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A Bayesian Deep Image Prior Downscaling Approach

for High-Resolution Soil Moisture Estimation
Yuan Fang , Linlin Xu , Member, IEEE, Yuhao Chen, Member, IEEE, Wei Zhou,

Alexander Wong, Senior Member, IEEE, and David A. Clausi , Senior Member, IEEE

Abstract—Soil moisture (SM) estimation is a critical part of
environmental and agricultural monitoring, with satellite-based
microwave remote sensing being the main SM source. However,
the limited spatial resolution of most current remote sensing SM
products reduces their utility for many applications, such as evap-
otranspiration modeling and agriculture management. In this ar-
ticle, to address this issue, we propose a Bayesian deep image
prior (BDIP) downscaling approach to estimate the high-resolution
SM from satellite products. More specifically, the high-resolution
SM estimation problem is formulated as a maximum a posteriori
problem, and solved via a neural network comprising of a deep
fully convolutional neural network (FCNN) for modeling the prior
spatial correlation distribution of the underlying high-resolution
SM variables, and a forward model characterizing the SM map
degeneration process for modeling the data likelihood. As such,
the proposed BDIP approach provides a statistical framework
that integrates deep learning with forward modeling in a coherent
manner for combining different sources of information, i.e., the
knowledge in the forward model, the spatial correlation prior in
FCNN architecture, and the remote sensing data and products.
Experiments on the downscaling of SM active passive SM products
using the moderate resolution imaging spectroradiometer products
show that SM maps estimated using the proposed method provide
greater spatial detail information than other downscaling methods,
with the SM estimates very close to in situ measurements.

Index Terms—Bayesian, convolutional neural network, deep
image prior, MODIS, SMAP, soil moisture downscaling.

I. INTRODUCTION

S
OIL moisture (SM) highly influences hydrologic and atmo-

spheric processes for environmental and agricultural moni-

toring. Microwave remote sensing (RS), with the high sensitivity

to the SM variation and robustness to atmosphere conditions, is

the most commonly used approach to monitor SM [1]–[3]. The

SM active/passive (SMAP) mission has been providing SM at

two spatial resolutions of 36 and 9 km since April 2015 [4]. How-

ever, these two spatial resolutions do not meet the requirements
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for application to evapotranspiration modeling and agriculture

management [4], [5]. Therefore, improving the spatial resolution

of the SMAP SM product to 1 km spatial resolution is essential.

Downscaling is an inverse problem that reconstructs images at

higher resolution from coarse observations. Since SM has high

variation over spatial scales smaller than the SMAP resolutions,

spatial heterogeneity must be properly addressed when down-

scaling [3].

The SM downscaling can be achieved by different strategies,

e.g., data fusion or assimilation [6]–[9], geostatistical [3], [10],

traditional regression [11], and machine learning (ML) [12].

Data fusion and assimilation for the downscaling is achieved

by combing multisources data and extracting more accurate

spatial SM information. Geostatistical methods interpolate the

SM product with geographical models based on the certain

spatial assumption, e.g., the geographically weighted regres-

sion [3]. The traditional regression method uses a simple re-

gression model, e.g., a linear regression model, to analysis the

correlation between the SM and other RS products [11], which

could not sufficiently explore the complex relationship between

them. ML methods (e.g., the decision tree regression [1]) show

stronger potential in SM downscaling by building the nonlinear

relationships between the SM and other indices. Recently, deep

learning using multilayer perceptron (MLP) has been adopted

to SM downscaling due to its capability in learning complex

relationships between inputs (i.e., the coarse-resolution SM and

fine-resolution ancillary products) and the target data (i.e., the

fine-resolution SM), and its short inference time after train-

ing [4]. This downscaling model is trained using SM products

with different resolutions, and then can be used for improving the

spatial resolution of SM products by the same scale as training.

However, the scale of SM products to reduce is limited by the

scale difference between the two SM products used for training.

In addition, MLP cannot effectively model the spatial correla-

tion of the SM. A convolutional neural network (CNN)-based

downscaling method [13] is proposed recently, which can better

exploit the spatial information within adjacent pixels. However,

most of the ML-, MLP-, and CNN-based methods are super-

vised, requiring the groundtruth data, which could be in situ mea-

surements or the high-resolution SM products, and as such the

performance is greatly dependent on the training dataset. [14].

