on L . Since the family of

curves γs varies continuously with respect to s by construction, for each 1 ≤ i ≤ N the family

of vector fields (Vs)i varies smoothly with respect to s. This implies that, when we consider

for each γs , the map Gs : νp L → νq L given by Theorem 2.3, then Gs varies continuously

with respect to s (see [4]). Defining K (v, s) = (Gs)
−1(G0(v)) we obtain a homotopy

K : νp L × I → νp L between the identity I d : νp L → νp L and (G1)
−1 ◦ G0 : νp L → νp L .

For v ∈ νp L fixed, we have, from Theorem 2.3 (iii), that expp((Gs)
−1(G0(v))) lies in the

same leaf of F as expp(v). Since K (v, s) defines a path between v and (G1)
−1(G0(v)), we

have that (G1)
−1(G0(v)) lies in the same leaf Lv of F

p as v. Thus (G1)
−1(G0(Lv)) ⊂ Lv .

⊓⊔

Proposition 2.5 Let (M, F) be a singular Riemannian foliation, L a closed leaf of the

foliation and p ∈ L. There is a well defined group morphism,

ρ : π1(L, p) → O(S⊥
p , F

p)/O(F p),

given by ρ[γ ] = [Gγ ].

Proof Given a loop γ0, we consider the linear foliated transformation, G0 : νp L → νp L ,

given by Theorem 2.3, and set

ρ[γ0] = [G0] ∈ O(S⊥
p , F

p)/O(F p).

From Proposition 2.4, if γ1 is a loop homotopic to γ0, then we have (G1)
−1 ◦ G0 ∈ O(F p).

Therefore [G0] = [G1] in O(S⊥
p , F

p)/O(F p). ⊓⊔

For a closed leaf L of a singular Riemannian foliation (M, F) we define the holonomy of

the leaf L as the image ŴL < O(S⊥
p , F

p)/O(F p) of π1(L, p) under the morphism ρ. When

we consider the holonomy of a leaf L p trough a point p ∈ M , we denote it by Ŵp . A regular

leaf L is called a principal leaf if the holonomy group is trivial, and exceptional otherwise.

Given a fixed point p ∈ M and a vector v ∈ S
⊥
p , set q = expp(εv). If ε is small enough,

then Lq is contained a tubular neighborhood of L p , and thus there is a well defined smooth

closest-point projection proj : Lq → L p which is a submersion, by [40, Lemma 6.1]. The
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connected component of the fiber of the map proj through q can be identified with the leaf

Lv ∈ F
p through v. Taking L p = L̃ p/ proj∗(π1(Lq)), the quotient of the universal cover

L̃ p of L p , we have a finite cover L p → L p such that proj : Lq → L p lifts to a fibration

Lv → Lq
ξ

→ L p. (2.2)

Clearly fibration (2.2) is a surjective map by construction. The following proposition gives

another way of obtaining the covering L of L , via a subgroup H of the holonomy group Ŵp .

Proposition 2.6 For v ∈ S
⊥
p with image v∗ ∈ Sp∗ , set H to be the subgroup of Ŵp fixing v∗.

Then, taking q = expp(v), the finite cover L p of L p in the fibration ξ : Lq → L p is L̃ p/H.

Proof Let F = proj−1(p) be the fiber of the metric projection proj : Lq → L p , which may

consist of several connected components. The end of the long exact sequence of the fibration

looks like

· · · → π1(F, q) → π1(Lq , q)
proj∗
−→ π1(L p, p)

∂
→ π0(F, q) → 0.

From exactness, we conclude that (proj∗)(π1(Lq , q)) = Ker(∂). We recall how the map

∂ : π1(Lq , q) → π0(F, q) is defined, following a modification of the definitions presented

in Hatcher (see Sections 4.1 and 4.2 in [28]). Let λ1 : D
1 → S

1 be the map collapsing ∂D
1

to a point. Let δ0 : S
0 → D

1 be the inclusion as the boundary. Consider a loop ϕ : S
1 → L p

with base point p. By the homotopy lifting property there is a lift λ : D
1 → Lq for the map

ϕ ◦ λ1 : D
1 → L p , with λ(0) = q . Furthermore, by definition, we have that ϕ ◦ λ1 ◦ δ0 =

proj ◦λ ◦ δ0 is constant. Therefore the image of the map ψ = λ ◦ δ0 is contained in F .

Thus we have a map ψ : S
0 → F . We define ∂[ϕ] = [ψ]. Let α : S

1 → L p be a loop in

proj∗(π1(Lq , q)) = Ker ∂ . Consider G t = G : {t}×νp L p → νL p , the transformation given

by Theorem 2.3 corresponding to α. Then α̃(t) = expα(t)(G t (v)) is a lift of α in Lq . Since ∂

does not depend on the choice of a lift we have that 0 = ∂[α] = [α̃]. It follows that the end

point of α̃ : [0, 1] → F is in the same connected component of F as q . Therefore we have that

G1 : νp L p → νp L p fixes the infinitesimal leaf Lv in S
⊥
p /Fp . Thus proj∗(π1(Lq , q)) ⊂ H .

Conversely, if we start with [α] ∈ H , then for the map G : [0, 1] × νp L p → νL p given by

Theorem 2.3, we have that G1 maps the infinitesimal leaf Lv to itself. By definition this means

that expp(G1(v)) is in the same connected component of F as q = expp(v). Theorem 2.3 (iii)

implies that the path expp(G t (v)) is a path between q and expp(G1(v)) in F . Thus we have

that ∂[α] = 0. Therefore we conclude that proj∗(π1(Lq , q)) = H . ⊓⊔

Proposition 2.6 gives a way to detect if there is holonomy for a closed leaf of (M, F).

This proposition extends [20, Remark 2.3] to general singular Riemannian fibrations.

If the map ξ : Lq → L p is proper then, it follows from Ehresmann’s fibration Lemma in

[9] that ξ is a locally trivial fibration. In the particular case when Lq is compact, then the

map ξ is proper. Thus for foliations with closed leaves the fibration (2.2) is a fiber bundle.

Remark 2.7 We note that from Ehresmann’s Lemma the fiber bundle given by the projection

map ξ , may not have as structure group a Lie group, but rather a very large topological group,

namely the diffeomorphism group of the fiber, Diff(Lv). Although Diff(Lv) is in general not

a Lie group, it is a Frobenious group, i.e. the group operations are smooth with respect to a

Frobenious atlas (see [26]).

If the foliation F is given by the action of a compact Lie group G, then the holonomy of

an orbit G(p) is given by G p/G0
p (see [37, Section 3.1]). For q ∈ M close to p with Gq a
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subgroup of G p , the fiber bundles given by (2.2) are of the form:

G0
p/Gq → G/Gq → G/G0

p,

where G0
p is the connected component of the identity of the isotropy group G p , and G/G0

p

is a cover of the orbit G/G p (see [20, Example 2.4]).

2.6 Principal stratum

We now study the topology of the principal stratum Mprin of a closed singular Riemannian

foliation (M, F) on a compact simply-connected Riemannian manifold M .

If L is a principal leaf of a singular Riemannian foliation (M, F) on an n-dimensional

manifold with all regular leaves closed, then [39, Theorem 2.5] and the fact that Ŵp is trivial

show that L∗ is a regular point of the orbifold �∗
reg. With this we can easily see that M∗

prin

corresponds to the manifold part of the orbifold �∗
reg. Thus Mprin is open and dense in �reg.

Since, in general for a singular Riemannian foliation, �reg is open and dense in M , then

M∗
prin is open and dense in M∗. Furthermore, from the fact the manifold part of an orbifold

is connected (see [10], [34, Lemma 2.3], [56] ) it follows that the set M∗
prin is connected in

M∗. Since it is locally Euclidean, it is path connected.

We collect these observations in the following proposition.

Proposition 2.8 Let (M, F) be a singular Riemannian foliation with closed regular leaves.

Then the principal stratum Mprin is open dense in M, and M∗
prin is connected and path

connected.

Consider principal leaves, L0 and L , in a closed singular Riemannian foliation (M, F) on a

compact, simply-connected manifold M . Furthermore assume that M∗
prin is simply connected.

Take any path γ : I → M∗
prin, with γ (0) = L∗

0 and γ (1) = L∗. Recall that Mprin is a subset of

the regular stratum �reg. For a fixed point x ∈ L0, consider the unique smooth horizontal lift

γ x : I → Mprin of γ through x (see [24, Proposition 1.3.1]). We define a homeomorphism

hγ : L0 → L by setting hγ (x) = γ x (1).

Corollary 2.9 Consider a singular Riemannian foliation (M, F) with closed leaves on a

compact simply-connected Riemannian manifold. Assume that the principal stratum M∗
prin is

simply connected. Fix principal leaves L0 and L of F , and consider two paths γ0 : I → M∗
prin

and γ1 : I → M∗
prin, connecting L∗

0 and L∗. Then the homeomorphism hγ0 is homotopic to

hγ1 .

