
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023 3753

Driving the Technology Value Stream
by Analyzing App Reviews

Souvick Das , Novarun Deb , Member, IEEE, Nabendu Chaki , Senior Member, IEEE, and Agostino Cortesi

Abstract—An emerging feature of mobile application software
is the need to quickly produce new versions to solve problems
that emerged in previous versions. This helps adapt to changing
user needs and preferences. In a continuous software development
process, the user reviews collected by the apps themselves can play
a crucial role to detect which components need to be reworked. This
paper proposes a novel framework that enables software companies
to drive their technology value stream based on the feedback (or
reviews) provided by the end-users of an application. The proposed
end-to-end framework exploits different Natural Language Pro-
cessing (NLP) tasks to best understand the needs and goals of the
end users. We also provide a thorough and in-depth analysis of the
framework, the performance of each of the modules, and the overall
contribution in driving the technology value stream. An analysis of
reviews with sixteen popular Android Play Store applications from
various genres over a long period of time provides encouraging
evidence of the effectiveness of the proposed approach.

Index Terms—Continuous software development, technology
value stream, NLP, app reviews.

I. INTRODUCTION

WARD Cunningham describes “technical debt” [1] as
decisions taken within the technology value stream that

result in increasingly difficult problems with reduced available
options over time. This, in turn, incurs more interests on the or-
ganization in managing the technology value stream efficiently.
The broad motivation behind this research work is to facilitate
an organization in taking the right decisions so that maximum
customer satisfaction can be achieved. We intend to incorporate
the insights contained within customer feedback (available as
app reviews) while making such informed decisions.

App stores have evolved into digital distribution platforms for
mobile applications (apps). They allow users to download and
rate apps while providing the app owners with useful analytics
such as the number of downloads, ratings, reviews and revenue

Manuscript received 1 September 2022; revised 17 April 2023; accepted 20
April 2023. Date of publication 26 April 2023; date of current version 18 July
2023. This work was supported in part by the Next Generation EU under Grants
ECS00000043 iNEST and CUP H43C22000540006 and in part by Ca’ Foscari
SPIN2021 project RESSA_ROB. Recommended for acceptance by R. Hoda.
(Corresponding author: Souvick Das.)

Souvick Das and Agostino Cortesi are with the DAIS Department, Ca’
Foscari University, 30123 Venice, Italy (e-mail: souvik.cmsa019@gmail.com;
cortesi@unive.it).

Novarun Deb is with the Indian Institute of Information Technology (IIIT),
Vadodara, Gujarat 382028, India (e-mail: novarun.db@gmail.com).

Nabendu Chaki is with the Department of Computer Science and Engi-
neering, University of Calcutta, Kolkata, West Bengal 700073, India (e-mail:
nabendu@ieee.org).

Digital Object Identifier 10.1109/TSE.2023.3270708

generated by the app. Such analytics provide app developers
with a rich source of information for driving the technology
value stream [2]. The volume of customer feedback (or reviews),
however, is just too enormous to be examined manually [3], [4].
An empirical study by Pagano et al. [5] found that mobile apps
received 23 reviews per day (approximately) and that popular
apps, such as Facebook, received 4,275 reviews per day (on
average). This vast volume of textual data needs to be analysed
in order to identify customers’ opinions and demands.

Furthermore, users generally submit feedback in the form of
unstructured text that is difficult to process and analyse. As a
result, researchers have devised a number of approaches [6], [7],
[8], [9] for automatically analyzing the texts contained in user
reviews in order to extract the most valuable information they
contain. Important insights from the app reviews such as current
bugs (e.g., crashes) and undesirable app features can offer app
developers with useful evidence towards better management of
the technology value stream. Some approaches [10], [11] aim
to categorize customers’ reviews into different topics based on
summarization. App developers must also analyse the impact of
such reviews on specific features to ensure the success of their
apps.

Prior studies have mostly focused on reducing manual inter-
vention in extracting software aspects or user preferences [12],
filtering out non-informative reviews [10], or categorizing re-
views into predetermined topics [11]. Despite past explorations,
there is the need for a systematic and efficient end-to-end frame-
work that analyses customer reviews and reduces the technical
debt within the technology value stream. This, in turn, requires
us to address the following specific research challenges.
� RQ1: How can the end-user app reviews help the develop-

ment team to precisely identify the app features which are
of immediate concern?

� RQ2: How can the user sentiments be integrated into the
recommendation system to identify the more relevant re-
views that are significant for the technology value stream?

� RQ3: How can we integrate the entire framework within
the software development pipeline to automate the contin-
uous maintenance process?

Our research methodology for addressing the above men-
tioned research challenges has been carried out as follows:
� Literature Study: A focused study of existing works on the

analysis of app reviews was done to understand the existing
state-of-the-art. This is presented in detail in Section III.

� Topic Analysis Techniques: Topic analysis approaches
were explored for effective identification of specific

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3314-2537
https://orcid.org/0000-0003-3680-3625
https://orcid.org/0000-0003-3242-680X
https://orcid.org/0000-0002-0946-5440
mailto:souvik.cmsa019@gmail.com
mailto:cortesi@unive.it
mailto:novarun.db@gmail.com
mailto:nabendu@ieee.org

3754 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

features addressed in review texts. Some of the methods
that were explored include Text Classification techniques
and Key Phrase Extraction techniques to get insights from
the user reviews and extract information that is relevant for
the future releases.

� Sentiment Analysis: Such techniques were explored to un-
cover the customers’ intents within the submitted reviews
that document specific topics. This work involves highly
detailed analysis, utilizing advanced sentiment analysis
techniques based on transformer models like BERT [13],
and RoBERTa [14] that enable classification into five dif-
ferent sentiment classes. The use of such techniques adds
an extra layer of credibility to the analysis of app reviews.

� Experimental Evaluation: To ensure an unbiased evalua-
tion of our proposed framework, we evaluated it against
sixteen well-known Android applications from various
genres, rather than custom-made applications developed by
us. Our evaluation process includes an extensive collection
of 3400 reviews for each of the applications, all of which
are sourced from the Android Play Store. This ensures
an unbiased evaluation of our framework. The proposed
framework also addresses potential areas of the Apps that
require updates for further enhancement and provides evi-
dence in terms of statistics and graphical representations.

The main contributions of this paper are as follows:
� A novel key phrase extraction model based on transformer

architectures.
� A novel zero-shot classifier for topic recognition of app

reviews.
� A comprehensive end-to-end recommendation framework

that combines sentiment analysis, key phrase extraction,
and topic recognition to identify the emerging concerns
and issues for upcoming releases of the app.

� A tool prototype1 that allows software development organ-
isations to use our proposed framework.

The organization of the paper is as follows. We briefly recapit-
ulate the NLP approaches used in our framework in Section III.
Section IV presents the framework and elaborates all the tech-
niques used in the different components of the framework. The
methodology of the validation of the framework has been briefly
highlighted in Section V. We elaborate on the implementation of
each of the modules of the framework and the entire experimen-
tal evaluation in Section VI. Section VII presents a discussion
of the end-to-end framework. Section VIII identifies the threats
to validity of our proposed framework. Section II documents the
related works existing in the literature and compares them with
our proposed framework. Section IX concludes the paper and
outlines the future research directions.

II. RELATED WORK

In this section, we highlight current state-of-the-art research
works that are most closely aligned with the specific research
problem being addressed in this paper. We consciously omit the
huge amount of literature related to the NLP techniques used

1https://github.com/svk-cu-nlp/reviews-to-app-maintenance

in our framework: the listed research works have been selected
with respect to analyzing app reviews and capturing different
user aspects.

A. Information Extraction From App Reviews

App reviews contain a large amount of unstructured text,
making it difficult to extract relevant information. Many stud-
ies [9], [29], [30] have proposed approaches to facilitate in-
formation extraction, which is the process of extracting spe-
cific, pre-specified information such as app features, qualities,
problem reports, opinions, and user stories from the reviews.
Guzman et al. [15] proposed an approach for extracting app
features mentioned in user reviews and their association with
the sentiments of the reviews. Iacob and Harrison [7] employed
linguistic principles to extract feature requests from app reviews
and then used Latent Dirichlet Allocation (LDA) [31] to group
the feature requests. Harman et al. [32] introduced an approach
for app store mining and then analyzed the relationship between
technical, business, and users’ perspectives by extracting app
features from the official app descriptions. In the SAFE tech-
nique, developed by Johann et al. [19], the authors propose the
extraction attributes from app descriptions and user reviews. A
set of pre-defined language patterns are used in this process. The
obtained attributes were then examined to check if each feature
was mentioned in user reviews. In another work, Jiang et al. [8]
also mentioned the feature extraction problem when they created
a classifier to extract features from App descriptions and then
identified missing features for similar Apps. Developers often
need to search for code descriptions in external artifacts, such
as bug reports and emails, as source code lacks comments to
adequately describe behavior. Finally, [12] discusses how to au-
tomatically extract method descriptions from communications
in bug-tracking systems and mailing lists.

