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Abstract

Isogeometric analysis (IGA) eliminates the gap between finite element analysis (FEA)
and computer aided design (CAD). Due to this, IGA is an innovative approach that
is receiving an increasing attention in the literature and it has recently become a
trending topic. Many research efforts are being devoted to the design of efficient
and robust solvers for this type of discretization. Given the optimality of multigrid
methods for FEA, the application of these methods to IGA discretizations has not
been unnoticed. We firmly think that they are a very promising approach as efficient
and robust solvers for IGA and therefore in this thesis we are concerned about their
application. In order to give a theoretical support to the design of multigrid solvers,
local Fourier analysis (LFA) is proposed as the main quantitative analysis. Although
different scalar problems are also considered along this thesis, we make a special fo-
cus on poroelasticity problems. More concretely, we focus on the quasi-static Biot’s
equations for the soil consolidation process. Nowadays, it is a very challenging task
to achieve robust multigrid solvers for poroelasticity problems with respect phys-
ical parameters and/or the mesh size. Thus, the main contribution of this thesis
is to propose robust multigrid methods for isogeometric discretizations applied to
poroelasticity problems.

The first part of this thesis is devoted to the introduction of the parametric con-
struction of curves and surfaces since these techniques are the basis of IGA. Hence,
with the definition of Bernstein polynomials and Bézier curves as a starting point,
we introduce B-splines and non-uniform rational B-splines (NURBS) since these
will be the basis functions considered for our numerical experiments. The second
part deals with the isogeometric analysis. In this part, the isoparametric approach
is explained to the reader and the isogeometric analysis of some scalar problems
is presented. Hence, the strong and weak formulations by means of Galerkin’s
method are introduced and the isogeometric approximation spaces as well. The next
point of this thesis consists of multigrid methods. The basics of multigrid methods
are explained and, besides the presentation of some classical iterative methods as
smoothers, block-wise smoothers such as multiplicative and additive Schwarz meth-
ods are also introduced. At this point, we introduce LFA for the design of efficient
and robust multigrid methods. Furthermore, both standard and infinite subgrids lo-
cal Fourier analysis are explained in detail together with the analysis for block-wise
smoothers and the analysis for systems of partial differential equations.

After the introduction of isogeometric discretizations, multigrid methods as our
choice of solvers and LFA as theoretical analysis, our goal is to design efficient and
robust multigrid methods with respect to the spline degree for IGA discretizations of
some scalar problems. Hence, we show that the use of multigrid methods based on
multiplicative or additive Schwarz methods provide a good performance and robust
asymptotic convergence rates. The last part of this thesis is devoted to the isogeo-
metric analysis of poroelasticity. For this task, Biot’s model and its isogeometric dis-
cretization are introduced. Moreover, we present an innovative mass stabilization of
the two-field formulation of Biot’s equations that eliminates all the spurious oscilla-
tions in the numerical approximation of the pressure. Then, we deal with two types
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of solvers for these poroelastic equations: Decoupled and monolithic solvers. In the
first group we devote special attention to the fixed-stress split method and a mass
stabilized iterative scheme proposed by us that can be automatically applied from
the mass stabilization formulation mentioned before. In addition, we perform a von
Neumann analysis for this iterative decoupled solver applied to Terzaghi’s problem
and demonstrate that it is stable and convergent for pairs Q1− Q1, Q2− Q1 and
Q3− Q2 (with global smoothness C1). Regarding the group of monolithic solvers,
we propose multigrid methods based on coupled and decoupled smoothers. Cou-
pled additive Schwarz methods are proposed as coupled smoothers for isogeometric
Taylor-Hood elements. More concretely, we propose a 51−point additive Schwarz
method for the pair Q2−Q1. In the last part, we also propose to use an inexact ver-
sion of the fixed-stress split algorithm as decoupled smoother by applying iterations
of different additive Schwarz methods for each variable. For the latter approach, we
consider the pairs of elements Q2− Q1 and Q3− Q2 (with global smoothness C1).
Finally, thanks to LFA we manage to design efficient and robust multigrid solvers
for the Biot’s equations and some numerical results are shown.
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Resumen

El análisis isogeométrico (IGA) elimina la barrera existente entre elementos finitos
(FEA) y el diseño geométrico asistido por ordenador (CAD). Debido a esto, IGA es
un método novedoso que está recibiendo una creciente atención en la literatura y re-
cientemente se ha convertido en tendencia. Muchos esfuerzos están siendo puestos
en el diseño de solvers eficientes y robustos para este tipo de discretizaciones. Dada
la optimalidad de los métodos multimalla para elementos finitos, la aplicación de es-
tos métodos a discretizaciones isogeométricas no ha pasado desapercibida. Nosotros
pensamos firmemente que los métodos multimalla son unos candidatos muy prom-
etedores a ser solvers eficientes y robustos para IGA y por lo tanto en esta tesis apos-
tamos por su aplicación. Para contar con un análisis teórico para el diseño de nue-
stros métodos multimalla, el análisis local de Fourier es propuesto como principal
análisis cuantitativo. En esta tesis, a parte de considerar varios problemas escalares,
prestamos especial atención al problema de poroelasticidad, concretamente al mod-
elo cuasiestático de Biot para el proceso de consolidación del suelo. Actualmente,
el diseño de métodos multimalla robustos para problemas poroelásticos respecto a
parámetros físicos o el tamaño de la malla es un gran reto. Por ello, la principal
contribución de esta tesis es la propuesta de métodos multimalla robustos para dis-
cretizaciones isogeométricas aplicadas al problema de poroelasticidad.