Proof From the hypothesis that M∗
prin is simply connected it follows that there is a homotopy

from H : I × I → M∗
prin from γ0 to γ1 fixing the end points L∗

0 and L∗. This defines

a continuous family of curves γs : I → M∗
prin, by setting γs(t) = H(t, s). We define a

homotopy H̃ : L0 × I → L by setting H̃(x, s) = γ x
s (1). ⊓⊔

Remark 2.10 Observe that in general if a leaf L has trivial holonomy ŴL = {Id} this does

not mean that the map ρ : �(L, p) → O(S⊥
p , F

p) is trivial. It means that by Lemma 2.4 any

element in ρ(�(L, p)) ⊂ O(S⊥
p , F

p) is homotopic to the identity map.
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2.7 Slice theorem

With the concepts of the infinitesimal foliation at a point p and the representation of the loop

space �(L, p) in O(S⊥
p , F

p) of a closed leaf in [38] the following theorem is proven which

describes a tubular neighborhood of a closed leaf of a singular Riemannian foliation:

Theorem 2.11 (Slice Theorem, Theorem A in [38]) Let (M, F) be a singular Riemannian

foliation, and let L be a closed leaf with infinitesimal foliation (νp L, F
p) at a point p ∈ L.

Then there is a group K p ⊂ O(νp L) of foliated isometries of (νp L, F
p) and a principal

K p-bundle P over L, such that for small enough ε > 0, the ε-tube U around L is foliated

diffeomorphic to (P ×K p D
⊥
p (ε), P ×K p F

p).

Here the group K p is given as:

K p = {Gγ : νp L → νp L | γ piece-wise smooth loop at p}.

Since the action K p on νp L by construction preserves the infinitesimal foliation F
p , then

diagonal action of K p on P × νp L via Gγ (p, v) = (p · Gγ −1 , Gγ (v)) preserves the product

foliation {P × Lv | v ∈ νp L}. Denote by ρ : P × νp L → (P × νp L)/K p the quotient map.

The leaves of the foliation P ×K p F
p are given by the images of ρ(P × Lv), and make a

singular Riemannian foliation [50, Proposition 1.11].

3 A-foliations

Foliations by tori on compact Riemannian manifolds were introduced in [20] as generaliza-

tions of smooth effective torus actions. Namely an A-foliation is a foliation where all the

leaves are closed, and aspherical, i.e. for n > 1 the n-th homotopy group of the leaves is trivial.

By [20, Corollary B] the principal leaves of an A-foliation on a compact, simply-connected,

Riemannian manifold are homeomorphic to tori.

3.1 Homeomorphism type of the leaves in an A-foliation

We recall that given two points p, q ∈ M , with q sufficiently close to p with respect to the

metric of M , in the case when Lq is a principal leaf, then there is a fibration:

L → Lq → L p, (2.2)

where L p = L̃ p/H is a finite cover of L p , and L is a leaf in the infinitesimal foliation F
p

(see Proposition 2.6). Using this description we describe next the topology of the other leaf

types in an A-foliation.

Recall from Sect. 2.4, that the infinitesimal foliation at p ∈ M , is obtained from the foliated

slice (Sp, F|Sp ), where Sp = expp(ν
ε
p L p) for a sufficiently small ε > 0. First we consider

the case when the leaves of this foliation are connected. In this case the finite covering L p is

trivial, i.e. L p = L p . Thus following the proof of [20, Theorem 3.7], we prove the following

result:

Proposition 3.1 Let F, M and N be topological manifolds, with F connected, and let F →

M → N be a fibration. If M is homeomorphic to a torus, then F and N are tori.
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Proof Since M is aspherical, we have from [20, Theorem 3.7] that F and N are also aspherical.

From the long exact sequence of the fibration we get:

0 → π1(F) → π1(M) → π1(N ) → 0.

Since π1(M) is an abelian, torsion-free, finitely-generated group, and π1(F) is a subgroup of

π1(M), then π1(F) is an abelian, torsion free, finitely generated group. Thus, by classification

of finitely generated abelian groups and the Borel conjecture, F is homeomorphic to a torus.

Now assume that π1(N ) has torsion. Then for some k ∈ Z, the cyclic group Zk acts freely

on the contractible manifold Ñ . Therefore it follows that Ñ/Zk is an Eilenberg–MacLane

space K (Zk, 1). This contradicts the fact that K (Zk , 1) has infinite cohomological dimension.

Thus π1(N ) is an abelian, torsion-free, finitely generated group. Again by the classification

of finitely generated abelian groups and the Borel conjecture, N is homeomorphic to a torus.

⊓⊔

Corollary 3.2 In an A-foliation all leaves with trivial holonomy are homeomorphic to tori.

In the case when the leaf L p has non-trivial holonomy we get the following proposition:

Proposition 3.3 The leaves (of dim �= 4) with non-trivial holonomy of an A-foliation are

homeomorphic to Bieberbach manifolds.

Proof In the case when the leaf L p has non-trivial holonomy, applying Proposition 3.1 to

fibration (2.2) we have that the covering L p is homeomorphic to a torus. Thus, applying the

long exact sequence of homotopy groups to the fibration L p → L p with finite fiber F , we

get,

0 → π1(L p) → π1(L p) → π0(F) → 0.

Therefore π1(L p) is a finite extension of π0(F) by π1(L p). Assume that π1(L p) is not

torsion-free, and recall that since L p is a torus, we have L̃ p = R
n . Then there exists a

finite cyclic subgroup Zk acting on the contractible manifold L̃ p = R
n . As in the proof

of Proposition 3.1 this contradicts the fact that the Eilenberg–MacLane space K (Zk, 1)

has infinite cohomological dimension. Since π1(L p) is Z
n and F is finite, we have that

π1(L p) = G is a crystallographic group (see [11, Section 6], [5], [57]). Thus π1(L p) is a

Bieberbach group, since it is a torsion free crystallographic group. By [11, Theorem 6.1],

for n �= 3, 4, the leaf L p is homeomorphic to a Bieberbach manifold. Recall that [33,

Theorem 0.7] states that the Borel conjecture is true in dimension 3. Thus in dimension 3,

since L p has fundamental group isomorphic to a Bieberbach group, L p is homeomorphic to

a Bieberbach manifold. ⊓⊔

Remark 3.4 In [20, Definition 3.2] the authors define a B-foliation as an A-foliation with

all leaves homeomorphic to Bieberbach manifolds. Since a torus is a Bieberbach space, it

follows from Propositions 3.2 and 3.3 that any A-foliation is a B-foliation, provided none

of the leaves with non-trivial holonomy is 4-dimensional. Because of this fact, we will not

distinguish between A-foliations and B, in this work. Nonetheless, we might consider B-

foliations as those A-foliations on a Riemannian manifold (M, g) for which the leaves with

the induced Riemannian metric have sectional curvature equal to 0, i.e. they are flat manifolds

with respect to the induced metric.

Remark 3.5 The diffeomorphism type of the leaves of an A-foliation may not be unique. If

the leaves have trivial holonomy, i.e. are homeomorphic to tori, then for dimensions k ≥ 5,
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there exist different smooth structures {Uα1 , ϕα1}, {Uα2 , ϕα2} on the k-torus T k , such that

τ k
1 = (T k, Uα1 , ϕα1) is homeomorphic (as a topological manifold) to τ k

2 = (T k, Uα2 , ϕα2),

but τ k
1 is not diffeomorphic to τ k

2 (see for example [31]).

As a concrete example of this exotic phenomena, we may consider an exotic sphere �k

and the standard torus:

T
k = S

1 × · · · × S
1

︸ ︷︷ ︸
k-times

.

The manifold T
k#�k is homeomorphic to T

k but not diffeomorphic to T
k (see [12,

Remark p. 18] and [13, Theorem 3]).

In the case when the leaves with the induced metric have sectional curvature less or equal

to 0, then the smooth Borel conjecture holds [13, Theorem 3], and there is no ambiguity

about the smooth structure of the leaves.

4 A-foliations of codimension 2

We focus in this section to the particular case of A-foliations of codimension 2 on simply-

connected manifolds and how they compare to effective torus actions of codimension 2.

4.1 Leaf space of an A-foliation of codimension 2

In this section we describe the leaf space of an A-foliation of codimension 2 on a simply-

connected manifold (M, F). There are two possible cases: the foliation has no singular leaves

(i.e. it is a regular foliation), or the foliation has singular leaves. In the second case we will

be redundant and call it a singular A-foliation.

By Theorem E in [20] it follows that, if the A-foliationF is regular, then M is diffeomorphic

to S
3 and the foliation F is given by a Hopf weighted action.