B. Classification of App Reviews

Classification is a technique used to separate informative
reviews from those that are uninformative, spam, or fake. AR-
Miner [10] is a prime example of this method. It uses a pre-
trained classifier to recognize useful reviews, then organizes
these reviews into topics and prioritizes these topics. Other
studies as well include the classification of informative and
non-informative reviews [33], fake or spam [34]. The classi-
fication of app reviews is widely used in research and studies
to understand user feedback and improve software products by
identifying user intentions. [35] introduces several probabilistic
techniques to classify app reviews into four types: bug reports,
feature requests, user experiences, and text ratings. The results of
the study inspired the design of a review analytics tool that helps
app vendors and developers to filter and assign critical reviews
to the appropriate stakeholders. In another work [21], authors
present a tool ARdoc that uses natural language parsing, text
analysis, and sentiment analysis to automatically classify useful
feedback in mobile app reviews for software maintenance and
evolution tasks. Pagano and Maalej [5] presented the categories
of user reviews that are possible and the derivation of the
possible topic out of those categories. Khalid et al. [18] mined

https://github.com/svk-cu-nlp/reviews-to-app-maintenance

DAS et al.: DRIVING THE TECHNOLOGY VALUE STREAM BY ANALYZING APP REVIEWS 3755

the Apple iOS App Store for reviews with one or two stars in
order to categorize different forms of customer complaints and
assess how complaints impact ratings. Sorbo et al. [22] proposed
NEON, a tool that uses NL parsing to automate the mining of
rules for classifying software artifacts, reducing manual effort.
It was found that NEON can efficiently automate the detection
of rules useful for classifying user intents in the context of app
reviews through a small study involving NL experts. In another
work, Mcilroy et al. [17] contribute to automatically assigning
multiple labels to each review. Another research [9] describes
the development of an automated approach called User Request
Referencer (URR) that uses Machine Learning and Information
Retrieval techniques to help mobile app developers monitor
and analyze user feedback received in the form of reviews.
The URR prototype is able to group reviews according to high
and low-level categories and recommend source code files that
need to be modified to handle issues described in the user
reviews.

C. Clustering of App Reviews

Clustering is the process of organizing reviews, sentences, and
snippets into groups, known as clusters, where members within
the same group share some similarities. Clustering is commonly
used as an exploratory analysis technique to discover topics
commonly discussed by users, aggregate reviews containing
semantically related information, and group reviews based on
shared characteristics such as requested features, reported prob-
lems or discussed characteristics of the app. Clustering is widely
used in research and studies to understand the user’s feedback
and opinion and improve the software product. Zhou et al. [23]
presents an automated approach called RISING (Review Inte-
gration via classification, clustering, and linking) that groups
user reviews into fine-grained clusters concerning similar user
requests. Then, by combining textual information from both
commit messages and source code, it automatically localizes po-
tential change files to accommodate the users’ requests. Another
paper [27] presents DIVERSE, a feature and sentiment-centric
retrieval approach that automatically provides developers with
a diverse sample of user reviews that is representative of the
different opinions and experiences mentioned in the whole set of
reviews. Guzman et al. [36] presents an interactive user feedback
visualization that displays app reviews from four different points
of view: general, review-based, feature-based, and topic-feature
based. Peng et al. [16] propose a semi-automated approach
to extract feature requests from app reviews using machine
learning approaches. The approach first identifies reviews on
feature requests by defining suitable classification features and
selecting appropriate classification approaches. Then, it clusters
these reviews using topic models and extracts phrases as feature
requests, which serve as the basis of feature modeling. In another
paper [15], an automated approach has been proposed to help app
developers filter, aggregate, and analyze user reviews. It utilizes
natural language processing and topic modeling techniques to
identify fine-grained app features from user reviews, extract
user sentiments about these features, and group them into more
meaningful high-level features.

D. Sentiment Analysis in App Reviews

Sentiment analysis (also known as opinion mining) refers to
the task of interpreting user emotions in app reviews. Guzman
and Maalej [15] proposed an automated approach to help app
developers filter, aggregate, and analyze user reviews. It utilizes
natural language processing and topic modeling techniques to
identify fine-grained app features from user reviews, extract
user sentiments about these features, and group them into more
meaningful high-level features. Another article [37] presents
five release lessons to assist app vendors in maintaining positive
emotions among their users and gaining competitive advantages
in a highly competitive app store market. These lessons are
based on emotional patterns identified using sentiment analysis
tools. Another study [38] conducts an empirical evaluation of
the opinion mining approaches and aims to answer two main re-
search questions: What is the effectiveness of feature extraction
approaches? and What is the effectiveness of feature-specific
sentiment analysis approaches? Another research [39] examines
the impact of design overhauls on user behavior and satisfaction.
The study uses the example of Snapchat and finds that substantial
changes in an app design can trigger a new adoption process
and impact the perceived ease of use, leading to a decrease
in app store ratings and negative responses among users. Ma-
lik et al. [24] proposed a methodology that can be used to
understand a user’s preference for a certain mobile app and could
uncover the reasons why users prefer one app over another, by
analyzing a large volume of reviews.

E. Summarization for App Reviews

This paper [26] introduces SRR-Miner, a novel review sum-
marization approach for mobile apps that automatically sum-
marizes security issues and users’ sentiments by extracting
security-related review sentences and summarizing them with
<misbehavior-aspect-opinion> triples. Sorbo et al. [25] pro-
posed a tool called SURF that helps mobile developers analyze
and classify information in app reviews to identify actionable
change tasks for improving mobile applications. The tool per-
forms a systematic summarization of user reviews, generating an
interactive, structured, and condensed agenda of recommended
software changes. A framework called Software User Review
Miner (SUR-Miner) [3] aims to summarize users’ sentiments
and opinions towards corresponding software aspects, by mak-
ing use of the structure and semantics of software user reviews.
SUR-Miner parses aspect-opinion pairs from review sentences
based on pre-defined sentence patterns, analyzes sentiments for
each review sentence, associates sentiments with aspect-opinion
pairs, and summarizes software aspects by clustering aspect-
opinion pairs with the same aspects.

Table I offers a comprehensive and detailed analysis of the
relevant state-of-the-art research works that are closely aligned
with our research objectives. However, based on our current
understanding, the research conducted by Sorbo et al. [25] is
deemed to be the most closely related to our study. The work
presented by Sorbo et al. on SURF (Summarizer of User Reviews
Feedback) provides a valuable contribution to the field of app
development by addressing the challenge of managing user

3756 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

TABLE I
COMPARISON OF DIFFERENT APP REVIEW ANALYSIS TECHNIQUES USED IN EXISTING LITERATURE VERSUS OUR PROPOSED FRAMEWORK

feedback. The following observations of the SURF framework
motivate us to invest a significant amount of research and devel-
opment in these directions.

1) The creation of the training dataset for topic classification
required a significant amount of manual intervention and
expertise.

2) The intention classification was achieved through a com-
bination of parsing, text analysis, and sentiment analysis.
However, a detailed study regarding the effectiveness of
the classifier’s performance was out of the scope of this
paper.

3) The framework presented in the study effectively ad-
dresses the challenge of managing user feedback, how-
ever, it does not prioritize recommendations for changes
necessary for app maintenance or address which features
should receive the most attention from the development
team. Although this presents a gap in the work, the efforts
made in the study are an area that holds potential for further
exploration and improvement.

4) The study presents a well-organized hierarchical struc-
ture for summarizing user reviews, where the reviews are
first clustered based on topics and intentions. While this
approach effectively organizes the information, the effec-
tiveness of the summarization technique is not discussed in
the paper. Additionally, the framework does not highlight
key points mentioned in the reviews nor incorporate any
abstractive or extractive summarization techniques on the
reviews.

The study on SURF has made a valuable impact on the field
and has set a solid foundation for future research endeavors.
Its innovative approach towards managing user feedback in
app development has been a source of inspiration for our own
research. As a result, our comprehensive framework specifi-
cally addresses the above-mentioned observations with respect
to the SURF framework and provides solutions accordingly,
such as prioritizing recommendations for maintenance changes,

focusing on features that should receive the most attention
from the development team, and an effective summarization
technique.

III. NLP APPROACHES

In this section, we provide preliminary insights on different
NLP techniques that have been employed in different modules
of our proposed framework. We take the help of a restricted case
study to elaborate the concepts. The case study consists of user
reviews presented in Table II.

A. Sentiment Analysis

A fine-grained sentiment analysis approach involving five
sentiment classes - Strongly Positive, Positive, Neutral, Negative
and Strongly Negative - needs to be carried out for analysing the
reviews and understanding the subtle intentions of the reviewer.

We use transformer based approaches (like BERT [13],
RoBERTa [14], and DistilBERT [40]) for sentiment analysis task
as they are better at analysing longer sentences and achieve state-
of-the-art performance [13], [14]. However, other alternatives
that could be explored include classical machine learning based
approaches (like Naive Bayes, Logistic Regression, Support
Vector Machines) or neural network based approaches (like
LSTM, Bi-LSTM).

The sentiment analysis of reviews is shown in column 3 of
Table II. Reviews with negative sentiments often talk about bugs,
faults, feature issues and so on. On the other hand, reviews with
neutral and positive sentiments talk about improvement, feature
request and information enquiry.

B. Topic Classification

Topic Classification plays a significant role by classifying a
specific end-user review into a pre-defined set of topics such
as - feature information, bug, fault and shortcoming, feature

DAS et al.: DRIVING THE TECHNOLOGY VALUE STREAM BY ANALYZING APP REVIEWS 3757

TABLE II
REVIEWS WITH SENTIMENT AND POSSIBLE INFERENCES

request, content request, improvement suggestion, or informa-
tion enquiry. Topic classification is a supervised machine learn-
ing activity that needs training before being able to automatically
analyze texts and identify topics. However, there is a notable
scarcity of datasets available for review topic classification,
which poses a significant challenge when training a machine
learning model for this purpose. To address this issue, we have
implemented a zero-shot classification approach that allows for
the successful execution of this activity even in the absence
of a specific training dataset. Detailed documentation of how
this classifier was built has been provided in a supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/TSE.
2023.3270708.2

In order to build the zero-shot model, we define our template
using reviews along with sentiments and one unfilled slot. We
choose BART-large-mnli [41] as our pre-trained model to predict
the appropriate class for the unfilled slot and derive the potential
class accordingly. Alternative zero-shot classification models

210.5281/zenodo.7836451

could be built on top of transformer-based models such as BERT,
RoBERTa [14] as well.