Fully CNNs (FCNNs) have been widely used in various

tasks, including semantic segmentation [15], [16], superreso-

lution [17], and image denoising [18], as examples. Unlike the

classic CNN, the FCNN contains no fully connected layers, and
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4572 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 1. BDIP model for SM downscaling. The encoder is implemented as an
FCNN accounting for the spatial correlation prior of the high-resolution SM,
and the decoder part works as the forward model.

it can take input of arbitrary size. Ulyanov et al. [19] demon-

strated that the structure of an FCNN is sufficient to capture

low-level image statistics [19], which is called “deep image

prior (DIP).” The FCNN can capture appropriate global spatial

features [20] with a wide image field-of-view compared with a

CNN layer [21]. Also, compared with traditional methods [3],

[11], [22], FCNN is much more computationally efficient by

leveraging GPUs. In addition, many of downscaling methods as-

sume a linear scaling relationship between optical-derived input

variables and SM, which is not always satisfied [23]. Accounting

for nonlinearities between SM and the input variables, FCNN, as

an empirical method, has more potential compared to traditional

models [23].

We integrate the DIP captured by FCNN into a Bayesian

framework to address the SM downscaling inverse problem.

Then, the resulting downscaling model becomes a Bayesian deep

image prior (BDIP) downscaling network, where the inverse

model is implemented by an FCNN accounting for DIP, the

forward model is modeled by a downsampler describing the

relationship between low- to high-resolution SM map.

Contributions of this article are summarized as follows.

1) We adopt a BDIP scheme to SM downscaling to account

for the spatial heterogeneity in higher resolution SM maps.

2) The forward model describing the spatial resolution de-

creasing process from high- to low-resolution SM map

is integrated into the Bayesian framework to solve the

inverse problem.

3) The resulting maximum a priori (MAP) problem is solved

by the back-propagation instead of using the typical

expectation–maximization (EM) iterative method, which

makes the model optimization simple and effective.

4) The proposed method reconstructs the SM in high spa-

tial resolution only by extracting information from high-

resolution RS products and the low-resolution SM using

DIP, without requiring any ground-truth data for model

training.

The proposed method is designed to effectively downscale

SMAP SM products at 9 km spatial resolution to 1 km resolution,

which can facilitate the generation of 1 km SM maps using

coarse SM product and some ancillary data, and thereby can

enhance the hydrological monitoring in the study area by offer-

ing more spatially detailed hydrological information of the study

area. The method is evaluated qualitatively and quantitatively,

and results demonstrate that the proposed approach achieves

new state-of-the-art results compared with other unsupervised

methods.

II. RELATED WORK

A. Downscaling Methods for RS Products

Several categories of methods have been developed to down-

scale RS products, i.e., image fusion algorithms [22], geostatis-

tical methods [3], traditional regression method [11], and ML

methods [12].

In recent years, neural networks have become popular in RS

problems due to their capability in learning complex relation-

ships between inputs and target data and the high training effi-

ciency using GPUs. However, the FCNN, with better capability

to capture image spatial heterogeneous features relative to a fully

connected network [21], has, to the best of our knowledge, not

been applied to SM downscaling. We use an FCNN to map

the nonlinear relationship between the model input and high-

resolution SM map to better construct the spatial information in

SM map and to improve the computation efficiency.

B. Deep Image Prior (DIP)

The structure of FCNN is capable to capture image statistical

information, and to impose an effective prior to restore high-

quality images from low-quality images without seeing a large

training dataset [21]. Recent publications show the effectiveness

of DIP for image restoration [24]–[26], e.g., hyperspectral image

unmixing [27], superresolution [28], image inpainting [21], and

denoising [29], [30].

C. Bayesian Data Inversion

The Bayesian method is used widely to solve the image

inverse problem by integrating prior knowledge about the de-

sired image with the posterior distributions of the observed im-

ages [31]–[33]. For example, the Markov random field has been

incorporated as the prior for hyperspectral image unmixing in the

Bayesian framework [32]. The rapidly developing deep learning

technique solves inverse problems in many applications from the

new perspective by various network architectures [34]. However,

studies using deep learning in a Bayesian framework are few.