In the second case, when the A-foliation F is singular, then again by Theorem E [20]

the leaf space M∗ is a closed 2-disk. It follows from [36, Proposition 1.7] that there are

no exceptional leaves in Mreg, and thus Mreg = Mprin. Furthermore, from the fact that the

restriction of the foliation to a stratum �(k) containing only leaves of dimension k is a regular

foliation, then [39, Theorem 2.15] and the fact that M∗ = D
2 imply that the singular leaves

of F also have trivial holonomy. From [20, Theorem E] it follows that there are two types

of leaves: a least singular leaf, homeomorphic to T n−1 with infinitesimal foliation given

by the homogeneous foliation (S2, S
1), and the most singular leaf, homeomorphic to T n−2

with infinitesimal foliation given by the homogeneous foliation (S3, T
2). The singular leaves

project via the quotient map onto the boundary of M∗. Moreover the boundary of M∗ consists

of a union of arcs γi , i ∈ {1, 2, . . . , r}. The points in the interior of these arcs correspond

to leaves homeomorphic to T n−1. The end points, Fi , of these arcs correspond to leaves

homeomorphic to T n−2 (see Fig. 2).

4.2 Tubular neighborhoods of singular leaves of an A-foliation of codimension 2

Before proving our comparison theorem for singular A-foliations of codimension 2 on simply-

connected manifolds we describe the tubular neighborhoods of the singular leaves of the

foliation.
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Fig. 2 Leaf space of A-foliation of codimension two

Theorem 4.1 For an A-foliation (M, F) of codimension 2 given a singular leaf L and a fixed

point p ∈ L, there exists ε > 0 such that the tubular neighborhood of radius ε around L is

foliated diffeomorphic to

(L × D
⊥
p , {L × Lv | Lv ∈ F

p}).

Proof Recall that the singular leaves of a singular A-foliation of codimension 2 on an (n +

2)-dimensional simply-connected manifold have dimension (n − 1) and (n − 2).

Suppose L has dimension (n −1) and fix p ∈ L . Then the infinitesimal foliation (S⊥
p , Fp)

is given by the S
1-action on S

2, which is also the suspension of the circle action on S
1. Thus

the group O(Fp) is equal to SO(2). Moreover, since the holonomy is trivial we have that

O(S⊥
p , F

p) = O(F p). Therefore we see that the action of K p on S
⊥
p = S

2 is homotopic to

the trivial action. From this if follows that the associated disk bundle given by Theorem 2.11

is a trivial one.

Now assume that L has dimension (n − 2) and fix p ∈ L . Then the infinitesimal foliation

(S⊥
p , Fp) is given by a T

2-action on S
3, which decomposes as the join of two circle actions on

two copies of S
1. That is, (S⊥

p , Fp) = (S1, S
1)⋆(S1, S

1). Observe that the group K p leaves

each of the S
1 factors invariant. Thus we conclude again that the K p-action on S

⊥
p = S

3 is

homotopic to a trivial action. Therefore again the associated disk bundle from Theorem 2.11

is a trivial one. ⊓⊔

4.3 Weights of an A-foliation of codimension 2

In this section we define invariants called weights which allows us to compare A-foliations of

codimension 2 on simply-connected manifolds. These invariants extend the notion of weights

given for an homogeneous A-foliations of dimension 1, [17, 45], and of cohomogeneity 2

(i.e. codimension 2) [44, 46, 47].

Namely, for circle actions on simply-connected 3-manifolds [45], or on 4-manifolds [17],

or torus actions of cohomogeneity 2 on simply-connected n-manifolds with n ≥ 4 [44, 46,

47], the weights determine the isotropy group of the orbit, and the isotropy representation. But

by the Slice Theorem for group actions, the isotropy group and the isotropy representation

describe a small tubular neighborhood of the orbit, as well as the action on this neighborhood.

Moreover, in the case torus actions of cohomogeneity 2 on simply-connected (n + 2)-

manifolds, the possible isotropy groups are circles or 2-torus [44, (1.1) Lemma], and in both

cases there is a unique isotropy representation. Thus the tubular neighborhood of the orbits is
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characterized by the embedding of the circle isotropy groups into T
n . This embedding can be

represented by an element v̄ ∈ π1(T
n), which represent the image in π1(T

n) of the generator

of π1(S
1) (see Sect. 2.2). With this alternative description of the weights for homogeneous A-

foliations of codimension 2 on simply-connected manifolds, we define an analogous weight

for general A-foliations of codimension 2 on simply-connected manifolds.

Let (M, F) be a simply-connected (n + 2)-dimensional manifold with a singular n-

dimensional A-foliation. We fix a principal leaf L0 ⊂ M . We consider any arbitrary point

p ∈ M such that L p has dimension (n − 1). Next we take v ∈ S
⊥
p , such that q = expp(v)

is contained in a principal leaf. From the fact that the regular stratum M∗
prin is open and

dense in M∗, there exists a path γ : I → M∗
prin connecting q∗ and L∗

0. Since Mprin → M∗
prin

is a Riemannian submersion, we consider the horizontal lift γ q of γ through q (see [24,

Section 1.3]). We set q0 = γ q(1) ∈ L0. Recall from Sect. 2.5 that, in this setting, for some

cover L p → L p , we have a fibration

Lv → Lq → L p. (2.2)

Moreover, since for singular A-foliations of codimension 2, all leaves have trivial holonomy

it follows that L p = L p . From [20, Corollary B] and Proposition 3.1, we have that Lq = T n ,

L p = T n−1, and Lv = T 1. From the homotopy long exact sequences of the fibration we get

a short exact sequence

0 → π1(Lv, v) → π1(Lq , q) → π1(L p, p) → 1.

The path γ : I → M∗
prin connecting L∗

0 to L∗
q induces a homeomorphism hγ : L0 → Lq , and

thus an isomorphism between π1(Lq , q) and π1(L0, q0).

Denote by e1 the generator of π1(Lv, v) = Z. It is mapped to an element v̄p in

π1(L0, q0) = Z
n .

The definition of the integer vector v̄p depends a priori on the choice of path γ joining L∗
0

to L∗
q . The following lemma shows that in fact, it is independent of the choice of γ .

Lemma 4.2 The element v̄p ∈ π1(L0, q0) does not depend on the choice of path γ : I → M∗

connecting L0 to Lq .

Proof If we choose any other path γ1 from L∗
0 to L∗

q , then Corollary 2.9 shows that the

group isomorphisms induced by (hγ )∗ : π1(L0, q0) → π1(Lq , q) and (hγ1)∗ : π1(L0, q0) →

π1(Lq , q) are equal. Therefore the integer vector v̄p does not depend of the curve γ . ⊓⊔

Next we prove that if we choose another vector w ∈ S
⊥
p such that expp(w) lies in a

principal leaf, then we recover the same integer vector v̄p .

Lemma 4.3 The integer vector v̄p does not depend on the choice of v ∈ S
⊥
p .

Proof Take w ∈ S
⊥
p with w �= v, such that q1 = expp(w) lies on a principal leaf Lq1 . Since

(S⊥
p , Fp) is a singular Riemannian foliation with closed leaves, by Proposition 2.8, the space

(S⊥
p /F p)prin is path-connected. Therefore there exists a path β : I → (S⊥

p /F p)prin from

L
∗
v ∈ S

⊥
p /F p to L

∗
w ∈ S

⊥
p /F p . By taking horizontal lifts of β in (S⊥

p , F
p)reg we obtain

a homeomorphism hβ : Lv → Lw . By setting q ′
1 = expp(hβ(v)), the homeomorphism

hβ induces an isomorphism (hβ)∗ : π1(Lv, q) → π1(Lw, q ′
1). From Corollary 2.9, this

isomorphism is independent of the choice of β.

Let σ be a path in Lw from q1 to q ′
1. This gives an isomorphism from π1(Lw, q ′

1) onto

π1(Lw, q1), given by mapping an element [δ] ∈ π1(Lw, q ′
1) to [σ−1δσ ]. Let α be another
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Fig. 3 Well defined weights

path in Lw from q1 to q ′
1. Consider the concatenation of paths σα−1δασ−1. The path ασ−1

is a loop based at q ′
1. Thus we have a conjugation [σα−1][δ][ασ−1] in π1(Lv, q ′

1). Since we

have an A-foliation, Lw is homeomorphic to a torus. Thus π1(Lv, q ′
1) is an abelian group.

Therefore the path σα−1δασ−1 is homotopic to σ , relative to the end points. Thus α−1δα

is homotopic to σ−1δσ . Therefore the isomorphism from π1(Lw, q ′
1) onto π1(Lw, q1), does

not depend on the path σ . It follows that we have a well defined isomorphism from π1(Lv, q)

to π1(Lw, q1).