In Table II, we list the topics identified for the nine reviews
of our case study. More specifically, column 4 of Table II shows
the topics identified while considering the sentiments. Topic
classification changes for some of the reviews when sentiments
are considered. This is because topic classification, without
sentiment analysis, fails to understand the language structure.
Review R6 also best fits into the non-informative category but
topic classification, without sentiment analysis, recognizes it as
Bug. Also, review R8 is more about expressing some problem
or Bug; rather than an Information enquiry.

C. Semantic Search

We also need to identify which particular features (or com-
ponents) should be targeted for addressing the individual app
reviews. This helps the development team to focus on those
specific app features and drive the technology value stream. The
app documentation - such as user guide, FAQs - needs to be
available for this purpose.

http://doi.ieeecomputersociety.org/10.1109/TSE.2023.3270708
http://doi.ieeecomputersociety.org/10.1109/TSE.2023.3270708

3758 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 1. Proposed framework.

The semantic search mechanism identifies the appropriate app
feature(s) from the app documentation which are most closely
related to the user’s concern. Semantic search is achieved by
training RoBERTa model on the MS MARCO [42] passage
retrieval dataset.

Column 5 of Table II shows how different features have been
identified for each of the nine reviews of our case study. It is
worth mentioning here that, in this motivational case study, we
assume that such app documentations or FAQs are available
beforehand.

D. Summarization and Key Phrase Extraction

The business value coming out of the technology value stream
could be drastically improved if developers could be informed
about the particular aspects of a feature that are of concern.
In this phase, the mechanisms for text summarization and key
phrase extraction are employed to extract key phrases and create
summaries of user reviews by analyzing the semantic aspect of
the text. Key phrase extraction is used for shorter reviews, while
text summarization is used for longer ones, making it suitable
for reviews of varying lengths. A 20-word threshold is set for
the key phrase extraction process, with reviews containing fewer
words than this subject to this process and those with more words
subject to summarization.

We utilize the GPT-3 based text summarization technique
with a pre-defined prompt to extract the key concerns from
the reviews. On the other hand, we propose a Transformer-
based key phrase extraction mechanism that combines Yake
with semantic similarity measures. This proposed key phrase
extraction mechanism works well for small size of texts and
provides more diverse key phrases related to the app features.
It is worth to be noted that, there are several keyword or key
phrase extraction approaches available such as RAKE (Rapid
Automatic Keyword Extraction) [43], Textrank [44], Yake [45],

and KEA [46]. However, these models are not suitable as they
either extract keywords from large paragraph of text (not suitable
for short reviews) or provide a repetitive set of keywords.

Column 6 of Table II shows the key phrases extracted from
the nine reviews of our case study. They highlight the specific
aspects of the mapped app features that need to be considered by
developers. Reviews R4 and R6 have no key phrases extracted
as they are non-informative.

Our proposed end-to-end framework aims to perform all
the above activities and help software development enterprises
to drive their technology value stream more efficiently while
reducing the burden of technical debt.

IV. THE PROPOSED FRAMEWORK

In this section, we provide the details of our framework. Fig. 1
shows its components and how the information flows within
them.

A. Review Fetcher

This is a pre-processing component which fetches the most
desirable set of end-user app reviews and dump them in the local
repository. The process is parametric and developers can specify
date ranges and even particular regions (e.g. US) from which
reviews need to be fetched. The fetched dataset consists of the
review content, the reviewer’s name, the date of creation, and the
rating. It is important to note that while writing the application
reviews users may make grammatical errors or use unconven-
tional language, which can make it difficult to understand the
meaning behind their comments. Thus it is important to apply a
grammar correction mechanism to these reviews in order to rec-
tify the grammar mistakes. The grammar correction mechanism
is achieved by implementing the concept of fine-tuning the T5
model on cleaned NAIST Lang-8 [47] dataset. The mechanism
is originally proposed by Rothe et al. [47] in 2021 and achieves

DAS et al.: DRIVING THE TECHNOLOGY VALUE STREAM BY ANALYZING APP REVIEWS 3759

state-of-the-art performance on grammar correction benchmark
datasets such as CoNLL-14 [48]. The authors also provided
a GitHub3 repository where the entire process of the imple-
mentation has been documented. Experimental details about the
implementation of this module is presented in Section VI-A.

B. Review Sentiment Analyzer

This module helps to identify the intentions, emotions, and
mood of the end-user by applying sentiment analysis on the
review contents. The analysis is performed on all the reviews
dumped in the local repository. It may appear that two reviews
having the same topic(s) but one may be about a bug and another
about adding some features.Let us consider the following two
user reviews:

1) “Don’t like the awful button in the app screen is not
working.”

2) “A back button in the App screen will be helpful.”
Topic analysis alone would reveal that both these reviews dis-

cuss the same two topics: “button” and “app screen”. However,
review (1) is expressing a negative sentiment (“awful button”)
and pointing to a bug, whereas for review (2) the sentiment ex-
pressed is more neutral (“will be helpful”) and can be considered
as a feature request.

We identify two important tasks which are affected by the
outcomes of this module:

1) Predicting the user’s intention accurately.
2) Filtering out non-informative reviews.
The recommendation and maintenance system can be im-

proved to identify the most important and relevant reviews more
accurately, by incorporating user sentiments into the framework.
Such reviews are expected to reflect the user’s expressed inten-
tion. With this perspective, we can now consider it as a potential
answer to Research Question 2 (RQ2).

The analyzer classifies reviews into five classes as mentioned
in Section III-A. The identified sentiment class is tagged with
the review and passed onto the next module. In this module, we
leverage the capabilities of the transformer-based pre-trained
language model, which has undergone fine-tuning on SemEval
2016 [49] and SemEval 2017 [50] sentiment analysis datasets.
This powerful model enables us to accurately evaluate the sen-
timent expressed in various reviews. The detailed evaluation of
these models is elaborated in Section VI-B.

C. Review Filter

This module works on the reviews with tagged sentiments. It
identifies reviews which are non-informative and removes them
as they play no role towards maintenance of the app.

We consider some specific properties of non-informative re-
views and use them as the criteria for eliminating them from our
requirements set, namely

1) Reviews having extremely positive or negative sentiment.
e.g. “Good app, fantastic! I love it”

2) Reviews having only emojis. e.g. “ ”

3https://github.com/google-research-datasets/clang8

TABLE III
MAPPING OF TOPICS WITH STATE-OF-THE-ART TAXONOMY

3) Reviews which are too short and generic. e.g. “It’s not
installing”, “Cannot update”

The Review Sentiment Analyzer identifies the reviews with
Strongly Positive and Strongly Negative sentiments. The BART-
large-mnli model acts as a zero-shot classifier and identifies non-
informative reviews. Short reviews having less than 10 words are
also identified as potential elimination candidates. In the final
step, we eliminate all the reviews that satisfy all three criteria
from our local repository. It is worth noting that the current state-
of-the-art recognizes the significance of extracting informative
reviews as a critical aspect of enhancing the effectiveness of
review analysis, as highlighted in previous works such as [10],
[25]. As this process constitutes a pre-processing task in NLP,
we have opted for a straightforward approach and developed our
own review filter by following the techniques already existing
in state-of-the-art approaches. The evaluation of the module is
elaborated in Section VI-C.

D. Review Topic Classifier

Different researches [7], [11], [20] leverage topic modelling to
extract necessary information from the users’ reviews. The sole
purpose of topic classification is to know the abstract theme of
the review or set of reviews. It assists developers to know about
software issues like bugs, faults and shortcomings, or particular
features that require improvement.

Pagano et al. [5] presented a set of possible topics (presented
in the first column of Table III) that can be extracted from user re-
views. They investigated that topics like shortcomings and bugs
are mostly reported in reviews having negative sentiment. The
feature requests and improvement suggestions are mostly on the
neutral side, while information enquiry and feature information
can be seen as positive reviews. It may be concluded that, apart
from the review content, the sentiment of the review itself is
another important feature to recognize the topic. Thus, we feed
the reviews, along with their labelled sentiments, to the Review
Topic Extractor module.

A study by Panichela et al. [12] aims to identify a taxonomy
of user reviews that are relevant to software maintenance and

https://github.com/google-research-datasets/clang8

3760 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

evolution. The authors identify six (6) categories of reviews
that are crucial for software evolution, namely Feature Request,
Opinion Asking, Problem Discovery, Solution Proposal, Infor-
mation Seeking, and Information Giving. They also perform a
systematic mapping with the taxonomy proposed by Pagano et
al. [5] The results indicate that eight of the topics proposed by
Pagano et al. [5] are relevant for developers performing main-
tenance tasks on apps. Similarly, Gu et. al. [3] also defined five
review categories based on the taxonomy proposed by Pagano
et al. [5]. In this research, we identified seven (7) categories of
reviews that can be mapped to eleven (11) out of seventeen (17)
categories of reviews proposed by Pagano et al. [5]. According
to Pagano et al. these eleven categories are actually related to
the app’s improvement or maintenance tasks. Furthermore, we
included two topics, praise and criticism, in our topic classifica-
tion task to effectively categorize reviews with strong positive or
negative sentiments. Table III displays the identified categories
and aligns them with the current state-of-the-art review topic
taxonomy. However, topic classification with these categories
presents a challenge due to the lack of a training dataset to train
a supervised model. In such a scenario, a zero-shot classifier,
which can solve the problem of topic classification without any
prior training, is an ideal solution.