It has been a trend to unify probabilistic framework integrating

deep learning and Bayesian models to boost the model perfor-

mance and enhance the image perception [31], e.g., variational

autoencoders [35], generative adversarial networks [36], and

probabilistic generalized stacked denoising autoencoders [37].

Traditionally, Bayesian inverse problems are solved by it-

erative algorithms [32], e.g., EM [38], which is very time-

consuming and highly relies on accurate initial values of un-

known parameters.

III. PROBLEM FORMULATION

We assume that the RS product with low spatial resolution

is X = {xi|i = 1, 2, . . .,m× n}, and the RS product with

high spatial resolution is Y = {yi|i = 1, 2, . . ., α2 ×m× n},

where α is the ratio between the low and high spatial reso-

lutions. Given the forward mapping g(·) from Y to X , the

low-resolution image X can be represented as follows:

X = g(Y ) +N (1)
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where N ∈ R
m×n is the noise matrix.

The RS product downscaling aims to infer the high-resolution

image Y based on the observed low-resolution image X , which

in a Bayesian framework can be achieved by maximizing the

posterior distribution p(Y |X), i.e.,

p(Y |X) ∝ p(X|Y )p(Y ). (2)

Given the generative model g(·) of X in (1) and the posterior

distribution in (2), several key factors for effective downscaling

are identified as follows.

1) The effective modeling of the high-resolution image prior

p(Y ) is critical for regulating and estimating the high-

resolution image Y .

2) Meaningful modeling the data likelihood p(X|Y ) is es-

sential for guiding and regulating the downscaling process.

3) An efficient optimization scheme for solving the Bayesian

inverse problem is necessary.

In this article, p(Y ) is achieved by the DIP approach using

FCNN, as detailed in Section III-A. The data likelihood p(X |Y )
is modeling by a distribution incorporating the forward model, as

detailed in Section III-B. An efficient optimization scheme is de-

signed and implemented in Section IV. The designed Bayesian

DIP downscaling model is shown in Fig. 1.

A. Prior of the High-Resolution SM Map

There are three key requirements on the high-resolution SM

Y when designing the prior p(Y ).
1) The large-scale heterogeneous spatial correlation effect in

SM map should be fully exploited.

2) SM should be in the meaningful value range of [0,1].

3) High-resolution SM prior should allow efficient optimiza-

tion.

Here, we represent the prior over the high-resolution SM Y

by a distribution expressed as follows:

p(Y ) =
1

z
exp(−δ(Y , E(Y ))) (3)

where E(Y ) is the expectation of Y , which is implemented as

an FCNN, and δ(u,v) is the distance function measuring the

distance between vectors u and v.

The prior spatial information of Y can be captured by an

FCNN structure [19], which has a wide field of view of the input

image compared with a patch-based CNN and can be optimized

efficiently on GPUs. Using f(·) to represent the FCNN forward

propagation, the expected Y is written as follows:

E(Y ) = f(Z,β) (4)

where Z is the input random noise and β is the set of model

parameters, including all weights of convolution kernels and

biases. We use a “hourglass” architecture with the skip connec-

tion [19] to model a mapping f(·) from the input variable Z

to the high-resolution SM map Y due to its excellent feature

extraction and noise-resistant capability.

We change the “ReLU” activation function in the original

U-Net architecture to the “sigmoid” activation, because the value

of SM is in the range from 0 to 1. In addition, the 1×1 convolution

final layer for segmentation is changed to map the extracted

feature to the SM output with one layer. The output layer is

activated by “sigmoid” which normalizes the value of the input

into [0, 1]. We reduced the feature number for each layer from

[64, 128, 256, 512] to [2,4,8,16]. The “hourglass” architecture

used is shown in Fig. 2.

B. Data Likelihood

The data likelihood is expressed as follows:

p(X|Y ) =
1

Z
exp(−δ(X, g(Y ))

(5)

where δ(X, g(Y )) is the distance between the low-resolution

SM mapX and the reconstructed low-resolution SM map g(Y ).
The distance function could be implemented with different spe-

cific functions based on the real data characteristic. For example,

it can be implemented as an L2-norm function when the image

noise satisfies the Gaussian distribution, or as an L1-norm for

Laplace distribution.

IV. BDIP MODEL OPTIMIZATION

The downscaling problem in (2) can be solved by the MAP

approach, where the high-resolution SM map Y is estimated by

maximizing the posterior distribution of Y given the observed

low-resolution SM map X , i.e.

