
1.  Introduction
Although inland waters occupy less than 1% of total Earth’s surface (G. H. Allen & Pavelsky, 2018), streams and 
the networks they form are key components of global carbon cycle (Battin et al., 2009, 2023; Cole & Caraco, 2001; 
Raymond et al., 2013; Regnier et al., 2013). Climate change represents one of the most important threats for 
inland waters and the ecosystem services they supply (Dudgeon et  al.,  2006; Masson-Delmotte et  al.,  2018; 
Woodward et al., 2010). By the end of the 21st century, central Europe surface temperature is predicted to further 
increase by 1.3°C–4.8°C compared to 2005 averages (Christensen et al., 2013) and, among all ecosystems, those 
at high altitudes are experiencing some of the fastest rates of change on the planet (Barnett et al., 2005). Such 
a climatic trajectory is predicted to alter riverine ecological processes, as thermal and hydrological regimes of 
rivers are strongly linked to climate. Indeed, an increase in air and surface temperature translates into higher 
stream water temperatures (Pletterbauer et al., 2018), with feedbacks on the water cycle (e.g., glacier retreat, 
snowfall decrease, and increased heavy rainfall events), the frequency and magnitude of extreme events such as 
floods and droughts, and ultimately on aquatic biota (Benestad, 2004; Masson-Delmotte et al., 2018; Pletterbauer 
et  al.,  2018). Despite the acknowledged thermal and hydrological changes, there is still considerable uncer-
tainty on how climate change will impact river ecohydrological processes and carbon budgets at the catchment, 
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Plain Language Summary  Organic carbon is one of the main source of energy sustaining riverine 
ecosystems. It can be internally produced by autotrophic organisms, or subsidized from the adjacent terrestrial 
ecosystem. Understanding the fraction of organic carbon which is metabolized within a stream network 
rather than exported to downstream ecosystems, and how such fraction is controlled by the thermal and 
hydrologic regime, is crucial to predict the whole ecosystem function, the ecosystem services it can provide, 
and the regional (and global) carbon cycling. Through the development of a mathematical model applied to a 
well-monitored river network, the paper addresses this fundamental question and attempts to predict how these 
energetic fluxes might be affected by climate change.
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regional and global scales. Such uncertainties challenge environmental scientists to deepen their understanding of 
ecosystem structure and functioning: the interplay between the physical features of ecosystems, their ecological 
communities, and the processes that regulate fluxes of energy and matter (Battin et al., 2023; Tilman et al., 2014).

Ecosystem metabolism quantifies carbon fixation and mineralization through gross primary production (GPP) 
and ecosystem respiration (ER) and is primarily influenced by: temperature, the master variable of metabolic 
rates (A. Allen et al., 2005); light mediating photosynthesis (Koenig et al., 2019; Mulholland et al., 2001; Roberts 
et al., 2007; Segatto et al., 2020); the hydrological regime which controls hydraulic retention, transport capacity, 
and flow-induced disturbances (Acuña & Tockner, 2010; Bernhardt et al., 2022; Pathak et al., 2022; Uehlinger 
et al., 1996); geomorphology, setting the ecological environment (Atkinson et al., 2008; Uehlinger, 2006); and 
biomass density, regulating competition for space and resources (Segatto et al., 2020). The balance between GPP 
and ER is termed net ecosystem production (NEP) and for open systems, such as streams and rivers, is untied 
from being strictly positive (Duvert et al., 2018; Marcarelli et al., 2011). Indeed, contrary to the terrestrial ecosys-
tems, life in flowing waters is not solely sustained by primary producers (autochthonous resources) but also from 
inputs of organic carbon (OC) entering streams (allochthonous resources) mainly in the form of dissolved organic 
carbon (DOC) via hydrologic flow from adjacent hillslopes and riparian zones; particulate organic carbon (POC), 
for example, via litterfall; and large woody debris (Bernhardt et al., 2018; Cole & Caraco, 2001; Evans, 2022; 
Guyette et al., 2002; Hotchkiss et al., 2015; Tank et al., 2010). Knowledge on NEP is important as it links the 
terrestrial and aquatic carbon cycles (i.e., the “boundless carbon cycle,” Battin et al., 2009) through lateral carbon 
fluxes (Regnier et  al.,  2013), informs on the biogeochemical connectivity throughout river networks (Battin 
et al., 2008), and represents a valuable tool for policymakers and river restoration projects, as it provides key 
information on the river’s trophic and energetic state (Kupilas et al., 2017).

One of the biggest challenges faced by hydrologists and stream ecologists lies in the attempt to integrate and 
resolve ecosystem dynamics at the scale of entire river networks. The advent of affordable sensors has boosted 
the availability of reach-scale time series of GPP and ER estimated from dissolved oxygen (DO) time series 
(Appling et al., 2018; Beaulieu et al., 2013; Diamond et al., 2021; Hall & Beaulieu, 2013), greatly advancing 
our understanding of drivers of local stream metabolism (e.g., Bernhardt et al., 2018; Segatto et al., 2020; Ulseth 
et al., 2018). However, few studies have so far attempted to upscale GPP and ER from stream reaches to an entire 
river network (see Rodríguez-Castillo et al. [2019] for the spatial distribution of metabolic metrics and Segatto 
et al. [2021] for network-scale ecosystem regimes both in space and time). We argue that the lack of suitable 
modeling approaches and distributed data has hampered the development of river metabolism models integrat-
ing both river network structure and ecosystem functioning at the scale of entire stream networks. Furthermore, 
scientific advancement in this direction is required in order to draw conclusions on catchment, regional, and 
global scales carbon fluxes, to unveil emerging properties at the scale of entire stream networks, and to investigate 
the effect of climate change.

In this study, we propose a spatially distributed, process-based modeling framework to study and predict meta-
bolic regimes over an entire stream network. The river network is viewed as a meta-ecosystem where a set of 
ecosystems are spatially connected by flows of energy and materials (Loreau et  al.,  2003). The model takes 
advantage of recent results detailed in Segatto et  al.  (2020, 2021) and couples the thermal and light regimes 
reconstructed via machine learning with a reach-scale ecosystem model. The model integrates information on 
network structure, catchment vegetation, and hydrological regime to simulate the distributed functioning of DOC, 
POC, autotrophic biomass, and the ensuing ecosystem metabolism at the whole network scale. We leveraged on 
data availability in 12 reaches of a prealpine stream network, the Ybbs River network (Austria), to evaluate the 
model capability in reproducing local patterns of GPP and ER estimated from the analysis of DO data (Ulseth 
et al., 2018). We further investigate network-scale emerging properties such as spiraling length and ecosystem 
efficiency (EE; Newbold et al., 1982; J. Webster & Meyer, 1997).

The mechanistic base of the developed model enables us to investigate how variations in environmental driv-
ers may impact ecosystem functioning and to predict responses of river ecosystem metabolism under changing 
climatic regimes. Indeed, alterations in either the temperature or the flow regime, or in their mutual interaction, 
affect OC dynamics and consequently the metabolic regime, shaping the energy pathways, and the EE (Acuña & 
Tockner, 2010). Warmer temperatures are expected to increase ER to a greater extent compared to GPP (Acuña 
et  al.,  2008; Sand-Jensen & Pedersen,  2005), leading to shorter OC spiraling lengths and higher EEs. More 
intense floods are expected to increase OC transport rates and thus spiraling, to decrease the overall EE and 
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to play a key role in regulating biomass density (Acuña & Tockner, 2010; Raymond et al., 2016; Uehlinger & 
Naegeli, 1998; Uehlinger et al., 1996), while more pronounced low-flow conditions are predicted to reduce the 
processing of OC and consequently the metabolic fluxes (Acuña & Tockner, 2010). To test these hypotheses, we 
investigated how the modeled case study responds to changes in the thermal and hydrological regimes.

2.  Methods
2.1.  Network-Scale Stream Metabolism Model

We propose a spatially explicit, network-scale model of ecosystem metabolism and related OC fluxes (Figure 1). 
The stream network is discretized into N reaches, that is, the channel segment between two consecutive conflu-
ences or between the head of a first-order stream and the next confluence. Each reach constitutes a node of an 
oriented graph with edges following the flow direction (Bertuzzo et al., 2017; Carraro et al., 2018). The model 
assumes a stream perspective and thus classifies as autochthonous resources those produced within the stream by 
autotrophic organisms, which are here assumed to be dominated by benthic communities. All other OC resources, 
including those produced in the adjacent riparian zone, are considered as allochthonous. Within each node, the 
model simulates the temporal dynamics of three well-mixed OC pools (DOC [gC], POC [gC], and autotrophic 
biomass BA [gC]), main biophysical fluxes among them, metabolic fluxes of GPP and ER, terrestrial DOC and 
POC subsidies, and the advective transport along the flow direction (Figure 1). The goal is to account for the 
most relevant processes while maintaining a parsimonious approach and limiting the number of parameters. To 
this end, we model a single POC pool that includes POC stored in the near surface sediments, POCSED; POC in 

Figure 1.  Illustration of the theoretical approach. (a) The Ybbs catchment, the location of the sampled reaches (yellow dots 
numbered from 1 to 12) and of the weather station (cyan dot). (b) The reach-scale ecosystem model describing the temporal 
evolution of dissolved organic carbon (DOC, light-blue box), particulate organic carbon (POC, yellow box), and autotrophic 
biomass (BA, green box; Equations 1–3). Organic carbon (OC) mass fluxes originating in the surrounding catchment along 
with the advective transport from upstream to downstream are represented in orange, while in-stream biophysical processes 
are shown in black. POC (yellow box) includes all heterotrophic organisms (BH), and suspended (POCSUS) and sediment 
(POCSED) POC that has entered the system within the simulation horizon. POCBURIED accounts for buried POC and woody 
debris (gray shaded box) that accumulated mostly outside of the simulation horizon considered and contributes to ecosystem 
respiration (ER) through the respiratory flux RBasal. Burial (ϕB), degradation (LDOC), loss (LA), uptake (UDOC and 𝐴𝐴 𝐴𝐴BA

 ), 
scouring (SA), and lysis (LY) represent the fluxes from pool to pool, while photosynthesis (gross primary production [GPP]) 
and all respiratory terms represent reduction of CO2 to OC and oxidation back to CO2, respectively.
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suspension in the water, column POCSUS; and heterotrophic biomass (BH) sustained by this OC pool (Figure 1). 
POC can be buried into deeper sediments (flux ϕB) and contribute to build a long-term storage of OC that contrib-
utes to the basal respiration RBasal. Large woody debris is not explicitly modeled as its turn over time could be 
longer than the time scale of interest of this application (see also discussion below). However, respiration of OC 
sourced by woody debris can conceptually be included in the basal respiration term, which can be thought of as a 
term generally accounting for respiration of OC sources that are not explicitly tracked by the model.