Yin et. al. [51] proposed zero-shot classifiers for classifying
emotions by training Word2Vec [52] and BinaryBERT [53]
model on MNLI [54], FEVER [55], and GLUE-RTE [56]
datasets. We train larger models like BART [41], BERT [13]
and RoBERTa [14] on MNLI dataset. We introduce the required
template for the classification task and create zero-shot classi-
fiers on top of the pre-trained models. We compared these larger
zero-shot models with the the models proposed by Yin et al. [51]
on the Yahoo Answers [57] benchmark dataset. We found that
the large variant of BART model performs better than all other
models including the Binary-BERT model. The BART-large
model achieves an F1-score of 54% whereas Yin et al. [51] report
an F1-score of 37.9%, achieved by the BinaryBERT model
(trained on MNLI dataset).

In our framework, we feed seven (7) labels for topic classifi-
cation to the BART-large-mnli model (as listed in Section III-B).
Additionally, we keep two topics praise and criticism in our ex-
periments for mapping reviews with strongly positive or strongly
negative sentiments, respectively. It is noteworthy that the zero-
shot topic classifier classifies reviews and assigns scores against
each of the topic, facilitating the categorization of reviews into
various topic categories. The experimental evaluation of this
module is presented in Section VI-D. We also provide a detailed
experiment of constructing zero-shot classifier in Annexure II of
the supplementary document, available online4 available online.

E. Topic Feature Mapper

Based on the topics identified for each of the reviews, this
next module of the framework map these reviews to specific
features of the application. The main intention of this task
is to facilitate the development team to focus on the issues

410.5281/zenodo.7836451

and the corresponding features that need to be worked upon
for the next release of the app. The developer should provide
concise documentation of app features in the form of text pairs
〈feature_name, description〉. It is intuitive that, out of the
seven topic categories, five are related to the improvement of
existing features. These five topics include - {feature informa-
tion, bug, fault and shortcoming, improvement suggestion, in-
formation enquiry}. The remaining two topics {feature request,
content request} are not exactly relatable to existing features but
rather suggest introducing new features.

We use the concept of asymmetric semantic search within
the app documentation in order to find the features relatable
to each particular review. Semantic search aims to increase
search accuracy by comprehending the search query’s content.
Unlike standard search engines, which only discover items with
lexical matches, semantic search can also find synonyms. The
semantic search technique also enables us to identify multiple
app features that may be associated with a particular review.
This mechanism provides developers with the opportunity to
identify and prioritize app features for software evolution and
maintenance tasks, partially answering Research Question 1
(RQ1). A comprehensive answer to RQ1 can be obtained from
the outcome of the next module of the framework, the Review
Summarizer and Key Phrase Extractor.

The detailed evaluation of this module is presented in
Section VI-E.

F. Review Key Phrase Summarizer

This module is designed to extract key phrases and provide
a summary of user reviews by analyzing the semantic aspects
of the text. The goal is to assist developers by highlighting
the specific aspects of the app feature discussed in the review.
Review content can be diverse in nature, and in some cases,
it can be challenging to create a summary of short reviews.
In such situations, key phrase extraction is essential. However,
for longer reviews, summarization techniques can be used to
identify the key points discussed by the reviewers. By combining
text summarization and key phrase extraction, the module is
able to effectively handle reviews of diverse lengths. In this
module, a threshold of twenty (20) words is established. Reviews
containing fewer words than the threshold are selected for key
phrase extraction, while reviews containing more words are
subject to the summarization process.

1) Summarization Using GPT-3: With the advent of ad-
vanced language models, such as GPT-3, text summarization
has become more accurate and efficient as it can understand
the context and generate coherent summaries, unlike traditional
methods which rely on keyword extraction and frequency anal-
ysis. GPT-3 is a zero-shot text summarization model which
means it doesn’t require any training. The latest version of GPT-3
model, Text-DaVinci003, can process both long and short text of
various types, making it a highly versatile tool for different use
cases. Studies [58] have compared the performance of GPT-3
with other state-of-the-art models like T5 and BERT and found
that GPT-3 is preferred for keyword-focused text summarization.
Human annotators prefer the quality of summaries generated

DAS et al.: DRIVING THE TECHNOLOGY VALUE STREAM BY ANALYZING APP REVIEWS 3761

TABLE IV
COMPARISON OF SUMMARIZATION MODELS BASED ON ROUGE SCORES FOR

THE CNN DATASET

by GPT-3 over other models, even though GPT-3 generated
summaries may have low factuality scores. Furthermore, the
study found that there were very few factual errors found in the
qualitative analysis of the GPT-3 generated summaries. Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) [59]
refers to a collection of metrics and accompanying software
tools that have been tailor-made for the purpose of assessing
the quality of automated summarization. A short description of
each of the metric is given below.

1) ROUGE-1: measures the overlap of unigrams (single
words) between the model-generated summary and the
reference summary.

2) ROUGE-2: measures the overlap of bigrams (pairs of
adjacent words) between the model-generated summary
and the reference summary.

3) ROUGE-L: measures the longest common subsequence
between the model-generated summary and the reference
summary, giving credit to consecutive matches of words
in addition to individual word matches.

Table IV shows a comparative analysis of the scores against
ROUGE metrics for different text summarization models on
CNN [60] benchmark dataset. Given that the GPT-3 model
is a zero-shot model and does not require any training, yet
it is preferred for keyword-focused text summarization, we
decided to use it in this research to generate summaries
from user reviews. The experimental settings of summariza-
tion mechanism with GPT-3 model and its parameters such
as prompt, max_tokens, temperature, frequency_penalty and
presence_penalty have been discussed in Section VI-F.

2) Key Phrase Extraction: The next process of Key phrase
extraction is carried out in the following four steps:

i. Text Embedding Model: Since T5 shows the highest per-
formance with respect to semantic similarity task [61], we
choose the T5 model for text embedding. However, any
variants of the transformer-based model can also be used
for the text embedding task.

ii. Candidate Key-Phrase Extraction: In the next step, we
aim to extract n-grams from the text. We use count-
vectorizer technique for extracting the n-grams from the
text. Additionally, to enhance the selection list, we use
Yake [45] to extract key phrases.

iii. Similar Key-Phrases: The extracted candidate phrases
are embedded by T5 model. Additionally, the particular
review is also embedded by the same model. Since the
candidate phrases and reviews are in the same vector
space, we apply cosine similarity measure to find the most
similar phrases that exceed a certain threshold.

iv. Diversifying Key-Phrases: It is also important to extract
the most relevant key-phrases that are the least similar to

TABLE V
KEY PHRASES EXTRACTED FROM REVIEW WHERE K = 2

each other. In order to achieve it, we start by specifying a
value forK. Then we extract 2×K keywords from the set
of n-grams or candidate key phrases. Pairwise semantic
similarities are measured between these key-phrases to
obtain a set of the most relevant key phrases that are least
similar to each other. Table V shows the extracted key
phrases from a sample review content. The detailed archi-
tecture of the Key Phrase Extraction mechanism has been
provided in Annexure-II of the provided supplementary
document, available online.

It is important to note that the summarized highlights or the
key phrases extracted from the reviews serve as a crucial guide
for the development team to understand which tasks are essential
for the immediate evolution and maintenance of the software,
thereby answering Research Question 1 (RQ1). The experimen-
tal evaluation of this module is discussed in Section VI-F.

V. FRAMEWORK VALIDATION METHODOLOGY

In this section, we provide a comprehensive methodology of
the experimental evaluation process for the framework. We em-
phasize the steps taken to bring the framework to full operation,
as follows:
� Module Implementations: Each module is meticulously

scrutinized and based on this examination, we make delib-
erate and informed selections of the tools and technologies
necessary to implement the required functionalities. The
integration of these packages results into a tool prototype5

that instantiates our generic framework and serves as the
foundation for the experimental assessment of its efficacy.
It is worth noting that alternative implementation choices
for individual modules have the potential to enhance the
experimental results even further.

� Selection of Use cases: In order to evaluate the effective-
ness of our framework, we conducted an analysis of reviews
for sixteen popular applications from various genres over a
long period of time (2 years span)- three video conferencing
apps, one note-taking app, and two apps each from OTT
platforms, video players, instant messaging, online job
search, photo editing, and online gaming. A detailed list
of the apps included in our experiments can be found in
Table VIII.

� Experimental Evaluation and Validation: In this phase,
we perform experiments on the reviews of each selected
application and conduct a thorough evaluation of each
module within the framework. In Section VI, we provide
a comprehensive overview of the evaluation criteria and

5https://github.com/svk-cu-nlp/reviews-to-app-maintenance

https://github.com/svk-cu-nlp/reviews-to-app-maintenance

3762 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

discuss their reasoning. The detailed experiment on the
effectiveness evaluation of the framework is also presented
in Annexure IV of the supplementary document, available
online6 available online. Additionally, we answer the re-
search questions raised in Section III and highlight how
the different modules of the framework efficiently address
these questions.

