
SROS2: Usable Cyber Security Tools for ROS 2

Vı́ctor Mayoral-Vilches1,2, Ruffin White3,4,5, Gianluca Caiazza4,5, Mikael Arguedas6

Abstract— ROS 2 is rapidly becoming a standard in the
robotics industry. Built upon DDS as its default communication
middleware and used in safety-critical scenarios, adding secu-
rity to robots and ROS computational graphs is increasingly
becoming a concern. The present work introduces SROS2, a
series of developer tools and libraries that facilitate adding
security to ROS 2 graphs. Focusing on a usability-centric
approach in SROS2, we present a methodology for securing
graphs systematically while following the DevSecOps model.
We also demonstrate the use of our security tools by presenting
an application case study that considers securing a graph using
the popular Navigation2 and SLAM Toolbox stacks applied in a
TurtleBot3 robot. We analyse the current capabilities of SROS2
and discuss the shortcomings, which provides insights for future
contributions and extensions. Ultimately, we present SROS2 as
usable security tools for ROS 2 and argue that without usability,
security in robotics will be greatly impaired.

I. INTRODUCTION

A robot is a network of networks [1]. One that is com-
prised of sensors to perceive the world, actuators to produce
a physical change, and computational resources to process
it all and respond coherently, in time, and according to
its application. Security is of paramount importance in this
context, as any disruption of any of these robot networks
can cause the complete robotic system to misbehave and
compromise the safety of humans, as well as the environment
[2], [3].

The Robot Operating System (ROS) [4] is the de facto
framework for robot application development. Widely used
to govern interactions across robot networks, at the time of
writing, the original ROS article [4] has been cited more than
9300 times, which shows its wide acceptance for research
and academic purposes. ROS was born in this environment:

This material is based upon work funded by Alias Robotics and supported
by the ROS4DEV project and also by the Centro para el Desarrollo Tec-
nológico Industrial (CDTI) under grants SEGRES (grant EXP 00131359 /
MIG-20201041) and ROBOTCYSEC projects. This work has been partially
supported by the project VIR2EM - VIrtualization and Remotization for
Resilient and Efficient Manufacturing” – POR FESR VENETO 2014-2020,
and by the project SPIN 2021 “Requirement specification and static anal-
ysis of robotic software” - Ca’Foscari University. Any opinions, findings,
conclusions, or recommendations expressed in this material are those of the
authors and may not reflect those of the funding organizations.

1Alias Robotics, Venta de la Estrella 6, pab 130, Vitoria 01006, Spain
victor@aliasrobotics.com

2System Security Group, Universität Klagenfurt, Universitätsstr. 65-67
9020 Klagenfurt, Austria v1mayoralv@edu.aau.at

3Contextual Robotics Institute, UC San Diego,
rwhitema@ucsd.edu

4Ca’ Foscari University of Venice, Dorsoduro 3246, Venice 30123, Italy
gianluca.caiazza@unive.it

5Secura Factors srls, via Torino 155, Venice 30170, Italy
info@securafactors.com

6NeoFarm, Chemin des Quarante Arpents, 78860 Saint-Nom-la-Breteche,
France mikael.arguedas@gmail.com

its primary goal was to provide the software tools and
libraries that users would need to employ to undertake novel
robotics research and development. Adoption in industry has
also been rapidly increasing over the last few years. Accord-
ing to the latest ROS community metrics [5] sampled every
year in July, the number of ROS downloads has increased by
over 50%, with about 600 million downloads between July
of 2020 and July of 2021. Moreover, based on the down-
load percentages reported from packages.ros.org, we
observe a significant increase in adopting ROS 2, which
suggests that by 2023 there will be more users using ROS 2
than its predecessor1.

ROS was not designed initially with security in mind, but
as it started being adopted and deployed into products or
used in government programs, more attention was drawn to
security issues. Some of the early work on securing ROS
included [6], [7] or [8], both appearing in the second half of
2016. At the time of writing, none of these efforts remain
actively maintained and the community focus on security ef-
forts has switched to ROS 2. A recent study [9] that surveyed
the security interests in the ROS community presented data
indicating that 73% of the survey participants considered that
they had not invested enough to protect their robots from
cyber-threats. The same number of participants indicated
that their organizations were open to invest, however only
26% acknowledged to actually have invested. This led the
authors to conclude that there is a gap between the security
expectations and the actual investment. We argue that this
gap is a result not only of the immaturity of security in
robotics or the know-how but also by the lack of usability
of the available security tools. Being conscious that security
in robotics is not a product, but a process that needs to be
continuously assessed in a periodic manner [10]–[12], we
advocate for a usable security approach in robotics as the
best way to remain secure.