Let hγ : Lq → L0 and hλ : Lq1 → L0, be homeomorphisms given by paths γ : I → M∗
prin

and λ : I → M∗
prin. Set x0 = hλ(q

′
1), y0 = hλ(q1) and q0 = hγ (q) (see Fig. 3 ). Denote

by i1 : Lv → Lq and i2 : Lw → Lq1 the inclusions, given by the bundles (2.2), of the

infinitesimal leaves into the leaves Lq and Lq1 , respectively. The homeomorphism hβ induces

an isomorphism from (hγ ◦i1)∗(π1(Lv, q)) onto (hλ◦i2)∗(π1(Lw, q ′
1)). The path σ : I → Lw

gives a well defined isomorphism from (hγ ◦ i2)∗(π1(Lw, q ′
1)) onto (hλ ◦ i2)∗(π1(Lw, q1)).

Thus the generator of π1(Lv, q) in π1(L0, q0) is mapped to the generator of π1(Lw, q1).

From this we see that the integer vector v̄p does not depend on v. ⊓⊔

From the proof of the previous lemma, by using the fact that the fundamental groups of

L p and L0 are abelian, it follows that the definition of the integer vector v̄p does not depend

on the choice of the base point p in L p . We state this explicitly:

Lemma 4.4 The weight v̄p of L p does not depend on the choice of p ∈ L p .

Observe that the weights a priori depend of the principal leaf L0 fixed at the beginning.

We show that for a singular A-foliation of codimension 2 on a simply-connected manifold

the weights do not depend on the choice of the principal leaf L0.

Lemma 4.5 Let (M, F) be a compact simply-connected (n + 2)-dimensional manifold with

a singular A-foliation of codimension 2. Let L1 and L2 be principal leaves, and take p ∈ M

a point contained in an (n −1)-dimensional leaf. Denote by v̄p,1 the weight of L p associated

with L1 and by v̄p,2 the weight of L p associated with L2. Then v̄p,1 = v̄p,2.
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Proof We begin by fixing a third principal leaf L0 and by pointing out that π : Mprin → M∗
prin

is a fiber bundle, with fibers the principal leaves. Since M∗
prin is homeomorphic to an open 2-

disk and thus contractible, then Mprin is foliated homeomorphic to M∗
prin × L0. Therefore the

fundamental group of L1 and L2 get identified with the fundamental group of L0. Moreover

the circles in L0 determined by v̄p,1 and v̄p,2 correspond to the principal leaves of F
p . Thus

we conclude that under the identification Mprin = M∗
prin × L0 we have v̄p,1 = v̄p,2. ⊓⊔

Last we show that the integer vector v̄p is constant along the connected components of

the singular stratum �∗
(n−1)

∈ M∗.

Lemma 4.6 Let (M, F) be an A-foliation of codimension 2 on an (n+2)-dimensional simply-

connected manifold M. Then for p1, p2 ∈ M such that p∗
1 and p∗

2 are contained in the same

connected component of least singular leaves, i.e. �∗
(n−1)

⊂ M∗, it holds that v̄p1 = v̄p2 .

Proof Recall that a connected component of �∗
(n−1)

is an open edge contained in ∂ M∗.

Thus, there is only one possible path γ ∗ joining p∗
1 to p∗

2 . Since the quotient map

π : �(n−1) → �∗
(n−1)

is a fiber bundle, by taking horizontal lifts of γ ∗ we get a homeo-

morphism hγ ∗ : L p1 → L p2 . From this we get an isomorphism between π1(L p1 , p1) and

pi1(L p1 , p1). Now we recall that for any close points q1 = expp1
(v1) and q2 = expp2

(v2)

contained in principal leaves, by Theorem 4.1 we have a group isomorphism π1(Lqi
, qi ) =

π1(L pi
, pi ) × π1(Lvi

, vi ). Here we are abusing the notation by writing as π1(Lvi
, vi ) the

one-dimensional subgroup of π1(Lqi
, qi ) generated by the weight v̄pi

. With this we conclude

that the weights v̄p1 are the same v̄p2 . ⊓⊔

Remark 4.7 Since each connected component of the singular stratum �∗
(n−1)

∈ M∗ is an open

edge in ∂ M∗, we write the collection of weights as follows: we label the edges γ1, . . . , γr as

shown in Fig. 2. To each edge γi we add the associated weight v̄i = (ai1, . . . , ain) ∈ Z
n . We

collect this information in a list {v̄1, . . . , v̄n} of weights.

Also we point that the fibration (2.2) is given by a circle action:

Proposition 4.8 The fiber bundle (2.2) is a principal S
1-bundle.

Proof First we show that the bundle (2.2) is an orientable fiber bundle. We choose an arbitrary

orientation for the fiber S
1
i in local charts, to obtain a vector field, tangent to the circles in the

total space. Since the n-torus is orientable, we can extend this vector field to a basis, such

that the transition maps have positive determinant in this basis.

Indeed if we choose on a local chart an orientation of the fiber S
1
i ⊂ T n , we can extend it

to a basis of the tangent spaces of T n . Since T n is orientable we can do this construction in

such a way that for two open trivial neighborhoods, the orientations of the fibers are positive.

From [41, Proposition 6.15] it follows that (2.2) is a principal S
1-bundle. ⊓⊔

Remark 4.9 For a general singular Riemannian foliation on a simply-connected manifold,

by Theorem 2.11, the foliation on a tubular neighborhood of a leaf L is determined by

the infinitesimal foliation (S⊥
p , F

p), the conjugation class of a subgroup K p < O(S⊥
p , F

p)

and a principal K p-bundle over L . So these object are the natural choices for “weights” in

the general setting. In the case of A-foliations, we have more structure, due to the leaves

having a fixed topology. In the case where a leaf L of an A-foliation is regular we have that

the infinitesimal foliation is the trivial foliation by points. Thus the foliation on a tubular

neighborhood is determined by a subgroup K p < O(S⊥
p ). Moreover, by considering the

natural projection K p → ŴL , and the fact that O(F p) = {Id} we have that K p = ŴL , and
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thus it is discrete. This implies that for regular leaves, the foliation in the tubular neighborhood

of L is determined by the Biberbach group ŴL . Thus the holonomy group ŴL of regular leaves

can be consider the weight for such leaves. For a singular leaf L of an A-foliation on a simply-

connected manifold, we might consider whether the injection π1(Lv, v) → π1(Lq , q), where

Lv ⊂ S
⊥
p principal leaf of F

p , together with the holonomy group ŴL determine the foliation

in a tubular neighborhood of L , as it happens for the codimension 2 case.

4.4 Cross-sections

With the leaf space description of a singular A-foliation of codimension 2 on a simply-

connected manifold at hand, we can show the existence of a cross-section. To prove this we

use results for general singular Riemannian foliations presented in Sect. 6. Namely, we show

that obstructions for the existence of cross-sections presented in Theorems 6.1 and 6.2 vanish

for A-foliations of codimension 2 on simply-connected manifolds with singular leaves.

Theorem 4.10 Let (M, F) be a singular A-foliation of codimension 2 on a compact-simply

connected manifold of dimension (n + 2) ≥ 2. Then there exists a continuous cross-section

σ : M∗ → M

Proof Observe that a principal L is homeomorphic to an n-dimensional torus, and thus it is

connected and simple. Since M∗
prin is an open 2-disk, then for A∗ ⊂ M∗

prin a closed 2-disk,

A∗ is a closed CW-complex. Consider now the mapping cylinder Mπ of the quotient map

π = π |A : A → A∗. Since A∗ is simply connected it follows that (Mπ , A∗) is a simple pair.

Since A∗ is contractible, by Theorem 6.1 there exists a cross-section over A∗ for π : A → A∗.

Also note that (M∗, A∗) is a CW-pair.

Now consider the mapping path fibration Fπ → Eπ → M∗ of the quotient map π : M →

M∗, and recall that Eπ has the same homotopy groups as M . Then from the long exact

sequence of the fibration, and the fact that M is simply connected and M∗ is contractible it

follows that π1(Fπ ) = 1. Thus we conclude that the homotopy fiber Fπ is a simple space.

Since A∗ is homotopy equivalent to M∗ it follows from Corollary 6.3 that there exists a

cross-section σ : M∗ → M extending the cross-section defined over A∗. ⊓⊔

Remark 4.11 Observe that for a singular A-foliation of codimension 2 on a simply-connected

compact manifold since the principal part M∗
prin is contractible, then the fiber bundle

π : Mprin → M∗
prin is a trivial bundle. That is, Mprin is diffeomorphic to M∗

prin × L . Thus we

do not need Theorem 6.1 to get a cross-section over a closed disk A∗ ⊂ M∗
prin

4.5 Classification of A-foliations of codimension 2

We say that two weighted leaf spaces, M∗
1 and M∗

2 , are isomorphic if there is a homeomor-

phism ϕ : M∗
1 → M∗

2 sending the weights of M∗
1 to the weights of M∗

2 . The map ϕ is called

an isomorphism between the weighted leaf spaces, or just simply an isomorphism between

the leaf spaces.