For each node i, the model depicted in Figure 1 translates into the following equations:

�DOC�

��
= �up,DOC,� − �DOC,� + �L,DOC,� − �DOC,� + �Y,� (1)

�POC�

��
= �up,POC,� − �POC,� + LF� − �B,� − �Y,� −�Res,� + �DOC,� + �A,� + �BA ,� (2)

��A,�

��
= GPP� −�A,� − �A,� − �A,� (3)

�

DOC and POC (see Figure 1) can enter the generic i-reach via transport from upstream (ϕup,DOC,i and ϕup,POC,i, 
Equations 1 and 2, note that such fluxes are null for first-order stream reaches); allochthonous lateral inputs in 
the form of OC leaching from the surrounding hillslopes and riparian zones, and transported by hydrologic lateral 
flow (ϕL,DOC,i, Equation 1); or in the form of litterfall (LFi, Equation 2). DOC in the water column is advected 
downstream (ϕDOC,i, Equation 1) or degraded by heterotrophs (LDOC,i, Equation 1). A fraction α of this DOC loss is 
effectively used to build new heterotrophic biomass (UDOC,i = αLDOC,i, Equation 2), while the remaining (1 − α) is 
invested as energy cost and respired (RDOC,i = (1 − α)LDOC,i, Figure 1 and following Equation 4). The heterotrophic 
metabolism is also sustained by exudates from autotrophs (e.g., algae) in rivers (Hall & Beaulieu, 2013), flux 
LA,i in Equation 3. Also in this case, a fraction β produces new heterotrophic biomass and it is thus incorporated 
into POC (𝐴𝐴 𝐴𝐴BA ,𝑖𝑖

= 𝛽𝛽𝛽𝛽A,𝑖𝑖 , Equation 2), while the remaining fraction (1 − β) is spent to perform such a process 
(𝐴𝐴 𝐴𝐴BA ,𝑖𝑖

= (1 − 𝛽𝛽)𝐿𝐿A,𝑖𝑖 , Figure 1 and following Equation 4). The term RRes,i (Equation 2) encapsulates all other heter-
otrophic processes resulting in a net oxygen consumption that we did not explicitly include in the model frame-
work, including cellular maintenance metabolism or nitrification, for instance. The outfluxes for the POC pool are 
represented by downstream advection (ϕPOC,i, Equation 2), burial into the deeper sediments (ϕB,i, Equation 2), or 
biophysical lysis and hydrolysis processes (LY,i, Equation 2), which replenishes the DOC pool. This is, for example, 
the possible fate of fresh POC from litterfall which can be hydrolyzed and degraded to DOC via physical or biologi-
cal processes, and then mineralized or incorporated to build new BH mass. Alternatively, litterfall can be transported 
downstream, as suspended POC, or buried in the streambed. The autotrophic biomass dynamics (Equation 3) is 
based on the model presented in Segatto et al. (2020): BA,i increases because of the local photosynthetic flux (GPPi), 
and it is lost through autotrophic respiration (RA,i), flow-induced scouring (SA,i), and by the above-mentioned loss 
flux LA,i, which encapsulates mortality, detachment, grazing, and exudation (Segatto et al., 2020).

From Equations 1–3, the local ecosystem respiration (ERi) can be derived as the sum off all respiratory contributions:

ER� = �DOC,� +�BA ,� +�A,� +�Res,� +�Basal,�

= (1 − �)�DOC,� + (1 − �)�A,� +�A,� +�Res,� +�Basal,�
� (4)

Finally, the NEP can be calculated as NEPi = GPPi − ERi.

To apply the model, one needs to specify the functional form of each flux. Such a choice should be tailored to 
the specific case study and depends on the knowledge of the site, drivers expected to control metabolism and 
crucially on the availability of data for parameter estimation. In the following sections, we first describe the Ybbs 
River network to then particularize the framework to this specific case study.

2.2.  River Network Case Study

The Ybbs River network (Figure 1) drains a 256 km 2 subalpine catchment in Austria (47°48′22.9″ N, 14°57′00.8″ 
E). The catchment has an average elevation of 937 m.a.s.l. and ranges between 532 and 1,831 m.a.s.l. (Ulseth 
et al., 2018). The climate is prealpine with an average annual precipitation of approximately 900 mm and an 
average temperature of approximately 7°C. The area is mainly covered by forests (82%) with minor contributions 
of alpine meadow (11%) and pastures at lower altitudes (Ceola et al., 2014). The stream network has been deline-
ated from a 10 m resolution digital elevation model (Besemer et al., 2013) and resulted in N = 292 stream reaches. 
Tree cover density (TCD [–]) has been obtained via the Copernicus Land Monitoring Service. Starting from the 
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TCD distributed information, we derived for each reach i a proxy of the reach vegetation coverage (TCDr,i [–], 
i.e., the average TCD over the reach pixels) and watershed vegetation coverage (TCDws,i [–], i.e., the average TCD 
over the entire subcatchment contributing to reach i). The former is later used to modulate the spatial distribution 
of the leaf litter falling directly into the stream reach, while the latter is used as a crude proxy of the organic 
content of the catchment soils (see e.g., Guo & Gifford, 2002) and is later used to distribute spatially the magni-
tude of the DOC leaching from soils to stream via lateral discharge.

The catchment has been extensively monitored and studied (Ceola et  al.,  2014; Segatto et  al.,  2021; Ulseth 
et al., 2018), and the relevant data to apply the model are available for the year 2013 (see Table S1 in Supporting 
Information S1 for a summary of the data set used). Streamflow discharge was measured at the catchment closure 
at a hourly time step (QO [m 3 day −1]). Stream water temperature (T [°C]) and photosynthetic active radiation 
(PAR [lux]) were measured in 12 sites and extrapolated at network scale using random forest (Breiman, 2001; 
Segatto et al., 2021). Daily time series of GPP and ER estimated via the single-station open-channel diel-oxygen 
method are also available for the same sites (Ulseth et al., 2018) and have been translated to carbon units assum-
ing 1:1  C to O2 molar ratio (Bott et  al.,  1978; Burris,  1981; Demars et  al.,  2016). Data on DOC dynamics 
(Fasching et al., 2016), benthic biomass (Segatto et al., 2020), and stream geometry (Ceola et al., 2014) were also 
instrumental to inform the model as detailed in the following.

2.3.  Model Setup

Each reach i is modeled as a well-mixed reactor with an approximately rectangular cross section of constant 
width wi (m), length li (m), time-varying water depth zi(t) (m), and therefore water volume Vi(t) = wi × li × zi(t) 
(m 3). Given that the Ybbs catchment does not experience strong climatic gradients, discharge in each reach 
(Qi(t) [m 3 day −1]) is assumed proportional to drainage area and has thus been obtained scaling the measured 
discharge at the outlet (QO(t)) accordingly to: 𝐴𝐴 𝐴𝐴𝑖𝑖(𝑡𝑡) = 𝑄𝑄O(𝑡𝑡)

DA𝑖𝑖

DAO

 (Segatto et al., 2020), where DAi is the drain-
age area of reach i and DAO that of the outlet. The geomorphic properties of the Ybbs River network have been 
extensively studied by Ceola et al. (2014) and we adopted the same exponents to characterize how stream width 
wi and the Gauckler Strickler’s roughness coefficient Ks,i (m 1/3 s −1) scale as power law functions of the drain-
age area DAi (Segatto et al., 2021). Water depth zi(t) has been estimated assuming uniform flow conditions via 
the Manning equation (as in Segatto et al., 2020), which also allows the derivation of the bottom shear stress τ 
(Pa) as the product between the hydraulic radius ri (m), the specific weight of water γw (N m −3), and the chan-
nel slope si (–) (τi(t) = γwri(t)si). Lateral discharge flowing into each reach QL,i can be derived by continuity as 

𝐴𝐴 𝐴𝐴L,𝑖𝑖(𝑡𝑡) = 𝑄𝑄𝑖𝑖(𝑡𝑡) −
∑𝑘𝑘

𝑗𝑗=1
𝑄𝑄𝑗𝑗(𝑡𝑡) + 𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡)∕𝑑𝑑𝑑𝑑 , where the discharge coming from upstream is given by the sum of the 

contributions of the k immediately upstream reaches (k = 0 for first-order reaches).