In this article we introduce SROS2, a series of developer
tools, meant to be usable and that facilitate adding security
capabilities to ROS 2 computational graphs. We present a
security methodology consisting of six steps that allow secur-
ing ROS 2 graphs iteratively, with the aid of SROS2. Driven
by an application use case, we discuss how SROS2 allows
achieving security in complex graphs involving popular ROS
2 packages and analyze the security trade-offs and limitations
of our current tooling. The key contributions of this work are:

1We also note that past studies estimated that by 2024, 55%
of the total commercial robots shipped that year will include
at least one ROS package. For more details, refer to https:
//www.businesswire.com/news/home/20190516005135/
en/Rise-ROS-55-total-commercial-robots-shipped.

https://www.businesswire.com/news/home/20190516005135/en/Rise-ROS-55-total-commercial-robots-shipped
https://www.businesswire.com/news/home/20190516005135/en/Rise-ROS-55-total-commercial-robots-shipped
https://www.businesswire.com/news/home/20190516005135/en/Rise-ROS-55-total-commercial-robots-shipped

• Create SROS2, a set of usable tools for adding security
to ROS 2 that: (1) help introspect the computational
graph by extracting communication middleware-level
information; (2) simplify the security operations cre-
ating Identity and Permissions Certificate Authorities
(CA) that govern the security policies of a ROS 2
graph; (3) help organize all security artifacts in a
consistent manner and within a directory tree that is
generated within the current ROS 2 workspace over-
lay; (4) help create a new identity for each enclave,
generating a keypair and signing its x.509 certificate
using the appropriate CA; (5) create governance files to
encrypt all DDS traffic by default; (6) support spec-
ifying enclave permissions in familiar ROS 2 terms
which are then automatically converted into low-level
DDS permissions; (7) support automatic discovery of
required permissions from a running ROS 2 system; and
(8) dissect communication middleware interactions, to
extract key information for the security monitoring of
the system.

• Propose a methodology for securing ROS 2 computa-
tional graphs that provides roboticists with a structured
process to continuously assess their security.

• Expose insights into how to apply SROS2 to real ROS 2
computational graphs by presenting an application case
study focused on analyzing the Navigation2 and SLAM
Toolbox stacks in a TurtleBot3 robot.

The core components of SROS2 are disclosed under a
commercially friendly open-source license and are avail-
able and maintained at https://github.com/ros2/
sros2.

II. RELATED WORK

Considering how ROS was originally intended as a fast
prototyping robotic framework, security was not considered
a priority feature in its first iteration. As ROS has evolved
from the prototyping to the real-world industrial applications
the entire stack came to be in dire need of cybersecurity
attention [9] [13].

A first partial analysis, with the goal of understanding what
prevented ROS from being used industrially, was conducted
by McClean et al. [14]. By means of a ’honeypot’ system,
at DEFCON-20, they collected how malicious users would
tackle a robot in the wild. Dieber et al. [15] provided a
complete and in-depth analysis of the security vulnerabilities
and attack surfaces in ROS systems and how to exploit them,
highlighting the gaps in the security of the framework. A
considerable amount of research has been done as regards
the publish-subscribe paradigm reviewing the performance
and the techniques to secure it either via the communica-
tion channel, and ROS’ internal mechanisms [16]. In the
first case, via message authentication [17], within the later
addition of using of encryption and security artifacts [18]
[19] [20]. In the latter case, by enhancing the middleware
behaviour with some extra, such as a run-time monitor to
filter out and log all the requests and operations sent in the
graph [21], an Application Level Gateway - that wraps the

existing API calls to enforce authentication and authorization
- that exposes a permission token to be evaluated before
executing the requested operation [22]; to the extent of
forking the implementation, modifying the transport mode
via IPSec [23], or via a security architecture intended with
the addition of x.509 certificates and authorization server
[7]. Unfortunately, those approaches suffered to some extent
with limitations and downsides, such as a lack of flexibility
(e.g. Single Point of Failure (SPOF)) and usability, which
were tackled in the Secure ROS (SROS) initiative [24].
With the objective of providing additions to the ROS API
and ecosystem to support modern cryptography and security
measures, the project introduced new security features to
the core of ROS’ codebase and, more importantly, a set of
tooling to ease the burden on the developers of correctly
implementing security.

With the second iteration of the framework in ROS 2,
thanks to the adoption of DDS as the communication middle-
ware2, we observed how the inherited security measures and
methodologies in the system have evolved the framework.
However, we can no longer overlook how its complexity still
remains prone to human error in processes such as the access
control artifacts distribution [25], or even to overlooking
exposed attack surfaces [26]. Moreover, keeping track of
all the new pieces to the ROS puzzle became even more
demanding and lengthy procedurally, requiring continuous
attention and systematic security analysis–which left usabil-
ity challenging [27]. Our work addresses this challenge with
a security toolset (SROS2) and a security methodology for
robotics.

III. APPROACH

Fig. 1: Our methodology for securing ROS 2 compu-
tational graphs. SROS2 provides tools and libraries to
facilitate a secure DevOps model in robotics (DevSecOps
[28]).