Ŷ = argmax
Y

{p(Y |X)}. (6)

Maximizing p(Y |X) is equivalent to minimizing its negative

logarithm likelihood, i.e.,

Ŷ = argmin
Y

{−logp(Y |X)}. (7)

Then, the objective function can be written as follows:

JY = argmin
Y

{−logp(Y |X)}

∝ argmin
Y

{−logp(X|Y )− logp(Y )}. (8)

Considering (3) and (5), the objective function can be reformu-

lated as follows:

JY = argmin
Y

{δ(X, g(E(Y |M)))} (9)

where E(Y |M) is the posterior expectation of Y if given

ancillary RS data with the high spatial resolution M . We use

E(Y |M) as the expectation of Y . To estimate parameters

in E(Y |M), we use M as an input to FCNN and optimize

FCNN parameters. Given the estimated parameters in FCNN,

we achieve Ŷ = E(Y |M), as shown in Section III-A. When

estimating parameters in FCNN for obtainingE(Y |M), we use

a reconstruction distance based on δ(X, g(E(Y |M))), which

incorporates the forward model to constrain the meaningful Y

estimation, as shown in Section V-C.

To estimate E(Y |M), we first need to estimate the model

parameters in FCNN, i.e., β. Here, we construct the following

objective function to estimate β:

β̂ = argmin
β

{δ(X, g(f(M,β)))}. (10)
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Fig. 2. “Hourglass” architecture with skip-connections of the FCNN part in Fig. 1 accounting for DIP. Blocks in the figure represent for operations rather than
features. The U-Net type “hourglass” architecture [39] encodes an input image to a feature tensor with a smaller size and more channels at the bottleneck, and
decodes the feature tensor to the output image of the same size as the input image. The downsampling reduces the feature size, which is essentially achieved by
the max-pooling operation (green blocks). The upsampling recovers the feature size step-by-step by bilinear upsampling operations (red blocks). Double regular
convolution operations (yellow blocks) are conducted after each max-pooling or TransConv operation, which does not change the feature size but increases or
decreases the channel number (i.e., C) of features. The skip connection is implemented by copying and concatenating features.

Fig. 3. Location of the study area.

Backpropagation with the Adam stochastic optimizer [40] is

adopted in this work to estimate β.

V. METHOD

A. Study Area and Datasets

We select a rectangular study area (i.e., the area inside the

green box shown in Fig. 3) where both SMAP SM products and

the moderate resolution imaging spectroradiometer (MODIS)

products cover the area on all eight dates in 2020. The area is

across the United States and Mexico ranging from 27◦N to 33◦N

and 100◦W to 108◦W. The distribution of stations and the land

cover map are shown in Fig. 4. The distribution of stations and

the land cover map are shown in Fig. 4. The study area is mainly

covered by different vegetation species including the shrublands,

savannas, cropland, and the sparsely vegetated region. The open

shrublands (in the middle in Fig. 4) are normally drier than

the grassland (on the right-hand side in Fig. 4) and the woody

Fig. 4. Distribution of the stations providing in situ SM measurements and
Land cover map of the study area.

savannas (on the bottom-left in Fig. 4). Therefore, the SM value

is lower in the middle part of the study area than side parts. So,

the SM can be largely spatially variated and suitable for the SM

study.

All data used in this study, including SMAP SM products at

9 km spatial resolution, the MODIS products, and the in situ

data, are collected on a series of eight dates in 2020. The eight

dates are January 25, February 25, March 13, April 14, May

16, September 5, October 7, and December 26. The objective is

to downscale SMAP SM maps to the 1-km-resolution SM map.

The MODIS products are utilized to provide more spatial texture

information. The downscaling performance is evaluated by the

in situ SM data.

B. SMAP Data

The SMAP mission is an L-band satellite incorporating both

a radiometer and a radar dedicated to global SM measure-

ments [1]. The daily SMAP level-3 SM passive product at

9 km (L3_SM_P_E) resolution acquired from National Snow
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Fig. 5. Overall model architecture for SMAP SM downscaling. The network input M includes MODIS products NDVI, LST, and the interpolated 1 km SM
from 9 km SMAP SM. The output of the downscaling model is the downscaled SM Y . Unknown parameters β are network parameters of the FCNN, including
weights and bias.

and Ice Data Center is downscaled to a 1-km SM map. Only the

descending data acquired at 6:00 am are used.