The DOC balance Equation 1 has been particularized as follows:

�DOC�

��
= �up,DOC,� − �DOC,� + �L,DOC,� − �DOC,� + �Y,� =

=
�
∑

�=1
��

DOC�

��
−��

DOC�

��
+�L,�

(

�D + �D(�L,�(�))�TCDws,�
)

+

−
�RDOC

��
���−20DOC DOC� + 
LyPOC�

� (5)

The well-mixed assumption allows relating the advective transport of DOC to its concentration as 𝐴𝐴 𝐴𝐴DOC,𝑖𝑖 = 𝑄𝑄𝑖𝑖

DOC𝑖𝑖

𝑉𝑉𝑖𝑖

 
(Equation 5). The DOC flux associated to the discharge coming from upstream reaches thus reads as the first 
term of the right-hand side (RHS) of Equation 5. Lateral DOC input (ϕL,DOC,i) is modeled as the product between 
lateral discharge QL,i(t) and its DOC concentration. The latter depends on the specific (i.e., per unit of catch-
ment area) lateral discharge qL,i (third term of the RHS of Equation 5), as widely experimentally observed (see 
Raymond et al., 2016, for an overview). In particular, Fasching et al. (2016) studied DOC dynamics in the Ybbs 
catchment and reported strong hydrological controls over patterns of concentration. Accordingly, we adopted the 
same scaling exponent of ζ = 0.4, while the parameters (aD [gC m −3] and bD [gC m −(3+ζ) day ζ]) have been inferred 
from measured data in Oberer Seebach, a second-order stream of the Ybbs network (see Table 1 and Fasching 
et al. [2016]). DOC concentration via lateral flow is further modulated by the average tree cover density in the 
subcatchment (TCDws,i) as discussed above. The removal of DOC (LDOC,i(t)) is parametrized in terms of uptake 
velocity at 20°, 𝐴𝐴 𝐴𝐴RDOC

 (m day −1; Equation 5), a widely adopted metric in the literature (Mineau et al., 2016). The 
corresponding removal rate (day −1) is defined as the ratio between removal velocity and water depth zi (fourth 
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term of the RHS of Equation 5). We further account for temperature dependence of the removal process through 
the exponential Arrhenius model (Jørgensen & Bendoricchio, 2001) with sensitivity θDOC (–). Lysis of POC into 
DOC is modeled as a linear process of rate μLy (day −1; last term of Equation 5).

The POC balance Equation 2 for the Ybbs case study reads

�POC�

��
= �up,POC,� − �POC,� + LF� − �Y,� −�Res,� + �DOC,� + �A,� + �BA ,� =

=
∑�

�=1 �mov

(

��
�ref

)� ��
��
POC� − �mov

(

��
�ref

)� ��
��
POC� +

+
(

LFb

��y
+ LFs

)

��TCDr,� − �LyPOC� − �RPOC

��−20
POC POC� +

+ �
�RDOC


�

��−20DOC DOC� +	(�� − �0,�)�S�A,� + ��L,A�A,�

� (6)

Table 1 
Model Parameters

Symbol Definition Units Combination Range Value Source

KPAR PAR half saturation Lux 𝐴𝐴
𝐾𝐾PAR

PARmax

  [0, 1] 0.023

θA A. temperature sensitivity – θA [1, 1.2] 1.103

μP A. photosynthetic rate Day −1 μP [0, 4] 1.279

μR,A A. respiration rate Day −1
𝐴𝐴

𝜇𝜇R,A

𝜇𝜇P𝑓𝑓L,max

  – 0.09 Segatto et al. (2020)

μL,A A. loss rate Day −1
𝐴𝐴

𝜇𝜇L,A

(𝜇𝜇P𝑓𝑓L,max−𝜇𝜇R,A)𝑓𝑓T,max

  [0.0001, 0.5] 0.024

μS Scouring rate Day −1 μS [0, 2] 1.831

τ0,i Min. shear stress to initiate scouring Pa 𝐴𝐴
𝜏𝜏0,𝑖𝑖

𝜏𝜏max,𝑖𝑖

  [0.6, 0.99] 0.975

KD,O A. Carrying capacity at outlet gC 𝐴𝐴
𝐾𝐾D,O

𝐴𝐴O

  – 50 Segatto et al. (2020)

γ A. KD scaling exponent – γ [0, 1] 0.364

aD Min. DOC conc. entering via QL gC m −3 aD – 0.5 Fasching et al. (2016)

bD Parameter of DOC versus qL function gC m −(3+ζ) day ζ bD – 19 Fasching et al. (2016)

ζ Exponent of DOC versus qL function – ζ – 0.4 Fasching et al. (2016)

𝐴𝐴 𝐴𝐴RDOC
  DOC uptake velocity m day −1 𝐴𝐴 𝐴𝐴RDOC

  [0, 1.5] 0.898

θDOC DOC temperature sensitivity – θDOC [0, 1.2] 1.192

vmov POC mobilization parameter – log(vmov) [−2.5, −1.2] −1.318

δ POC mobilization scaling exponent – δ [1, 3] 1.838

LFb Baseline LF annual load gC m −2 LFb – 20 Bretschko (1990)

LFy Seasonal LF annual load gC m −2 LFy – 400 Neumann et al. (2018)

μLF Location of LF seasonal peak Day μLF – 288 (15 October) Bretschko (1990)

σLF Dispersion of the LF seasonal peak Day σLF – 20 Bretschko (1990)

μLy POC lysis rate Day −1 log(μLy) [−4, −2] −3.81

𝐴𝐴 𝐴𝐴RPOC
  POC respiration rate Day −1 log𝐴𝐴

(

𝜇𝜇RPOC

)

[−3, −2] −2.87

θPOC POC temperature sensitivity – θPOC [0, 1.2] 1.135

α POC uptake fraction of DOC loss – α [0.2 0.6] 0.429

β POC uptake fraction of BA loss – β – 0.55 Appendix B

RBasal,O Basal respiration at outlet gC day −1
𝐴𝐴

𝑅𝑅Basal,O

𝐴𝐴O

  [0, 0.8] 0.495

η Basal respiration scaling exponent – η [−0.5, −0.05] −0.291

Note. As not all parameter combinations lead to physically or biologically meaningful model output, we estimated some parameters as a combination of other parameters 
or variables (fourth column). Range and value (fifth and sixth columns) refer to the parameter combination. If no range is indicated, the parameter value has been 
fixed based on previous research. Symbols 𝐴𝐴 𝑓𝑓T,max and 𝐴𝐴 𝑓𝑓L,max refer to the average (across all reaches) of the maximum (i.e., at maximum local T and PAR) values of the 
temperature and light limiting functions, respectively. A. stands for autotrophic.
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The advective transport of POC involves the processes of resuspension, transport in the water column, and 
sedimentation. Assuming an instantaneous equilibrium between suspended and sediment POC, it is possible to 
express the transport of the bulk POCi(t) pool, which comprises both components, as a function of flow velocity 
vi and bottom shear stress τi, which controls the resuspension rate (first two terms of the left-hand side of Equa-
tion 6, see Appendix A for the full derivation). High flows increase resuspension rates, which translate into an 
increased POC flux toward downstream, and vice versa during low-flow conditions. Litterfall (third term of RHS 
of Equation 6) per unit of streambed area Ai (m 2) and for a fully canopy covered reach (i.e., for reach tree cover 
density equal to one, TCDr,i = 1) is modeled as the sum of a constant baseline contribution, which amounts to an 
annual load of LFb (gC m −2; ndy = 365 days to convert annual to daily rates), plus a seasonal contribution which 
accounts for the increased litterfall during autumn. To mimic the latter, we used a Gaussian function:

𝐴𝐴 LFs(𝑡𝑡) =

(

LFy∕
√

2𝜋𝜋𝜋𝜋LF

)

exp
(

−(𝑡𝑡 − 𝜇𝜇LF)
2
∕2𝜎𝜎2

LF

)

 , where μLF and σLF quantify the location and dispersion of the 
seasonal peak, respectively, and LFy its annual load. A temperature-driven (with sensitivity θPOC [–]) first-order 
kinetics models the residual respiration RRes,i, with specific rate 𝐴𝐴 𝐴𝐴RPOC

 (day −1). A fraction α (–) of the DOC uptake 
is incorporated into POC as new heterotrophic biomass. POC inputs deriving from autotrophic biomass BA,i are 
described further below.

Equation 6 tracks the fate of the POC entered and processed during the simulation horizon. In addition to this pool, 
large woody debris and streambed sediment could store additional OC (generally termed POCBuried in Figure 1) 
which mostly accumulated before the simulation period. As the simulation for this case study is short (i.e., 1 year 
long) compared to the time scale of the formation of this pool, we do not specifically model its dynamics (i.e., the 
initial mass and the flux ϕB) but simply the contribution RBasal,i (gC day −1) of this pool to ER:

𝑅𝑅Basal,𝑖𝑖 = 𝑅𝑅Basal,O

(

DA𝑖𝑖

DAO

)𝜂𝜂

𝐴𝐴𝑖𝑖𝜃𝜃
𝑇𝑇𝑖𝑖−20

POC
� (7)

where RBasal,O (gC m −2 day −1) represents the basal respiration flux per unit of streambed area at the catchment 
outlet. We assumed the same temperature sensitivity of POC, θPOC. We further adopted a power law function of 
the drainage area with exponent η (–) to simulate the possible decreasing contribution (η < 0) of this pool from 
headwaters to larger rivers (Hall et al., 2016).