We propose the following methodology (Fig. 1) to secure
ROS 2 computational graphs: (A) introspect the graph and
model its security landscape to determine the necessary
security policies and enclaves; implement such policies by
(B) defining the authentication and (C) authorization config-
urations; (D) generate all the required security artifacts; (E)
deploy them appropriately across robotic systems; and (F)
continuously monitor the network, reverting to (A) modeling
when appropriate.

2https://design.ros2.org/articles/ros on dds.html

https://github.com/ros2/sros2
https://github.com/ros2/sros2

A. Modeling

Modeling refers to the use of abstractions to aid in a
thought process. In security, threat modeling aids in thinking
about risks and determines the threat landscape. The output
of this effort is often called the threat model. Commonly, a
threat model enumerates the potential attackers, their capa-
bilities, resources and their intended targets. In the context
of robot cybersecurity, a threat model identifies security
threats that apply to the robot and/or its components3 while
providing means to address or mitigate them for a particular
use case. A threat model also provides inputs that are used
to then determine a set of policy rules (or principles) that
direct how ROS 2 should provide security services to protect
sensitive and critical graph resources. When put together
these policy rules are called the security policy.

SROS2 aims to provide tools to introspect and model the
security of ROS 2 computational graphs into the desired
security policies. Introspection of the graph can be performed
in two ways:

1) By leveraging the ROS 2 API and the framework for
ROS 2 command line tools (ros2cli), we can pull
ROS Nodes, Topics, Services or Actions information
(among others) from the ROS 2 graph and display these
in the CLI, see Listing 1. This allows us to get a grasp
of the computational graph from a ROS 2 perspective.
Other tools such as RViz [29] or rqt help get a visual
depiction of the graph and its abstractions.

2) Monitoring network interactions at the ROS commu-
nication middleware-level can be extremely helpful to
model security but incredibly cumbersome from a us-
ability perspective unless the right tooling is provided.
ROS 2 uses OMG’s Data Distribution Service (DDS)
[30] as its default communication middleware, which
is a complex specification. To facilitate introspection
of DDS, SROS2 leverages scapy [31], a powerful
interactive packet manipulation library that allows us
to forge or decode network packets. Particularly, we
contributed an open source scapy dissector4 that allows
us to dissect the wire-level communication protocol
that is used by the default ROS 2 communication
middleware: the Real-Time Publish Subscribe proto-
col (RTPS) [32]. Using this, SROS2 provides tooling
that allows monitoring network interactions, capturing
DDS databus information directly and displaying these
for the security analyst’s consumption.

Code listing: 1 SROS2 extends ROS 2 APIs to facili-
tate computational graph introspection at the networking
level for modeling purposes.

ROS 2 CLI API allows direct introspection
ros2 topic list
/cmd vel
/robot state publisher
...

3both software and hardware, including computational graph resources.
4see https://github.com/secdev/scapy/pull/3403

ros2 node list
/turtlebot3 diff drive
...
SROS2 extensions allow introspecting DDS
ros2 security introspection
DDS endpoint detected (hostId=16974402,

appId=2886795267, instanceId=10045242)
- version: 2.4
- vendorId: ADLINK - Cyclone DDS
- IP: 192.168.1.34
- transport: UDP

DDS endpoint detected (...)

For complete threat modeling, we refer the reader to [33]
which discusses details around security modeling ROS 2
computational graphs.

B. Authentication

Authentication provides proof of a claimed identity (̸=
identification, determination of an unknown entity). ROS
2 offloads authentication to its underlying communication
middleware, DDS. By default, DDS allows any arbitrary Do-
mainParticipant to join any Domain without authentication.
DDS however provides the means to verify the identity of
the application and/or the user that invokes operations on the
DDS databus through its DDS Security extensions [34]. With
these, for protected DDS Domains, a DomainParticipant that
enables authentication will only communicate with other
DomainParticipants that also have authentication enabled.

To favour usability and reduce human errors, all imple-
mentation details of authentication in ROS 2 through DDS
are abstracted away by our SROS2 tools. The appropriate
artifacts for enabling authentication capabilities are produced
in the Generation step (III-D) of our methodology, and
default to the security mechanisms specified by OMG’s
DDS Security [34]. In particular, each DomainParticipant
uses a Public Key Infrastructure (PKI) with a common
shared Certificate Authority (CA): Identity CA. All par-
ticipants interoperating securely must be pre-configured with
Identity CA and have a signed certificate from it. Par-
ticipants are expected to use mutual authentication through a
challenge-response mechanism supported by either the Rivest
Shamir Adleman (RSA) [35] or the Elliptic Curve Digital
Signature Algorithm (ECDSA) [36] asymmetric encryption
algorithms. Shared secrets are established using using the
Diffie-Hellman (DH) [37] or Elliptic Curve DH (ECDH)
(Ephemeral Mode) [38] key agreement protocols.

