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a b s t r a c t

In blockchain networks driven by Proof of Work, clients spend a certain amount of cryptocurrency
(called fees) to control the speed of confirmation of the transactions that they generate. In fact,
transactions are confirmed according to a strong priority policy that favors those offering the highest
fees. The problem of determining the optimal fee to offer to satisfy certain delay requirements is still
widely open and, at the state of the art, mainly reactive methods based on historical data are available.
In this work, we propose a queueing model based on the exact transient analysis of a M/MB/1 system
to address this problem. The model takes into account (i) the state of the Mempool (the backlog of
pending work) when the transaction is generated, (ii) the current transaction arrival intensity and (iii)
the distribution of the fees offered by other transactions to the miners. We apply the model to study
the performance of the Bitcoin blockchain. Its parameterization is based on an extensive statistical
analysis of the transaction characteristics. To this aim, we collected data from over 1.5 million of
pending transactions observed in the Mempool of our Bitcoin node. The outcome of our analysis allows
us to provide an algorithm to quickly compute the expected transaction confirmation time given the
blockchain state, and to highlight new insights on the relations between the transaction fees and
confirmation time in BTC blockchain.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the economic system that allows blockchain
istributed ledgers to operate has attracted a lot of attention. In
articular, the fees offered by the users to pay for the services
rovided by the system have been recognized as a pivotal aspect
f this technology [1–3]. To make this topic even more important,
e must consider that in few months an important blockchain

ike Bitcoin will rely just on users’ fees to support the energy and
ardware costs faced by the miners, i.e., those users that invest a
uge amount of resources1 to support the blockchain operations.
This mechanism causes dynamics worthy of scientific investi-

gation, such as those highlighted in [4–7].
Blockchains are distributed ledgers based on peer-to-peer

(P2P) consensus protocols that are becoming widely popular
nowadays. Beside their most well-known applications for cryp-
tocurrency trading, blockchains are the enabling technology for
many other applications that require the permanent and im-
mutable storage of data, or even the execution of publicly known
programs called smart contracts.

∗ Corresponding author.
E-mail addresses: ivan.malakhov@unive.it (I. Malakhov), marin@unive.it

A. Marin), sabina.rossi@unive.it (S. Rossi).
1 According to Cambridge Centre for Alternative Finance, the estimated
nnual energy consumption of Bitcoin blockchain is 145.63 TWh, i.e., roughly
he annual electrical energy consumption of a country like Sweden. Source:
ttps://cbeci.org.
ttps://doi.org/10.1016/j.future.2023.04.016
167-739X/© 2023 Elsevier B.V. All rights reserved.
In these systems, data are organized in transactions, and
transactions are stored into blocks to form a linked list called
blockchain. Once a transaction is included in a block, it is possible
to quantify the energy costs for changing its content or delete
it. For popular blockchains, such as that underlying Bitcoin, this
cost becomes quickly prohibitive even for recently confirmed
transactions.

A crucial phase of this process is the transaction validation,
i.e., the P2P community must find an agreement on its validity
according to some rules. For example, in blockchains based on
cryptocurrency trading, the rules for validation include the ver-
ification of the identity of the user(s) and a check to avoid the
double spending of the same amount of cryptocurrency.

Several protocols have been devised to reach consensus, pos-
sibly inspired by the Byzantine fault tolerance problem. In this
paper, we consider the original and mostly applied consensus
protocol: the Proof of Work (PoW). PoW is applied in Bitcoin
blockchain [8] as well as in Bitcoin cash, Ethereum2 and many
other ledgers [9]. Henceforth, we focus on the behavior of the
Bitcoin (BTC) system since it is the most used blockchain and its
protocols have inspired many other blockchain systems.

The set of users that verify the transactions, consolidate the
blocks and store a copy of the blockchain are called miners. When
miners receive a new transaction, they store it in a special buffer

2 https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/

https://doi.org/10.1016/j.future.2023.04.016
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or pending transactions that is usually called Mempool. While
ach miner maintains a private Mempool, their states are rather
imilar as the propagation delays in the network are significantly
mall compared to the average time between the blocks [10]. In
act, there are several online services that show the state of the
empool as if it was a common queue.3 ,4 We further discuss
ifferences of the Mempool states in Remark 1. A transaction
hat leaves the Mempool and is included in a block is said to be
onfirmed.
Each block of the chain contains a subset of the transactions

resent in the Mempool at the moment of its consolidation and
he maximum amount of transactions that fit in a block is given
y some invariant properties of the blockchain. For example, in
TC, every block can be at most 1 MB large, which translates into
n average of 2300 transactions per block.
As far as this paper is concerned, the crucial aspect of the

ining process is the way in which the transactions are selected
rom the Mempool by the miners. Indeed, transactions offer a fee
or their confirmation that is publicly known, and miners select
rom the Mempool the transactions that are more profitable,
.e., those that offer the highest fee per byte.

Since in BTC the maximum block size is fixed and the gen-
ration of blocks is designed in such a way that one block is
onsolidated every 10 min on average, it is clear that, especially
n heavy load conditions, the offered fee becomes determinant
or delay-intolerant operations. For example, the high volatility
f BTC price requires payments to take place (i.e., to be added
o a block) within a few blocks after their request. The mining
rocess is depicted in Fig. 1.
This paper proposes a queueing model to answer the following

uestions: given the state of the Mempool and the intensity of the
orkload, what is the expected number of blocks that a transaction
ffering a certain fee should wait for its confirmation? It is worth to
otice that the state of the Mempool (including the distribution
f the fee offered by the transactions therein) and the intensity
f the arrival process are publicly available information that may
e obtained either by running a BTC miner node, or by using one
f the many free online services.5

.1. Contribution

This paper starts from the observation that a transaction x
hose fee per byte ratio is f experiences a waiting time formed
y the sum of two delays:

• The system first confirms all the transactions present in the
Mempool at its arrival epoch whose fee per byte is greater
or equal to f ;

• Moreover, other transactions arrive after x but before its
confirmation, and if their fee per byte is higher than f they
will be confirmed before x.

The confirmation of the transactions takes place in batches,
i.e., the newly generated block contains all the transactions that
it can fit. Therefore, the whole process can be seen as M/MB/1
queueing process [11,12], where, according to Kendall’s nota-
tion [13], M denotes that both the transaction inter-arrival times
and the inter-block generation times are independent and ex-
ponentially distributed, B stands for the batch size that simply
represents the number of transactions that a block can fit, and
finally 1 denotes that the system consolidates one block at a
time.

3 https://mempool.space
4 https://mempool.observer
5 http://www.blockchain.com
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Fig. 1. Sketch of the mining process in BTC. Darker colors represent higher
fee-per-byte ratios.

We will support the assumptions on the exponential service
time and Poisson arrival process in Section 3.

Given a tagged transaction x offering f , its consolidation delay,
.e., its residence time in the Mempool measured in number of
onsolidated blocks, corresponds to the time required by the
/MB/1 queue starting from the initial state to reach the empty

state. The former corresponds to the number of transactions Y +1
(including the tagged transaction) whose fees are higher than
f found in the Mempool at its arrival epoch. Consequently, the
latter refers to the circumstance when there will be no more
transactions that offer higher fee f ′

: f ′ > f in the Mempool.
The system as seen by x is subject to an arrival process filtered
to take into account only the transactions that are more valuable
than f .

We provide the transient solution of such a system based
on the technique of generating functions. Theorem 1 gives an
iterative method for the exact computation of the expected trans-
action’s confirmation time given the root of a certain polynomial
that can be easily obtained with a numerical procedure. Although
in this paper we focus on the first moment of the expected
confirmation time, the analysis that we propose allows also for
an approximate computation of further moments where the ap-
proximation error is bounded thanks to the theory of residuals in
power series.

Finally, we provide an extensive set of experiments with the
aim of studying the impact of the Mempool state and the system’s
load factor on the choice of the fee to offer in order to satisfy
certain delay requirements on the transaction confirmation.

We believe that the results proposed in this work are of high
importance for every transaction issuer. Clearly, to optimize the
costs it is crucial for them to know the minimum fee to pay
in order to have their transactions confirmed within a certain
desirable time, as in case, for example, of speculative exchanges
of the cryptocurrency. Conversely, one may also be keen to know
how long the confirmation delay would be if a certain fee for the
transaction is set.