Autotrophic biomass changes in time are expressed as

��A,�

��
= GPP� −�A,� − �A,� − �A,�

=
(

�P
PAR�

PAR� +�PAR
− �R,A

)

���−20A �A,�

⎛

⎜

⎜

⎜

⎜

⎝

1 −
�A,�

�D,0

(

DA�

DAO

)�

��

⎞

⎟

⎟

⎟

⎟

⎠

+

−�L,A�A,� −�(�� − �0,�)�S�A,�

� (8)

GPPi is modeled as a function of local active radiation (PARi(t)) and stream water temperature (Ti(t)). μP (day −1) 
represents the specific photosynthetic rate at 20°C without light limitation (Segatto et al., 2020). Temperature 
dependence is modulated by the sensitivity θA (–), while light dependence is modeled through a Michaelis-Menten 
curve where KPAR (lux) represents the half saturation light (Segatto et al., 2020; Uehlinger et al., 1996). Auto-
trophic respiration RA,i is controlled by the specific rate μR,A (day −1). For model parsimony, temperature sensi-
tivity of respiration is assumed to be the same of GPP (Segatto et al., 2020). Following Segatto et al. (2020), 
who successfully applied this model to four reaches within the Ybbs River network, we assume that net growth 
(GPPi − RA,i) is modulated by a density dependent term (last factor of the first term of the RHS of Equation 8) 
which decreases metabolic processes as biomass approaches the carrying capacity 𝐴𝐴 𝐴𝐴D,𝑖𝑖 = 𝐾𝐾D,O(DA𝑖𝑖∕DAO)

𝛾𝛾
𝐴𝐴𝑖𝑖 . 

The latter could change along the network (i.e., it is modeled as a power law function of the drainage area with 
exponent γ [–]) to possibly mimic the larger carrying capacity of downstream reaches. KD,A,O thus represents the 
carrying capacity at the outlet. Autotrophic biomass feed the POC pool through loss processes (LA,i(t), including 
all processes not directly linked to stormflow) and detachment induced by scouring (SA,i(t)). Both have been 
modeled as linear processes with specific rates μL,A and μS (day −1), respectively, but scouring is active only when 
a critical shear stress threshold τ0,i is exceeded (τi > τ0,i, H(⋅) represents the Heaviside step function; O’Connor 
et al., 2012; Segatto et al., 2020).
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The model is solved numerically using a forward Euler scheme with an adaptive time step (longer allowed time 
step is Δt = 1 hr). To avoid the estimation of initial conditions, we ran a 2-year-long spin-up period by replicating, 
on an annual basis, the discharge, light, and water temperature time series. Model parameters are summarized in 
Table 1. Some parameters have been estimated based on empirical data available for the Ybbs catchment or on 
literature values (Table 1), the remaining 17 parameters have been estimated contrasting simulated and measured 
time series of metabolic fluxes: GPP (Equation 8) and ER (Equation 4).

Parameter estimation was performed using a two-stage Monte Carlo technique. First, we explored parameters 
related to autotrophic biomass BA (n = 7, Table 1). Model performance was measured against simulated GPP (as 
the root mean squared error, RMSEGPP [gC m −2 day −1]) in the 12 reaches where metabolic estimates are availa-
ble. Note that the remaining parameters do not affect the dynamics of the autotrophic biomass BA and hence of 
GPP. This allowed us to turn off all other processes and reduce considerably the computing time (the most compu-
tational demanding processes are the advective transport of both POC and DOC). We thus ran 3 × 10 6 model 
simulations with parameters randomly extracted from uniform distributions within the range shown in Table 1. 
Successively, we prescribed autotrophic biomass BA dynamics using the best parameter set found in the first 
stage, and we explored the remaining n = 10 free parameters against observed ER in the same reaches perform-
ing 2 × 10 5 simulations. Following a generalized likelihood uncertainty estimation approach (Beven, 2006), we 
selected as behavioral the first 5th percentile best performing parameter sets.

Results are presented as spatial and temporal patterns of reach-scale quantities (e.g., areal concentration or fluxes 
for each stream reach) and network-scale quantities. The latter are computed integrating the reach-scale quantities 
over all reaches comprising the Ybbs network.

2.4.  Energy Use, Consumption, and Efficiency

In ecosystem analysis, a useful indicator is the overall efficiency at which ecosystems use available energy 
(J. Webster & Meyer, 1997). Compared to terrestrial ecosystems, the efficiency of stream ecosystems is more 
complex to estimate, primarily because downstream transport, and both allochthonous and autochthonous inputs 
need to be tracked to properly assess OC processing (Fisher & Likens, 1973; Newbold et al., 1982). Our model 
framework lends itself for this purpose. We calculated, for each reach of the Ybbs River network and on an annual 
basis (i.e., each flux required for the estimation has been integrated over 1 year), four popular efficiency metrics 
(J. Webster & Meyer, 1997): EE (%), DOC uptake length (SW [m]), OC turnover length (ST [m]), and GPP/ER 
ratio (–).

EE measures the extent to which stream energy inputs are converted to heat and CO2 within the stream (Fisher & 
Likens, 1973). Specifically, EE is expressed as the ratio between the amount of OC respired and the sum of both 
autochthonous and allochthonous OC inputs. In mathematical terms

EE𝑖𝑖 =
∫ (ER𝑖𝑖 −𝑅𝑅Basal,𝑖𝑖)𝑑𝑑𝑑𝑑

∫
(

𝜙𝜙up,DOC,𝑖𝑖 + 𝜙𝜙L,DOC,𝑖𝑖 + 𝜙𝜙up,POC,𝑖𝑖 + GPP𝑖𝑖 + LF𝑖𝑖

)

𝑑𝑑𝑑𝑑
� (9)

According to our model formulation, we do not consider the contribution of the basal respiration (RBasal) as it 
represents the respiration of OC inputs occurred outside of the simulation window and not tracked by the fluxes 
considered at the denominator. EE ∈ [0, 100%].

Coupling OC mineralization and immobilization dynamics with downstream transport leads to the concept of 
spiraling (Wallace et al., 1977; J. R. Webster & Patten, 1979), and of spiraling length (Newbold et al., 1982). 
Spiraling length has two components: turnover length (ST), which is the average or expected downstream distance 
traveled by a OC molecule during its residence in the stream, and uptake length (SW), which is the average 
distance traveled by an OC molecule in dissolved form in the water column before uptake. Newbold et al. (1982) 
showed that turnover length ST can be calculated as the ratio between the downstream flux of OC per unit stream 
width and respiration (cleared from the basal contribution according to our formulation, Equation 10), while 
DOC uptake length SW can be calculated as the ratio between the flux of DOC per unit of stream width and its 
uptake rate per unit of streambed area (Equation 11):

𝑆𝑆T,𝑖𝑖 =
∫ (𝜙𝜙DOC,𝑖𝑖 + 𝜙𝜙POC,𝑖𝑖 )𝑑𝑑𝑑𝑑

𝑤𝑤𝑖𝑖

𝐴𝐴𝑖𝑖

∫ (ER𝑖𝑖 −𝑅𝑅Basal,𝑖𝑖) 𝑑𝑑𝑑𝑑
� (10)
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𝑆𝑆W,𝑖𝑖 =
∫ 𝜙𝜙up,DOC,𝑖𝑖 𝑑𝑑𝑑𝑑

𝑤𝑤𝑖𝑖

𝐴𝐴𝑖𝑖

∫ (𝐿𝐿DOC,𝑖𝑖 )𝑑𝑑𝑑𝑑
� (11)

Spiraling is directly correlated with discharge and it is expected that small streams have shorter turnover lengths 
(i.e., they are more efficient in using OC) compared to deeper and larger streams where OC is more likely to be 
transported downstream rather than being mineralized.

Finally, the GPP to ER ratio (GGP/ER) is a measure of heterotrophy (J. Webster & Meyer, 1997) and indicates 
whether an ecosystem is a net producer or consumer of OC. If GGP/ER > 1, an ecosystem is accumulating OC 
and it is considered autotrophic; if GGP/ER < 1, the ecosystem is heterotrophic and it is degrading more OC than 
what is being fixed (Odum & Barrett, 1971). However, it should be noted that in streams GPP/ER depends on 
import and export and it does not show the extent to which consumers are supported by autochthonous or alloch-
thonous OC (Rosenfeld & Mackay, 1987).

2.5.  Climate Change Scenarios

We further assessed the impact of changes in temperature and discharge to the simulated metabolic rates of the 
Ybbs River network. To that end, we ran multiple 1-year-long simulations using the estimated parameters but 
forcing the system with different thermal and/or hydrological regimes. We explored both independent and joint 
temperature T and discharge Q variations. We synthetically modified temperature 𝐴𝐴

(

𝑇𝑇
∗
𝑖𝑖

)

 and discharge 𝐴𝐴
(

𝑄𝑄
∗
𝑖𝑖

)

 hourly 
time series as displayed in the following equations:

𝑇𝑇
∗
𝑖𝑖
(𝑡𝑡) = 𝑇𝑇𝑖𝑖(𝑡𝑡) + 𝑇𝑇incr , 𝑇𝑇incr ∈ [0, 5]� (12)

𝑄𝑄
∗
𝑖𝑖
(𝑡𝑡) =

𝑄𝑄
𝑄𝑄exp

𝑖𝑖
(𝑡𝑡)

⟨

𝑄𝑄
𝑄𝑄exp

𝑖𝑖
(𝑡𝑡)

⟩⟨𝑄𝑄𝑖𝑖(𝑡𝑡)⟩, 𝑄𝑄exp ∈ [1, 2.5]� (13)

We explored scenarios where stream water temperature has been incremented up to Tincr = +5°C (Equation 12), 
whereas we applied an exponential transformation to discharge (with 〈Qi(t)〉 and 𝐴𝐴 ⟨𝑄𝑄

𝑄𝑄exp

𝑖𝑖
(𝑡𝑡)⟩ representing the aver-

age discharge of reach i under regular and modified scenarios, respectively, Equation 13) where we let vary the 
exponent Qexp ∈ [1, 2.5] in order to amplify floods and strengthen drought periods. The particular formulation of 
Equation 13 maintains the same average discharge under the different scenarios to allow for an easier comparison 
across different runs. Such a choice does not necessarily reflect what is predicted to happen in the future but it 
allows investigating the isolated effect of changes in allochthonous inputs and OC processing induced solely by 
more extreme events rather than by an increased or decreased average discharge.