1) MODIS Products: Normalized difference vegetation in-

dex (NDVI) and land surface temperature (LST) are physically

related to SM [41] and commonly used for SM downscaling [1],

[13], [14]. High-resolution auxiliary information, i.e., M in

(9), MODIS products (MYD13A2 and MYD11A2) collected

from the Land Processes Distributed Active Archive Center are

utilized to downscale the SMAP SM products at 9 km resolution

up to 1 km resolution. The MYD13A2 Version 6 product pro-

vides the NDVI and the enhanced vegetation index with a 1 km

resolution. Only the NDVI layer from MYD13A2 is used in this

study. The MYD11A2 Version 6 product provides an average

8-d per-pixel LST and emissivity with a 1 km spatial resolution.

Only the first layer “LST_Day_1 km” from MYD11A2 is used.

2) In Situ Measurement: The international SM network hosts

in-situ SM measurements collected starting 1952 to present from

a total of 35 international SM networks. SM data from two

networks (i.e., USCRN and SCAN) are used to evaluate the

downscaling quality because the stations in these two networks

are distributed more densely in the study area. There are four

stations in the study area. The in situ SM observation measures

the small point scale SM values and cannot be used directly in

large-scale SM application, the shortcoming of which can be

improved by RS-based SM mapping approaches. Considering

that in situ SM measures are more accurate than RS SM products,

here, we use these measures as ground truth to validate our

downscaling results.

3) Data Preprocessing: For each time point, the MODIS

NDVI and LST products, SMAP SM products, as well as the in

situ measurements are prepared. The MODIS MYD13A2 and

MYD11A2 products at 1 km resolution are downloaded and

stitched together to achieve the global coverage for the further

processing. The NDVI layer from MYD13A2, the LST layer

from MYD11A2, and the SM layer from SMAP products layers

are georeferenced and cropped by the longitude and latitude

of the region of interest boundary. The image size of SMAP

9 km SM, NDVI, and LST, covering the study area are 74 × 86,

666 × 774, and 666 × 774, separately. The three-channel input

of the network contains the 1 km NDVI, 1 km LST, and the

1 km interpolated SM, which is obtained from SM at 9 km using

a bilinear interpolation. Considering the fact that SMAP SM

range between 0 and 1, we address the negative-valued outliers as

positive values using a neighborhood refilling method, in which

to remove the outliers in SMAP SM products, we refill the pixels

using median values of their 3×3 neighboring pixels.

C. Model Implementation

A BDIP downscaling model is shown in Fig. 5, where the

FCNN f(·) performs the inverse model, and the downsampler

D(·) acts as the forward model. The inverse model will be

trained, while the forward model is known and fixed. In this

manner, the FCNN can achieve the downscaling purpose by

learning from the forward model and inverting the downsam-

pling operation. Then, the relationship between SM maps at

1 km (Y ) and 9 km (X9) can be expressed as follows:

X9 = D9(Y ) (11)

where D9(·) is implemented using the “Lanczos” filtering with

the downsampling factor 9.

The input M contains three layers, i.e., the NDVI from

MYD13A2, LST from MYD11A2, and the interpolated 1 km

SM map. Then, the final output of the network, which is the

estimated 9 km SM, can be formulated as follows:

X̂9 = (D9(f(M ,β)). (12)

We minimize the loss function as follows to train the FCNN:

L = δ(X9, X̂9). (13)

Unknown parameters β are network parameters of the FCNN,

including weights and bias. Once the model is trained, the

intermediate output Y can be obtained as the downscaled SM.

1) Downsampler Selection: The downsampler works as the

forward model mapping the LR SM to the HR SM. To find an

appropriate forward model with the best capability of preserving

the spatial information and the highest downscaling accuracy, we

try the average pooling, max-pooling, and the downsampling

with Lanczos kernel. Although it is claimed that no consistent

differences are found among these downsampling methods for

RGB images superresolution [19], it is critical to find out their

performance of downscaling on the RS imagery products.
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Fig. 6. Scatters of downscaled 1 km SM against in situ SM measurements over eight dates and the downscaled 1 km SM maps on Jan 25th by models with
different downsamplers. Using the downsampler with Lanczos kernel gives the sharpest SM map with the most spatial texture preserved. Average pooling smooths
linear spatial feature and max pooling introduce fake spatial features. (a) Average pooling. (b) Max pooling. (c) Lanczos. (d) Average pooling. (e) Max pooling.
(f) Lanczos. (g) SMAP 9 km.