The following theorem shows the weighted space classifies the topology of M as well as

the foliation F .

Theorem C Let (M1, F1) and (M2, F2) be compact, (n + 2)-dimensional, simply-connected

Riemannian manifolds with singular A-foliations of codimension 2. If the leaf spaces M∗
1

and M∗
2 are isomorphic, then (M1, F1) is foliated homeomorphic to (M2, F2).
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Proof Fix the two principal leafs L1
0 ∈ F1 and L2

0 ∈ F2 used to define the weights of the folia-

tions, and observe that they are n-dimensional. By Corollary 3.2 there exists homeomorphisms

φ1
0 : L1

0 → T n and φ2
0 : L2

0 → T n . We set φ0 = (φ2
0)−1 ◦ φ1

0 an homeormphism between

L1
0 and L2

0. Denote by φ∗ : M∗
1 → M∗

2 a weight preserving homeomorphism. Since for

i = 1, 2 the sets (Mi )
∗
prin are open disks, and we have fiber bundles πi : (Mi )prin → (Mi )

∗
prin

with fibers homemorphic to L i
0, then we conclude that the bundles are trivial ones. Thus,

there exists a fiber bundle homeomorphisms τ i
0 : (Mi )prin → (Mi )

∗
prin × L i

0. We now set

φ = τ−1
2 ◦ (φ∗ ×φ0)◦ τ1 : (M1)prin → (M2)prin. Observe that by construction φ is a foliated

homeomorphism.

We claim that we can extend φ in a continuous fashion to the singular strata π−1
1 (∂ M∗

1 ),

and next prove this claim. Denote by σi : M∗
i → Mi the cross-sections to the quotient maps

πi : Mi → M∗
i given by Theorem 4.10. Recall that there are only two types of singular

leaves: one type has dimension (n − 1) and the other one has dimension (n − 2), and in

both cases the holonomy groups are trivial. Thus for p∗ ∈ M∗
1 \ (M∗

1 )prin a sufficiently

small foliated tubular neighborhood of Lσ1(p∗) is foliated diffeomorphic via a map ψp to

(Lσ1(p) ×D
⊥
σ1(p)

, {Lσ1(p) ×Lv | Lv ∈ F
σ1(p)}). Assume that dim(Lσ1(p)) = n −1. Then the

infinitesimal foliation (D⊥
σ1(p)

, F
σ1(p)) is given by the cone of the T

1-action on S
2, and the

leaves of the infinitesimal foliation correspond to the orbits of the action. Thus any principal

leaf is identified via ψσ1(p) with Lσ1(p) ×Lv , where Lv is a circle. The space of directions of

M∗
1 at p∗ is given by S

⊥
p /F p and thus it is isomorphic to [0, π]. Observe that as we approach

one of the boundary points we are shrinking the circle orbit Lv to a point. Recall that as

defined, the weight at Lσ1(p) lets us identify the infinitesimal leaf Lv with a circle in L1
0

which we also denote by Lv . From this it follows that by our assumption that over φ∗(p∗)

we have the same weight, then φ0 maps Lv ⊂ L1
0 to the fiber of the fibration L2

0 → Lφ∗(p∗).

That is �0 = ψφ∗(p∗) ◦ φ0 ◦ ψ−1
p∗ maps the principal leaves of the infinitesimal foliation at

σ1(p∗) to the principal leaves of the infinitesimal foliation at σ2 ◦φ∗(p∗). Thus �0|Lσ1(p∗)×Lv

factors as a product of homeomorphisms over the principal part of the tubular neighborhood:

Tubε(Lσ1(p∗)) ∩ (M1)prin. From the fact that the missing singular leaves of the infinitesimal

foliation are two points we see that we can continuously extend φ to the stratum of leaves of

dimension (n − 1).

Assume now that dim(Lσ1(p∗)) = n−2. Then the infinitesimal foliation (S⊥
σ1(p∗)

, F
σ1(p∗))

is given by the linear T
2-action over S

3. Thus the space of directions at p∗ and φ∗(p∗) is

isometric to [0, π/2]. The end points of the space of directions correspond to singular leaves

q∗
1 and q∗

2 of dimension (n − 1). Observe that the fiber of the projection of the principal leaf

Lσ1(p∗) × Lv to the singular leaf Lσ1(q
∗
j )

is a circle in Lv corresponding to the circle Lv j
in

L1
0 determined by the weight of the edge containing q∗

j . That is Lv = Lv1 × Lv2 . Moreover

since the the homeomorphism �0 is weight preserving, it sends the each factor Lv j
in L1

0 to

the corresponding circle in L2
0. Thus we conclude that �0 splits as product over the principal

leaves Lσ1(p∗) × Lv = Lσ1(p∗) × (Lv1 × Lv2) in a small tubular neighborhood of Lσ1(p∗).

Therefore we can extend φ in a continuous way to the strata of (n − 2)-dimensional leaves,

and thus we get a well defined foliated homeomorphism φ : (M1, F1) → (M2, F2) lifting

φ∗. ⊓⊔
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4.6 Comparison of A-foliations of codimension two to torus actions

In this section we give a more detailed analysis of the weights of a singular A-foliation of

codimension 2 on a simply-connected manifold and compare them to the weights defined for

group actions in [44, 46, 47]. This allows us to compare singular A-foliations of codimension

2 on simply-connected manifolds to torus actions.

We start by determining the number of weights such a foliation has. From the proof of

Theorem A in [20], we are able to determine the number r of different bundles of the form

S
1 → T n → T n−1, (4.1)

for an A-foliation of codimension two on a compact, simply-connected manifold, coming

from (2.2).

Theorem 4.12 Let (M, F) be a compact, simply-connected (n + 2)-manifold with an A-

foliation of codimension two, and L0 a regular leaf of dimension n. If the leaf space M∗ has

r-edges in the boundary, then r ≥ n.

Proof We first note that for A-foliations of codimension two, a regular leaf is a principal leaf,

and fix p0 ∈ L0. We consider M0 = Mreg, and B = B(M∗
0 ) the Haefliger classifying space

of M∗
0 . Recall that there is a fibration M0 → B with fibers homeomorphic to a principal

leaf L0 (see for example [3, Corollary 5.2], [18, Proposition 2.4], [20, Section 2.5], [27,

Section 4], [39, Theorem 4.26], [54, Theorem 10.1]). Then we obtain the following long

exact sequence:

· · · → π2(B, b0) → π1(L0, p0) → π1(M0, p0) → π1(B, b0) → 1.

By taking H to be the image of π2(B, b0) under the group morphism π2(B, b0) →

π1(L0, p0), we obtain the following short exact sequence:

0 → H → π1(L0, p0) → π1(M0, p0) → π1(B, b0) → 1.

Using the fact that for an A-foliation of codimension two on a compact, simply-connected

manifold, the leaf space is a 2-disk, we conclude that H = 0. Consider the fibers of the

fibrations given by the codimension 3 leaves. I.e. we consider the fibers of the fibrations of

the from (4.1). Observe that by hypothesis, there are r of these fibrations. We consider their

homotopy class in L0 and denote by K the subgroup they generate in π1(L0, p0). It follows

from the proof of in [20, Theorem A] that π1(L0, p0) is generated by K and H . Furthermore

K splits as an abelian group and a finite 2 step nilpotent 2-group. Since by [20, Theorem B]

the leaf L0 is homeomorphic to a torus, we conclude that the finite 2 step nilpotent 2-group

is trivial. Thus from this discussion it follows that there are at least n fibrations of the form

(4.1). ⊓⊔

Recalling [44, Lemma 1.4], since the fibers of the fibrations of the form (4.1) generate a

the fundamental group of a principal leaf, we deduce the following property of the weights

(ai1, . . . , ain) ∈ Z
n , associated to the least singular leaves.

Lemma 4.13 For an A foliation of codimension 2, the determinant of the weights {v̄1 . . . , v̄m}

is ±1.

Now we are ready to prove the main result for this section.
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Theorem 4.14 Let (M, F1) be closed, simply-connected (n+2)-manifold with an A-foliation

of codimension 2 and n ≥ 2. Then there exist a closed, simply-connected (n + 2)-manifold

(N , F2) with a homogeneous A-foliation of codimension 2 (i.e. with an effective smooth torus

action of cohomogeneity 2), such that (N , F2) is foliated homeomorphic to (M, F1).

Proof By Lemma 4.13, for an A-foliation of codimension two on a closed, simply-connected

(n + 2)-manifold M , the weights (ai1, . . . , ain) are legal weights in the sense of Oh (see

[44]). Thus by Theorem 2.1 there is a closed, simply-connected, (n +2)-manifold N together

with a T
n-action realizing the weights. By Theorem C, the manifolds M and N are foliated

homeomorphic. ⊓⊔

5 Smooth structure of the leaves of an A-foliation of codimension two

In order to be able to prove Theorem A we need to study the smooth structure of the leaves of

a singular A-foliation (M, F) of codimension two, on a compact, simply-connected Rieman-

nian (n+2)-manifold M . We also show that we can find a smooth cross-section σ : M∗ → M

for the quotient map. With these two remarks we are able to strengthen the conclusion in

Theorem 4.14 from foliated homeomorphism to foliated diffeomorphism.