Listing 2 shows an example of how SROS2 tools abstract
the complexity of DDS authentication away from ROS de-
velopers. The governance.xml policy document is auto-
generated by SROS2 and captures domain-wide security set-
tings that include authentication aspects. Additional details
about the underlying authentication process and the security
artifacts are available in [34], [39] and [40].

Code listing: 2 An extract from governance.xml pol-
icy document generated by SROS2 illustrating domain-
wide security settings such as how to handle unauthen-
ticated participants, whether to encrypt discovery or the
default rules for access to topics.

https://github.com/secdev/scapy/pull/3403

...
<allow unauthenticated participants>false</

allow unauthenticated participants>
<enable join access control>true</

enable join access control>
<discovery protection kind>ENCRYPT</

discovery protection kind>
<liveliness protection kind>ENCRYPT</

liveliness protection kind>
<rtps protection kind>SIGN</rtps protection kind>
<topic access rules>

<topic rule>
<topic expression>*</topic expression>
<enable discovery protection>true</

enable discovery protection>
<enable liveliness protection>true</

enable liveliness protection>
<enable read access control>true</

enable read access control>
<enable write access control>true</

enable write access control>
<metadata protection kind>ENCRYPT</

metadata protection kind>
<data protection kind>ENCRYPT</

data protection kind>
</topic rule>

</topic access rules>
...

C. Authorization

Authorization helps define and verify the policies that
are assigned to a certain identity. Access control instead –
also called permissions or privileges– are the methods used
to enforce such policies. While access control is handled
by the DDS implementation, authorization policies need
to be defined by the developer. SROS2 helps map these
policies from the ROS 2 computational graph to the un-
derlying DDS databus abstractions through two resources:
the Permissions CA and a permissions.xml policy
document. Listing 3 shows an extract from one of the
policy documents that defines the authorization profile for a
particular ROS 2 Node. Details about how access control is
implemented by the underlying communication middleware
are discussed in [34] and [41].

Code listing: 3 SROS2 provides means to define au-
thentication policies through XML files.

<profile node="turtlebot3_diff_drive" ns="/">
<xi:include href="common/node.xml"

xpointer="xpointer(/profile/*)"/>
<topics subscribe="ALLOW">

<topic>/cmd vel</topic>
</topics>
<topics publish="ALLOW">

<topic>odom</topic>
<topic>tf</topic>

</topics>
</profile>
<profile node="turtlebot3_imu" ns="/">
...
</profile>

D. Generation

Modeling (III-A), Authentication (III-B) and Authorization
(III-C) steps of our methodology (Fig. 1) help define one or
multiple security policies. To help implement such policies,
SROS2 provides means to automate the generation of the
corresponding security artifacts and simplify the translation
to the underlying DDS implementation. To do so, SROS2
maps a security policy to an enclave: a set of ROS 2 com-
putational graph resources that operate in the same security
domain, use particular Identity CA and Permissions
CA authorities, and share the protection of a single, common,
continuous security perimeter.

All secure interactions in ROS 2 computational graphs
must use an enclave that contains the runtime security
artifacts unique to that enclave, yet each Node may not
necessarily have a unique enclave. Multiple enclaves can be
encapsulated in a single security policy to accurately model
the information flow control. Users can then tune the fidelity
of such models by controlling at what scope enclaves are
applied at deployment. For example, one unique enclave per
robot, or per swarm, or per network, etc.

Listing 4 shows how SROS2 tools help generate all
artifacts to implement a new security policy, inferred
directly from the running ROS 2 graph. For a more complex
policy that involves multiple enclaves, we refer the reader
to https://github.com/ros-swg/turtlebot3_
demo/blob/2719e0f/policies/tb3_gazebo_
policy.xml.

Code listing: 4 SROS2 provides tools to implement
security policies and in ROS 2 computational graphs,
generating all security artifacts necessary.

Generate a new keystore with Identify and
Permission CA keys, associated certificates
and a authentication structure through
governance.xml file

ros2 security create_keystore new_keystore

Inspect current ROS graph and produce a
security policy

ros2 security generate_policy new_keystore/
my_policy.xml

Generate all security artifacts necessary to
enforce the policy, this includes enclaves
and the access control permission files

ros2 security generate_artifacts \
-k new_keystore \
-p new_keystore/my_policy.xml

E. Deployment

Deployment is a relevant phase in the methodology of
Fig. 1 and must be also exercised securely. We consider
three types of deployments of both artifacts and secure
information:

1) Distribution of policy artifacts: the resulting artifacts
from the Generation phase (III-D) must be securely
deployed into the targeted robots and related systems.
At the time of writing SROS2 does not provide any

https://github.com/ros-swg/turtlebot3_demo/blob/2719e0f/policies/tb3_gazebo_policy.xml
https://github.com/ros-swg/turtlebot3_demo/blob/2719e0f/policies/tb3_gazebo_policy.xml
https://github.com/ros-swg/turtlebot3_demo/blob/2719e0f/policies/tb3_gazebo_policy.xml

particular special utilities to deploy security artifacts.
We however direct readers to the ongoing efforts to
launch ROS 2 graphs remotely and in multi-machine
environments [42] for inspiration.