Fig. 7. Downscaled 1 km SM maps by networks with different loss implementations. L2 loss tends to smooth the image. L1 loss can better accommodate
high-frequency information. Although (f) is sharper than (e), the R value does not increase. Then, the SSIM loss using for preserving image structural feature and
the perceptual loss using for extracting spatial information from the feature domains are added one-by-one. As a result, (h) shows the richest spatial information
and its corresponding R value achieved 0.88. (a) L2. (b) L1. (c) L1+SSIM. (d) L1+SSIM+perceptual. (e) L2. (f) L1. (g) L1+SSIM. (h) L1+SSIM+perceptual.
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Fig. 8. Downscaled 1 km SM maps (unit: cm3/cm3) by networks (a) with
and (b) without the additional skip connection (indicated by the purple line in
Fig. 2). (b) Fuses spatial information from the (c) NDVI and (d) LST better than
(a). (a) without skip. (b) with skip. (c) NDVI. (d) LST.

TABLE I
PARAMETERS CONFIGURATION FOR DIFFERENT MODELS

2) Loss Function Design: The reconstruction loss is initial-

ized as an L2 loss, which is commonly used in image recon-

struction tasks [19]. However, given its performance of blurring

some detailed spatial information, L1 loss, L1 loss combined

SSIM loss [42], as well as the combination of L1 loss, SSIM

loss, and perceptual loss [43] are tested to better reconstruct the

structural spatial texture in HR SM maps.

3) Skip Connections: Skip connections in FCNNs solves

the degradation problem and ensures the feature reusability by

copying and concatenating features from shallower layers to

deeper layers. To better preserve the spatial feature in the input

data, besides the skip connections existing in a classic U-Net

architecture, we add a skip connection (indicated by the purple

line in Fig. 2) by concatenating the output feature of the input

layer to the output feature of the last second layer (i.e, the last

3× 3 convolution layer indicated by the yellow block in Fig. 2).

4) Parameters Configuration: The learning rate and training

epochs for different models tested in Sections V-C1 and V-C2

are listed in Table I.

TABLE II
METHODS ASSESSMENT

D. Methods Comparison

The compared methods include Bicubic, GFPCA [44],

PCA [45], and CNMF [46]. Bicubic is a standard interpo-

lation approach based on the cubic interpolation. GFPCA is

designed for the fusion of hyperspectral and RGB image based

on PCA [44]. PCA, as a standard data transformation method,

has been used for RS data pansharpening [45], [47]. CNMF is

developed based on nonnegative matrix factorization unmixing

and applied to hyperspectral and multispectral data fusion and

downscaling [46], [48], [49].

The compared methods are conducted using the downscaling

toolbox from Github. The source code is available at https:

//github.com/codegaj/py_pansharpening. These methods all re-

quire two sets of inputs, which are the high-resolution channels

and the low-resolution channels. The summation of the NDVI

and LST is used for the high-resolution input. The low-resolution

channel is the 9 km SMAP SM.

E. Evaluation Strategy

Following the commonly used evaluation scheme for down-

scaling algorithms, the downscaled SM map is evaluated from

three aspects, i.e.,

1) the consistency of the spatial variation pattern with the

SMAP SM maps [1], [14],

2) the numerical accuracy of the SM values to in-situ SM

measurements [1], [13], [14], and

3) the amount of the spatial textural information compared

with the SMAP SM map [1], [13].

Downscaling results are evaluated in both visual and nu-

merical ways. For the visual evaluation, the downscaled SM

maps will be presented together with the SMAP SM maps at

9 km spatial resolution, as well as the estimation by the other

four downscaling methods. For the numerical evaluation, the

in situ groundtruth measurements on eight dates are used as

the reference. The classical statistical metrics are calculated

to represent the error scores, including correlation coefficient

(R), mean square error (mse), the difference of the mean val-

ues (BIAS), root-mean-square error (RMSE), normalized root-

mean-square error (nrRMSE), and unbiased root-mean-square

error (ubRMSE).