1.2. Structure of the paper

The paper is structured as follows. First, Section 2 describes
the related work on this subject. In Section 3, we describe our re-
search problem and review the PoW systems. Moreover, we show
some data analysis of BTC blockchain to motivate the introduction
of our queueing model. This model is presented and solved in
Section 4. In Section 5, we use the results of Section 4 to study
the expected confirmation time in BTC blockchain. What is more,
we validate our model both with trace driven and stochastic
simulations. Finally, Section 6 concludes the paper.

https://mempool.space
https://mempool.observer
http://www.blockchain.com
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. Related work

In general, the quantitative analysis of blockchain systems
as drawn a lot of attention from the scientific community (see,
.g., [14–16] and the references therein).
In particular, the estimation of transactions’ confirmation time

ith queueing theory has been explored in some very recent
orks [17–21]. In this section, we focus on those works whose
im is that of studying the confirmation delay as function of
he offered fee. In this context, the advantage of a queueing
heoretical model with respect to other approaches based on
rior statistics is that the former reacts quicker to changes of
he arrival process. In fact, predictive models based on historical
ata recommend increasing the fee to achieve a certain target
xpected consolidation time once they record that the previous
ee does fit the requirements. Fig. 3(a) shows the intensity of the
rrival process and the expected fee per byte of the transactions
n BTC during five days. We can observe a delay of approximately
hree hours between the reaction of the current predictive model
nd the change in the system’s workload.
The major difference between our contribution and those de-

cribed in [17–19,21] is that we consider a transient analysis
nstead of a steady-state one. This has several consequences.
he first is that our model takes into account the state of the
empool at the moment in which the transaction is generated.
s we will observe in Section 5, this has an important impact
n the confirmation delay and is actually information available
o the users that should be used. The second difference is that
he priority queue analysis provided in [18,19,21] requires one to
luster the transactions into few classes based on the offered fee,
hile we can handle continuous distributions (e.g., obtained by

itting of real data) of offered fees per byte.
The works [18,19] differ from [21] and ours for the consolida-

ion policy. Indeed, the former two assume that once the miner
hooses the transactions to add to the next block, this will not be
hanged. Conversely, [21] and our work considers the fact that
iners update their choices upon the arrival of more profitable

ransactions. If this happens, the cheapest transaction is removed
rom the candidate block and is replaced by the newly, more
rofitable, arrived one. Since the mining process is memoryless
nd the PoW is only marginally affected by a change in the
election of the set of transactions to consolidate, this policy is
loser to what happens in real systems.
In [22], the authors propose a queueing model at the base

f a classifier for the transactions. The work presents interest-
ng measurements that show an important insight of the BTC
lockchain, especially regarding the characteristic of dropped
ransactions. However, the impact of the offered fee per byte of
he confirmation delay is not considered by the model (although
t is experimentally measured for the dropped transactions).

In [17], the authors propose an iterative solution for the sta-
ionary distribution of the embedded Markov chain of a G/GB/1
queue and validates the analysis with measurements collected
from the Ethereum blockchain. The conditional confirmation de-
lay from a single transaction perspective is not considered, al-
though the model is well designed for the overall analysis of the
system, e.g., to estimate the expected size of the Mempool in
steady-state.

Another important related work is [23]. This contribution
shares with [18,19,21] the stationary analysis of the queueing
model and the introduction of the customer priority classes. How-
ever, its aim is that of proposing a game theoretical framework
in which the dynamic of the fees are studied in relation with the
economical interests of the miners.

In [24,25], the authors propose to use the process named
Cramer–Lundberg to evaluate the confirmation time of transac-

tions. Similarly to our contribution, the authors take into account m
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the initial state of the Mempool and assume a homogeneous
Poisson process for the block generation counting. In order to
overcome the computational complexity for the solution of the
process in heavy load, they introduce a diffusion approximation
with shifted initial point in order to avoid a premature hitting
of the absorbing state. With respect to this work, our model
maintains the stochastic nature of the transaction arrival process
(while the Cramer–Lundberg model requires a constant arrival
flow) and is solved with an exact method unveiling some new
results for the M/MB/1 queueing systems.

For what concerns the queueing theoretical results, several
works have studied the single server queue with batch departures
(see, e.g., [26]) but to the best of our knowledge, this is the first
time that the exact solution of the expected time (in number of
completed services) to the absorption in the 0 state of a M/MB/1
ueue starting from an arbitrary state is presented. In [27], the
uthor performs a discretization similar to ours to study a queue
ith batch service. In this case, the batch is formed immediately
fter the completion of a service, i.e., similarly to [18,19], while
he system under study requires to form the batch immediately
efore the service with all the available transactions in the Mem-
ool. The behavior of the queue becomes quite different, and no
lgorithm similar to that of Theorem 1 is given.

. Background and motivation

This section consists of two parts: a review of the PoW con-
ensus algorithm with particular attention to BTC blockchain and
he description of the problem we aim to address.

.1. Consolidation of a block with PoW

The consolidation of a block is done in two phases:

1. The miner selects and validates the transactions to include
in their candidate block.

2. The miner competes with the others to solve the puzzle
required by the PoW.

oW is the consensus mechanism used by most of the block-
hains to ensure the security properties of the system without
he need of a central, trusted authority.

Informally, we can say that the computational effort required
or mining blocks is the key factor that allows the commu-
ity to trust the security of the blockchain: the bigger the total
omputational power of all miners, the more secure the system.
In practice, all miners are required to verify the validity of the

ransactions they would like to have in their new block. In this
hase, each miner verifies the transaction signatures to assess
heir authenticity. Moreover, before including the transactions
n the new block, each miner verifies that there are no double
pending issues. Notice that, at the announcement of a new block,
hese checks are performed also on the transactions contained in
t, thus reaching a distributed consensus. After doing so, miners
ave to consolidate the block by solving a puzzle. Informally, in
TC and many other blockchains, this means finding a certain
once such that the binary version of the hash of the block
ncluding that nonce begins with a certain number of zeros. Since
t is assumed that each hash is equiprobable given a certain block,
nd given that the nonce is a 32 bits integer, we can safely
ssume that the solution of the puzzle is a memoryless process.
his implies that the number of hashes computed between two
uccessive blocks is geometrically distributed, and hence the time
s independent and approximately exponentially distributed.

In BTC blockchain, the difficulty of the puzzle is dynamically
et in such a way that blocks are generated on average every 10

in. Thus, it can be safely assumed that the distance between
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Fig. 2. Mempool dynamics from November 14th to November 22nd, 2022.
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onsecutive blocks is independent and exponentially distributed
ith a mean 10 min. This is the first invariant property of BTC
lockchain.
The second invariant property that characterizes most PoW

lockchains is the maximum block size. For example, for BTC
his is 1 MB. The estimation of the expected number of trans-
ctions that can fit in a block must be carefully done taking into
ccount some protocol characteristics, e.g., Segregation Witness
or SegWit) in BTC.6 Generally speaking, the implementation of
he SegWit transactions allows the separation of the transactions’
ignatures from their other data. Hence, a block completely filled
ith the SegWit transactions carries the same information of a
.7MB block without SegWit (see Remark 3 for more details).
In addition, it is known that, given the average transaction

ize, a block can contain approximately 2300 items that corre-
ponds to a maximum throughput of 2300/(10 × 60) ≃ 3.8
ransactions per second, that is expected to increase as more
ransactions will adopt the SegWit standard.

.2. Auction and transaction confirmation time

When a new transaction is seen by the miners, it is included
nto a local queue called Mempool. The pending transactions in
he Mempool of each miner are still not effective since only those
ppearing in the consolidated blocks (i.e., the confirmed ones)
an be universally considered immutable, or at least the energy
ost for their change can be estimated. The time between the
rrival epoch and the inclusion in a block is called transaction
onfirmation time.
Users can control the transaction confirmation time by offer-

ng a fee that will be cashed by the miners at its consolidation.
ince miners aim to maximize their profit, they tend to choose
he most profitable transactions from the Mempool to be included
n the block. Because of the possible different transaction sizes,
hey use the fee per byte ratio (sometimes called fee density)
s a metric to assign priority to the transactions. Thanks to the
emoryless property of the PoW, highly profitable transactions
re immediately included in a new block by evicting the less
rofitable ones that stay in the Mempool.
It is not surprising that when the system is close to saturation,

he expected confirmation delay grows and the auction on the

6 Bitcoin Improvement Proposal 141: https://github.com/bitcoin/bips/blob/
aster/bip-0141.mediawiki.
278
offered fees becomes more expensive for the users as shown by
Figs. 3(c) and 3(d).

In the BTC blockchain, the cryptocurrency is the Bitcoin whose
value in FIAT is very volatile. Therefore, coherently with the
online community best practices, we will resort to the Satoshi
(sat) to specify the fees, keeping in mind that 1BTC = 108sat .

Remark 1 (Do All the Miners See the Same Mempool?). Blockchain
s a peer-to-peer network and information propagates thanks to a
ontrolled flooding mechanism. A transaction is firstly accounted
y a miner and then it is broadcasted to the others. Techni-
ally speaking, there is the possibility that the Mempools seen
y the miners are not exactly the same. The Bitcoin Network
onitor7 [10] shows that within 16 s at least 90% of the miners
re ready to announce a newly generated transaction (so they
ave surely received it before) and the block propagation delay
s within 2 s. Thus, these delays are reasonably small to support
ur assumption coherently with other works in this field [18,19,
1,23,24]. Another aspect that we should bare in mind is that the
rotocol does not specify which transactions a miner has to select
rom the Mempool. However, the fact that the most widely used
oftware for mining applies the greedy approach on the selection
f the most profitable transactions supports our assumption.

emark 2 (Network Neutrality in Bitcoin). Recent research [28,29]
as found that mining pools may show bias towards selecting
ransactions from their own pool when creating new blocks,
hich could potentially compromise the neutrality of the pro-
ess. While the protocol allows miners the freedom to choose
hich transactions to include, this behavior raises concerns about

airness. However, despite this phenomenon, the correlation be-
ween offered transaction fees and expected confirmation time
emains consistent and predictable, as reported by various Bitcoin
empool monitors. We show one8 in Fig. 2. The greedy behavior

of miners is evident since at each block consolidation, the most
valuable transactions are removed with strict priority.

Remark 3 (Transaction Sizes and Segwit). Since 2015, the SegWit
standard has become more and more used in BTC blockchain.
Nowadays, the vast majority of miners accept the SegWit trans-
actions as witnessed by the fact that basically all the recent
non-empty blocks contain at least one SegWit transaction. The

7 https://www.dsn.kastel.kit.edu/bitcoin/
8 https://jochen-hoenicke.de/queue

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://www.dsn.kastel.kit.edu/bitcoin/
https://jochen-hoenicke.de/queue
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Fig. 3. Data retrieved from the BTC blockchain analysis.
dea behind this standard is that part of the transaction data can
e stored in a parallel chain and hence the size of 1 MB per
lock becomes less restrictive. At the moment, the percentage
f SegWit transactions is approximately 50%. In determining the
istribution of the transaction size, we considered only the size
f the data to be stored in the block subject to 1 MB limitation,
ecause this is what determines the maximum throughput of the
lockchain. Coherently, when the miners compute the fee-per-
yte ratio they use the effective space occupied in the block rather
han the total transaction size.