La primera parte de esta tesis se centra en la construcción paramétrica de cur-
vas y superficies dado que estas técnicas son la base de IGA. Así, la definición de
los polinomios de Bernstein y curvas de Bézier se presenta como punto de partida.
Después, introducimos los llamados B-splines y B-splines racionales no uniformes
(NURBS) puesto que éstas serán las funciones base consideradas en nuestro estu-
dio. La segunda parte trata sobre el análisis isogeométrico propiamente dicho. En
esta parte, el método isoparamétrico es explicado al lector y se presenta el análisis
isogeométrico de algunos problemas. Además, introducimos la formulación fuerte
y débil de los problemas anteriores mediante el método de Galerkin y los espacios
de aproximación isogeométricos. El siguiente punto de esta tesis se centra en los
métodos multimalla. Se tratan las bases de los métodos multimalla y, además de
introducir algunos métodos iterativos clásicos como suavizadores, también se in-
troducen suavizadores por bloques como los métodos de Schwarz multiplicativos y
aditivos. Llegados a esta parte, nos centramos en el LFA para el diseño de métodos
multimalla robustos y eficientes. Además, se explican en detalle el análisis estándar
y el análisis basado en ventanas junto al análisis de suavizadores por bloques y el
análisis para sistemas de ecuaciones en derivadas parciales.

Tras introducir las discretizaciones isogeométricas, los métodos multimalla y el
LFA como análisis teórico, nuestro propósito es diseñar métodos multimalla efi-
cientes y robustos respecto al grado polinomial de los splines para discretizaciones
isogeométricas de algunos problemas escalares. Así, mostramos que el uso de méto-
dos multimalla basados en suavizadores de tipo Schwarz multiplicativo o aditivo
produce buenos resultados y factores de convergencia asintóticos robustos. La úl-
tima parte de esta tesis está dedicada al análisis isogeométrico del problema de
poroelasticidad. Para esta tarea, se introducen el modelo de Biot y su discretización
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isogeométrica. Además, presentamos una novedosa estabilización de masa para la
formulación de dos campos de las ecuaciones de Biot que elimina todas las oscila-
ciones no físicas en la aproximación numérica de la presión. Después, nos centramos
en dos tipos de solvers para estas ecuaciones poroelásticas: Solvers desacoplados
y solvers monolíticos. En el primer grupo, le dedicamos una especial atención al
método fixed-stress y a un método iterativo propuesto por nosotros que puede ser
aplicado de forma automática a partir de la estabilización de masa ya mencionada.
Por otro lado, realizamos un análisis de von Neumann para este método iterativo
aplicado al problema de Terzaghi y demostramos su estabilidad y convergencia
para los pares de elementos Q1 − Q1, Q2 − Q1 y Q3 − Q2 (con suavidad global
C1). Respecto al grupo de solvers monolíticos, nosotros proponemos métodos mul-
timalla basados en suavizadores acoplados y desacoplados. En esta parte, métodos
de Schwarz aditivos acoplados son propuestos como suavizadores acoplados para
elementos isogeométricos de Taylor-Hood. En concreto, proponemos un método de
Schwarz aditivo de 51 puntos para el par Q2− Q1. En la parte final, también pro-
ponemos usar una versión inexacta del algoritmo de fixed-stress como suavizador
desacoplado mediante la aplicación de iteraciones de diferentes métodos de Schwarz
aditivos para cada variable. Para este último método, consideramos los pares de el-
ementos Q2− Q1 y Q3− Q2 (con suavidad global C1). Finalmente, gracias al LFA
conseguimos diseñar métodos multimalla eficientes y robustos para las ecuaciones
de Biot y algunos resultados numéricos son mostrados.
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Chapter 1

Parametric construction of curves
and surfaces

The geometry of curves and surfaces can be represented mathematically by means of
explicit, implicit or parametric forms. Among them, non-parametric forms are less
versatile and they are not as suitable as parametric methods for fitting, mathematical
description of free-form shapes, geometric design, shape manipulation, etc. These
properties of parametric forms are the main cause of their popularity in the literature
and their standard usage in Computer Aided Design (CAD), see Patrikalakis and
Maekawa, 2009; Piegl and Tiller, 1996; Yamaguchi, 1988; Risler, 1992.