� Comparison with Baseline Approaches: Finally, we evalu-
ate the efficacy of the framework by comparing its results
with those of other baseline approaches. In Section II, we
have included a comprehensive table (Table I) that outlines
a detailed comparison between our framework and other
approaches. Specifically, we closely examine the work
proposed by Sorbo et al. [25], which is the most relevant
to our study.

In the next section, this methodology will be applied to
validate the framework discussed in Section IV.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section provides a thorough explanation of the exper-
imental process and evaluation of the proposed framework. It
is worth mentioning that we are introducing a new technology
framework that has the potential for significant improvement
in an emerging software development process in the industry.
Hence, at this point, it seems too early to evaluate the frame-
work’s impact and effectiveness in the industry. However, we
have conducted extensive experimental evaluations to validate
the proposition and also to gain some initial insights. In this sec-
tion, we provide a thorough documentation of the experimental
setup, which includes the inputs and expected outputs for each
module. Additionally, we present an analysis of the experimental
results.

A. Review Fetcher Module

Our tool prototype begins with this pre-processing compo-
nent (refer Section IV-A) where developers are able to provide
the name of the application and specify other parameters like
time window, location, number of reviews to be considered,
etc. Based on the developer preferences, reviews are fetched
from Google Playstore. For our experiments, the module fetches
3400 reviews using web scraping. The extracted review dataset
contains information that is irrelevant to our framework. These
include id, createdAt, reply, replyAt, and rating and may be
removed from our dataset.

After collecting the reviews, the grammar correction mecha-
nism is applied to these reviews to rectify the grammatical mis-
takes. We fine-tune the T5 model on cleaned NAIST Lang-8 [47]
dataset. The research paper also provides detailed instructions
for the fine-tuning process. The training parameters are specified
as follows.
� Learning Rate: 0.001
� Epoch: 7
� tokens_per_batch: 1048576
� finetune_steps: 2000

610.5281/zenodo.7836451

TABLE VI
HYPERPARAMETER SETTINGS FOR TRAINING FOR SENTIMENT ANALYSIS

� Optimizer: adam
� adam_epsilon: 1e-6
To summarize, we recapitulate the inputs required for the

module and the corresponding expected output.
– Inputs: Name of the application and additional parameters

such as time window, language, region, and the values for
the number of reviews to be extracted.

– Output: Grammar corrected review text without other in-
formation such as id, createdAt, reply, replyAt, and rating.

B. Review Sentiment Analyzer Module

As presented in the framework, the first major module of our
workflow is the sentiment analyzer of reviews. We carry out
our experiments with four transformer models - BERT [13],
RoBERTa [14], DistilBERT [40], and BART-large-mnli [41].
BERT, RoBERTa, and DistilBERT models have been fine-tuned
on SemEval 2016 [49] and SemEval 2017 [50] datasets, which
contained approximately 75,000 labeled tweets with five classes
of sentiments. As part of our experimentation, we utilized
the BART model, which was trained on the MNLI dataset
and functioned as a zero-shot classifier. While testing various
models, we found that the RoBERTa model outperformed the
others, achieving an impressive accuracy of 77.45% for tweet
sentiment classification. Based on this superior performance, we
made the decision to incorporate the RoBERTa model into our
framework for accurately analyzing the sentiments expressed in
user reviews.

In the fine-tuning part, we use AdamW [62] as our optimizer
and Categorical Crossentropy [63] as our loss function. We keep
the learning rate as 3e-5. We add a softmax layer as the activation
function. We trained the selected pre-trained models for different
numbers of epochs, ranging between 1 and 5. The reason for
choosing such a small number of epochs is that passing through
a short fine-tuning process avoids the overfitting problem. We
only take the optimized training outcome for each model within
the range of 1 to 5 epochs. We observe that we achieve optimal
training accuracy for 4 epochs. The hyper-parameter settings are
mentioned in Table VI. In case of BART-large-mnli, since it is
a zero-shot learner model, we provide 5 desired classes to the
pipeline of classification task. The performance of these four
models on SemEval dataset is given in Table VII. RoBERTa-
large uncased model achieves the highest accuracy for the Se-
mEval dataset. On the other hand, BART-large-mnli model has
the advantage that it does not require any fine-tuning.

In order to classify user reviews into five (5) possible senti-
ment classes, we choose the RoBERTa-large uncased model.
In Table VIII, we present the performance of RoBERTa for

DAS et al.: DRIVING THE TECHNOLOGY VALUE STREAM BY ANALYZING APP REVIEWS 3763

TABLE VII
SENTIMENT ANALYSIS RESULT OF TRANSFORMER MODELS ON SEMEVAL 5

CLASS DATASET

TABLE VIII
PERFORMANCE OF ROBERTA MODEL FOR FINE-GRAINED SENTIMENT

ANALYSIS

Fig. 2. Distribution of reviews (in percentage) for different apps across 5 class
sentiments.

sentiment analysis of reviews concerned with the chosen 16
apps of our case study. We manually checked the labels and
counted the number of False Positives, False Negatives, True
Positives and True Negatives. Based on the confusion matrix,
we estimated the accuracy, precision, recall, and F1-score. The
distribution of reviews across the five (5) classes of sentiments
is presented in Fig. 2.

At this stage, we would like to emphasize the inputs that were
provided to the module, as well as the outputs generated by the
module that will be utilized for further analysis.

– Inputs: Review text from the previous Review Fetcher
module. In order to classify the sentiment of the reviews,
we also provide the RoBERTa model that is already trained
on the Twitter sentiment analysis dataset [49].

– Output: Review text tagged with one of the 5 classes of
sentiment.

TABLE IX
REVIEW CATEGORIES FOR REMOVAL

C. Review Filter Module

This module filters out non-informative user reviews identi-
fied by three criteria (as mentioned in Section IV-C). The senti-
ment of reviews is determined by the previous Review Sentiment
Analyzer module. On the other hand, Non-informative reviews
are classified by the BART-large-mnli zero-shot classifier. In
order to identify short reviews, we use the spaCy7 tokenizer
library to parse and count the number of tokens in each review.

We choose to remove only those reviews which are identified
as potential removal candidates according to all the three criteria
mentioned above. This is done to ensure that we selectively
remove only those reviews which are assured to be irrelevant
for our framework.

Table IX shows the number of reviews with strong positive and
negative sentiments (column 2), the number of non-informative
reviews (column 3), and the number of short reviews (column
4) for each of the apps of our case study, separately. Column
5 shows the number of reviews from these apps which satisfy
all the three classifications listed in columns 2–4 and are thus
eliminated. The rest of the reviews, for each app, is ready for the
topic classification task. To summarize, we reiterate the inputs
and outputs of the Review Filter module for improving the clarity
of the process.

– Inputs: The input to this module is the reviews tagged with
the sentiment. In order to classify the informative and non-
informative reviews, we also provide separately the BART-
large-mnli zero-shot classification model that is already
trained on MNLI [54] dataset.

– Output: As output, the module provides the filtered
sentiment-tagged reviews that are relevant for further anal-
ysis.

D. Review Topic Classifier Module

In topic classification task, due to the lack of sufficient super-
vised labelled dataset, we choose to use zero-shot classification.
In our tool prototype, we utilize the BART-large-mnli model

7https://spacy.io/api/tokenizer

https://spacy.io/api/tokenizer

3764 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 3. Distribution of reviews across different topics.

to build our zero-shot classifier. A detailed documentation of
building our zero-shot classifier is provided in Annexure II of
the supplementary document, available online. In this zero-shot
classifier, we feed 9 (7 + 2) labels (as discussed in detail in
Section IV-D) to the classification pipeline of Huggingface
library [64]. The zero-shot classifier considers the review as
Premise and each label is treated as Hypothesis. As the pre-
trained BART model is trained on MNLI dataset, it tries to
find whether the Premise entails the Hypothesis. Based on the
highest entailment score, it classifies the review into one of these
nine classes. It is noteworthy that the classification result of
each of the reviews is accompanied by scores for each topic.
A low threshold of 0.3 has been set to increase the likelihood
of reviews being classified under any of the topics. Reviews
that have scores below this threshold for a particular topic are
automatically discarded. Reviews that fail to be classified into
any of the nine topics due to their scores for all topics being
lower than the pre-defined threshold of 0.3, are not considered
for further analysis.

Distribution of reviews, for the 16 apps of our case study,
across the nine topics is presented in Fig. 3. We can observe that
reporting of bugs is the most visible among the App reviews.
Users have reported the highest number of bugs for e-football
Android gaming app. More feature requests can be seen for
LinkedIn app. On the other hand, users suggest more improve-
ments on Indeed Job Search and LinkedIn apps. In Table X, we

TABLE X
PERFORMANCE OF THE ZERO-SHOT CLASSIFIER

present the performance of our zero-shot classification model.
We manually checked the False Positives, False Negatives, True
Positives and True Negatives. The zero-shot classifier achieves
upto ∼81% accuracy for topic classification of reviews associ-
ated with the 16 apps of our case study (refer Table X).

Next, we take each of the seven topic classes of reviews from
Fig. 3, and present their distribution across the five classes of
sentiments identified earlier (refer Fig. 4). In this figure, we
have presented the distribution of sentiment for the four most
significant topic classes. The same distribution of sentiment
across the other three topic classes can be found in Annexure-III
of the online supplementary document, available online.8 Each
of the subfigures from Fig. 4(a), (b), (c), and (d) represents the
distribution for one particular topic class.