It is expected that the percentage of SegWit transactions will
ncrease in the next months given the trend of the fees observed
n the last few months.

.3. Problem statement and motivation

Technically, there is no limit to the fee that blockchain users
an offer for their transactions. However, there exists a natural
ension between the need of reducing the operating costs and
he confirmation delay that a user accepts to wait. Indeed, if
transaction includes a payment (obviously in cryptocurrency),

he users expect a short confirmation delay because the high
luctuations of the cryptocurrency value may affect the econom-
cal conditions of the deal. This is even more evident if the
ransactions are associated with financial speculation on trading
ryptocurrencies. The problem is enhanced by the fact that the
ffered fee cannot be changed once the transaction is in the
empool. However, in some other cases, the transaction will
tore in the blockchain some delay tolerant data and hence the
ee offered can be drastically smaller than that needed in the
revious case.
As a consequence, users need a method to tackle the trade-off

etween the cost of processing the transaction and its confirma-
ion delay.

Nowadays, this problem is only partially covered by built-in
ethods. Current methods of optimal fee determination include
279
Monte Carlo simulations as well as history-based approaches,
e.g., ‘estimatesmartfee’ function in the Bitcoin core methods.9

Fig. 3(a) shows the arrival process intensity at the BTC Mem-
pool and the expected offered fees between 2020/11/15 to
2020/11/20. The plots are based on the statistics collected on over
1.5 million transactions seen at our BTC node.

We observe that the arrival process (blue line) in BTC block-
chain is subject to high fluctuations. Moreover, the fee-per-byte
ratios of transactions (orange line) tends to reflect the behavior of
the arrival process with a delay of approximately 3 h. This is due
to the reactive nature of the current fee estimation algorithms
based on the past statistics to predict the best fee.

In contrast, the prediction queueing model that we propose is
proactive, and reacts as soon as the occupancy of the Mempool
or the arrival rate grows.

Fig. 3(b) shows the distribution of sizes of pending transac-
tions in the observed period of time. Most of the size values are
located between 100 and 250 bytes which is about 70% of all
pending transactions in the Mempool. The probability of finding
the transaction with greater size drops dramatically for sizes
larger than 400 bytes.

Figs. 3(c) and 3(d) show empirical probability density function
of fee-per-byte ratios for two periods of time with moderate
and heavy workload conditions respectively. The plots support
the intuition that, when the load is moderate, there is a lower
competition for accessing the new blocks, hence the fee-per-byte
ratio tends to be as small as possible. Indeed, in moderate load,
almost 40% of the transactions offer a fee-per-byte just above 0
sat/B.

Conversely, in heavy load conditions (see Fig. 3(d)), users
offer higher fees to solicit miners to select their transactions for
inclusion in the next blocks. The majority of the transactions

9 https://bitcoin.org/en/download

https://bitcoin.org/en/download
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ave fee-per-byte values between 50 and 100 sat/B, with a peak
round 85 sat/B.
This paper proposes a queueing model that, given the traffic

ntensity, the distribution of the fee per byte and the state of the
empool, predicts the statistics of the number of blocks required

o confirm a transaction offering a certain fee. Although we will
ainly focus on the estimation of the expected number of blocks

or transaction confirmation, the method can be extended to
ddress the estimation of successive moments. The first moment
an be derived with a finite number of operations given the root
f a certain polynomial, while successive moments require the
runcation of a power series and hence can be used to obtain
pproximate results.

emark 4 (How to Measure the Confirmation Delay?). In this work,
e measure the confirmation delay in number of blocks rather
han in seconds. This is coherent with the needs of the blockchain
sers as witnessed by the active services of fee prediction. For
xample, the reactive service implemented in the main soft-
are for BTC usage, Bitcoin Core,10 is used by the wide majority
f users and implements the smartfeeprediction service based
n historical data. This service returns the expected number of
locks for confirmation given a certain fee. Analogously, external
rivate services offer predictions with other methods (e.g., by
sing Monte Carlo simulation) but always expressing the confir-
ation delay in number of blocks. This is explained by the fact

hat the meaningful events in the blockchain are those associated
ith the transactions in the block. For example, a transaction
ffering a very high fee per byte is almost sure to enter in the next
vailable block but is still subject to the uncertainty of when that
lock will be mined. Still, it will overtake the other transactions
n its confirmation and this is what is crucial for the system.

. The queueing model and its solution

In this section, we first assume that a transaction arrives at the
ystem offering the lowest possible fee, i.e., it will be included in
block only when all the other transactions in the Mempool at

ts arrival epoch and those that will arrive during its waiting time
re confirmed.
After providing the model description and assumptions, we

ive a general solution based on generating function method. This
onsists in four phases:

1. Discretization of the continuous time Markov chain into
a discrete time one. Intuitively, this corresponds to the
observation of the states of the system immediately after
each block consolidation. This is done in Section 4.1.

2. Derivations of the equations describing the system dynam-
ics, i.e., the expected number of blocks to the confirmation
given the initial Mempool occupancy. This is presented in
Section 4.2.

3. Solution of the infinite set of equations derived in point 2
by resorting to the generating function method. This allows
us to analytically derive the average performance indices as
carried out in Section 4.3 where a numerical procedure for
the computation of the expected confirmation time of the
transactions is presented.

4. Finally, in Section 4.4, we extend our results to transactions
offering an arbitrary fee.

10 http://bitcoin.org
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4.1. Model description and notation

Transactions arrive at the Mempool according to a stationary
Poisson process with intensity λ. The generation of blocks occur
at the random times t0, t1, . . . and we have:

r{tn+1 − tn ≤ x} = 1 − e−µx , ∀n ≥ 0 , (1)

.e., the time between two consecutive block consolidations is ex-
onentially distributed with rate µ, e.g., for BTC µ = 6 blocks per
our. Each block contains at most B transactions and consumes all
he possible transactions in the Mempool, i.e., it is generated even
f it is not completely full.

For the moment, we assume that all the transactions offer the
ame fee with the exception of a tagged transaction that offers
ess than all the others, i.e., it will be processed only when there
s not any other transaction to be included in the block. The order
f service of the non-tagged transactions is irrelevant.
The service policy adds the transactions to the next batch as

oon as they arrive, if some space is available. In other words, we
an imagine that the system first draws the next block consol-
dation time and then selects from the Mempool B transactions
if available) to serve that may include those arrived between the
revious and the current consolidations.
Let η(t) be the number of transactions in the Mempool at time

, with η(0) = Y , Y ≥ 1 be its occupancy at the tagged transaction
rrival, including the transaction itself.
In order to work in a discrete time setting, let:

n ≜ η(tn),

.e., ηn is the number of transactions in the Mempool immediately
fter the consolidation of the nth block after the tagged trans-
ction arrival. So, our time slot begins immediately after a new
lock generation and finishes immediately with the consolidation
f the next one. From a queueing theory perspective, we are
aking an arrival-before-service approach for the discretization of
he system’s time (see, e.g., [11]), thus we have η0 = Y .

The collection of random variables {ηn : n ≥ 0} is a discrete
ime Markov chain (DTMC) since it trivially satisfies the Markov
roperty [30]. Define the probability that the Mempool will be
mpty after n steps, given the initial state Y as:
n
Y ≜ Pr{State 0is reached for the first time

in exactly n transitions |η0 = Y } .

e observe that the distribution aj of the number of arrivals
etween the consolidation of two consecutive blocks is given by:

j = µ

∫
∞

0

(λt)j

j!
e−(λ+µ)tdt =

µ

λ + µ

(
λ

λ + µ

)j

,

i.e., aj, as expected by the memoryless property of the service and
arrival process, forms a geometric distribution with α ≜ λ/(λ+µ)
and β ≜ 1 − α. Henceforth, we rewrite aj as:

j = βαj.

otice that the probability of receiving strictly less than j trans-
actions in a time slot is:

1 −

∞∑
k=j

ak = 1 − αj.

4.2. Solution of the model

The main result of this section is Theorem 1 which gives the
expected confirmation time as function of the model parameters.
Its proof is based on a set of lemmata, the most important of

http://bitcoin.org
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hich are presented in this section. The detailed proof of the
heorem is reported in Appendix D.

First, we consider the case n = 1. We may easily write P1
j as:

P1
j =

{
1 − αB−j+1 if j ≤ B
0 if j > B

. (2)

Let us consider the case n > 1. The first step analysis of the
DTMC allows us to write the following equations:

Pn
j =

∞∑
k=max(1,j−B)

Pn−1
k ak−j+B =

∞∑
k=max(1,j−B)

Pn−1
k βαk−j+B . (3)

For n = 2, we can easily derive P2
j . In fact, using Eq. (3), for j ≤ B,

e have:

2
j =

∞∑
k=1

P1
k βαk−j+B

=

B∑
k=1

P1
k βαk−j+B

=

αB+1−j(1 − αB(B + 1 − αB)) .

For B + 1 ≤ j ≤ 2B, we obtain similarly:

P2
j = 1 − α2B−j+1(1 + (1 − α)(1 + 2B − j)).

Clearly, for j > 2B, P2
j = 0.

In general, we rewrite Eq. (3) for n ≥ 2 as stated by the
following lemma.