2) Message authentication: verification of the Message
Authentication Codes (MAC) is performed using Ad-
vanced Encryption Standard (AES) with Galois MAC
(AES-GMAC). DDS security extensions abstract this
away from the ROS developer.

3) Encryption of secure DDS interactions: authenticated
symmetric cryptography governs all DDS interactions
within a security policy using also AES in Galois
Counter Mode (AES-GCM). Similar to message au-
thentication, DDS abstracts this away from the devel-
oper and is enabled automatically provided that the
security policy is configured appropriately.

F. Monitoring and mitigation

The last phase in our methodology leads to a never
ending loop of continuous Monitoring, mitigation (III-F) and
Modeling (III-A). This way, security in ROS 2 computational
graphs becomes a moving target, a process–one that demands
continuous assessments as changes occur in the robots, the
network, or as new security flaws are discovered affecting
the running systems.

SROS2 provides tools for monitoring running ROS 2
graphs and detecting possible flaws. Listing 5 shows an
example:

Code listing: 5 SROS2 provides tools to dissect DDS
interactions, extract key information and map it to out-
standing security flaws affecting DDS.

monitor the network segment for
vulnerabilities affecting DDS participants

ros2 security monitor
sniffing the DDS network...
Vulnerable DDS endpoint found (hostId=16974402,

appId=2886795267, instanceId=10045242)
- vendorId: Real-Time Innovations, Inc. -

Connext DDS
- version: 6.0.1.25
- CVE IDs:

* CVE-2021-38487
* CVE-2021-38435

IV. APPLICATION AND ANALYSIS

To apply our methodology, as defined in Fig. 1, we
demonstrate the application of SROS2 using two of the most
commonly used frameworks in ROS 2, the navigation2
[43] and slam toolbox [44] stacks. Particularly, the Nav-
igation2 project5 provides a software stack including path
planning algorithms and behavioral navigation servers that
can be seamlessly integrated with existing sensor perception
pipelines, localization and mapping services, and drivetrain
velocity controllers to support various mobile robotic ap-
plications. While Navigation2 remains mostly agnostic of
robotic platforms, we selected the widely accessible and

5https://github.com/ros-planning/navigation2

community supported TurtleBot36 as our target robot for
analysis–consisting of a differential drive, circular base foot-
print, and ground level 2D scanning LIDAR. Our application
case study is depicted in Fig. 2.

To start, we begin with the modeling (III-A), authenti-
cation (III-B) and authorization (III-C) phases in order to
bootstrap an initial security policy that captures the minimal
spanning set of security measures required for the nominal
function of the application across the distributed computation
graph. We can either first bring up the ROS 2 applica-
tion under a controlled network environment with security
mode disabled, or provision an initial keystore enclave with
temporary key-material and only access control governance
disabled; the first option includes minimal setup while being
more transparent to debug, while the later is advantageous
in modeling policies directly from field deployments across
untrusted networks.

With the ROS 2 application running, SROS2 can cap-
ture the topology of the computation graph to populate
the permission profiles within our initial policy, registering
each active ROS 2 node and respective topic publication
and subscription. A limitation in SROS2’s current snapshot
approach however is in accurately modeling more ephemeral
resource access events, such as service clients or action
requests. While ROS 2’s internal graph API (that SROS2 uses
to sample topology measurements) provides a middleware
agnostic interface, the observation window is only instan-
taneous and can easily miss asynchronous resource access
events.

Given the graph API limitations, it’s often necessary to
iteratively test the generated policy by using it to update
the signed permission and governance files and relaunch
the application with access control enabled. For moderate to
advanced applications such as those relying on Navigation2,
permission access denied errors may inevitably be encoun-
tered. With ROS 2 however, such events can be logged and
aggregated into policy refinement, specifying the node and
resource namespaces denied.

After iterative policy refinement, once the tested ap-
plication is fully functional with enforced access con-
trol, the policy can then be further optimized. Such
policy optimizations include sorting common permission
patterns into smaller sub-profiles, being more manage-
able to audit and modularly reusable across repeating
permission sets in a global policy. We demonstrate it
in https://github.com/ros-swg/turtlebot3_
demo/tree/master/policies. This auditing process
also provides an opportunity to assess the granularity of the
policy as well, from both permission Access Control (AC)
and Information Flow Control (IFC) perspectives.