VI. RESULT AND DISCUSSION

1) Downsampler Selection: The downscaling results ob-

tained by different downsampler are shown in Fig. 6. Using

the downsampler with Lanczos kernel gives the sharpest SM
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Fig. 9. Comparison between the 9 km SMAP SM maps and downscaled 1 km SM maps (unit: cm3/cm3) on Dec 26th. (a) and (b) are separately the 9 km SMAP
and the 1 km downscaled SM. (c) and (d) are separately the zoomed region indicated with the green box in (a) and (b). (e) is the corresponding area clipped from
the Google Earth. (f), (g) correspond to the blue box in (a) and (b). (i), (k) correspond to the red box in (a) and (b). The downscaled SM map shows not only the
consistent variation pattern with the 9 km SMAP SM, but also much more spatial detail information. For example, the green linear region in (e) is the cropland
with higher water content, which is indicated by the blue linear feature in (d).
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Fig. 10. Scatters of the 1 km SM estimated by the different method and the in situ groundtruth over eight dates with R values. Two networks are separately
calculated. The first row is USCRN network and the second row is the SCAN network. The last row is the result obtained by all stations from two networks.
(a) BDIP. (b) Bicubic. (c) PCA. (d) GFPCA. (e) CNMF.

Fig. 11. SMAP SM map at 9 km resolution in column (a), the downscaled 1 km SM maps by the different methods from column (b) to (f), and the input NDVI map
in column (g) at April 14 (first row) and September 5 (second row). The proposed method estimates the high-resolution SM map with sharp and clear boundaries.
SM maps generated by the Bicubic and GFPCA share consistent variation patterns with SMAP SM maps, but with large bias. GFPCA SM maps get more blurred
than 9 km SMAP SM. SM maps achieved by PCA and CNMF preserve much information in the NDVI and LST than the SMAP SM map, which is fake SM texture.
They are not able to properly extract and balance the spatial feature information from the SMAP SM and MODIS products. (a) SMAP. (b) BDIP. (c) Bicubic.
(d) GFPCA. (e) PCA. (f) CNMF.

map with the most spatial texture preserved. R value over the

time series corresponding to Lanczos is also the highest. The

average pooling smooths some linear spatial features and the

max pooling brings fake spatial features. The results indicate

that using different downsamplers significantly affects the down-

scaling performance.

2) Performance of Loss Functions: Once the downsampler

with Lancnos kernel is selected, we fix the downsampler and

change the loss function. The 1 km downscaled SM map ob-

tained with L2 loss is blurred, especially on the right-hand side

of Fig. 7(a), although the R value is high. Given that L2 loss

is sensitive to high-frequency signals and tends to smooth the

image, we tried L1 loss instead, which can better accommodate

high-frequency information. As a result, Fig. 7(f) is sharper

than Fig. 7(e) and shows more spatial texture, with R value

increasing. Then, the SSIM loss using for preserving image

structural feature and the perceptual loss using for extracting

spatial information from feature domains are added one-by-one.

As a result, Fig. 7(h) shows the richest spatial information, and

its corresponding R value achieved 0.88. The results indicate the

importance of designing loss functions for downscaling visual

performance. Although the R value does not highly increased,

the spatial information shown in the downscaled SM map gets

sharper and richer.
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TABLE III
RMSE(CM

6/
CM

6), BIAS(CM
3/CM

3), RMSE(CM
3/CM

3), NRRMSE(CM
3/CM

3), AND UBRMSE(CM
3/CM

3) OF THE VALIDATION FOR THE 1 KM DOWNSCALED

SM WITH THE MEASUREMENT OF IN SITU STATIONS FROM TWO NETWORKS

3) Performance of Skip Connection: Downscaling perfor-

mances are compared between the U-Net with and without

the additional skip connection. The result is shown in Fig. 8.

The downscaling result with the skip connection [see Fig. 8(b)]

shows much richer spatial information than that without the skip

connection [see Fig. 8(a)]. So, the skip connection in the U-Net

can better preserve the low-level feature in NDVI and LST.