5.1 Smooth structure of leaves

Recall that for an A-foliation (M, F) of codimension two on a simply-connected (n + 2)-

manifold, the least singular leaves are singular leaves of codimension 3 in M , homeomorphic

to an (n − 1)-torus. The most singular leaves of (M, F) are singular leaves of codimension

4 in M , homeomorphic to an (n − 2)-torus.

We also recall, that when we fix a principal leaf L0, if we denote a singular leaf by L i , we

have a smooth fiber bundle:

Li → L0 → L i (5.1)

with Li diffeomorphic to T 1, if L i is a least singular leaf; or T 2, if L2 is a most singular leaf.

Furthermore, for the least singular leaf case, this bundle is a principal circle bundle. Thus for

each edge of M∗ we have a circle action on L0, μi : T
1 × L0 → L0.

Lemma 5.1 The circle actions μi : T
1 × L0 → L0 commute.

Proof We recall that the fiber bundle (5.1) arises via the intersection of the foliation F with

the normal space of the leaf L1.

In the particular case for a homogeneous foliation (N , T
n), the principal circle bundles

(5.1) are given by circle subgroups of the principal leaf T
n . This implies in the homogeneous

case, that each of these bundles are trivial, and thus admit a cross-section.

It follows from Theorem 4.14 that the given A-foliation (M, F) is foliated homeomor-

phic to a homogeneous foliation (N , T
n), via a homeomorphism φ. In particular, a tubular

neighborhood of a singular leaf L1 of (M, F) is foliated homeomorphic to a tubular neigh-

borhood of a singular orbit in N , via φ. This implies that the foliated homeomorphism

induces an fiber bundle isomorphism between the bundles Li → L0 → L i and the bundles

T
1 → T

n → T
n/T

1. Thus, for each fiber bundle (5.1) the homeomorphism φ makes the

following diagram commute:
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L0 T
n

L i T
n−1

φ

φ

From this, it follows that the cross-section for the bundle T
n → T

n−1 gives rise to a cross-

section for the bundle L0 → L i . This implies that the bundles (5.1) are trivial for each i . In

particular, from this it turns out that φ : L0 → T
n is equivariant with respect to each action

μi .

Observe that for the homogeneous case, the circle actions on the principal leaf T
n com-

mute. Then from the fact that φ is equivariant, it follows that the actions μi commute.

⊓⊔

From the previous lemma, plus the fact that the actions are smooth, we obtain the following

corollary.

Corollary 5.2 Let (M, F) be an A-foliation of codimension two on a compact simply-

connected (n + 2)-manifold. Then the principal leaf L0 is diffeomorphic to the standard

torus T
n .

Proof We show that there exists a free smooth T
n-action on the principal leaf L0 of the

foliation. Thus for n ≥ 2, the principal leaf of an A-foliation (M, F) of codimension two on

a compact, simply-connected (n + 2)-manifold is diffeomorphic to the standard torus T
n .

From the homogeneous case we know that there exists a set of indices {i1, i2, . . . , in}

such that circle subgroups, given by the fibrations (5.1) defined by the indexes iℓ generate

the principal torus T
n . Using the foliated homeomorphism φ given by Theorem 4.14, and

Lemma 5.1, we know we define the T
n-action μ : T

n × L0 → L0 on the principal leaf L0

as

μ((ξ1, . . . , ξn), p) = μi1(ξ1, μi2(ξ2, · · · , μin (ξn(p)) · · · )).

Since the actions μi j
commute μ gives a continuous action of the standard n-torus, T

n ,

on the principal leaf T n . Furthermore, the action μ is free and smooth since each of the

transformations μi j
are free and smooth. ⊓⊔

Remark 5.3 We note that we have exactly r of these bundles. One for each edge in ∂ M∗. The

index i on the fiber is added to be able to distinguish the edge we are referring to.

Remark 5.4 (Dimension 6) Consider an A foliation (M, F) of codimension two on a simply-

connected n-manifold, with n ≤ 5. Let L0 be a fixed principal leaf. Recall that the leaf L0 is

homeomorphic to an (n − 2)-dimensional torus. Since in this case all leaves have dimension

less than 3, then the smooth structure is unique. So we get the conclusions of Theorem A.

Remark 5.5 For the case when M is of dimension 6, we recall that, from a tubular neighbor-

hood of a most singular leaf L p we have a smooth 2-torus bundle over L p with total space

L0. In this case L0 is homeomorphic to a 4-torus. These bundles were classified in [51],

and Ue showed in [55] that they admit a geometric structure in the sense of Thurston (c.f.

[52]). From the explicit list given in [23], we see the total space L0 admits an Euclidean

geometry. This implies that the leaf L0 admits a flat Riemannian metric (possibly different

from the one given by M). It follows from Theorem 3 in [13] that L0 is diffeomorphic to

the standard 4-torus. The other leaves have dimension less or equal to 3, and thus a unique

smooth structure. With these observations we have an alternative proof of Theorem A.
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Now we prove that also the singular leaves of an A-foliation of codimension two on a

compact, simply-connected manifold are diffeomorphic to standard tori.

Corollary 5.6 The least singular leaf of an A-foliation (M, F) of codimension two on a

compact, simply-connected (n + 2)-manifold M is diffeomorphic to the standard torus.

Proof For the least singular leaf L pi
the claim follows from the fact that the fiber bundle

(2.2) is an S
1
i -principal bundle, combined with the fact that the total space is the standard

torus T
n . Thus the least singular leaf L pi

is diffeomorphic to T
n/S

1
i = T

n−1, i.e. the standard

(n − 1)-dimensional torus. ⊓⊔

We recall that, if xi is a point in (M, F), so that L∗
xi

is a vertex in M∗, then Lxi
is a most

singular leaf of F , and it is homeomorphic to T n−1. Furthermore we can choose pi close

enough to xi in M , such that L pi
is a least singular leaf. We point out that the leaf L pi

has

trivial holonomy. Thus for the leaves L pi
and Lxi

fibration (2.2) is a fiber bundle of the form:

S
1 →֒ T n−1 → T n−2. (5.2)

By the same arguments given for the proof of Proposition 4.8 we can prove that this bundle

is a principal S
1-bundle. With theses remarks we prove the following proposition:

Proposition 5.7 The most singular leaf of an A-foliation (M, F) of codimension two on a

compact, simply-connected (n + 2)-manifold M is diffeomorphic to the standard torus.

Proof Since (5.2) is a principal S
1-bundle we conclude that Lxi

is diffeomorphic to L pi
/S

1.

From Corollary 5.6, we have that the least singular leaf L pi
is diffeomorphic to T

n−1. Thus

the most singular leaf is diffeomorphic to T
n−1/S

1 = T
n−2. ⊓⊔

5.2 Smooth cross-section

We show that for an A-foliation (M, F) of codimension two on a compact, simply-connected,

Riemannian manifold M , the quotient map M → M∗ is smooth.

Lemma 5.8 Consider an A-foliation (M, F) of codimension two on a compact, simply-

connected manifold. Let p ∈ M be such that L p is a least singular leaf (i.e. L p has

codimension 3 in M). Then the following hold for the infinitesimal foliation (S⊥
p , F

p) at

p.

(i) The quotient space S
⊥
p /F p is homeomorphic to the closed interval [0, π], and thus it

admits a unique smooth structure.

(ii) The quotient map S
⊥
p → S

⊥
p /F p is smooth.

Proof We note that (S⊥
p , F

p) is an A-foliation of codimension 1, with principal leaf homeo-

morphic to S
1. It follows from [20, Theorem D] that (S⊥

p , F
p) is the homogeneous foliation

(S2, S
1). Furthermore, from [21] and [42] it follows that, any smooth action of S

1 on S
2

is equivalent (i.e. there exists an equivariant diffeomorphism) to the linear S
1 action on S

2.

Thus the quotient map is smooth. ⊓⊔

Lemma 5.9 Consider an A-foliation (M, F) of codimension two on a compact, simply-

connected manifold. Let p ∈ M be such that L p is a most singular leaf (i.e. L p has

codimension 4 in M). Then the following hold for the infinitesimal foliation (S⊥
p , F

p) at

p.
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(i) The quotient space S
⊥
p /F p is homeomorphic to the closed interval [0, π/2], and thus it

admits a unique smooth structure.

(ii) The quotient map S
⊥
p → S

⊥
p /F p is smooth.