Lemma 1. For n ≥ 2, the system of Eq. (3) can be rewritten as:{
αPn

j = Pn
j−1 2 ≤ j ≤ B + 1

αPn
j = Pn

j−1 − βPn−1
j−B−1 j > B + 1 (4)

Proof. Let us consider 2 ≤ j ≤ B. Using Eq. (2), we obtain:

Pn
j =

∞∑
k=1

Pn−1
k βαk−j+B

=
1
α
Pn
j−1.

Similarly, we have:

Pn
B+1 =

∞∑
k=1

Pn−1
k βαk−B−1+B

=
1
α
Pn
B .

For j > B + 1, we have:

Pn
j =

∞∑
k=j−B

Pn−1
k βαk−j+B

=

∞∑
k=j−B−1

Pn−1
k βαk−j+B

−
β

α
Pn−1
j−B−1 =

1
α
Pn
j−1 −

β

α
Pn−1
j−B−1 . □

Under stability condition λ < Bµ, i.e., α < B/(B+1), the states
of the process are all positive recurrent, i.e., starting from any
state j we reach state 0 with probability 1 in a finite expected
time. Thus, Pn

j , given j, is a probability distribution and we can
introduce its probability generating function:

Pj(w) ≜
∞∑
n=1

Pn
j wn,

where w ∈ C and |w| ≤ 1. We can multiply each equation for Pn
j

of System (4) by wn and summing up, we obtain for 2 ≤ j ≤ B+1:

α
(
Pj(w) − P1

j w
)

= Pj−1(w) − P1
j−1w . (5)

For j > B + 1, we have:( 1 ) 1
α Pj(w) − Pj w = Pj−1(w) − Pj−1w − βwPj−B−1(w) . (6)
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Let us introduce the following generating function [11] for z ∈ C
and |z| < 1:

P(z, w) ≜
∞∑
j=1

Pj(w)z j,

and we sum Eqs. (5) and (6) multiplied by z j for j ≥ 2. Thus, we
have:
∞∑
j=2

α(Pj(w) − P1
j w)z j =

∞∑
j=2

(Pj−1(w) − P1
j−1w)z j −

βw

∞∑
j=B+2

Pj−B−1(w)z j

This can be conveniently rewritten as:

αP(z, w) − αzP1(w) − αw

∞∑
j=1

P1
j z

j
+ αwzP1

1 = zP(z, w) −

wz
∞∑
j=1

P1
j z

j
− βwzB+1P(z, w) . (7)

Now, observe that:
∞∑
j=1

P1
j z

j
=

B∑
j=1

(1 − αB−j+1)z j =

z
(
α − αB+1(1 − z) − z + (1 − α)zB+1

)
(1 − z)(α − z)

≜ h(z) .

We can simplify Eq. (7) as:

P(z, w)(α − z + βwzB+1) = (αw − wz)h(z) + αzP1(w) −

αwzP1
1 ,

and obtain the expression for P(z, w):

P(z, w) =
w(α − z)h(z) + αzP1(w) − αwzP1

1

α − z + βwzB+1 , (8)

that depends on the unknown function P1(w).

Lemma 2. The denominator of the right-hand side of Eq. (8) has
only one zero ξ (that depends on w) in the open unitary disk if the
stability condition α < B/(B + 1) holds, |w| ≤ 1 and α ̸= j/(j + 1)
for j = 1, . . . , B .

The proof is given in Appendix A.
It is worth of notice that the Lemma does not follow from an

immediate application of Rouché theorem as it would be in the
domain |w| < 1 and |z| ≤ 1. Lemma 2 requires us to avoid
some values of α. In practice, this is not a problem given the
continuous nature of α, and we will deal with them by resorting
to a continuity argument on the performance indices.

Since, by definition, P(z, w), converges for all the values |w| ≤

1 and |z| < 1, ξ must also be a zero of the numerator of Eq. (8).
Thus, we can express P1(w) as:

P1(w) =
αwξP1

1 − w(α − ξ )h(ξ )
αξ

.

Let us introduce an auxiliary function:

f (ξ ) ≜
αwξP1

1 − w(α − ξ )h(ξ )
αξ

, (9)

where w = (ξ − α)/(βξ B+1). By Lagrange’s theorem [31], we can
rewrite f (ξ ) as:

(ξ ) = f (α) +

∞∑ (βw)t

t!

[
∂ t−1

∂xt−1

(
f ′(x)xt(B+1))] . (10)
t=1 x=α
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e can easily compute f (α) by substitution using Definition (9)
hat gives 0. We also have:

′(x) =
−βxB+1

+ Bx2 + (β − B(α + 1))x + αB
xB+1α(1 − x)2

.

We may conveniently rewrite f ′(x)xt(B+1) as follows:

f ′(x)xt(B+1)
= −

β

α

xt(B+1)

(1 − x)2
+

B
α

x(t−1)(B+1)+2

(1 − x)2
+

β − B(α + 1)
α

x(t−1)(B+1)+1

(1 − x)2
+ B

x(t−1)(B+1)

(1 − x)2
. (11)

Lemma 3. Let:

g(t) ≜
∂ t−1

∂xt−1

(
f ′(x)xt(B+1))⏐⏐⏐⏐

x=α

,

then, we have:

g(1) =
1 − αB

1 − α
,

and, for t ≥ 2:

g(t) = αB(t−1) (Bα − βB2
+ β(1 + B)2t

) [(t − 1)(B + 1)]!
[B(t − 1)]!

αB(t−1)−1β(α − βB)
[B(t − 1) + t + 1]!
[B(t − 1)]!(t + 1) 2F1

[
1 − B(t − 1)

t + 2
; −

β

α

]
αBt−2βB

[t(B + 1)]!
(Bt)!(t + 1) 2

F1

[
2 1 − Bt
t + 2

; −
β

α

]
, (12)

here 2F1 is the Gaussian hypergeometric function.

Although we do not provide the proof of this lemma, it can be
asily derived by applying the algebraic properties of Gaussian
ypergeometric functions.
By Lemma 3, we can write:

1(w) = (1 − αB)w +

∞∑
t=2

β twt

t!
g(t) . (13)

By taking the derivative of both sides of Eq. (13) evaluated in
w = 1, we obtain the factorial moments of the distribution of
the number of batches that have to be served in order to reach
the absorption starting from state 1 (see, e.g., [11]). In general,
the nth factorial moment of the distribution of the number of
consolidations required to serve the tagged transaction when the
queue contains Y − 1 jobs at the arrival time (Y ≥ 1) is:

Y
n =

1
Y !

∂Y

∂zY

(
∂nP(z, w)

∂wn

⏐⏐⏐⏐
w=1

)⏐⏐⏐⏐
z=0

.

owever, since we do not have a closed form expression for
1(w), this expression should be considered to obtain an approx-

imation of the factorial moments because Series (13) needs to be
truncated. In Section 4.3, we show that the first moment can be
obtained in an exact way thanks to a different approach to the
computation of P ′

1(1) whose only numerical step consists in the
omputation of the real root of a polynomial inside the unit disk.

.3. Numerical solution for the mean confirmation time

In this section, we derive the expression for the expected
umber of blocks that have to be consolidated before the tagged
ransaction is served.

In order to obtain MY
1 , we are interested in the derivation of

′ (1), i.e., the expected number of steps to reach the absorbing
1
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tate when the initial state is 1. Eq. (13) leads to the following
xpression:

′

1(1) = 1 − αB
+

∞∑
t=2

β t

(t − 1)!
g(t),

hat unfortunately does not admit a known closed-form expres-
ion. However, P ′

1(1) can be derived in an alternative way that
is more computationally efficient. Indeed, P ′

1(1) corresponds to
the expected number of batches served during a busy period
of the M/MB/1 queueing system. The stationary distribution of
this queueing system is well-known [21,32] and has a geometric
distribution:

πi = (1 − ρ̇)ρ̇ i,

for each state i ≥ 0, where ρ̇ is the root inside the unit disk
(which is known to be unique, real and positive in stability) of
the polynomial:

µρB+1
− (λ + µ)ρ + λ.

Notice that ρ = 1 is a root of the polynomial and there exists only
one real root in [0, 1). Therefore, ρ̇ can be efficiently numerically
derived thanks, e.g., to the bisection method.

The expected duration of the busy period can hence be ob-
tained by observing that in steady-state π0 represents the ratio
between the expected idle period lengths and the sum of the
expected idle and busy period lengths, thus obtaining:

P ′

1(1) =

(
ρ̇

1 − ρ̇

)
1
λ

=

(
ρ̇

1 − ρ̇

)
1 − α

α

1
µ

.

Indeed, the expected number of consolidated blocks during
an idle/busy period must be proportional to their length. To
easily see this, consider the epoch of beginning of an idle period
(a renewal instant). By the memoryless property of the timers
involved, the expected number of consolidated blocks during the
idle period is µ/λ. Therefore, for a busy period of expected length
1/b, the expected number of blocks must be µ/b since the process
of block consolidation is a homogeneous Poisson process with
rate µ.

We are now in position to state the main theorem that allows
us to study this queueing system (see Theorem 1 below). Further
factorial moments MY

k , for k > 1, may be derived in a similar
way, although they will depend on P (k)

1 (1), i.e., on the knowledge
of the factorial moments greater than 1 for the busy period
of the M/MB/1 queueing system or alternatively, they may be
approximated with a controlled truncation of the derivatives of
the Series (13).