We observe that most of the reviews regarding bugs (Fig. 4(a))
and faults have negative sentiments. The sentiments for fea-
ture request (Fig. 4(b), improvement suggestion (Fig. 4(c)), are
around neutral and negative. The sentiment for feature informa-
tion, information enquiry (Fig. 4(d)) are centered around neutral
sentiments. This implies that the users’ sentiments are balanced.
We can infer that the users are satisfied to some extent; however,
the app lacks some content or user guides for specific groups of
users.

At this point, it is important to emphasize the inputs that were
fed into the module, as well as the resulting outputs that will be
utilized for subsequent analysis.

– Inputs: The relevant informative reviews tagged with sen-
timent. In order to perform the topic classification, we also
provide separately the BART-large-mnli zero-shot classi-
fication model.

– Output: As output, reviews will be tagged with correspond-
ing topics identified by the module.

E. Topic Feature Mapper Module

In order to carry out our experiments with 16 apps of our case
study, we manually collect the documentation of app features
consisting of official user guides, FAQs, and support documents

810.5281/zenodo.7836451

DAS et al.: DRIVING THE TECHNOLOGY VALUE STREAM BY ANALYZING APP REVIEWS 3765

Fig. 4. Distribution of sentiments across different topics.

from web pages created for the respective Apps. We take user
reviews and perform a semantic search on the respective app
documentation to map the particular review to specific app
features. Semantic search works by embedding all elements in
the corpus, whether they are phrases, paragraphs, or texts, into a
vector space. The query is embedded into the same vector space
as the corpus at search time, and the closest embeddings from
the corpus are discovered.

Fig. 5. Mapping of reviews with app features of zoom.

We use a RoBERTa-based transformer model [65] trained on
MS MARCO [42] passage retrieval dataset to embed both the
user review and documentation set. Cosine scores are evaluated
in order to measure the semantic similarity between a particular
user review and the documentation of app features. The cosine
scores are rated on a scale of 0 to 1, and we have established
a threshold of 0.5 to identify multiple app features that are
associated with a particular review. Through this process, we
can accurately identify multiple app features that are referenced
in a particular review by ranking the semantic search results.

Fig. 5 shows the distribution of reviews across 44 different
features of the Zoom Android application. From the figure, we
can observe that some of the more reported issues include Join
a Meeting, Sharing Screen, Sharing a file, Virtual Background,
Video Quality, User Interface, Scheduling recurring meetings
and many more. The development team can use this feedback
to decide on upcoming iterations and potentially shippable
software releases. Fig. 6 shows the distribution of sentiments
across the most frequently discussed app features of Zoom.
Furthermore, we have presented the distribution of topics across
the most frequently reported features in Fig. 7. This information
allows the development team to take a call on the urgency of
addressing an issue based on the negativity of the sentiments
associated with a particular feature.

3766 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 6. Distribution of sentiments across specific features.

Fig. 7. Distribution of topics across specific features.

For the purposes of brevity, the distribution of reviews across
the features of other Apps is detailed in Annexure III (refer
to supplementary material, available online9). We provide a
summary of the module by specifying both the inputs accepted
by the module and the resulting output, which is of utmost
importance for the software development team.

– Inputs: The essential input for our module is the application
documentation, which is in the form of text pairs denoting
feature names and their corresponding descriptions. Ad-
ditionally, for performing semantic searches, we provide a
fine-tuned RoBERTa model based on the MS MARCO [42]
dataset. Lastly, we also include review text as input to the
module.

– Output: This module provides a list of feature names along
with their corresponding relatedness scores concerning a
specific review.

F. Review Key Phrase Summarizer Module

This module begins with the generation of summaries from
the reviews. We have set a threshold of twenty (20) words to
determine the appropriate method for analyzing each review. If
a review contains fewer than the threshold number of words, we
will extract key phrases from it. On the other hand, if a review
exceeds the threshold, we will subject it to a summarization
process.

1) Review Summary Generation: GPT-3, as a generative
model, creates a summary of a text according to a specific
prompt. To optimize the quality of the summarization, we can
adjust the following parameters.

– prompt: This is the input text that the model will use as a
starting point for generating the summary. We specify the
prompt as “Summarize the given review and extract key
points”

910.5281/zenodo.7836451

TABLE XI
SUMMARIZATION OF REVIEWS USING GPT-3

TABLE XII
COMPARISON OF KEY PHRASE EXTRACTION BY YAKE ALONE AND COMBINED

WITH COUNTVECTORIZER

– model: This parameter specifies which version of GPT-3
to use. we specify text-davinci-003 model for the summa-
rization task.

– temperature: The setting controls the level of randomness
in the generated text. A value of 0 will result in determin-
istic output, meaning the same output will be generated
every time for a given input text. In contrast, a value of 1
will cause the engine to incorporate more creative elements
in the generated text. We continue our task with the default
setting of 0.7 for summarization.

– top_p: The proportion of the most likely tokens to keep in
the generated summary. We keep the default value of one
(1) for this parameter.

– frequency_penalty: it is used to control the repetition of
certain tokens in the generated text. We do not change the
default setting and keep it zero (0).

– presence_penalty: It is used to control the likelihood of
certain tokens appearing in the generated text. We continue
our experiment with its default setting i.e. zero (0).

With the above-mentioned parameters, we accomplish our
experiment for review summarization. Table XI presents a sum-
marization of a sample review.

2) Key Phrase Extraction: We use the Yake [45] algorithm
for identifying these key phrases as it achieves higher accuracy
than other existing approaches. However, Yake does not perform
as expected when applied on short-length reviews. Thus, we
combine Yake with the countvectorizer10 technique, which can
extract n-gram sequences from short reviews as well. Table XII
shows such short-length examples where the combination of
Yake and countvectorizer extract more meaningful key phrases
than applying Yake alone. The n-grams extracted (by countvec-
torizer) and key phrases extracted (by Yake) are combined to
enhance the list of key phrases. We keep the size of n as 3 for

10https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.CountVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

DAS et al.: DRIVING THE TECHNOLOGY VALUE STREAM BY ANALYZING APP REVIEWS 3767

TABLE XIII
COMPARING MODELS FOR SEMANTIC SIMILARITY

TABLE XIV
KEY PHRASE EXTRACTION EXPLAINED

extracting n-grams as Yake also achieves optimal performance
for n = 3.

In the next phase, we proceed to identify the similar key
phrases using semantic similarity scores. This requires em-
bedding both the reviews as well as the key phrases extracted
previously. We compare different models for text embedding by
applying them on two well-known semantic similarity datasets
- STSB [66] and MNLI [54]. Table XIII shows that T5 [61] and
RoBERTa [14] models achieve similar performance in terms
of accuracy in the STSB dataset. However, T5 outperforms
other models in the MNLI dataset. Thus, we use the T5 model
for text embedding purposes. We apply the cosine similarity
approach on these text embeddings to find the similar key phrases
corresponding to each review. In Table XIV, row 2 shows the
similarity scores of the extracted key phrases to the sample
review content shown in row 1.

Next, we aim to identify the most diversified set of key phrases
for each review. We observe that most reviews contain a key
phrase within a fixed interval of words, say K. We diversify the
extracted similar key phrases by specifying the value of K. We
keep the default value of K as � 1

6�-th of the number of words
in the review. The value of K can be altered by specifying it in
the module explicitly. In our sample review content shown in
Table XIV, row 3 enlists the most diverse set of key phrases.

We evaluate the end-to-end key phrase extraction module
(which combines the three activities mentioned above) with
the T5, RoBERTa, and BART pre-trained language models.
In Table XV, we refer to these end-to-end models as KPT5,
KPRoBERTa, and KPBART (marked with *), respectively. We
provide a comparative analysis of these three model with state-
of-the-art key phrase extraction models by applying them on
three benchmark datasets (Inspec [67], SemEval2010 [68] and
SemEval2017 [50]). We observe that our proposed KPT5 model
achieves the highest F1-score for SemEval 2010 dataset. At this
stage, it’s crucial to emphasize the inputs and outputs generated

TABLE XV
F1-SCORE OF DIFFERENT APPROACHES FOR KEY PHRASE EXTRACTION

by the implemented Review Key Phrase Summarizer module.
These details enable the development team to comprehend the
significant concerns raised in the reviews.

– Inputs: The reviews are the most important input for this
module. In order to generate the summary of the reviews,
GPT-3 model is fed into the module. The proposed key
phrase extraction process (KPT5) involves the Yake [45]
algorithm and T5 model beforehand. The Yake algorithm is
implemented using the instruction provided in their GitHub
repository.11

– Outputs: The module provides the summary for the long
text reviews using GPT-3. For short reviews, the module
provides the key phrases using our proposed key phrase
extraction mechanism KPT5.

This concludes our set of experiments for each individual
module of our framework. We have proposed to use certain
specific models and algorithms based on our experimental eval-
uations. However, these are only suggestive in nature and by no
means restrictive on the users of this framework.

VII. DISCUSSION

In this section, we discuss some results and observations
associated with our framework. The framework uses advanced
language models like BERT, T5, BART, or GPT-3 to handle
NLP tasks without requiring a separate parsing technique. These
models are capable of directly working with raw text inputs as
they have been trained on large amounts of text data, enabling
them to extract information and make predictions by identifying
patterns and relationships within the text. Therefore, the frame-
work does not need an additional NLP parsing technique, thanks
to the efficient use of these language models. Some of the key
findings and implications from our experiments are summarized
in Fig. 8.

In light of the experimental results, we can return to the initial
research questions.