3.  Results
3.1.  Reach-Scale Organic Carbon and Metabolic Patterns

The model was able to reproduce fairly well the metabolic fluxes in the 12 study sites. Model performance, 
expressed as RMSE, in reproducing GPP and ER was RMSEGPP = 0.24 (gC m −2 day −1) and RMSEER = 0.28 
(gC m −2 day −1), respectively (see Figure S4 in Supporting Information S1 for RMSE and normalized RMSE of 
each site). A summary of the estimated parameters is reported in Table 1. Distribution of the behavioral parameter 
sets and an assessment of their sensitivity can be found in Text S1 in Supporting Information S1 (Figures S2–S3 
in Supporting Information S1).

Figure  2 shows the range of variability and the average reach-scale dynamics of simulated DOC, POC, and 
autotrophic biomass (Figures 2b–2e), along with discharge and stream water temperature at catchment outlet 
(Figure 2a). Runoff triggered large pulses of terrestrial DOC into the network (Raymond et al., 2016) due to an 
increase in lateral discharge and in lateral DOC concentration with discharge (Equation 5 and Figure 2b). Aver-
age simulated DOC concentration in the Ybbs was 1.6 gC m −3 (whose minimum and maximum reached 0.6 and 
5.4 gC m −3, respectively). Fasching et al. (2016) reported for a second-order tributary of the Ybbs very similar 
DOC patterns during the same year.

Simulated POC concentration suspended in the water column was relatively low throughout the year (mean 
0.3 gC m −3, min 0.01 gC m −3, and max 12.9 gC m −3) but arose during autumn and winter (Figure 2c), when large 

 19447973, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034062 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

SEGATTO ET AL.

10.1029/2022WR034062

10 of 21

litterfall inputs and increased autotrophic losses allowed for POC accumu-
lation in the sediments (Figure 2e), and during high flow events when POC 
was resuspended and shunted downstream. On average, shallow sediments 
stored 40 gC m −2 (min: 0.5 gC m −2, max: 176 gC m −2). The large range of 
spatial variability of POC is primarily attributable to the low streambed slope 
of few reaches in the network, which translates into low stream velocity and 
high accumulation rates.

Results of simulated autotrophic biomass are in agreement with those found 
in Segatto et  al.  (2020) in four reaches of the same network. Autotrophic 
biomass exhibited clear seasonal patterns driven by light and temperature, 
and generally maintained close-to-equilibrium conditions (i.e., biomass 
close to carrying capacity, see Figure  2d). The growth season started in 
late-spring/early-summer where the less limited photosynthetic rate boosted 
productivity. Biomass started decreasing at the end of the year when climatic 
conditions became unfavorable. Scouring was activated only during extreme 
events (see Figure  2d, January 2013 flood event). Maximum autotrophic 
biomass per unit area was found at the outlet where it was set to be the larg-
est. Average areal concentration was 7.2  gC  m −2 (min: 2.1  gC  m −2, max: 
10.9 gC m −2).

The temporal integration of areal GPP (Equation  8) and ER (Equation  4) 
allowed deriving their reach-scale regimes, and by difference the NEP, across 
the entire Ybbs River network (Figure 3). The model predicted increasing mean 
daily GPP moving downstream from headwaters (where GPP ranged between 
0.04 and ∼0.5 gC m −2 day −1) toward the outlet (up to 1.04 gC m −2 day −1; 
Figure 3). On the other hand, mean daily ER was highest in headwaters, espe-
cially in the north- and south-west catchments which drain the more forested 
area and hence have the largest simulated allochthonous inputs. Minimum 
ER was reached in midsized streams, while ER increased again toward the 
outlet due to the increased contribution of autochthonous sources: that is, 
autotrophic respiration and heterotrophic respiration of autotrophic biomass. 
Overall ER ranged between 0.5 and 1.6 gC m −2 day −1 (Figure 3). The Ybbs 
River network showed pronounced heterotrophy everywhere (mean daily 
NEP ranged between −1.6 and 0 gC m −2 day −1) except in the main stem, 
which resulted autotrophic at annual scale (mean daily NEP ranged between 
0 and 0.2 gC m −2 day −1). In headwater streams, such heterotrophy was mainly 
driven by basal respiration (Figure S5 in Supporting Information S1), point-
ing to a relevant stock of latent OC. Assuming that this respiration flux is 
mostly sustained by buried POC in the sediment, it is possible to provide 
a rough estimate of such OC stock. Indeed, if the respiration rate of buried 
POC ranges between 10 −2 and 10 −3 day −1 (see Catalàn et al., 2022, for an 
overview of POC respiration rates), the estimated basal respiration implies a 
stock of buried POC in small streams (DA < 1 km 2) ranging between 60 and 
1,500 gC m −2, while the entire network should store on average between 50 
and 515 gC m −2 (see Figure S6 in Supporting Information S1).

3.2.  Network-Scale Organic Carbon and Metabolic Patterns

Spatial integration of reach-scale metabolic fluxes and of OC pools unveiled the ecosystem metabolic regime 
at the network scale and this across an entire year (Figure 4). GPP peaked in spring (Figure 4a) and turned the 
river network autotrophic during such time window (Figure 4c). Throughout the rest of the year, ER dominated 
(NEP < 0). Network-scale ER resulted partitioned as follows (Figure 4b): 15% DOC respiration (RDOC), 19% 
autotrophic respiration (RA), 24% heterotrophic respiration of autochthonous OC sources 𝐴𝐴

(

𝑅𝑅BA

)

 , 2% of residual 
POC respiration (RRes), and 40% of basal respiration (RBasal), that is, 60% of ER originated from the respiration of 

Figure 2.  Simulated reach-scale organic carbon (OC) dynamics. (a) Measured 
discharge (blue) and temperature (orange) at the catchment outlet, while other 
panels show the range of variability (gray areas) and the average trend (red 
lines) of the reach-scale volumetric concentrations of dissolved organic carbon 
(DOC) and suspended particulate organic carbon ([POC]SUS = ϕPOC(t)/Q(t)) (b, 
c), the areal concentrations (per unit of streambed area) of autotrophic biomass 
BA and total POC (d, e).
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OC that entered, or was produced in, the system within the yearly simulation horizon. During the study period, 
the amount of carbon fixed through photosynthesis equaled 0.23 Gg C (giga-grams of carbon), while respiration, 
as the total annual ER amounted to 0.31 Gg C. Consequently, NEP at network scale equaled −0.08 Gg C and 
overall the Ybbs was heterotrophic.

At network scale (Figure  4d), POC was the most abundant OC pool (average, min, and max: 60.1, 1.5, and 
221 gC m −2, respectively), followed by autotrophic biomass (average, min, and max: 15.5, 5, and 23 gC m −2, 
respectively). The extreme discharge event of January 2013 mobilized most of the benthic OC. As a result of the 
fundamental difference in drivers of POC and autotrophic biomass (i.e., temperature, discharge, and resources 
for the former; temperature, discharge, and light for the latter), recovery pathways were different for the two OC 
stocks. Autotrophic biomass had, overall, enhanced primary production due to increasing light and temperature 
with the onset of spring and due to the decreased competition for resources (i.e., biomass far from carrying 
capacity, see Equation 8). Contrarily, POC recovery, being mostly supported by primary production and alloch-
thonous inputs, was delayed in late summer and autumn, when autotrophic biomass and litterfall were maximum. 
Expectedly, DOC storage was low compared to the transported fraction and averaged 0.6 gC m −2 (min, max: 
0.09, 8 gC m −2).

Figure 3.  Model predictions of network-scale metabolic regimes. Maps show the mean daily gross primary production (GPP; 
top-left), ecosystem respiration (ER; top-right), and net ecosystem production (NEP; bottom-left) as difference between GPP 
and ER. Plots (bottom-right) show the comparison between the time series of observed (i.e., estimated via the single-station 
approach from measures of dissolved oxygen) and predicted daily GPP and ER for two representative reach sites (a and b, see 
location on the maps). The comparison for the remaining sites is reported in Figure S4 in Supporting Information S1.
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Figure 5 depicts the diverse dynamics of upstream and downstream reaches. 
Reaches have been clustered and their metabolic fluxes aggregated according 
to drainage area thresholds. Each bin contains the same number of reaches. 
GPP increased downstream, while ER decreased downstream to eventually 
increase toward the outlet as a result of elevated GPP in these reaches. Contri-
bution of autotrophic (RA) and heterotrophic respiration of the autotrophic 
biomass 𝐴𝐴

(

𝑅𝑅BA

)

 to ER was proportional to primary production and followed 
the same pattern, with 𝐴𝐴 𝐴𝐴𝐵𝐵A

 typically greater then RA. Respiration of DOC 
(RDOC) was maximum in headwaters even though its contribution was notice-
able in all reaches. Residual respiration (RRes) was comparatively low almost 
everywhere, while the contribution of basal respiration to ER was dominant 
in headwaters and midsized streams. This scenario depicts a possible longi-
tudinal shift in OC sources contributing to ER, as also predicted by Hotchkiss 
et al. (2015): from headwaters where respiration is sustained by the surround-
ing hyporheic and riparian zone to larger streams where respiration is benthic 
dominated.