Theorem 1. Let MY
1 be the expected number of steps to reach

the absorbing state when the queue satisfies the stability condition
starting from state Y . Then, the following recursive scheme can be
used to derive MY

1 :{
M1

1 = P ′

1(1)
MY+1

1 = MY
1 +

TY−1
αY−1

(
M1

1 +
β

α

)
−

TY
αY M1

1 ,
(14)

where:

TY ≜

⌊
Y

B+1 ⌋∑
c=0

(−1)c+1
(
Y − Bc

c

)
αBcβc . (15)

The proof is given in Appendix D.

emark 5 (Numerical Stability of the Algorithm). In this remark, we
discuss the numerical stability and complexity of the recursive
algorithm that uses the equations of Theorem 1 to compute the
average time to absorption.
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We first notice that the binomial coefficient in Eq. (15) can
e computed rather easily since index c ranges between 0 and
Y/(B + 1)⌋. Thus, in practice, the lower index is much smaller
han the upper one and when it grows, the upper one decreases
uickly. Consequently, in our experiments we did not need to
esort to Stirling’s approximation.

Conversely, some problems of numerical instability may be
aused by the subtraction present in Eq. (14). In fact, for low
alues of α, that translates in very low workload intensity, the
ecursive scheme becomes numerically unstable. This reflects the
act that for very low α, we have λ → 0 and hence MY

1 becomes
step function. In our experiments, we have not observed these
roblems for load factors of the system higher than 0.2. On the
ther hand, when the arrival process is very low, the prediction of
he expected confirmation time may be simply approximated by
ividing Y by the block size and then by taking the upper integer.
Finally, the computational complexity of the recursive scheme

s bounded by O(Y 2).

Summarizing, Theorem 1 allows us to compute the expected
umber of block consolidations that take place until the trans-
ction with the lowest fee density is included in a new block
onsidering that there are exactly Y transactions in the Mempool
t the time of its arrival.
The following subsection will describe the scenario when the

agged transaction has a fee-per-byte ratio other than the lowest
ne.

.4. Extension of the model to transactions with arbitrary fee

So far, we have assumed that the tagged transaction offers the
owest fee per byte in the system. Now, we remove this assump-
ion. Assume that f is the fee offered by the tagged transaction,
nd F1, F2, . . . are the continuous i.i.d. random variables associ-
ted with the fees per byte offered by all the other transactions. Fi
re independent of the arrival times, therefore the arrival process
ormed by filtering out the transactions with fee lower than f ,
.e., with probability Pr{Fi < f }, is still a Poisson process with
ntensity:

f = λF (f ),

where F = 1 − F (f ) is the complementary cumulative density
function (CCDF) of Fi. Now, let us consider the occupancy of
Mempool. If we assume that there are Y pending transactions at
the tagged transaction arrival, then we can count how many of
these transactions offer a fee per byte higher than f . Let us call
this number Yf . Notice that the fee offered by the transactions in
the Mempool is publicly known, thus Yf is deterministic.

A transaction offering a fee per byte f , on average, has to wait
number of blocks that is given by M

Yf
1 in a queueing system

here the batch size is still B and the arrival rate is λF (f ). We
ill call λF (f ) and ρF (f ) the perceived arrival rate and load factor,
espectively, where ρ = λ/(Bµ).

If F is approximated by a discrete distribution, we have to deal
with ties. In case of ties, transactions are usually served according
to their arrival order, thus in determining Yf , we must count all
the transactions with a fee per byte higher or equal to f , while in
determining the arrival intensity we count only the transactions
with strictly higher values.

In the next section, we use the data presented in Figs. 3(c)
and 3(d) to calculate the corresponding CCDFs that allow us to
parameterize the model and carry out the numerical evaluation.
Intuitively, by increasing the offered fee per byte f , the users
obtain two major benefits: (i) the reduction of the perceived oc-
cupancy in the Mempool and (ii) the reduction of the intensity of

he perceived arrival process.
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Fig. 4. Expected number of blocks for the confirmation with different number
of transactions in the MemPool as function of load factor.

5. Numerical evaluation

In this section, we show some numerical experiments with our
model and comment on the insights that they reveal on the sys-
tem under study. Moreover, we resort to Monte Carlo simulation
to test the robustness of the most important assumptions, and to
a trace-driven simulation to compare the model predictions with
real data.

5.1. Impact of the perceived load factor on the expected confirmation
time

The perceived load factor depends on the fee offered by a
transaction. In this set of experiments, we study its impact on
the expected consolidation delay.

Fig. 4 shows the impact of the perceived load factor on the
expected confirmation delay for different initial Mempool sizes.
The figure reveals several insights about the system that we
are studying. The first is that the initial Mempool size is very
important to determine the average confirmation time, especially
in heavy load conditions. This is due to the fact that, in order to
serve the backlog found at the tagged transaction arrival time t0,
he Mempool accumulates the transactions arriving after t0 but
before the tagged transaction’s confirmation instant. This creates
an unfavorable working condition that moves the expected delay
from 10 to 32 block consolidations in the cases of 1 or 3000
transactions in the Mempool, under a load factor of 0.95.

This supports the idea that, in heavy load, the knowledge of
the initial Mempool state is crucial for an accurate prediction
of the expected confirmation delay, and this is a novelty of our
queueing model with respect to the state of the art.

Another important observation is that expected confirmation
time tends to grow to infinity as the load factor approaches 1.
This is explained by the fact that when ρ ≥ 1, the Markov chain
underlying the model is not positive recurrent, therefore, starting
from any initial state, there is a positive probability of having an
infinite consolidation delay. It is possible to study the same model
to determine the probability of confirmation in case of ρ ≥ 1, but
this is out of the scope of this work.

5.2. Impact of the initial Mempool state on the expected confirma-
tion time

In the previous experiment, we have already discussed the
importance of the Mempool state at the tagged transaction ar-
rival. This observation is even more evident thanks to the plots
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Fig. 5. Impact of the initial Mempool size on the expected confirmation delay.
Fig. 6. Expected confirmation delay for different transaction fees per byte.
f Fig. 5(a). It is interesting to observe that the function describ-
ng the expected confirmation delay given the initial number of
ending transactions has abrupt changes in its growth for values
orresponding to integer multiples of the block size. This is clearly
hown by Figs. 5(b)–5(d). This characteristic is less evident with
igher load factors, and, if we assume the limiting case λ → 0,

this function becomes a step function with unit increase at B, 2B,
B and so on.

.3. Impact of the transaction fee on the expected confirmation time

From a practical point of view, the main goal of the model is
hat of supporting the decision on which fee to offer to confirm a
ransaction with a given expected delay. Figs. 6(a) and 6(b) show
he expected confirmation delay as function of the offered fee for
he tagged transaction, in moderate and heavy load. For the plot
f Fig. 6(a), we have used the fee distribution of Fig. 3(c), while
or that of Fig. 6(b) we have used the distribution of Fig. 3(d).
284
We should bear in mind that when we increase the offered fee
we reduce both the perceived arrival rate and the occupancy of
the Mempool. This explains the fast decrease of the expected
confirmation delay shown in the plots. In case of moderate load,
with 85 sat/B we reach an expected confirmation delay close to
1 block, while higher values are required in case of heavy load.

This observation is coherent with the distribution of the of-
fered fees that we measured. In fact, in moderate load, 85 sat/B
are sufficient to be confirmed quickly, while for heavy load one
needs to almost double this offer.

5.4. Validation of the model

In this subsection, we present some experiments aimed at
showing the robustness of the model. We answer three questions:
is it accurate to estimate the expected confirmation delay by
considering a blockchain with smaller block size but same load
factor? Does the replacement of a random block size with its
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Fig. 7. Analysis of the relative error obtained by re-scaling.
Table 1
Comparison of M1

1 obtained analytically with fixed block size and
simulation estimates with random block size. Confidence intervals
are at 98% based on 15 independent experiments.
ρ Model Simulation Relative error %

0.4 1.1205 1.1234 ± 3 · 10−4 0.26
0.6 1.4803 1.4813 ± 3 · 10−4 0.073
0.8 2.6937 2.6728 ± 3 · 10−4 0.78
0.9 5.1808 5.0341 ± 1.5 · 10−2 2.91

mean have a strong impact on the expected consolidation delay?
Are the assumptions on the transaction arrival process robust
with respect to the real system?

In order to answer these questions, we resort to Monte Carlo
imulations whose data (e.g., transaction fees, arrival stream,
ransaction sizes) are retrieved from the real BTC network. Un-
ortunately, real measurements on the confirmation delay condi-
ioned to the state of the Mempool, distribution of the offered
ees and arrival rate are not possible because most of these
nformation are not present in the blockchain logs.

.4.1. Re-scaling of the block size
Currently, the BTC blockchain block can host on average ap-

roximately 2300 transactions. Other blockchain networks, as
hat of Bitcoin cash, allow for bigger blocks and hence there is
pace for more transactions.
If we imagine to cluster the transactions with approximately

he same fee per byte into macro-transactions, we simplify the
odel by considering smaller blocks as well as a statistically
maller population in the Mempool. However, we can main-
ain an identical load factor. Clearly, the modified system is an
pproximation of the original one, nevertheless it is easier to
tudy.
In Fig. 7, we show the relative error measured by the compu-

ation of M1
1 and M20000

1 for the re-scaled block sizes B. We can
see that the tenfold size downscale from B = 2300 to B = 230
produces practically indistinguishable results from the original
model, while the relative error is more evident for smaller block
sizes.

We conclude that, in the case of the BTC system, in order to
speed up the computations for practical purposes, the block size
can be safely re-scaled by a factor of 10 without losing significant
precision in the obtained performance index.

5.4.2. Robustness of the deterministic maximum block size assump-
tion

In the model of Section 4, we assume that B is fixed. As
shown in Fig. 3(b), the transaction size may vary and hence the
maximum capacity of a block is, in practice, a random variable.
285
In this experiment, we aim at assessing the error in the compu-
tation of M1

1 that we commit using our simplifying assumption,
then from M1

1 we can derive all the other MY
1 . Thus, for this

experiment, for each transaction, we sample its size from the
empirical distribution shown in Fig. 3(b) and proceed by selecting
from the Mempool the largest amount of transactions (ordered
by offered fee per Byte in descending order) until we reach the
maximum block size of 1 MB. In this process, we take into account
technicalities such as Segwit transactions, i.e., the possibility of
transactions to store part of their information outside the block
(and hence allowing a larger number of elements in the block).