Proof We note that (S⊥
p , F

p) is an A-foliation of codimension 1, with principal leaf homeo-

morphic to T
2. It follows from [20, Theorem D] that (S⊥

p , F
p) is the homogeneous foliation

(S3, T
2), given by the standard linear action.

We consider S
3 as the unit sphere in C

2 and we use the so-called Hopf coordinates for

S
3, given by (θ1, θ2, η) 	→ (sin ηeiθ1 , sin ηeiθ2 , cos η) with θ1 ∈ [0, 2π], θ2 ∈ [0, 2π], and

η ∈ [0, π/2]. We parametrize the 2-torus T
2 = S

1 × S
1 by the angles (α, β). With these

coordinates, the action of T
2 on S

3 is given by:

(α, β)(θ1, θ2, η) = (θ1 + α, θ2 + β, η).

Thus the quotient map S
3 → S

3/T
2 is given by (θ1, θ1, η) 	→ η. This proves both claims. ⊓⊔

Proposition 5.10 Let (M, F) be an A-foliation of codimension two on a compact, simply-

connected manifold. Then the leaf space M∗ admits a unique smooth structure. Furthermore

there is a smooth cross-section σ : M∗ → M with respect to this smooth structure.

Proof Recall that the leaf space M∗ of an A-foliation (M, F) of codimension two on a

closed, simply-connected manifold is homeomorphic to a 2-disk. Thus M∗ carries a unique

smooth structure proving the first claim of the proposition. In this case in we get a smooth

cross-section σ : M∗ → M as follows. Let σ : M∗ → M be a cross-section obtained from

Theorem 4.10. By Lemmas 5.8 and 5.9, for each infinitesimal foliation, the quotient map

S
⊥
p → S

⊥
p /F p is smooth. Since for any point p ∈ M , the leaf L p has trivial holonomy group,

a local neighborhood of p∗ is given by a cone over S
⊥
p /F p . This implies that the quotient

map π : M → M∗ is smooth.

It follows from [29, Theorem 3.3] that the space of smooth functions C∞(M∗, M) is

dense in the space of continuous functions C0(M∗, M) with respect to the strong topology.

Therefore given a cross-section σ : M∗ → M , there exists a smooth map h : M∗ → M

close to σ in C0(M∗, M). Since the quotient map π : M → M∗ is smooth, then the map

σ : M∗ → M , defined as σ = h ◦ (π ◦ h)−1 is smooth. By construction the map σ is a

cross-section for the map π : M → M∗. ⊓⊔

We end the present work with the proof of the following lemma, which yields a proof of

Theorem A.

Lemma 5.11 Let (M1, F1) and (M2, F) be compact, simply-connected manifolds, with A-

foliations with standard diffeomorphism type, and isometric leaf spaces. If the leaf spaces M∗
1

and M∗
2 are homeomorphic to smooth manifolds, there exists a smooth weight isomorphism

f ∗M∗
1 → M∗

2 , and the cross-sections σi : M∗
i → Mi are smooth with respect to these smooth

structure, then the foliated homeomorphism of Theorem C is a foliated diffeomorphism.

Proof The smoothness follows from the following two observations. First we note that that

the foliated homeomorphism of Theorem C is defined by the composition of the map f ∗ and

the cross-sections σi , which are smooth by hypothesis. Second, the fact that the leaves are

diffeomorphic to R
n/Ŵ is used to show that the dependency of x ∈ L with respect to this

center is smooth, once we have chosen our center of the Dirichlet domain y = σi (x∗). ⊓⊔
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Proof of Theorem A If n = 3 then the principal leaf is S
1. By [20, Theorem 3.11] the conclu-

sions of Theorem A follow. Now we consider the case n ≥ 4. In this case the leaf space of

an A-foliation (M, F1) of codimension two on a compact, simply-connected, Riemannian

manifold M , is a 2-disk. Then M∗ admits a smooth structure in a unique way. Furthermore, by

Theorem 2.1, there exists a closed Riemannian manifold N with an homogeneous foliation

F2. This foliation has the property that N∗ is weighted diffeomorphic to M∗. Last we remark

that, by Proposition 5.10, the hypotheses of Lemma 5.11 are satisfied, and thus the result

follows. ⊓⊔

6 Obstruction theory for cross-section of singular Riemannian
foliations

In this section we present Obstruction Theory and apply it to the setting of general singular

Riemannian foliations, stating general sufficient conditions for the existence of a cross-

section σ : M∗ → M for the quotient map π : M → M∗ of a singular Riemannian foliation

(M, F) on a simply-connected manifold. We begin presenting the results for general singular

Riemannian foliations obtained from the application of Obstruction Theory. In the last section

we present the general Obstruction Theory for fibrations between CW-complexes.

6.1 Obstruction theory applied to singular Riemannian foliations

In this sections we focus ourselves to a a given singular Riemannian foliation (M, F) on

a simply-connected manifold, and apply Obstruction Theory presented in Sect. 6.2 to the

quotient map π : M → M∗ to give sufficient conditions for the existence of a cross-section

σ : M∗ → M for π . We begin by stating some topological definitions we need in our results.

Given a connected topological space W and a connected subspace A ⊂ W , fixing a point

w0 ∈ A, recall that there is an action of π1(A, w0) on πk(W , A, w0) [28, p. 345]. Since

A and W are connected this actions does not depend on the base point. We say that a pair

(W , A) of connected spaces is an n-simple pair if this action is trivial for all k ≤ n, and the

pair is a simple pair if it is n-simple for all n ≥ 1. Also observe that there is an action of

π1(W , w0) on the homotopy groups πk(W , w0). We say that W is n-simple if this action is

trivial for all k ≤ n. We say W is simple if it is n-simple for all n ≥ 1, see [28, Section 4.1].

Now we recall the basic topological constructions of the mapping path fibration and the

mapping cylinder of a continuous map f : X → Y . Denote by Y I the space of all continuous

paths γ : I → Y equipped with the compact-open topology. There is a fibration q : Y I → Y ,

defined as q(γ ) = γ (0). Then we define the mapping path fibration of f , which we denote

by π f : Eπ f
→ Y , as follows: the total space is Eπ f

= {(x, γ ) ∈ X × Y I | f (x) = γ (1)},

and the projection is defined as π f (x, γ ) = γ (0). The space Eπ f
is homotopy equivalent to

X , and the map π f is a fibration, with fiber F f called the homotopy fiber of f . The mapping

cylinder of f is the space M f defined as follows: we consider (X × I )⊔Y and identify (x, 1)

with f (x). There is a natural inclusion map i : X → M f given by i(x) = [x, 0]. Then M f

is homotopy equivalent to Y and the map i is a cofibration.

Recall that given a closed singular Riemannian foliation (M, F), when we consider a

closed subset X ⊂ Mprin, consisting of principal leafs the projection map M → M∗ restricted

to X yields a fiber bundle:

L → X → X∗.
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We apply Theorem 6.7 to get a family of obstructions, which we will call first obstructions.

Theorem 6.1 Let (M, F) be a closed singular Riemannian foliation with M simply-

connected, quotient map π : M → M∗, and principal leaf L, which is simple and connected.

Consider X ⊂ Mprin such that X∗ is a CW-complex which is simply-connected. Denote by

Mπ the mapping cylinder of π : X → X∗ and assume that (Mπ , X) is simple. Then there

is a family of obstructions ω1
k ∈ H k+1(X∗;πk(L)) such that a cross-section σ : X∗ → X

exists if ω1
k = 0 for all k.

Proof By applying Theorem 6.7 with W = Y = X∗, and A = ∅ we get the result. ⊓⊔

Even if a section exists on a closed set of the leaf space contained in the principal part of

the foliation, it may happen that it cannot be extended to the whole leaf space (as an example

see [16] or [17]). To solve this new extension problem we need another family of obstructions

which we call second obstructions.

Theorem 6.2 Let (M, F) be a closed singular Riemannian foliation with M simply con-

nected, and consider the quotient map π : M → M∗. Suppose that the homotopy fiber Fπ

is simple, take A∗ ⊂ M∗
prin to be a closed subset, such that (M∗, A∗) is a CW-pair. We also

assume we have defined a cross-section σ : A∗ → Mprin. Then there is a family of obstruc-

tions ω2
k ∈ H k+1(M∗, A∗;πk(Fπ )) such that a cross-section σ̃ : M∗ → M extending σ

exists if ω2
k = 0 for all k.

Proof Since M is simply-connected, then M∗ is also simply-connected. We apply Theo-

rem 6.7 to obtain the desired result. ⊓⊔

In particular, when we cannot distinguish M∗ from any closed subset of M∗
prin from a

homotopical view-point, we get the proof of Corollary D from Theorem 6.2.