3.3.  Ecosystem Efficiency

Figure  6 shows the EE metrics of the Ybbs’s River reaches as a function 
of their position along the network, here indicated by catchment size, and 
for which we established and explored the emerging scaling relationships. 
Spiraling length (Figure  6a) increased downstream, which was expected 
given that headwaters are typically more reactive (Battin et al., 2008). DOC 
uptake length (SW, average, min, and max: 103, 5, and 730 km, respectively) 
was lower than spiraling length (ST, average, min, and max: 64, 8.9, and 
234 km, respectively) in small streams with drainage area less than 1.6 km 2; 
this indicates that in downstream reaches, DOC was more rapidly transported 
than stored into biomass. The ratio GPP/ER (Figure 6b) increased sharply for 
catchment size up to 4.9 km 2, beyond which it kept increasing but at a slower 
rate, eventually becoming positive toward the outlet. GPP/ER equaled one in 
the main stem at DA = 103 km 2 and was maximum at catchment outlet (GPP/
ER average, min, and max: 0.34, 0.02, 1.24, respectively). EE (Figure 6c), 
on the other hand, did not change significantly with catchment size below 
1.6  km 2 (interestingly equal to the intersection point between uptake and 
turnover lengths), but beyond this threshold, EE significantly decreased as a 
power law function of catchment size. The simulated EE values depict reaches 
in which OC that enters during 1 year is poorly processed within the same 
time window (EE average, min, and max: 1.5%, 0.1%, 10%, respectively). OC 
inputs are thus preferentially exported from the reach and/or stored at annual 

scale. We note that if one includes basal respiration in the EE calculation, that is comparing the annual inputs 
with the total amount of OC respired during the same year (as customarily done in literature, see e.g., Fisher & 
Likens, 1973), EE increases on average everywhere in the network (form 1.5% to ∼6.5% at network scale), but 
especially in low-order reaches where it can locally peak at 50% (see Figure S10 in Supporting Information S1).

3.4.  Climate Change Scenarios

Figure 7 shows the variability of the network-scale metabolism induced by simulating warming stream water 
temperature and an increased streamflow flashiness (see Figure S7 in Supporting Information S1 for the induced 
effect on the network-scale OC stocks and Figure S8 in Supporting Information S1 for the averaged network effect 
on metabolic fluxes). Temperature affects biological rates at different magnitudes according to their sensitivities. 
As a result of the faster degradation and primary production rates, temperature increments led to higher metabolic 
fluxes throughout the entire network (Figures 7a and 7b). GPP at maximum alteration (Tincr = 5°C) increased 
by 60% (0.36 Gg C) compared to the baseline scenario, while ER increased by 80% (0.56 Gg C). Therefore, the 

Figure 4.  Stream ecosystem metabolic regime and organic carbon (OC) 
dynamics at network scale. All metabolic fluxes and simulated OC stocks 
are expressed as daily average and per unit of streambed area of the entire 
river network. (a) Network-scale gross primary production (GPP), while 
network-scale ecosystem respiration (ER) and the contribution of its 
components (see Equation 4) are displayed in panel (b). (c) The resulting net 
ecosystem production (NEP) pattern as the difference between network-scale 
GPP and ER. (d) The temporal dynamics of network-scale dissolved organic 
carbon (DOC), particulate organic carbon (POC), and autotrophic biomass BA. 
DOC is negligible (and not visible) compared to POC and autotrophic biomass 
stocks, it averages 0.6 gC m −2 with maximum value equal to 5.1 gC m −2.
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estimated net effect of temperature increase (Figure  7c) was an increased 
OC consumption and potentially increased CO2 outgassing (cumulative NEP 
at maximum temperature alteration equaled −0.2 Gg C, i.e., 150% increase 
compared to baseline scenario).

The effect of an altered hydrological regime is more complex as it nonlinearly 
affects advective transport, allochthonous inputs, mobilization, and scouring 
rates. Autotrophic biomass and POC were progressively slower in recovering 
from the progressively stronger flood event of January (Figure S7 in Supporting 
Information S1) and this negatively affected GPP in that period (Figure 7d). On 
the other hand, a flashier hydrologic regime led to two new localized scour-
ing events in June and July, when, at maximum disturbance (Qexp = 2.5), GPP 
peaked at 2.14 and 1.83  g  C  m −2  day −1, respectively. This effect is a direct 
consequence of the autotrophic biomass being pushed below its carrying capac-
ity (Equation  8) thus leading to an increased rate of growth, a well-known 
feature of recovering ecosystems (Dzubakova et al., 2018; Odum, 1969). The 
annual cumulative GPP equaled 0.23 Gg C (0% relative variation, see Figure 
S8 in Supporting Information S1). DOC and advected POC followed discharge 
dynamics (see Figure S7 in Supporting Information S1), increasing during high 
flow events and diminishing during droughts. This pattern translated into lower 
resource availability (i.e., higher transport rates during high flows and less DOC 
input during droughts) which led to a slight decrease in ER (Figure 7e; cumula-
tive ER at maximum discharge alteration: 0.25 Gg C, −20% relative variation), 
which however was limited in magnitude as ER was sustained by the basal respi-
ration which is unaffected by discharge. Consequently, the overall effect on NEP 

(Figure 7f) was toward a more autotrophic network caused by the new positive NEP windows induced by scouring 
events is spring and summer when conditions for primary production were ideal (cumulative NEP at maximum alter-
ation: −0.02 Gg C and 75% relative decrease).

When combining both temperature and streamflow variations in the same simulation, the result was intermediate. GPP 
evolved in the same way as it did when discharge was altered (Figure 7g); however, with the difference that maximum 
rates were higher due to the higher temperature (at maximum variation, annual cumulative GPP = 0.36 Gg C, 56% 
relative increase). The discharge effect on ER was overridden by that of increased temperature (Figure 7h), mostly 
because higher temperatures affect also basal respiration (at maximum alteration, annual cumulative ER = 0.46 Gg C, 
48% relative increase). The strong tendency of the Ybbs River network to become more heterotrophic because of 
higher temperatures was attenuated by the increased GPP (Figure 7i) especially immediately after new flow-induced 
disturbances (at maximum variation, annual cumulative NEP = −0.1 Gg C, 25% relative decrease).

Network-scale energy processing changed predictably as a consequence of our simulated climate change scenar-
ios (Figure 8): spiraling lengths, both in terms of uptake and turnover lengths, decreased almost linearly with 
increasing temperature (due to higher DOC uptake and respiration rates) and  increased with increased flash iness 
(due to higher advective fluxes), resulting to a net increase when simultaneous variations were tested (Figures 8a 
and 8b). Temperature effect on GPP/ER, as stated above, was in favor of ER (i.e., the ratio GPP/ER decreased), 
while discharge had a lower impact on ER compared to GPP which, after the emergence of new scouring 
events, saw increased production rates. As a result, GPP/ER first decreased for low discharge variations but then 
increased again for high variations (Figure 8c). The combined effect was toward smaller GPP/ER but mitigated by 
the hydrological regime. Finally, the Ybbs River network became more efficient in using available energy when 
temperature increased, due to the stronger impact on ER than on GPP, yet less efficient when advective trans-
port was boosted, and intermediate but still less efficient when temperature and discharge were simultaneously 
changed (Figure 8d).

4.  Discussion
Both biomass and metabolic processes that characterize any ecosystem are constrained by the total amount of 
energy that is either fixed within or delivered across its boundaries (Bernhardt et al., 2018). Since the introduction 
of the River Continuum Concept (Vannote et al., 1980), our understanding of the spatial and temporal patterns 

Figure 5.  Partition of metabolic fluxes throughout the entire simulation 
period. Main panel displays the aggregated gross primary production (GPP; 
left bars) and ecosystem respiration (ER) components (right bars) per unit of 
total streambed area for all stream reaches pertaining to each drainage area bin, 
while small panel shows the cumulative contribution of each reach to the same 
fluxes as a function of drainage area (in logarithmic scale).
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of the metabolic processes and fluxes in streams has steadily advanced. 
However, we have not been able to assess metabolic regimes at a scale large 
enough to integrate the effects of hydrological connectivity and environ-
mental drivers on stream ecosystems. Clearly, this is at the scale of entire 
stream networks. In this context, there is also rising interest on how climate 
change (i.e., elevated temperature and more extreme hydrological regimes) 
will affect freshwater ecosystems, energy pathways, and ultimately regional 
and global carbon budgets.

4.1.  The Ybbs Network Model

The proposed model provides a simple meta-ecosystem framework for 
the estimation and process-based simulation of metabolic regimes over an 
entire stream network. We have shown how interactions among different OC 
pools (e.g., DOC, POC), autotrophic biomass, and environmental variables 
(e.g., temperature, PAR, discharge, and geomorphology) were instrumen-
tal to simulate consistent patterns of GPP, ER, and NEP across scales in 
a real-world stream network. As for any modeling exercise, we stress that 
results depend, albeit with different sensitivity, on the process parameters 
either estimated or assumed, on the model structure (i.e., the functional form 
of each flux), and on the observational data sets used for parameter estima-
tion. While this should caution against overconfidence in exact values and 
predictions derived from our model results, it also provides new motivation, 
direction, and context for future improvement and development, as discussed 
in this section.

The value of the parameters controlling the functional forms of the DOC 
concentration entering via lateral flow (aD, bD, and ζ) was assumed based 
on a scaling relationship derived for a reach of the same network of our case 
study (Fasching et  al.,  2016), while those controlling the annual litterfall 
load and its timing (LFb, LFy, μLF, and σLF) according to published data in 
Bretschko (1990) and Neumann et al. (2018). The spatial variability of these 
two fluxes has been modulated by remotely sensed information on TCD at 
reach and subcatchment scales. We argue that the current framework could 
potentially infer more accurate patterns if coupled with an explicit hydrologi-
cal model and channel flow-routing scheme (e.g., Payn et al., 2017), enabling 
the direct estimation of lateral discharge, water stage, flow velocity, and other 
relevant hydrological fluxes (e.g., snowmelt) at any reach of the network. 
The coupling with a soil submodule describing major terrestrial processes 
(e.g., soil carbon leaching) would also enhance the accuracy (Grandi & 
Bertuzzo,  2022). This improvement would allow relaxing most of the 
assumptions detailed in Section 2 and more properly simulating the spatial 
variability in allochthonous inputs. Moreover, the application presented here 
uses the stream reach as the basal spatial unit. However, the same framework 

can directly be applied at a finer spatial resolution (e.g., a regular one-dimensional grid) if useful information to 
characterize within-reach heterogeneity is available.