The model results are compared with estimates obtained with
Monte Carlo simulation (see Table 1). The simulations consist
of 15 independent experiments each of which consists of 106

independent runs.
Indeed, the relative error remains below 3% and is more ev-

ident in heavy load. What is more, the accuracy is essentially
maintained even for larger values of Y . As we consider an initial
Mempool size of 20,000 transactions and a load factor of ρ =

0.9, the model predicts that expected consolidation delay is 91.6
blocks while the Monte Carlo simulation using transaction sizes
taken from real data estimates 87.08 with an error of 5.1%. Notice
that the stochastic simulation with fixed block size gives 91.44,
fully confirming the model prediction.

A relative error of 5.1% on 87.08 blocks is widely tolerable,
since 87 blocks require 14 h on average to be consolidated, and
the introduced noise, e.g., by the fluctuation of the arrival rate,
surely has a higher impact. Thus, we conclude that considering
the queueing model with random sized batches is clearly an
intriguing mathematical problem, yet it does not significantly
improve the applicability of the results.

5.4.3. Comparison with trace-driven simulation
So far, we have assumed that the arrival process is a time-

homogeneous Poisson process with intensity λ. In this exper-
iment, we evaluate the accuracy of the model prediction by
resorting to trace-driven Monte Carlo simulation. To this aim, we
have collected the arrival timestamps of the transactions for 5
days in the BTC mining node. Starting from a certain t0 in the
collection, we estimate the arrival rate measured in the interval
[t0−7200, t0), where time units are seconds. The generation times
of blocks and the number of transactions that they contain are
exponentially distributed with mean 600s and obtained from the
distribution of Fig. 3(b), respectively. Offered fees per byte are
sampled from the distributions depicted by Fig. 3(d) since we
are interested in studying the system in heavy load. The initial
number of transactions in the Mempool is determined according
to the offered fee: if with the lowest fee we run an experiment
with Y0 transactions in the Mempool, we assume that Yf =

F (f )Y . Notice that the trace-driven arrival stream is the same
0
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Fig. 9. Empirical probability density function of relative error of actual and
predicted confirmation delays.

for all the experiments. This is due to the difficulty of finding
a sufficiently large set of initial times in our time series that
recreate the same initial conditions.

The first experiment is done by measuring λ = 3.21 transac-
ions per second, i.e., ρ ≃ 0.85. In this case, transactions offering
0 sat/B11 are almost sure to be confirmed. We assume that the
Mempool contains 6000 transactions. Fig. 8(a) shows the model
predictions and the simulation estimates assuming that fees of 0,
50 or 100 sat/B are offered. We can see that, in these cases, there
is an excellent agreement among the data.

In order to stress our model, we consider a situation in which
the measured arrival rate is λ = 4.02 tx/s and we assume the
empool to contain 12,000 pending transactions. It is worth
f notice that the cheapest transactions may be not confirmed
the protocol implementations usually evict cheapest transactions
hen the Mempool size exceeds a certain threshold or when they
tay in the queue longer than 3 days) since ρ > 1. Thus, we
onsider a minimum fee of 50 sat/B.
Fig. 8(b) shows the comparison between the model predictions

nd the simulation estimates. We can see that, in this case, the
recision is lower. This can be explained by several factors. First,
he working condition of the queue is closer to saturation (with
0 sat/B) than what we had in the first experiment, and small
ariations in the arrival rate can have stronger impacts on the
onfirmation time. The second reason is connected to the fact
hat, by investigating the time series of the arrivals, there is the
oment of extremely heavy load (5 tx/s) after our starting point

11 BTC miners usually avoid transactions whose fee is 0 to prevent flooding
ttacks, therefore the actual fee is just above 0.
286
which is reached for fees of 50 and 75 sat/B due to the large
backlog of transactions in the Mempool. Given the unfavorable
conditions, the model manages to maintain a relative error be-
low 20%. Moreover, we believe that the accuracy can be further
increased with appropriate techniques of workload predictions.

5.5. Validation of the prototype of the confirmation time estimator

One application of our results consists in the development of a
confirmation time predictor. This service monitors the blockchain
status (Mempool occupancy, arrival rate and fee distribution) and
uses Theorem 1 to predict the average number of blocks required
to confirm a transaction given its fee.

In this section, we carry out an experiment aimed at assessing
the accuracy of the model forecast. For this purpose, we collected
data about pending transactions occurring in the Mempool of
our installed node for 96 h. Further, we randomly picked one
transaction for each hour in our dataset with offered fee-per-
byte ratios between 10 and 20 sat/B. This interval includes the
majority of all transactions. Finally, for every transaction from
the sample, we first calculated the predicted confirmation time
measured in blocks and compared it with the actual number of
blocks after which the transaction appeared in the block ledger.
Among the selected 96 transactions only 2 were not confirmed
while all the other 94 appeared in a block.

Recall that the model provides the prediction of the expected
number of blocks for the confirmation. Thus, it is normal to
observe a certain discrepancy between real and analytical data
for a few transactions. This is can be seen in Fig. 9. On the x-axis
we report the relative error computed as the difference between
the value measured in the real system and the corresponding
analytical prediction, divided by the first. The y-axis reports the
percentage of transactions that fall in a certain interval of relative
error. It is interesting to note that almost 50% of transactions
have a prediction with negligible relative error. Overall, the mean
of the relative errors for all the considered transactions is very
small and equals to −0.13. Finally, we notice that the histogram
resembles the bell shape and this supports the applicability of our
approach in real world scenarios.

6. Conclusion

In this paper, we propose a transient analysis of a M/MB/1
ueueing model that allows the definition of a new method for
stimating the expected transaction confirmation time in block-
hain based on PoW. The model uses 3 key parameters: the
bserved state of the Mempool, the current arrival intensity and
he distribution of the offered fees. With respect to the queueing
odels proposed at the state of the art, we take into account the

nitial state of the Mempool and the numerical experiments have
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hown that this has a strong impact on the estimations. In fact,
he stationary analysis proposed in [18,19,21] cannot depend on
he initial state of the queue, but this means that they ignore an
mportant piece of information that is in practice available to the
sers.
Although the model was studied on the Bitcoin network, it

an be applied for any kind of PoW-driven blockchains where
ransactions are confirmed according to an auction on the fees.

From the application point of view, the proposed algorithm
s generally much faster than those based on Monte Carlo simu-
ations. In fact, the simulation of the M/MB/1 model, with large
and in heavy load can exhibit a quite slow convergence.
Notice that, since the confirmation time is monotonic non

ncreasing with the offered fee, determining the optimal offered
ee for a given expected confirmation time requires only a few
omputations (e.g., thanks to the bisection method).
The results of the models have been compared with trace-

riven simulations under heavy and very heavy workloads. The
ccuracy is generally very good, although it may deteriorate for
ong-term predictions in very heavy load since small errors in the
stimations of the arrival intensity may cause important changes
n the validation delay.

In order to improve the accuracy of the model, it seems
romising to try to predict the arrival rate during the consolida-
ion delay. This and the study of the probability of consolidation
hen the load factor ρ ≥ 1 will be subjects of future work.
Finally, we would also like to apply the model for the analysis

f general scheduling disciplines in which customers are ordered
n the base of some strong priority rule. In these cases, it will
ecome important to derive the expression of the waiting time
n the continuous model that may be non-trivial in general.
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Appendix A. Proof of Lemma 2

We consider three cases: |w| < 1, w = 1 and, |w| = 1∧w ̸= 1.

Case |w| < 1. We apply Rouché’s theorem to equation z =

287
α + βwzB+1. Notice that zB+1, with |z| ≤ 1, is analytic in the
closed unitary disk and that:

|βwzB+1
| < |z − α|

on the disk perimeter. Thus, the equation has a unique root ξ is
in the open unitary disk.

Case w = 1. In this case, we need to prove that the polynomial
α − z + (1− α)zB+1 has exactly one root inside the unit disk. We
resort to Theorem [33, Thm 2.1] reported below.

Theorem 2.1 ([33]). Let a > b > 0 be real numbers and let
> m > 0 be integers. Then, the number of zeros of bzn−azm+a−b

strictly inside the unit disk is m − gcd(m, n) if a/b ≥ n/m and m
otherwise.

In our case, we have n = B+ 1, m = 1, a = 1 and b = (1−α),
hence the conditions of the theorem are trivially satisfied. Notice
that α < B/B+1 is equivalent to (1−α)−1 < B+1, which implies
are only m = 1 roots in the unit disk as required.

Now, we consider the case in which |w| = 1, but w ̸= 1.
We restrict our analysis to the case B > 2, since B = 1 and
B = 2 can be easily considered given the relatively simple closed-
form expressions of the roots of the corresponding polynomials
of second and third degree.

Given a polynomial f (z), let us define f ∗(z) as follows:

f ∗(z) = znf (1/z),

where n is the degree of f and z denotes the conjugate of z. Let
0(z) = α − z + (1 − α)eiθ zB+1, then we define the following
sequence of polynomial as in [34, Ch. X]:

fj+1 = a(j)0 fj(z) − a(j)n−jf
∗

j (z),

for j = 0, . . . , B, where a(j)k denotes the coefficient of the term zk
in fj. Notice that the degree of fj+1 is always strictly lower than
that of fj and that, in our case, a(j)k ∈ R for j = 0, . . . , B+ 1, hence
we can ignore the conjugate on a(j)0 .