RQ1: How can the end-user app reviews help the develop-
ment team to precisely identify the app features which are of
immediate concern?

The proposed framework tries to identify the specific features
of a software application that should be the major focus of
the software development team in the upcoming deployments
of the technology value stream. The only human involvement

11https://github.com/LIAAD/yake

https://github.com/LIAAD/yake

3768 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 8. Key findings and implications.

required in this framework is to provide app documentation.
Besides, the framework categorizes reviews into distinct classes,
as demonstrated in the Topic Classification module. It also
identifies the specific app features referenced in the reviews,
a task accomplished by the Topic Feature Mapper module. The
framework takes it a step further by highlighting the particular
aspects of the identified features that are causing concern among
end-users. The summarization and key phrase extraction mod-
ules enable the identification of these aspects and key concerns,
resulting in a well-defined set of recommendations to consider
in their planning of future iterations in the CI/CD pipeline.

RQ2: How can the user sentiments be integrated into the
recommendation system to identify the more relevant reviews
that are significant for the technology value stream?

Users’ intentions are often reflected by their sentiments, which
get embedded in their reviews. Our proposed framework begins
with sentiment analysis of the reviews. We observe that most
of the informative reviews belong to the category of neutral
and negative sentiments. We filter out those reviews which have
very strong sentiments (negative or positive) embedded in them.
The framework focuses and prioritizes the negative, neutral and
positive reviews in order to perform further analysis. Another
aspect of sentiment analysis is that it helps to identify the theme
of the review. In order to prevent collaborative attacks on the
framework by groups of malicious end-users, we identify the
sentiments associated with the reviews and use them for coming
up with the right set of recommendations. This prevents the
framework from developing a bias towards irrelevant reviews
which are typically submitted with the intention of misguiding
the business customers and end-user market. Thus, there is
a two-fold purpose for performing sentiment analysis of app
reviews and using the outcome of that analysis to drive the
technology value stream.

RQ3: How can we integrate the entire framework within
the software development pipeline to automate the continuous
maintenance process?

Modern software delivery and deployment rely heavily on the
Principles of Flow within DevOps environments [69]. In order to
shift the focus of the technology value stream towards delivering
business value to the customer, there is a need to concentrate
on meeting users’ needs by amplifying and reducing feedback
loops at the same time [70]. DevOps Research and Assessment
(DORA) [71] shows that development teams achieve higher

performance when they work in organizations that utilize the
following things.

1) Collection of user’s satisfaction metrics.
2) Analyze and respond to customer reviews on the quality

of the product and its features.
3) Utilize the analysis of the feedback to help design products

and features.
With this prior discussion, we observe that our proposed

framework fits into this feedback loop of DevOps platforms.

VIII. THREATS TO VALIDITY

Threat related to framework validity: One of the threats to
validity of the framework is that the efficiency of the proposed
framework is bounded by the efficiency of the different machine
learning models that have been deployed across the different
components of the framework. On the contrary, the framework
is designed to be flexible and adaptable to the constantly evolving
NLP field and its cutting-edge advancements. Its underlying lan-
guage models are based on the transformer architecture, enabling
easy replacement with more efficient, compatible models.

Moreover, in the actual implementation, the framework is
restricted to handling only the English language and is not
equipped to process other languages. In order to counteract this
issue, the language models utilized by the framework must be
designed for multilingual processing. This represents a promis-
ing area for future research efforts.

Threat related to external dependencies: One major external
dependency of the framework is the availability of app documen-
tation. The development team has to extract texts or paragraphs
about specific features from the app documentation. App docu-
ments, which can be readily used in NLP tasks, are sometimes
not available. Documents exist in unstructured format such as
web pages and PDFs. It is a laborious job to extract texts from
such unstructured documents and feed them into the proposed
framework for further processing.

IX. CONCLUSION

In this article, we presented a framework which combines
several NLP techniques such as Sentiment Analysis, Text Anal-
ysis, and Text Classification in order to decipher meaningful
information that often remain embedded in app user reviews. The
purpose of the framework is to use this information and automate

DAS et al.: DRIVING THE TECHNOLOGY VALUE STREAM BY ANALYZING APP REVIEWS 3769

the process of guiding software developers to deliver maximum
customer value through successive software releases. The frame-
work helps to pinpoint which app segment requires attention
from the development and maintenance team. Our experiments
demonstrate that the combination of sentiment analysis and topic
classification on user reviews greatly improves the quality of
recommendations for continuous app development. In addition,
the framework aids developers in identifying specific app feature
segments that demand attention for maintenance tasks. It also
offers a succinct summary of the review and underscores crucial
issues raised by the reviewer. It is essential to highlight that
the paper presents a novel framework designed to address the
research problem, which is not confined to the performance of
any singular module within the framework. As time progresses,
the deep learning models employed in the framework can be
substituted with even more high-performing and compatible
models, thereby ensuring scalability.

As a first direction for future work we plan to extend our
work by developing a complete DevOps pipeline that integrates
our framework with existing CI/CD pipelines. We also intend
to evaluate our framework on a variety of app reviews for
apps belonging to different categories such as mobile gaming,
e-commerce applications, financial and payment applications,
and so on. We also aim to eliminate human intervention by
automating the collection of app documentation. Finally, we aim
to enhance the summarization and key-phrase extraction process
and introduce text generation models to provide developers an
exact direction towards App maintenance.

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” ACM SIG-
PLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992.

[2] N. Genc-Nayebi and A. Abran, “A systematic literature review: Opinion
mining studies from mobile app store user reviews,” J. Syst. Softw., vol. 125,
pp. 207–219, 2017.

[3] X. Gu and S. Kim, ““what parts of your apps are loved by users?”(T),”
in Proc. IEEE/ACM 30th Int. Conf. Automated Softw. Eng., 2015,
pp. 760–770.

[4] L. V. G. Carreno and K. Winbladh, “Analysis of user comments: An
approach for software requirements evolution,” in Proc. IEEE 35th Int.
Conf. Softw. Eng., 2013, pp. 582–591.

[5] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in Proc. IEEE 21st Int. requirements Eng. Conf., 2013, pp. 125–134.

[6] S. Scalabrino, G. Bavota, B. Russo, M. Di Penta, and R. Oliveto, “Listening
to the crowd for the release planning of mobile apps,” vol. 45, no. 1,
pp. 68–86, Jan. 2017.

[7] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in Proc. IEEE 10th Work. Conf. Mining
Softw. Repositories, 2013, pp. 41–44.

[8] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party Android marketplaces,” in Proc. 2nd
ACM Conf. Data Appl. Secur. Privacy, 2012, pp. 317–326.

[9] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H.
C. Gall, “ARdoc: App reviews development oriented classifier,” in Proc.
24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016, pp. 1023–1027.

[10] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “AR-miner: Mining
informative reviews for developers from mobile app marketplace,” in Proc.
36th Int. Conf. Softw. Eng., 2014, pp. 767–778.

[11] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis for
identifying emerging issues,” in Proc. 40th Int. Conf. Softw. Eng., 2018,
pp. 48–58.

[12] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora, “Mining
source code descriptions from developer communications,” in Proc. IEEE
20th Int. Conf. Prog. Comprehension, 2012, pp. 63–72.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018.

[14] Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining ap-
proach,” 2019.

[15] E. Guzman and W. Maalej, “How do users like this feature? A fine grained
sentiment analysis of app reviews,” in Proc. IEEE 22nd Int. Requirements
Eng. Conf., 2014, pp. 153–162.

[16] Z. Peng, J. Wang, K. He, and M. Tang, “An approach of extracting feature
requests from app reviews,” in Proc. 12th Int. Conf. Collaborate Comput.
Netw. Appl. Worksharing, Beijing, China, Springer, Nov. 10–11, 2017,
pp. 312–323.

[17] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan, “Analyzing and au-
tomatically labelling the types of user issues that are raised in mobile
app reviews,” Empirical Softw. Eng., vol. 21, no. 3, pp. 1067–1106,
2016.

[18] H. Khalid and M. Shihab, “What do mobile app users complain about?
A study on free IoS apps,” IEEE Softw., vol. 32, no. 3, pp. 70–77,
May/Jun. 2015.

[19] T. Johann et al., “SAFE: A simple approach for feature extraction from
app descriptions and app reviews,” in Proc. IEEE 25th Int. Requirements
Eng. Conf., 2017, pp. 21–30.

[20] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H.
C. Gall, “How can I improve my app? Classifying user reviews for software
maintenance and evolution,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., 2015, pp. 281–290.

[21] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H.
C. Gall, “ARdoc: App reviews development oriented classifier,” in Proc.
24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016, pp. 1023–1027.

[22] A. Di Sorbo, C. A. Visaggio, M. Di Penta, G. Canfora, and S. Panichella,
“An NLP-based tool for software artifacts analysis,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., 2021, pp. 569–573.

[23] Y. Zhou, Y. Su, T. Chen, Z. Huang, H. Gall, and S. Panichella, “User review-
based change file localization for mobile applications,” IEEE Trans. Softw.
Eng., vol. 47, no. 12, pp. 2755–2770, Dec. 2021.

[24] H. Malik, E. M. Shakshuki, and W.-S. Yoo, “Comparing mobile apps
by identifying ‘hot’features,” Future Gener. Comput. Syst., vol. 107,
pp. 659–669, 2020.

[25] A. Di Sorbo et al., “What would users change in my app? Summarizing
app reviews for recommending software changes,” in Proc. 24th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2016, pp. 499–510.