While the minimal spanning set of AC permissions may be
optimally secure in terms of the Principle of Least Privilege
[45], it may not be optimally usable for a target application
domain. Though most computation graphs in ROS 2 are
largely static at runtime, cases where resource namespaces

6https://www.robotis.us/turtlebot-3

https://github.com/ros-planning/navigation2
https://github.com/ros-swg/turtlebot3_demo/tree/master/policies
https://github.com/ros-swg/turtlebot3_demo/tree/master/policies
https://www.robotis.us/turtlebot-3

Fig. 2: A portion of the simulated TurtleBot3 secured using SROS2. The figure depicts a subset of the computational
graph of the robot including sensor and control topics as well some relevant portions of the navigation2 software stack.

change over the application’s lifecycle do exist. For example,
multi-robot systems may fluctuate as agents enter or exit
networks for missions or maintenance. Additionally, node
namespaces sometimes include sequence numbers to ensure
namespace uniqueness. To accommodate such scenarios,
permissions could be modified to include wildcards as neces-
sary. While static permissions are straightforward to interpret
and less likely to inadvertently introduce policy flaws, wild-
carding select permissions provides a usable compromise
when required.

When auditing from an IFC perspective, optimizing the
policy into assorted enclaves becomes a key consideration.
As all ROS 2 nodes composed into a shared process share
a common DDS context, they subsequently share the same
security enclave or set of permission profiles. This of course
is inherently coupled with how the application is architected
and to be deployed across a distributed system. As such, se-
curity requirements for IFC may then instead dictate aspects
of the application’s designs. The degree of granularity of IFC
sought then dictates the allotment of enclaves used to contain
sub-profiles for the application’s policy.

In the case of Navigation2 and its large degree of coupling
and composition of nodes, the planning stack derived from a
single source tree is perhaps best relegated to its own enclave,
while still being readily separable from any other enclave
dedicated to perception or control nodes. Admittedly, such
auditing procedures in determining the allotment of enclaves
remains rather ambiguous for users, and so presents another
area of ergonomics for SROS2 to help automate or advise
through formal analysis.

The source code of our application case study is available
at https://github.com/ros-swg/turtlebot3_
demo. The resulting security policies of applying our
methodology (Fig. 1) are also available in the same reposi-
tory and show various profiles that result from a systematic
assessment.

V. CONCLUSION

In this work we present SROS2, a series of developer
tools focused on usable security that allow adding security
capabilities to ROS 2 computational graphs. We introduce a
methodology around these tools consisting of 6 basic steps
depicted in Fig. 1 and aligning to the common DevSecOps

flows: (A) introspect the computational graph and model
its security to determine the necessary security policies and
enclaves; (B) define authentication and (C) authorization con-
figurations; (D) generate all the required security artifacts for
implementing such policies; (E) deploy them appropriately
across robotic systems; and (F) continuously monitor the
network, reverting to (A) modeling when needed. SROS2
facilitates each one of these steps by integrating itself tightly
into the usual ROS 2 development flows.

We present an application case study discussing how to
propose a secure architecture for the TurtleBot3 robot using
the navigation2 and slam toolbox stacks. This is of
special interest since it aligns to the software architecture
that many industrial and professional robots are using today,
given the popularity of these packages.

We introduce security as a process in robotics and cor-
respondingly, our work aims to pave the way for enabling
security processes, particularly in ROS 2. Alongside the
never-ending reality of security, we acknowledge that SROS2
has various limitations that deserve further attention and
improvements. Some of these include the lack of granularity
of security configurations in the current abstractions, which
makes it difficult to configure encryption and authentication
options separately. Others refer to the lifecycle manage-
ment of security artifacts, including updating certificates
and keys, wherein secure deployment plays a key role. We
are particularly keen on improving SROS2 mechanisms in
the future to ensure secure lifecycles while minimizing the
downtime impact in ROS 2 graphs. Promising directions for
future work also include the development of more advanced
monitoring and introspection capabilities, the extension of
SROS2 to other communication middlewares (beyond DDS)
and finally, the continuous improvement of the usability of
the tools. For this, we believe that the use of Graphical
User Interfaces (GUIs) represents an interesting opportunity
to further facilitate SROS2 usability to non-roboticists.

Our work aims to inspire groups in robotics to add security
to their robotic computational graphs. We look forward to
security in robotics becoming more usable and accessible,
minimizing the threat landscape that lies before us now, and
closing the window of opportunity for bad actors.

https://github.com/ros-swg/turtlebot3_demo
https://github.com/ros-swg/turtlebot3_demo

REFERENCES

[1] V. Mayoral-Vilches, A. Glera-Picón, U. Ayúcar-Carbajo, S. Rass,
M. Pinzger, F. Maggi, and E. Gil-Uriarte, “Hacking planned ob-
solescense in robotics, towards security-oriented robot teardown,”
Electronic Communications of the EASST, vol. 80, 2021.

[2] L. A. Kirschgens, I. Z. Ugarte, E. G. Uriarte, A. M. Rosas, and
V. M. Vilches, “Robot hazards: from safety to security,” arXiv preprint
arXiv:1806.06681, 2018.

[3] I. Zamalloa, R. Kojcev, A. Hernández, I. Muguruza, L. Usategui,
A. Bilbao, and V. Mayoral, “Dissecting robotics-historical overview
and future perspectives,” arXiv preprint arXiv:1704.08617, 2017.