Corollary 6.3 Let (M, F) be a closed singular Riemannian foliation on a simply-connected

manifold. Suppose that there is a section σ̃ : M∗
prin → Mprin, and the that hypothesis of

Theorem 6.2 are satisfied. If M∗
prin has the same homotopy type as M∗, then the cross-section

σ̃ can be extended to a section σ .

Remark 6.4 Since the holonomy is only defined for closed leaves (see Sect. 2.5), we ask that

the foliation is closed in order to ensure the existence of a principal stratum in Theorems 6.1,

6.2, and Corollary 6.3.

6.2 Moore–Postnikov towers and obstruction theory

In this section for the sake of completeness we present general statements from Obstruction

Theory presented in [28, Chapter 4, Obstruction Theory] used in Sect. 6.1. We being by

recalling the definition of a Moore–Postnikov tower.

Recall that a fibration F → E
p

→ B is called a principal fibration if there exists a fibration

F ′ → E ′ p′

→ B ′ and a commutative diagram

F E B

�B ′ F ′ E ′ B ′,

where all the vertical maps are weak homotopy equivalences.
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Given a continuous map f : X → Y between connected spaces a Moore–Postnikov tower

of f is a collection of spaces

· · · → Zn+1
αn
→ Zn → · · · → Z1,

and continuous maps αn : Zn+1 → Zn , λn : X → Zn and μn : Zn → Y such that

(i) αn ◦ λn+1 = λn ;

(ii) μn ◦ αn = μn+1;

(iii) for n fixed the map λn induces an isomorphism between pii (X) and πi (Zn) for all

i < n, and a surjection for i = n;

(iv) for n fixed the map μn induces an isomorphism between pii (Zn) and πi (Y ) for all

i > n, and an monomorphism for i = n;

(v) each map αn is a fibration with fiber an Eilenberg–MacLane space K (πn(F f ), n), where

F f is the homotopy fiber of f .

This points are summarized in the following commutative diagram:

...

Z3

Z2

X Z1 Y .

α3

μ3λ3

The idea behind a Moore–Postnikov tower is that we have a series of fibrations between

spaces Zn , which at the start they approximate the homotopy type of Y and gradually, as

the index n goes to infinity, they approximate the homotopy type of X . When the fibrations

αn : Zn+1 → Zn are principal we have say we have a principal Moore–Postnikov tower

for f . In general any map between CW-spaces admits a Moore–Postnikov tower, but the

following theorem gives sufficient and necessary conditions for the existence of a principal

Moore–Postnikov tower for a map between CW-spaces:

Theorem 6.5 (Theorem 4.71 in [28], Existence of Moore–Postnikov tower of principal fibra-

tions) For a given map f : X → Y between connected CW-spaces, a Moore–Postnikov tower

of principal fibrations exists if and only if π1(X) acts trivially on πn(M f , X) for all n > 1,

where M f is the mapping cylinder of f .

With this concepts we can state the following obstruction theorem for extending maps,

and include its proof for the sake of completeness.

Theorem 6.6 (Obstruction theory in [28]) Let p : X → Y be a fibration with fiber F, (W , A)

a CW-pair with W simply connected. Assume the fibration has a Moore–Postnikov tower of

principal fibrations and consider the relative lifting problem:

A X

W Y

f

i p
f̃

g
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There exists an obstruction ωn ∈ Hn+1(W , A;πn(F)), such that a lift f̃ : W → X extending

f : A → X exists, if ωn = 0 for all n.

Proof First we note that since we have a fibration p : X → Y , we may take Z1 to be the

covering space of Y corresponding to the subgroup p∗(π1(X)) of π1(Y ). Since W is simply

connected we can lift g to W → Z1, which agrees with g ◦ λ1 : A → Z1. Since the Moore–

Postnikov tower is by principal fibrations, for the inductive step we have a commutative

diagram as follows:

A Zn P K

W Zn−1 K = K (πn(F), n + 1).

(6.1)

Here P K → K is the path fibration, defined by fixing a point b0 ∈ K , and letting P K be the

space of all curves in K starting at b0, and the letting P K → K be the map that sends each

path to its end point. Since Zn is the pullback, the elements in Zn are pairs consisting of a

point in Zn−1 and a path from its image in K to the base point in K . A lift W → Zn therefore

amounts to a null-homotopy of the composition W → Zn−1 → K . Since we have already

defined such a lift on A, we have a null-homotopy of A → K , and the desired null-homotopy

of W → K must extend this null-homotopy on A. The map W → K together with the

null-homotopy on A gives a map W ∪ C(A) → K , where C(A) is the cone of A. Since K

is an Eilenberg–MacLane space K (πn(F), n + 1), the map W ∪ C(A) → K determines the

desired obstruction

ωn ∈ Hn+1(W ∪ C(A);πn(F)) = Hn+1(W , A;πn(F)).

If ωn = 0, by construction we have that there is a null-homotopy of W → K extending the

given null-homotopy A → K .

If we succeed in extending the lifts A → Zn to lifts W → Zn for all n, then we obtain

a map W → lim
←−

Zn , to the inverse limit lim
←−

Zn , extending the given A → X → lim
←−

Zn .

Let M be the mapping cylinder of X → lim
←−

Zn . From the hypothesis that the restriction

of W → lim
←−

Zn ⊂ M to A factors through X , this gives a homotopy of this restriction to

the map A → X ⊂ M . We extend this homotopy to a homotopy of W → M producing

a map (W , A) → (M, X). Since the map X → lim
←−

Zn is a weak homotopy equivalence,

then πi (M, X) = 0 for all i , and from the so-called Compression Lemma (see Lemma 4.6

in [28]), we conclude that the map (W , A) → (M, X) is homotopic relative to A to a map

W → X . Hence the map W → X extends the given map A → X . ⊓⊔

Theorem 6.7 (Obstruction to extension) Let (W , A) be a relative CW -complex, with W

simply connected, and assume we have continuous maps p : X → Y , f : A → X and

g : W → Y given. Furthermore, suppose that the homotopy fiber Fp of the map p is simple,

and that (Mp, X) is a simple pair. Then the following are true:

(i) There is a family of obstructions ωk ∈ H k+1(W , A;πk(Fp)) such that there exists a lift

f̃ of f such that p ◦ g = f̃ and f̃ |A = f , if ωk = 0 for all k.

(ii) If Fp is an Eilenberg–MacLane space K (π, ℓ), then there is a unique obstruction ωℓ ∈

H ℓ+1(W , A;π), and the lift f̃ of f exists if and only if ωℓ = 0.

Proof We sketch here the proof. For further details we invite the interested reader to see, for

example, [28, Chapter 4] for a more detailed discussion. First we show that the pair (Mp, X)

is simple only when the pair (Mπp , Eπp ) is simple. To prove this we start by recalling that
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there is a homotopy equivalence h between X and the total space Eπp of the path space

fibration for p : X → Y making the following diagram commute:

X Eπp

Y

h

p πp

(6.2)

For the maps p : X → Y and πp : Eπp → Y , we have cofibrations j : X → Mp and

i : Eπp → Mπp . Furthermore there is also an homotopy equivalences between the mapping

cylinder Mp and Mπp making the following diagrams commute:

X

Mp Y

j p

Eπp

Y Mπp

πp i (6.3)

Combining diagram (6.2) with the diagrams (6.3), we obtain the following diagram which

commutes up to homotopy:

X Eπp

Mp Mπp

j i

Observe that the arrows going down are cofibrations, and the horizontal ones are homotopy

equivalences. Then from the previous commutative diagram and [7, 7.4.2], the homotopy

groups πk(Mp, X) are (equivariantly under the action of π1(X)) isomorphic to πk(Mπq , Eπp )

(with the action of π1(Eπp ) =∼= π1(X)). Thus (Mp, X) is simple if and only if (Mπp , Eπp )

is simple. Therefore, for the fibration πp : Eπp → Y , there exists a Moore–Postnikov tower

by principal fibrations, which yield the desired family of obstructions. Thus we may apply

Theorem 6.6 to the fibration πp : Eπp → Y .

We also note that we may apply the last argument in the proof of Theorem 6.6, and use

the fact that the restriction of W → lim
←−

Zn ⊂ M to A factors through X , to construct the lift

W → X which extends A → X . Here M is the mapping cylinder of the map X → lim
←−

Zn .

⊓⊔

Remark 6.8 The reason why in Theorem 6.7 (i) we have an “if... then..." statement and on

Theorem 6.7 (ii) we have an “if and only if" statement lies in the fact that for the proofs of these

theorems we use a Moore–Postnikov tower of principal fibrations · · · → Z2 → Z1 → Y for

p. In the case of Theorem 6.7 (i) the lifts may be not unique, and in some examples this may

yield non trivial ωk even when an extension exists. An exception to this, is the case when Fp

is an Eilenberg–MacLane space (see [28, Section 4.3]).

Remark 6.9 The condition on W being simply connected is used to ensure a unique lift from

W to Z1 in the Moore–Postnikov chain.
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