[26] C. Tao, H. Guo, and Z. Huang, “Identifying security issues for mobile
applications based on user review summarization,” Inf. Softw. Technol.,
vol. 122, 2020, Art. no. 106290.

[27] E. Guzman, O. Aly, and B. Bruegge, “Retrieving diverse opinions from
app reviews,” in Proc. IEEE/ACM Int. Symp. Empirical Softw. Eng. Meas.,
2015, pp. 1–10.

[28] A. Ciurumelea, A. Schaufelbühl, S. Panichella, and H. C. Gall, “Analyzing
reviews and code of mobile apps for better release planning,” in Proc. IEEE
24th Int. Conf. Softw. Anal. Evol. Reengineering, 2017, pp. 91–102.

[29] H. Jiang et al., “Recommending new features from mobile app descrip-
tions,” ACM Trans. Softw. Eng. Methodol., vol. 28, no. 4, pp. 1–29, 2019.

[30] C. Gao, B. Wang, P. He, J. Zhu, Y. Zhou, and M. R. Lyu, “PAID: Prioritizing
app issues for developers by tracking user reviews over versions,” in Proc.
IEEE 26th Int. Symp. Softw. Rel. Eng., 2015, pp. 35–45.

[31] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, no. Jan, pp. 993–1022, 2003.

[32] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: MSR
for app stores,” in Proc. IEEE 9th Work. Conf. Mining Softw. Repositories,
2012, pp. 108–111.

[33] A. Di Sorbo, G. Grano, C. Aaron Visaggio, and S. Panichella, “Investigat-
ing the criticality of user-reported issues through their relations with app
rating,” J. Softw. Evol. Process, vol. 33, no. 3, 2021, Art. no. e2316.

[34] D. Martens and W. Maalej, “Towards understanding and detecting fake
reviews in app stores,” Empirical Softw. Eng., vol. 24, no. 6, pp. 3316–3355,
2019.

[35] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requirements Eng., vol. 21, pp. 311–331,
2016.

[36] E. Guzman, P. Bhuvanagiri, and B. Bruegge, “FAVe: Visualizing user
feedback for software evolution,” in Proc. IEEE 2nd Work. Conf. Softw.
Vis., 2014, pp. 167–171.

[37] D. Martens and W. Maalej, “Release early, release often, and watch your
users’ emotions: Lessons from emotional patterns,” IEEE Softw., vol. 36,
no. 5, pp. 32–37, Sep./Oct. 2019.

[38] J. Dabrowski, E. Letier, A. Perini, and A. Susi, “Mining user opinions to
support requirement engineering: An empirical study,” in Proc. 32nd Int.
Conf. Adv. Inf. Syst. Eng., Grenoble, France, Springer, Jun. 8–12, 2020,
pp. 401–416.

3770 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

[39] D. Franzmann, A. Eichner, and R. Holten, “How mobile app design
overhauls can be disastrous in terms of user perception: The case of
snapchat,” ACM Trans. Social Comput., vol. 3, no. 4, pp. 1–21, 2020.

[40] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled
version of BERT: Smaller, faster, cheaper and lighter,” 2019.

[41] M. Lewis et al., “BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension,” 2019.

[42] T. Nguyen et al., “MS MARCO: A human generated machine reading
comprehension dataset,” in Proc. Workshop Cogn. Comput. Conf. Neural
Inf. Process. Syst., 2016.

[43] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic keyword
extraction from individual documents,” Text Mining Appl. Theory, vol. 1,
no. 1/20, pp. 10–1002, 2010.

[44] R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in Proc.
Conf. Empirical Methods Natural Lang. Process., 2004, pp. 404–411.

[45] R. Campos, V. Mangaravite, A. Pasquali, A. Jorge, C. Nunes, and A. Jatowt,
“YAKE! keyword extraction from single documents using multiple local
features,” Inf. Sci., vol. 509, pp. 257–289, 2020.

[46] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-
Manning, “KEA: Practical automated keyphrase extraction,” in Design and
Usability of Digital Libraries: Case Studies in the Asia Pacific. Hershey,
PA, USA: IGI Global, 2005, pp. 129–152.

[47] S. Rothe, J. Mallinson, E. Malmi, S. Krause, and A. Severyn,
“A simple recipe for multilingual grammatical error correction,”
2021, arXiv:2106.03830.

[48] H. T. Ng, S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H. Susanto, and C.
Bryant, “The CoNLL-2014 shared task on grammatical error correction,”
in Proc. 18th Conf. Comput. Natural Lang. Learn. Shared Task, Baltimore,
Maryland, Association for Computational Linguistics, 2014, pp. 1–14.
[Online]. Available: https://aclanthology.org/W14--1701

[49] P. Nakov, A. Ritter, S. Rosenthal, F. Sebastiani, and V. Stoyanov, “Semeval-
2016 task 4: Sentiment analysis in twitter,” 2019.

[50] S. Rosenthal, N. Farra, and P. Nakov, “Semeval-2017 task 4: Sentiment
analysis in twitter,” 2019.

[51] W. Yin, J. Hay, and D. Roth, “Benchmarking zero-shot text classification:
Datasets, evaluation and entailment approach,” 2019.

[52] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[53] H. Bai et al., “BinaryBERT: Pushing the limit of BERT quantization,”
2020.

[54] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge
corpus for sentence understanding through inference,” in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics Hum. Lang. Technol., Asso-
ciation for Computational Linguistics, 2018, pp. 1112–1122. [Online].
Available: http://aclweb.org/anthology/N18--1101

[55] J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal, “FEVER: A
large-scale dataset for fact extraction and verification,” 2018.

[56] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural lan-
guage understanding,” 2018.

[57] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” vol. 28, 2015.

[58] A. Bhaskar, A. R. Fabbri, and G. Durrett, “Zero-shot opinion summariza-
tion with GPT-3,” 2022, arXiv:2211.15914.

[59] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Proc. Workshop Text Summarization Branches Out, 2004, pp. 74–81.

[60] R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: A recurrent neural net-
work based sequence model for extractive summarization of documents,”
in Proc. AAAI Conf. Artif. Intell., 2017, pp. 3075–3081.

[61] C. Raffel et al., “Exploring the limits of transfer learning with a unified
text-to-text transformer,” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67,
2020.

[62] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2017.

[63] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training
deep neural networks with noisy labels,” 2018.

[64] T. Wolf et al., “Huggingface’s transformers: State-of-the-art natural lan-
guage processing,” 2019.

[65] K. Wang, N. Reimers, and I. Gurevych, “TSDAE: Using transformer-based
sequential denoising auto-encoder for unsupervised sentence embedding
learning,” 2021.

[66] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “Semeval-2017
task 1: Semantic textual similarity-multilingual and cross-lingual focused
evaluation,” 2017, arXiv: 1708.00055.

[67] A. Hulth, “Improved automatic keyword extraction given more linguistic
knowledge,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
2003, pp. 216–223.

[68] I. Hendrickx et al., “SemEval-2010 task 8: Multi-way classification of
semantic relations between pairs of nominals,” 2019, arXiv: 1911.10422.

[69] M. Virmani, “Understanding DevOps & bridging the gap from continuous
integration to continuous delivery,” in Proc. IEEE 5th Int. Conf. Innov.
Comput. Technol., 2015, pp. 78–82.

[70] F. Beetz and S. Harrer, “GitOps: The evolution of DevOps?,” IEEE Softw.,
vol. 39, no. 4, pp. 70–75, Jul./Aug. 2022.

[71] N. Forsgren, M. C. Tremblay, D. VanderMeer, and J. Humble, “DORA
platform: DevOps assessment and benchmarking,” in Proc. Int. Conf. Des.
Sci. Res. Inf. Syst. Technol., Springer, 2017, pp. 436–440.

Souvick Das received the BSc and MSc degrees in
computer science from West Bengal State Univer-
sity, India in the year 2012 and 2014 respectively.
He is a research associate with the Department of
Environmental Science, Informatics, and Statistics, of
Ca’ Foscari University, Venice, Italy and is currently
working toward the PhD degree in Computer Science
and Engineering from University of Calcutta, India.
He has qualified UGC NET-JRF in the year of 2016.

Novarun Deb (Member, IEEE) received the mas-
ter’s and PhD degrees in eequirements engineering
from the Department of Computer Science and En-
gineering, University of Calcutta. He is an assistant
professor with the Indian Institute of Information
Technology, Vadodara, India. He was a research asso-
ciate with the Department of Environmental Science,
Informatics, and Statistics, of Ca’ Foscari University,
Venice, Italy, for more than two years.

Nabendu Chaki (Senior Member, IEEE) is a profes-
sor with the University of Calcutta, Kolkata, India.
He is sharing 7 international patents including 4 US
patents. He has authored 7 books and nearly 200 Sco-
pus Indexed papers in Journals and International con-
ferences. He is the founder chair of ACM Professional
Chapter in Kolkata. He was active in 2009–2015
for developing international standards in Software
Engineering and Service Science as a Global (GD)
member for ISO-IEC.

Agostino Cortesi is a professor of computer science
with Ca’ Foscari University, Venice, Italy. He has
extensive experience in the area of static analysis
and software verification techniques, with particular
emphasis on security applications. He published more
than 150 papers in high level international journals
and proceedings of international conferences. Cur-
rently, he serves as co-editor in chief of the book se-
ries “Services and Business Process Reengineering”
published by Springer-Nature.

https://aclanthology.org/W14--1701
http://aclweb.org/anthology/N18--1101

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