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[5] R. community, “Ros community metrics,” 2021. [Online]. Available:
http://wiki.ros.org/Metrics

[6] F. J. R. Lera, V. Matellán, J. Balsa, and F. Casado, “Ciberseguridad
en robots autónomos: Análisis y evaluación multiplataforma del bas-
tionado ros,” Actas Jornadas Sarteco, pp. 571–578, 2016.

[7] B. Dieber, S. Kacianka, S. Rass, and P. Schartner, “Application-level
security for ros-based applications,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2016, pp.
4477–4482.

[8] R. White, M. Quigley, and H. Christensen, “SROS: Securing ROS
over the wire, in the graph, and through the kernel,” in Humanoids
Workshop: Towards Humanoid Robots OS. Cancun, Mexico, 2016.

[9] V. Mayoral-Vilches, “Robot cybersecurity, a review,” International
Journal of Cyber Forensics and Advanced Threat Investigations, 2022.

[10] V. Mayoral-Vilches, A. Glera-Picón, U. Ayucar-Carbajo, S. Rass,
M. Pinzger, F. Maggi, and E. Gil-Uriarte, “Robot teardown, stripping
industrial robots for good,” International Journal of Cyber Forensics
and Advanced Threat Investigations, 2022.

[11] Q. Zhu, S. Rass, B. Dieber, and V. M. Vilches, “Cybersecurity
in robotics: Challenges, quantitative modeling, and practice,” arXiv
preprint arXiv:2103.05789, 2021.

[12] V. Mayoral-Vilches, I. Abad-Fernández, M. Pinzger, S. Rass,
B. Dieber, A. Cunha, F. J. Rodrı́guez-Lera, G. Lacava, A. Marotta,
F. Martinelli et al., “alurity, a toolbox for robot cybersecurity,” arXiv
preprint arXiv:2010.07759, 2020.

[13] G. Caiazza, “Application-level security for robotic networks,” Ph.D.
dissertation, Ca’ Foscari University of Venice, Italy, 2021.

[14] J. McClean, C. Stull, C. Farrar, and D. Mascareñas, “A
preliminary cyber-physical security assessment of the Robot
Operating System (ROS),” vol. 8741, p. 874110, 2013. [Online].
Available: http://proceedings.spiedigitallibrary.org/proceeding.aspx?
doi=10.1117/12.2016189

[15] B. Dieber, R. White, S. Taurer, B. Breiling, G. Caiazza, A. Cortesi, and
H. Christensen, “Penetration testing ROS,” in Robot Operating System
(ROS): The Complete Reference (Volume 4). Springer International
Publishing, 2019.

[16] N. Goerke, D. Timmermann, and I. Baumgart, “Who controls your
robot? an evaluation of ros security mechanisms,” 02 2021, pp. 60–
66.

[17] R. Toris, C. Shue, and S. Chernova, “Message authentication codes
for secure remote non-native client connections to ros enabled robots,”
in 2014 IEEE International Conference on Technologies for Practical
Robot Applications (TePRA), April 2014, pp. 1–6.

[18] F. J. R. Lera, J. Balsa, F. Casado, C. Fernández, F. M. Rico, and
V. Matellán, “Cybersecurity in autonomous systems: Evaluating the
performance of hardening ROS,” Málaga, Spain-June 2016, p. 47,
2016.

[19] F. J. Rodrıguez-Lera, V. Matellán-Olivera, J. Balsa-Comerón, Á. M.
Guerrero-Higueras, and C. Fernández-Llamas, “Message encryption
in robot operating system: Collateral effects of hardening mobile
robots,” Frontiers in ICT, vol. 5, p. 2, 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fict.2018.00002

[20] B. Breiling, B. Dieber, and P. Schartner, “Secure communication
for the robot operating system,” in 2017 Annual IEEE International
Systems Conference (SysCon), April 2017, pp. 1–6.

[21] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,
and G. Rosu, “Rosrv: Runtime verification for robots,” in Proceedings
of the 14th International Conference on Runtime Verification, ser.
LNCS, vol. 8734. Springer International Publishing, September 2014,
pp. 247–254.

[22] R. Dóczi, F. Kis, B. Sütő, V. Póser, G. Kronreif, E. Jósvai, and
M. Kozlovszky, “Increasing ros 1.x communication security for medi-
cal surgery robot,” in 2016 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Oct 2016, pp. 4444–4449.

[23] A. Sundaresan, L. Gerard, and M. Kim, “Secure ROS 0.9.2
documentation,” July 2017. [Online]. Available: https://sri-csl.github.
io/secure ros

[24] R. White, G. Caiazza, A. Cortesi, and H. Christensen, “SROS1: Using
and developing secure ros1 systems,” in Robot Operating System
(ROS): The Complete Reference (Volume 3). Springer International
Publishing, 2018.

[25] R. White, H. I. Christensen, G. Caiazza, and A. Cortesi, “Procedurally
provisioned access control for robotic systems,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 1–9.