Let Pk = a(1)0 a(2)0 · · · a(k)0 , with k = 1, . . . , B+1, then the number
of roots inside the unit disk is given by the number of negative
elements in the collection P1, . . . , PB+1 [34, Thm. 42,1].

In order to conclude the proof of Lemma 2, we need Lem-
mas 4 and 5 reported below and proved in Appendices B and C,
respectively.

Lemma 4. Let Ψj,α ≜ (j + 1)α − j for j = 1, 2, . . .. Then, we have:

a(1)0 = Ψ1,α , a(1)1 = −α , a(1)B = (1 − α)eiθ

and, for 2 ≤ j < B:

a(j)0 = α2j−2
Ψj,α

j−2∏
k=1

Ψ 2j−2−k

k,α , (A.1)

a(j)1 = −α2j−2
Ψj−1,α

j−2∏
k=1

Ψ 2j−2−k

k,α , a(j)B+1−j = α2j−2
(1 − α)

j−2∏
k=1

Ψ 2j−2−k

k,α eiθ

where all the unspecified coefficients are set to 0.

The proof of Lemma 4 is given in Appendix B.
Observe that fB+1(z) is a constant, and the following lemma

provides its value.

Lemma 5. For j = B and j = B + 1 we have the following
coefficients:

a(B)0 = α2B−2
ΨB,α

B−2∏
Ψ 2B−2−k

k,α , (A.2)

k=1
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(B)
1 = α2B−2

B−2∏
k=1

Ψ 2B−2−k

k,α

(
(1 − α)eiθ − ΨB−1,α

)
(A.3)

(B+1)
0 = 2α2B−1

(1 − α)ΨB−1,α(cos θ − 1)
B−2∏
k=1

Ψ 2B−1−k

k,α . (A.4)

The proof of Lemma 5 is given in Appendix C.
To conclude the proof of Lemma 2, we resort to Marden’s theo-

em [34, Thm 42,1]. Consider the following sequence of products:

j =

j∏
k=1

a(j)0 , j = 1, . . . , B + 1.

f they are all different from zeros, the number of roots of f0(z)
nside the unit circle is equal to the number of negative elements
n the collection P1, . . . , PB+1. Assume now that α < B/(B + 1),
ith α ̸= j/(j + 1) for all j = 1, . . . , B − 1. We begin by noticing
hat all the coefficients are not null, in particular a(B+1)

0 is not null
ecause we are considering w ̸= 1, and hence θ ̸= 2kπ for all

k ∈ Z. In order to have a unique root of the polynomial inside the
unit disk, we must have that if Pj∗ is the first negative element of
the sequence, then either j∗ = B + 1 or a(j

∗
+1)

0 < 0 and a(h)0 > 0
for all h > j∗ + 1. Assume α < B/(B + 1) and let us write:(
0,

B
B + 1

)
\

{
j

j + n
, j = 1, 2, . . . , B − 1

}
=

(
0,

1
2

)
∪ · · ·(

j
j + 1

,
j + 1
j + 2

)
· · · ∪

(
B − 1
B

,
B

B + 1

)
et Ij be the interval ((j−1)/j, j/(j+1)) for 1 ≤ j ≤ B and suppose
∈ Ij. Notice that all Ψk,α > 0 if k < j, while the remaining ones
re negative. Therefore, P1, P2, . . . , Pj−1 are positive and j∗ = j is
he smallest index in the sequence such that Pj∗ < 0. Suppose
< B observe that a(j+1)

0 < 0 since in Eq. (A.1) we compute the
roduct of Ψj+1, α which is negative and all the previous terms
xcluding Ψj,α while are positive by assumption. Thus Pj+1 < 0.
ll the remaining elements of the sequence, i.e., for k > +1 are
ositive because they contain the product of two negative Ψ s.
n fact (A.4) because cos θ − 1 < 0, ΨB−1,α < 0 and all the
emaining factors in the product are raised at a positive power
f 2. Now, assume that j = B and observe that a(B)0 is negative
y Eq. (A.2). Also a(B+1)

0 is negative and thus PB < 0 and PB+1 > 0.
his concludes the proof of Lemma 2. □

ppendix B. Proof of Lemma 4

For j = 1, we have:
(1)
0 = α2

− (1 − α)2 = 2α − 1,
(1)
1 = α(−1) = −α, and α

(1)
B = −(−1(1 − α)eiθ ) = (1 − α)eiθ .

or j ≥ 2, we proceed by induction taking the case j = 2 as base.
ndeed, we have:
(2)
0 = [a(1)0 ]

2
− a(1)B a(1)B = α(3α − 2) = αΨ2,α,

as required. The expressions of the two remaining coefficients
follow from their definitions in a similar way.

Consider now j > 2 and let us determine a(j+1)
0 using the

inductive hypothesis. We have:

a(j+1)
0 = [a(j)0 ]

2
− a(j)N−j+1a

(j)
B−j+1 =

[
α2j−2

Ψj,α

j−2∏
k=1

Ψ 2j−2−k

k,α

]2

−

[
α2j−2

(1 − α)
j−2∏

Ψ 2j−2−k

k,α

]2
k=1

288
=

[
α2j−2

j−2∏
k=1

Ψ 2j−2−k

k,α (Ψj,α − 1 + α)

]

·

[
α2j−2

j−2∏
k=1

Ψ 2j−2−k

k,α (Ψj,α + 1 − α)

]
.

Notice that Ψj,α − 1 + α = Ψj+1,α and that Ψj,α − 1 + α = Ψj−1,α ,
hence we can write:

a(j+1)
0 = α2j−1

Ψj+1,αΨj−1,α

j−2∏
k=1

Ψ 2j−1−k

k,α = α2j−1
Ψj+1,α

j−1∏
k=1

Ψ 2j−1−k

k,α ,

as required.
Let us consider a(j+1)

1 whose computation is:

a(j+1)
1 = a(j)0 a(j)1 =

[
α2j−2

Ψj,α

j−2∏
k=1

Ψ 2j−2−k

k,α

]

·

[
−α2j−2

Ψj−1,α

j−2∏
k=1

Ψ 2j−2−k

k,α

]

= −α2j−1
Ψj,αΨj−1,α

j−2∏
k=1

Ψ 2j−1−k

k−1,α = −α2j−1
Ψj,α

j−1∏
k=1

Ψ 2j−1−k

k−1,α ,

as required. Finally, we have:

a(j+1)
B−j = −a(j)B+1−ja

(j)
1

= −

[
α2j−2

(1 − α)
j−2∏
k=1

Ψ 2j−2−k

k,α eiθ
]

·

[
−α2j−2

Ψj−1,α

j−2∏
k=1

Ψ 2j−2−k

k,α

]

= α2j−1
(1 − α)Ψj−1,α

j−2∏
k=1

Ψ 2j−1−k

k,α eiθ

= α2j−1
(1 − α)

j−1∏
k=1

Ψ 2j−1−k

k,α eiθ ,

as required. It is easy to notice that all the remaining coefficients
are zeros by construction. □

Appendix C. Proof of Lemma 5

The derivation of Eqs. (A.2) and (A.4) follows the same lines of
Lemma 4.

For Eq. (A.3), we have:

a(B+1)
0 = [a(B)0 ]

2
− [a(B)1 a(B)1 ]

= α2B−1
Ψ 2

B,α

B−2∏
k=1

Ψ 2B−1−k

k,α

−

(
α2B−2

B−2∏
k=1

Ψ 2B−2−k

k,α

(
(1 − α) cos θ − ΨB−1,α + i(1 − α) sin θ

))

·

(
α2B−2

B−2∏
k=1

Ψ 2B−2−k

k,α

(
(1 − α) cos θ − ΨB−1,α − i(1 − α) sin θ

))

= α2B−1
Ψ 2

B,α

B−2∏
k=1

Ψ 2B−1−k

k,α − α2B−1
B−2∏
k=1

Ψ 2B−1−k

k,α

·
(
(1 − α)2 cos2 θ + Ψ 2

B−1,α − 2ΨB−1,α(1 − α) cos θ+

2 2 )

(1 − α) sin θ .
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y collecting the common factors, we simplify the expression to:

2B−1
B−2∏
k=1

Ψ 2B−1−k

k,α

(
Ψ 2

B,α − (1 − α)2 − Ψ 2
B−1,α + 2ΨB−1,α·

(1 − α) cos θ
)

= α2B−1
B−2∏
k=1

Ψ 2B−1−k

k,α

·
(
2(1 − α)2B − 1 + α2

− (1 + α2
− 2α) + 2ΨB−1,α(1 − α) cos θ

)
= 2α2B−1

B−2∏
k=1

Ψ 2B−1−k

k,α

(
(1 − α)2B − 1 + α + ΨB−1,α(1 − α) cos θ

)
= 2α2B−1

(1 − α)ΨB−1,α(cos θ − 1)
B−2∏
k=1

Ψ 2B−1−k

k,α ,

as required. □

Appendix D. Proof of Theorem 1

Let us consider P(z, w) as defined by Eq. (8). Simple algebraic
computations show that:

M1(z) ≜
∂P(z, w)

∂w

⏐⏐⏐⏐
w=1

= β
z2

(1 − z)(z − α − βzB+1)
−

αM1
1

z
z − α − βzB+1 , (D.1)

where M1
1 = P ′

1(1) is the expected consolidation time given that
the system contains one transaction. Successive derivatives of
M1(z) evaluated in z = 0 give the expected consolidation times
conditioned to the number of transactions present in the queue
at the arrival epoch (including that just arrived):

MY
1 =

1
Y !

∂YM1(z)
∂zY

⏐⏐⏐⏐
z=0

.