4) Spatial Detail Restoration: To check the downscaling ef-

fectiveness of the proposed method, the downscaled 1 km SM

maps and the 9 km SMAP SM maps are zoomed in different

scales, as shown in Fig. 9. The downscaled SM map shows

not only the consistent variation pattern with the 9 km SMAP

SM, but also much more spatial detail information, which is

consistent with satellite RGB images. For example, the green

linear region in Fig. 9(e) is the cropland with higher water

content, which is indicated by the blue linear feature in Fig. 9(d).

5) Methods Comparison: Table III lists R values, BIAS, and

RMSE values between the 1 km downscaled SM map and the

in situ groundtruth over eight dates. In total, 32 points (i.e., 4

stations × 8 d) in total are used to calculate metrics.

The validation scatterplots over eight dates shown in Fig. 10

show consistent correlation degrees with Table III. Scatters of

the proposed BDIP method show an obvious linear relationship

between the downscaled SM and groundtruth data. By observing

the scatters, we found that the measurements within the USCRN

network are generally smaller than the SCAN network because

the USCRN stations distributed in the shrublands, and the SCAN

station is in the grassland, where the soil normally contains more

water. It is found that the score of SCAN network is generally

better than USCRN network. The possible reasons are listed as

follows.

1) The better statistical score could be caused by fewer station

points.

2) The SM is overall higher at SCAN station than that at

USCRN stations.

3) Sensors of these two networks could be different.

Fig. 11 displays the downscaled SM maps by different meth-

ods on two dates. SM maps generated by the Bicubic and GFPCA

share consistent variation patterns with SMAP SM maps, but

with large bias. GFPCA SM maps get more blurred than 9 km

SMAP SM. The proposed method, on the contrary, estimates the

high-resolution SM map with sharp and clear boundaries. SM

maps achieved by PCA and CNMF preserve much information

in the NDVI and LST than the SMAP SM map, which is the fake

SM texture. They fail to properly extract and balance the spatial

feature information from the SMAP SM and MODIS products.

The abovementioned results’ description is listed in Table II.

The PCA and CNMF methods were designed for multispec-

tral, hyperspectral images pansharpening, where the HR images

and the LR images share the similar spatial texture. PCA and

CNMF are also used to enhance the contrast of the original

image. However, for the SM downscaling guided by NDVI and

LST, the HR NDVI, LST, and the LR SMAP SM have different

spatial texture. So, simply extracting the spatial textural infor-

mation from all bands leads to the failure of data fusion. GFPCA

performs better than PCA and CNMF because a transformation

from NDVI and LST to the SMAP SM was conducted instead of

extracting information from all of MODIS and SMAP products.

However, the downscaled SM still gets blurred, which could be

caused by the transformation or upsampling procedure. Bicu-

bic interpolates the SMAP SM directly without using MODIS

products, leading to insufficient spatial details.

To sum up, the downscaled 1 km SM by our proposed method

not only has the consistent variation pattern with the SMAP

maps, but also restores more spatial details than other methods

with higher accuracy.

VII. CONCLUSION

In this article, we proposed a Bayesian DIP downscaling

model for SMAP SM products by integrating the FCNN into

a Bayesian framework. MODIS products was used as the model

input to guide the downscaling procedure. An hourglass FCNN

was adopted to map the nonlinear relationship between MODIS

products and high-resolution SM map and to better construct

the spatial heterogeneous information in SM map. The MAP

inverse problem was solved by back propagation instead of EM

iterations, which makes the model optimization simpler and

faster. Experiments on the time series data showed that SM maps

estimated by the proposed method provided more spatial texture

details than other existing unsupervised downscaling methods,

and the estimated SM was very close to in situ measurements
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with a high overall R value 0.88. The proposed Bayesian down-

scaling model is very effective for SMAP SM downscaling.

Despite of the successful of the BDIP downscaling approach

based on the in situ and visual validation, this article has a

shortcoming of insufficient result analysis from the geographical

perspective, such as how the downscaled SM map correlates

in finescale with the land cover types, precipitation, and the

elevation. Another shortcoming of this article is the insufficient

comparison with more advanced downscaling methods consid-

ering that the unsupervised downscaling approach is limited.

However, this unsupervised approach has larger potential than

supervised ones to be widely used without high-resolution maps

required. Moreover, since the proposed model is flexible to fuses

multisource RS products and its downsampler part can be adjust

according to the resolution of existing SM products, it has the big

potential to be applied to more SM products with different spatial

resolutions and to fuse more RS products, such as precipitation

and terrain products.
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