[26] R. White, G. Caiazza, C. Jiang, X. Ou, Z. Yang, A. Cortesi, and
H. Christensen, “Network reconnaissance and vulnerability excavation
of secure dds systems,” in 2019 IEEE European Symposium on
Security and Privacy Workshops (EuroS PW), 2019, pp. 57–66.

[27] R. White, “Usable security and verification for distributed robotic
systems,” Ph.D. dissertation, University of California San Diego, 2021.

[28] V. Mayoral-Vilches, N. Garcı́a-Maestro, M. Towers, and E. Gil-
Uriarte, “Devsecops in robotics,” arXiv preprint arXiv:2003.10402,
2020.

[29] H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim, “Rviz: a toolkit for
real domain data visualization,” Telecommunication Systems, vol. 60,
no. 2, pp. 337–345, 2015.

[30] O. M. G. (OMG), “Omg data distribution service (dds), version 1.4,”
2015. [Online]. Available: https://www.omg.org/spec/DDS/

[31] R. Rohith, M. Moharir, G. Shobha et al., “Scapy-a powerful interactive
packet manipulation program,” in 2018 international conference on
networking, embedded and wireless systems (ICNEWS). IEEE, 2018,
pp. 1–5.

[32] O. M. G. (OMG), “The real-time publish-subscribe protocol dds
interoperability wire protocol (ddsi-rtps) specification, version 2.5,”
2021. [Online]. Available: https://www.omg.org/spec/DDSI-RTPS/2.
5/About-DDSI-RTPS/

[33] T. Moulard, J. Hortala, X. Perez, G. Olalde, B. Erice, O. Olalde,
and D. Mayoral-Vilches, “Ros 2 robotic systems threat model,” 2019.
[Online]. Available: http://design.ros2.org/articles/ros2 threat model.
html

[34] O. M. G. (OMG), “Dds security, version 1.1,” 2018.
[Online]. Available: https://www.omg.org/spec/DDS-SECURITY/1.
1/About-DDS-SECURITY/

[35] R. L. Rivest, A. Shamir, and L. M. Adleman, “Cryptographic com-
munications system and method,” Sep. 20 1983, uS Patent 4,405,829.

[36] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International journal of information
security, vol. 1, no. 1, pp. 36–63, 2001.

[37] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[38] R. C. Merkle, “Secure communications over insecure channels,”
Communications of the ACM, vol. 21, no. 4, pp. 294–299, 1978.

[39] K. Fazzari, “Ros 2 dds-security integration,” 2019. [Online]. Available:
http://design.ros2.org/articles/ros2 dds security.html

[40] R. White and M. Arguedas, “Ros 2 security enclaves,” 2020. [Online].
Available: http://design.ros2.org/articles/ros2 dds security.html

[41] R. White and K. Fazzari, “Ros 2 access control policies,” 2019.
[Online]. Available: http://design.ros2.org/articles/ros2 access control
policies.html

[42] M. Lanting, “Added design document for remote and multi-machine
launching,” 2020. [Online]. Available: https://github.com/ros2/design/
pull/297

[43] S. Macenski, F. Martı́n, R. White, and J. G. Clavero, “The marathon
2: A navigation system,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020, pp. 2718–2725.

[44] S. Macenski and I. Jambrecic, “Slam toolbox: Slam for the dynamic
world,” Journal of Open Source Software, vol. 6, no. 61, p. 2783,
2021. [Online]. Available: https://doi.org/10.21105/joss.02783

[45] F. B. Schneider, “Least privilege and more [computer security],” IEEE
Security & Privacy, vol. 1, no. 5, pp. 55–59, 2003.

http://wiki.ros.org/Metrics
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189
https://www.frontiersin.org/article/10.3389/fict.2018.00002
https://sri-csl.github.io/secure_ros
https://sri-csl.github.io/secure_ros
https://www.omg.org/spec/DDS/
https://www.omg.org/spec/DDSI-RTPS/2.5/About-DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/2.5/About-DDSI-RTPS/
http://design.ros2.org/articles/ros2_threat_model.html
http://design.ros2.org/articles/ros2_threat_model.html
https://www.omg.org/spec/DDS-SECURITY/1.1/About-DDS-SECURITY/
https://www.omg.org/spec/DDS-SECURITY/1.1/About-DDS-SECURITY/
http://design.ros2.org/articles/ros2_dds_security.html
http://design.ros2.org/articles/ros2_dds_security.html
http://design.ros2.org/articles/ros2_access_control_policies.html
http://design.ros2.org/articles/ros2_access_control_policies.html
https://github.com/ros2/design/pull/297
https://github.com/ros2/design/pull/297
https://doi.org/10.21105/joss.02783

	Introduction
	Related Work
	Approach
	Modeling
	Authentication
	Authorization
	Generation
	Deployment
	Monitoring and mitigation

	Application and analysis
	Conclusion
	References