Let us consider function:

g1(z) ≜
z2

(1 − z)(z − α − βzB+1)
.

e can show that, for Y ≥ 2:

∂Y g1(z)
∂zY

=

Y∑
k1=0

Y∑
k2=0

(−1)k1

(1 − z)k+1 z
2−k2

∂Y−k1−k2

∂zY−k1−k2

1
z − α − βzB+1

·(−1)k1k1!(δk2=0 + 2δk2=1 + 2δk2=2)(
Y

k1, k2, Y − k1 − k2

)
, (D.2)

here the multinomial coefficient with negative entries is as-
umed to be 0. Since we evaluate this derivative in 0, we have
hat the only non-zero term of the inner sum is k2 = 2, thus:

∂Y g1(z)
∂zY

⏐⏐⏐⏐
z=0

=

Y∑
k1=0

∂Y−k1−2

∂zY−k1−2

1
z − α − βzB+1

⏐⏐⏐⏐
z=0

·

2k1! ·
Y !

k1!2!(Y − k1 − 2)!

=

Y−2∑
k1=0

Y !

(Y − k1 − 2)!
∂Y−k1−2

∂zY−k1−2

1
z − α − βzB+1

⏐⏐⏐⏐
z=0

,

In order to conclude the proof of Theorem 1, we use Lemma 6
nd Lemma 7 reported below and proved in Appendices E and F,
espectively.

The following lemma allows us to compute the nth order
erivative that appears in Eq. (D.2) evaluated for z = 0:
289
Lemma 6. The following relation holds:

∂k

∂zk
1

z − α − βzB+1

⏐⏐⏐⏐
z=0

=
k!

αk+1

k∑
ℓ=0

(−1)ℓ+k+1
(
k + 1
ℓ + 1

)

·

⌊
k

B+1 ⌋∑
c=⌈

k−ℓ
B ⌉

(
ℓ

k − (B + 1)c, ℓ − k + Bc, c

)
(−α)Bc(−β)c , (D.3)

The proof of Lemma 6 is given in Appendix E.
The following Lemma is used to simplify Eq. (D.3) and then

erive a recursive expression for the computation of the first
oment.

emma 7. Eq. (D.3) can be rewritten as:

∂k

∂zk
1

z − α − βzB+1

⏐⏐⏐⏐
z=0

=
k!

αk+1

⎛⎝⌊
k

B+1 ⌋∑
c=0

(−1)c+1
(
k − Bc

c

)
αBcβc

⎞⎠ .

(D.4)

The proof of Lemma 7 is given in Appendix F.
Let us consider again the computation of the Y th order deriva-

ives of g1(z) evaluated in 0. We can write:

∂Y g1(z)
∂zY

⏐⏐⏐⏐
z=0

=

Y−2∑
k1=0

Y !

αY−k1−1

⌊
Y−k1
B+1 ⌋∑
c=0

(−1)c+1
(
Y − k1 − Bc

c

)
αBcβc,

nd by rearranging the sum indices:

∂Y g1(z)
∂zY

⏐⏐⏐⏐
z=0

= Y !

Y−2∑
k1=0

1
αk1+1

⌊
k1
B+1 ⌋∑
c=0

(−1)c+1
(
k1 − Bc

c

)
αBcβc .

ow, we consider the second part of Eq. (D.1):

2(z) ≜
z

z − α − βzB+1 .

In this case, we have:

∂Y g2(z)
∂zY

= Y
∂Y−1

∂zY−1

1
z − α − βzB+1 + z

∂Y

∂zY
1

z − α − βzB+1 . (D.5)

Since we need to evaluate the derivative in z = 0, we obtain:

∂Y g2(z)
∂zY

⏐⏐⏐⏐
z=0

= Y
(Y − 1)!

αY

⌊
Y−1
B+1 ⌋∑
c=0

(−1)c+1
(
Y − 1 − Bc

c

)
αBcβc

=

Y !

αY

⌊
Y−1
B+1 ⌋∑
c=0

(−1)c+1
(
Y − 1 − Bc

c

)
αBcβc .

n conclusion, for Y ≥ 2:

Y
1 = β

Y−2∑
k1=0

1
αk1+1

⌊
k1
B+1 ⌋∑
c=0

(−1)c+1
(
k1 − Bc

c

)
αBcβc

−
M1

1

αY−1

⌊
Y−1
B+1 ⌋∑
c=0

(−1)c+1
(
Y − 1 − Bc

c

)
αBcβc . (D.6)

Let us call:

TY ≜

⌊
Y

B+1 ⌋∑
(−1)c+1

(
Y − Bc

c

)
αBcβc,
c=0
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t

M

a

A

w

T

∑

T

A

=

W

=

=

w(
=

T

R

hen we can write for Y ≥ 1:

Y+1
1 = MY

1 +
M1

1

αY−1 TY−1 −
M1

1

αj TY +
β

αY TY−1 =

MY
1 +

TY−1

αY−1

(
M1

1 +
β

α

)
−

TY
αY M

1
1 ,

s required by Theorem 1. □

ppendix E. Proof of Lemma 6

We use the following identity for the derivative [35]:

∂k

∂zk
1

f (z)
=

k∑
ℓ=0

(−1)ℓ
(
k + 1
ℓ + 1

)
1

[f (z)]ℓ+1

∂k

zk
[f (z)]ℓ , (E.1)

here, in our case, f (z) = z − α − βzB+1. The expansion of the
power of this trinomial can be obtained as follows:

(z − α − βzB+1)ℓ =

∑
a,b,c

a+b+c=ℓ

(
ℓ

a, b, c

)
za(−α)b(−β)cza+(B+1)c,

where a, b, c are non-negative indices. The nth order derivative
of this expression is:

∂k(z − α − βzB+1)ℓ

∂zk
=

∑
a,b,c

a+b+c=ℓ

(
ℓ

a, b, c

)
(a + (B + 1)c)!

(a + (B + 1)c − k)!
·

za(−α)b(−β)cza+(B+1)c−kδk≤a+(B+1)c .

Since we are interested in evaluating this expression only for
z = 0, we have that the only non-zero terms of the sum are those
such that a + (B + 1)c = k, i.e., a = k − (B + 1)c. We can write:

∂k(z − α − βzB+1)ℓ

∂zk

⏐⏐⏐⏐
z=0

=

⌊
k

B+1 ⌋∑
c=⌈

k−ℓ
B ⌉

(
ℓ

k − (B + 1)c, ℓ − k + Bc, c

)
·

(−α)ℓ−k+Bc(−β)ck! .

hus, Eq. (E.1), evaluated for z = 0, becomes:

k

ℓ=0

(−1)ℓ
(
k + 1
ℓ + 1

)
1

(−α)ℓ+1

⌊
k

B+1 ⌋∑
c=⌈

k−j
B ⌉

(
ℓ

k − (B + 1)c, ℓ − k + Bc, c

)
·

(−α)ℓ−k+Bc(−β)ck! ,

his can be rewritten as in Eq. (D.3) as required. □

ppendix F. Proof of Lemma 7

By Lemma 6, we have:

∂k

∂zk
1

z − α − βzB+1

⏐⏐⏐⏐
z=0

=
k!

αk+1

k∑
ℓ=0

(−1)ℓ+k+1
(
k + 1
ℓ + 1

)

·

⌊
k

B+1 ⌋∑
c=⌈

k−ℓ
B ⌉

(
ℓ

k − (B + 1)c, ℓ − k + Bc, c

)
(−α)Bc(−β)c

k!
αk+1

⌊
k

B+1 ⌋∑
c=0

(−α)Bc(−β)c
k∑

ℓ=k−Bc

(−1)ℓ+k+1
(
k + 1
ℓ + 1

)

·

(
ℓ

)

k − (B + 1)c, ℓ − k + Bc, c

290
=
k!

αk+1

(
−1 +

⌊
k

B+1 ⌋∑
c=1

(−1)c+1(α)Bc(β)c
k∑

ℓ=k−Bc

(−1)ℓ+k+Bc
(
k + 1
ℓ + 1

)

·

(
ℓ

k − (B + 1)c, ℓ − k + Bc, c

))
.

e show now that, for 1 ≤ c ≤ ⌊
k

B+1⌋,

k∑
ℓ=k−Bc

(−1)ℓ+k+Bc
(
k + 1
ℓ + 1

)(
ℓ

k − (B + 1)c, ℓ − k + Bc, c

)
=

(
k − Bc

c

)
.

Indeed,
k∑

ℓ=k−Bc

(−1)ℓ+k+Bc
(
k + 1
ℓ + 1

)(
ℓ

k − (B + 1)c, ℓ − k + Bc, c

)

=

Bc∑
h=0

(−1)h+2k
(

k + 1
h + k − Bc + 1

)(
h + k − Bc

k − (B + 1)c, h, c

)
Bc∑
h=0

(−1)h
(

k + 1
h + k − Bc + 1

)(
h + k − Bc

k − (B + 1)c, h, c

)
(
k − Bc

c

)(
k
Bc

)
(k + 1)

Bc∑
h=0

(−1)h
1

(h + k − Bc + 1)

(
Bc
h

)
.

Now, by applying the following identity [35]:
a∑

h=0

(−1)h
1

(h + x)

(
a
h

)
=

a!(x − 1)!
(a + x)!

,

e obtain:

k − Bc
c

)(
k
Bc

)
(k + 1)

Bc∑
h=0

(−1)h
1

(h + k − Bc + 1)

(
Bc
h

)
(
k − Bc

c

)(
k
Bc

)
(k + 1)

(Bc)!(k − Bc)!
(k + 1)!

=

(
k − Bc

c

)
.

his concludes the proof of Lemma 7. □
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