We do acknowledge that this specific application failed to reconstruct some localized events of ecosystem 
metabolism. For instance, model results consistently underestimated the boosted GPP observed in some 
reaches during spring (see e.g., sites 2, 6, and 12 in Figure S4 in Supporting Information S1) or the spiked 
ER during the same period or during high flow events in fall (see e.g., sites 2, 3, and 6 in Figure S4 in 
Supporting Information S1). This mismatch could be related to incorrect characterization of environmen-
tal variables or vegetation cover, to site-specific differences and heterogeneity in community composition, 
or to the flushing of nutrients during snowmelt (see e.g., the analysis of Ulseth et al., 2018, on the same 
catchment). Also the analysis performed by Segatto et al. (2021) using a Random Forest algorithm on the 

Figure 6.  Scaling of ecosystem efficiency metrics as a function of drainage 
area. Plots are in log–log scale and each dot represents one stream reach. 
Scaling relationships have been derived using piece-wise regression lines 
where breakpoints have been selected in order to minimize the overall root 
mean squared error (RMSE) among all possible combinations (including no 
breakpoints). (a) The spatial variability of both uptake length (SW, pink) and 
turnover length (ST, green) averaged over the entire simulation period along 
with their regression lines (no breakpoints individuated, SW = 33.02 × DA 0.58, 
p < 0.001, R 2 = 0.99; ST = 35.17 × DA 0.39, p < 0.001, R 2 = 0.97). Yellow 
dot highlights the intersection point between the regression lines. (b) Annual 
averaged gross primary production (GPP) to ecosystem respiration (ER) 
ratios (blue) and the corresponding piece-wise regression lines (breakpoint 
located at DA = 4.9 km 2; lbp = left side; rbp = right site of the break point: 

𝐴𝐴 (GPP∕ER)lbp = 0.17 × DA0.57 ; 𝐴𝐴 (GPP∕ER)rbp = 0.26 × DA0.30 , p < 0.001, 
R 2 = 0.99). Vertical solid line locates the breakpoint, while the dashed lines 
indicates GPP/ER = 1. (c) The reach-scale annual average of ecosystem 
efficiency (EE, light green) and the corresponding piece-wise regression 
lines (breakpoint located at DA = 1.6 km 2; EElbp = 1.55 × DA −0.02; 
EErbp = 1.82 × DA −0.34, p < 0.001, R 2 = 0.66).
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same data set revealed a seasonal contribution to GPP and ER that could not be explained by the variation 
of the other environmental variables. These dynamics are currently not accounted for in our framework, but 
could potentially be accommodated, at least in part (e.g., for snowmelt), by developing the coupled model 
described above.

Figure 7.  Network-scale metabolic response to alterations in thermal and hydrological regimes. Temperature has been 
increased up to +5°C, whereas the exponent of discharge transformation has been varied between 1 and 2.5. Each colored 
line represents a trajectory that the network-scale metabolic flux performs under a specific alteration (see colorbars). 
Warming effects to network-scale gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production 
(NEP) are displayed in (a)–(c); variability induced by discharge alteration is shown in (d)–(f). (g–i) The combined effect of 
both temperature and discharge alterations. Refer to Figure S7 in Supporting Information S1 for the induced variability to 
dissolved organic carbon (DOC), particulate organic carbon (POC), and BA.

Figure 8.  Network-scale response of ecosystem efficiency metrics to alterations in thermal and hydrological regimes. (a–d) The trajectories in 3-D space that variations 
in temperature (red), discharge (blue), or both temperature and discharge (green), induce to uptake length (a), turnover length (b), GPP/ER (c), and ecosystem efficiency 
(d), averaged over the entire network. Black dots represent the baseline scenario, that is, no temperature nor discharge variations.
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The application presented here was made possible thanks to a synergy of different monitoring campaigns carried 
out in the Ybbs River network (see Table S1 in Supporting Information S1 for a summary of the data set used), 
and this poses challenges to a straightforward transferability of the model to other case studies. The required suite 
of data set depends on the dominant OC sources and pathways in the studied network and it could be less demand-
ing than the one presented here. For instance, in this application a lot of effort was dedicated to characterize DOC 
input through the analysis of the available high-frequency (subdaily) DOC measurements, information typically 
not available in standard water quality monitoring programs. However, the estimated contribution of DOC to the 
network metabolism was minor and with low temporal and spatial heterogeneity. This suggests that coarser infor-
mation on this OC pool could have sufficed. So it is advisable to first identify the dominant OC sources in order 
to guide the experimental sampling effort. To this end, a preliminary analysis could be carried out following the 
method proposed by Bertuzzo et al. (2022), which allows partitioning the contribution of different OC sources 
to ER using DO time series. Regarding other environmental variables, the acquisition of data in any catchment 
is progressively facilitated by recent methodological advances which combine satellite information with mode-
ling, see for instance Revel et al. (2021) and Hossain et al. (2022) for streamflow discharge, Savoy et al. (2021) 
for light availability at streambed, and Bertuzzo et al. (2022) for litterfall input derived from Leaf Area Index 
remote observation. Finally, crucial to the applicability of the presented model are long (annual or multiannual), 
high-frequency time series of DO, which are increasingly available thanks to the recent advent of cheap sensor 
technology (Bernhardt et al., 2018). We stress the importance of designing a nested sampling scheme to be able 
to capture the scaling of relevant variables (see e.g., exponents γ and η, Table 1) with catchments size.

4.2.  Multiscale Stream Ecosystem Metabolism and Efficiency

The model predicted increasing mean daily GPP moving downstream from the headwaters toward the outlet, 
where wider channels, with reduced canopy cover and highest carrying capacity promoted GPP and autotrophic 
biomass (Figure 3). On the other hand, highest mean daily ER was simulated in the headwaters, where the alloch-
thonous inputs peaked, and basal respiration (RBasal) was maximum. Minimum ER was observed in midsized 
streams, while the outlet resulted more heterotrophic due to the increased contribution of the autotrophic respi-
ration (RA) and of the respiration of autotrophic byproducts 𝐴𝐴

(

𝑅𝑅BA

)

 . This general pattern is in line with earlier 
predictions on stream ecosystem metabolism (Fisher & Likens, 1973; Hotchkiss et al., 2015; Vannote et al., 1980) 
and studies compiling data from a wide suite of stream ecosystems (Battin et al., 2008; Bernhardt et al., 2018; 
Bertuzzo et al., 2022; Diamond et al., 2021; Hoellein et al., 2013).

Our findings confirm previous results (Segatto et al., 2021) and show that the metabolism of the Ybbs River 
network is heterotrophic at the annual scale. The network-scale GPP regime (Figure 4) was mostly driven by the 
downstream reaches and showed a conspicuous peak during spring, low activity during winter, and intermediate 
production during the rest of the year. Our result extrapolated for a real case study resembles that obtained by 
Koenig et  al.  (2019) using theoretical optimal channel networks under the stochastic assignment, that is, the 
scenario proposed to be more representative of real rivers by the authors. The simulated contribution to the 
network-scale ER was more evenly distributed along the network (Figure 4). However, this more regular pattern 
is achieved thanks to a clear shift in the OC sources sustaining respiration (Figure 5). Our annual estimates of 
GPP and ER at network scale are also closely bracketed by those reported from other studies covering various 
biomes (e.g., Battin et al., 2008; Hoellein et al., 2013; Rodríguez-Castillo et al., 2019). Moreover, converting 
these fluxes back to O2 units (using a 1:1 M ratio), our estimates of GPP, ER, and NEP equal 0.61, −0.83, and 
−0.22 Gg O2, respectively. These figures are in very good agreement with the results shown in a recent machine 
learning application to the same river network (Segatto et al., 2021), where the authors reported for the same year 
0.63, −0.83, and −0.20 Gg O2, respectively. We are therefore confident that our framework represents a valuable 
tool to simulate annual metabolic regimes in every reach of an entire stream network. Moreover, the mechanistic 
nature of the model allows predictions on the ecosystem responses to climate or land use changes, or to other 
anthropogenic disturbances.

An important novel aspect of the model is that its structure allowed us also to infer the contribution of differ-
ent OC sources or pathways to the total ER (Figure 4). Autotrophic organisms directly contributed for 19% of 
the network-scale ER, while heterotrophs contributed to the remaining 81% Interestingly, results indicate that 
43% of ER derived from autochthonous resources (sum of RA and 𝐴𝐴 𝐴𝐴BA

 contributions), a result very close to the 
estimate (i.e., 44%) provided by Segatto et al. (2021) for the Ybbs River network using a completely different 
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approach involving machine learning and scaling of allochthonous resources along the network. On the other 
hand, we could not trace back the source of the basal respiration that accounted for 40% of ER. This contribution 
is tentatively attributed to the respiration of OC buried in the streambed sediments, which had mostly built up 
before the simulated period. Due to the limited duration of the simulation (i.e., 1 year), we could not model the 
dynamics of this OC stock which changes over longer time scales, but simply accounted for its contribution to 
ER. This limitation could potentially be overcome with longer data sets and simulations which could unlock also 
the estimation of burying rates and the fluctuations of this stock. To assess the plausibility of this contribution, 
we assumed a wide range of possible respiration rates and estimated the stock of buried OC required to sustain 
the estimated respiration (Figure S6 in Supporting Information S1). Results are in agreement with other studies 
assessing benthic and buried POC (Magana & Bretschko, 2003; Smock, 1990; J. Webster et al., 1995).

4.3.  Climate Change Effects on Ecosystem Functioning

We investigated how variations in the environmental forcings could impact ecosystem functioning and explored 
in which ways our simulated case study may react if forced with different thermal and hydrological regimes. 
Sand-Jensen and Pedersen (2005) showed that 4°C–5°C rise in air temperature will increase oxygen consump-
tion rates at ambient temperature by 30%–130%, while Acuña et al. (2008) shown that a 2.5°C air temperature 
increase will increase ER by an average of 20%. Our model also predicted that at maximum stream water temper-
ature increase (i.e., Tincr = 5°C), network-scale ER will increase by 80% (53%–180%), while at a Tincr of +2.5°C, 
an increase of ∼31% (24%–57%) is expected. In line with the estimated contributions to the total ER, a large 
share of this enhanced respiration is due to basal respiration. However, it should be noted that higher respiration 
could lead, in the long term, at a depletion of the OC pool buried in the sediment. Also in this case, modeling 
explicitly the dynamics of this OC stock could better constrain these projections. Similarly to predictions of 
Yvon-Durocher et al. (2010), who combined experimental field data with theoretical predictions derived from the 
metabolic theory of ecology, our simulated temperature effect on GPP resulted less marked, depicting the Ybbs 
River network with higher levels of heterotrophy and potentially higher CO2 emission with warming temperature 
(Figure 7 and Figure S9 in Supporting Information S1). Higher metabolic rates with warmer temperature trans-
lated, at network scale, in shorter spiraling lengths and increased overall EE, confirming our initial hypothesis 
(Figure 8). Such predictions critically depend on the estimated values of the temperature sensitivity parameters 
θs. Best model performance was achieved with θA = 1.103, θPOC = 1.135. When expressed in terms of activation 
energy, these values correspond roughly to 0.66 and 0.87 eV K −1, which are in line with, or slightly higher than 
those reported earlier (see e.g., Acuña & Tockner, 2010; Acuña et al., 2008; Gillooly et al., 2001). It should also 
be stressed that in our warming scenarios, lowland reaches, which host the large share of the total streambed area, 
experienced temperatures higher than those observed anywhere in the data set used for parameter estimation. 
Extrapolation outside the observed range should always be interpreted with caution.

The response to altered hydrological regimes was more subtle and less intuitive. As highlighted by Miao 
et al. (2009) and Acuña and Tockner (2010), models should take into account the entire sequence of hydrologic 
events and their prolonged effect on the living biota in order to assess complex responses to alterations of the 
regime type. We have shown how more extreme hydrological regimes had more pronounced effects on GPP and 
particularly on its recovery rates after scouring (Figure 7). We observed that the effects of spates depend on the 
biomass state, that is, biomass far from or close to its carrying capacity. In the former case, disturbances abated 
production rates, while in the latter they created new room for autotrophic development with a consequent boost 
in growth rates and GPP. The effect of a modified flow regime on ER was buffered by basal respiration which was 
unaffected by the flow, but it was still observable and mostly driven by changes in autotrophic respiration and by 
the reduced processing of OC induced by the pronounced low-flow conditions limiting OC transport. At network 
scale, flow alterations directed the Ybbs River network toward more autotrophic states due to the appearance of 
new positive NEP windows induced by scouring (Figure 7 and Figure S9 in Supporting Information S1), higher 
transport rates, longer spiraling lengths, and lower EE (Figure 8). The antisynergistic effect of temperature and 
discharge posed their mixed-effect in between the single end-members. The emergence of more scouring events 
allowed for higher GPP rates due to simultaneous higher temperatures, while ER was primarily driven by temper-
ature, increasing with warming (Figure 7 and Figure S8 in Supporting Information S1).

It should be stressed that we have simulated only direct impacts of climate variations on the Ybbs River network, 
without considering biological changes. In fact, shifts of thermal and hydrologic regimes could differently affect 
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ecological communities and their emergent response. Regarding climatic variations, other limitation are identifi-
able. We did not include, for example, variability in temperature at the annual (Sand-Jensen & Pedersen, 2005) or 
daily (Dang et al., 2009) scales. The tested hydrological regimes allowed to increase the frequency and magnitude 
of floods and droughts as typically predicted (Acuña & Tockner, 2010; Pletterbauer et al., 2018), but Equation 13, 
along with our hypothesis of nearly rectangular cross section, does not permit to assess variations in network 
connectivity induced by the complete disappearance of flow in some reaches or to account for floodplain inter-
actions (Catalàn et al., 2022). While these caveats and limitations highlight the uncertainty related to this kind 
of projections, we argue that a relevant result of this study is unveiling the complex set of interactions between 
biota and the environmental matrix, and its control over the metabolic regime and its possible response to climate 
changes. A perturbation at one point in time can have lasting effects on both biogeochemical fluxes and OC pools. 
Alterations of the metabolic balance in headwaters change the flux of material and energy flowing downstream 
and could be counterbalanced or enhanced by the response of lowland reaches. Our analysis highlights how these 
processes can be appreciated only going beyond the traditional field of view of stream ecosystem research—the 
reach, and looking at the system from a network perspective. We stress that the present study was made possible 
by a data set comprising time series of metabolic metrics at several stations nested within the same network. 
The  recent development of sensor technology has revolutionized our capabilities of measuring metabolism in 
rivers (Bernhardt et al., 2018), and we predict that other similar data sets will soon be available. We argue that 
the modeling tools used to analyze and interpret this data deluge should keep the pace and that the framework 
presented herein is an effort in that direction.

Appendix A:  POC Transport Dynamics
This section derives the simplified POC transport equation used in the main text. Let consider a well-mixed 
stream reach of volume V  =  w  ×  l  ×  z (m 3), where w, l, and z (m) are, respectively, stream width, length, 
and stream water depth, and in which POC is suspended in water (POCSUS [gC]) with concentration 

𝐴𝐴 [POC]SUS = POCSUS∕𝑉𝑉 = POCSUS∕(𝑤𝑤 × 𝑙𝑙 × 𝑧𝑧) (gC m −3). Let denote with POCSED (gC), the mass of sediment 
POC and 𝐴𝐴 [POC]SED = POCSED∕(𝑤𝑤 × 𝑙𝑙) (gC m −2) its aerial concentration. Let POC (gC) be the total amount of 
POC stored in the system: POC = POCSUS + POCSED. Suspended POC is subjected to advective transport (ϕPOC) 
and sedimentation with specific rate μsed (day −1; Figure 1), while POCSED can be mobilized, that is, resuspended 
at a rate μres (day −1), before being advected. ϕPOC can be expressed as

𝜙𝜙POC = 𝑄𝑄 × [POC]SUS = 𝑣𝑣 × 𝑧𝑧 ×𝑤𝑤
POCSUS

𝑙𝑙 ×𝑤𝑤 × 𝑧𝑧
= 𝑣𝑣

POCSUS

𝑙𝑙
� (A1)

where v = Q/(w × z) (m day −1) represents the average stream water velocity.

Let now assume that the dynamics of the subsystem POCSUS–POCSED, ruled by sedimentation and resuspension 
processes, are fast enough to guarantee an almost instantaneous equilibrium (separation of fast and slow dynamics):

�[POC]SUS
��

= �res
[POC]SED

�
− �sed[POC]SUS

��
= 0

�[POC]SED
��

= � × �sed[POC]SUS − �res[POC]SED
��
= 0

�

which yields to the simplified expression:

[POC]SUS = [POC]SED
𝜇𝜇res

𝑧𝑧 × 𝜇𝜇sed

= [POC]SED
𝜇𝜇res

𝑣𝑣sed
�

where vsed (m day −1) is the sedimentation velocity. Typically, vsed ≫ μres (Acuña & Tockner, 2010) so that at any 
time most of the POC is stored in the sediment rather than suspended, we can thus approximate POCSED ≈ POC. 
The advective flux (Equation A1) can thus be approximated as

�POC = � × [POC]SUS = � × [POC]SED
�res

� × �sed
= � × � ×�POCSED

� × �
�res

� × �res
≈ �

�
POC

�res

�res
= �

�
�movPOC� (A2)

where vmov = μres/μsed (–) is a dimensionless parameter describing the tendency of POC to be mobilized and 
transported downstream. This simple approximation allows modeling solely the total mass POC instead of both 
POCSED and POCSUS and their interactions (sedimentation, resuspension, etc.). The full functional form shown 
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in Equation 6 is derived modulating vmov according to a power law function of the bottom shear stress in order to 
account for higher mobilization rates during high flow events.

Appendix B:  Autotrophic Respiration Fraction
To estimate the fraction β of the loss term of the autotrophic biomass LA which contributes to the POC build 
up (i.e., it is not directly respired), we combined the model output for the autotrophic biomass compartment 
(which calibration is independent of β, see Section 2.3), with the method introduced by Hall and Beaulieu (2013) 
to estimate the fraction of GPP which respired by autotrophs (flux RA in the proposed model) and their 
closely associated heterotrophic bacteria (flux 𝐴𝐴 𝐴𝐴BA

 ). This fraction is termed Autotrophic respiration fraction: 
𝐴𝐴 AR𝑓𝑓 =

(

𝑅𝑅A +𝑅𝑅BA

)

∕GPP and it can be estimated from the slope of the 0.9 quantile regression between daily 
estimates of ER and GPP (Hall & Beaulieu, 2013). We performed this analysis for the 12 experimental reaches 
(Figure S1 in Supporting Information S1), which led to an average ARf of 0.59, in line with the range estimated in 
Hall and Beaulieu (2013). From the calibrated model (autotrophic compartment), we computed the average ratio 
of RA/GPP which yielded 0.26. It does follow that the heterotrophic contribution 𝐴𝐴

(

𝑅𝑅BA
∕GPP

)

 on average must be 
equal to 0.59–0.26 = 0.33. To achieve this value, we derived, from the modeled autotrophic compartment, that β 
must be equal to 0.55.

Data Availability Statement
No new data were generated for this study. Data used come from a previous publication (Segatto et al., 2021) and 
are available at the following public repository https://doi.org/10.5281/zenodo.3972937.
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