The interest in curves and surfaces manufacturing has a huge historic back-
ground. As pointed out in Farin, 2002, shipbuilding techniques have been connected
to this topic since the early Roman times. Moreover, the first steps for geometric de-
sign development were taken in the area of car industry by de Casteljau and Bézier.
They introduced the use of Bernstein polynomials to represent curves and during
the 20th century the B-splines appeared and were recognized as a powerful tool in
approximation theory and parametric construction of curves and surfaces. All these
advances can be understood as a preface to CAD that would be developed by mak-
ing use of B-splines and NURBS. To sum up, CAD development has many historical
influences from different areas, the interested reader may refer to Farin, 2002 for
further information in this topic.

Nowadays, CAD is the standard tool for the computational construction and
design of curves, surfaces and volumes. Furthermore, its importance has increased
worlwide and many softwares using B-splines and NURBS machinery have been
developed. The mathematical research and development of numerical techniques
such as adaptive refinements are also receiving a lot of attention. For this purpose,
new approaches such as hierarchical B-splines and T-splines have been proposed as
an alternative to tensor-product surfaces and solids.

Let this introduction serve as a motivation for this chapter. As a starting point,
Bernstein polynomials and their properties will be introduced. Secondly, we will
focus on Bézier curves and surfaces that make use of these polynomials. Then, the
next two sections will be devoted to the description of B-splines basis functions and
their properties. With these basis functions, B-spline curves and surfaces can be
defined. In a natural way, NURBS basis functions together with their properties are
introduced and then the definition of NURBS curves and surfaces is included.

1.1 Bernstein polynomials

Parametrizations based on polynomials exhibit a good behavior for geometric mod-
elling. Among the benefits of using polynomials, we find an accurate and efficient
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evaluation of the parametrized curves/surfaces/solids. In addition, polynomials are
mathematically simple functions that allow to capture a wide set of geometries, see
Piegl and Tiller, 1996. For this purpose, Bernstein polynomials have been very use-
ful in the computer modelling framework. Nevertheless, their use is not restricted
to CAD. Initially, they were introduced by S. Bernstein for the proof of Weierstrass
theorem and nowadays these polynomials are widely applied in approximation the-
ory, numerical analysis, statistics, etc. For a deeper historical review of Bernstein
polynomials, see Farouki, 2012. Now, let us introduce the definition of Bernstein
polynomials of degree k:

Definition 1.1.1. Given a polynomial degree k, the Bernstein polynomials are de-
fined as

Bk
i (t) :=

(
k
i

)
ti(1− t)k−i, t ∈ [0, 1], i = 0, . . . , k. (1.1)

As as example, in Figure 1.1 the quartic Bernstein polynomials are shown.
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FIGURE 1.1: Quartic Bernstein polynomials.

Bernstein polynomials have many interesting properties (for instance, see Manni
and Speleers, 2016; Piegl and Tiller, 1996). Some of them are the following:

1. Non-negativity: Bernstein polynomials are non-negative on the interval [0,1],
that is,

Bk
i (t) ≥ 0, ∀t ∈ [0, 1]. (1.2)

2. Partition of unity:
k

∑
i=0

Bk
i (t) = 1, ∀t ∈ [0, 1]. (1.3)

3. End-point interpolation:
Bk

0(0) = Bk
k(1) = 1. (1.4)

4. Each polynomial Bk
i has its unique maximum at t = i/k. These values are

called Greville abscissae.
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5. Symmetry:
Bk

i (t) = Bk
k−i(1− t), ∀t ∈ [0, 1]. (1.5)

6. Recursive definition:

Bk
i (t) = (1− t)Bk−1

i (t) + tBk−1
i−1 (t), (1.6)

with Bk
i (t) ≡ 0 if i < 0 or i > k.

7. Derivatives recursion:

dBk
i (t)
dt

= k(Bk−1
i−1 (t)− Bk−1

i (t)). (1.7)

8. Integration: All the Bernstein polynomials of degree k satisfy that∫ 1

0
Bk

i (t)dt =
1

k + 1
, ∀i = 0, . . . , k. (1.8)

Although all these properties are pretty interesting, the most remarkable ones in
the computer modeling context are the non-negativity and partition of unity prop-
erties. Moreover, their recursive definition provides an efficient way to evaluate
Bernstein polynomials and in practice numerical algorithms are based on this as-
pect. In approximation theory, it can be proved that these polynomials {Bk

i }k
i=0 form

a basis for the polynomial space Pk := span < 1, t, . . . , tk > in the interval (0, 1),
see Manni and Speleers, 2016. In addition, Bernstein used these polynomials for the
constructive proof of the Weierstrass approximation theorem, see Davis, 1963. In or-
der to achieve a uniform approximation by means of polynomials to any continuous
function f , the Bernstein polynomial of a function f was introduced as

Bk(t; f ) :=
k

∑
i=0

f (i/k)Bk
i (t). (1.9)

Hence, Bernstein polynomials have an important role in approximation theory
and their relevance is not restricted to geometric modeling. In addition, Bernstein
polynomials are popular in statistics as estimators of density functions, see Babu,
Canty, and Chaubey, 2002. Also, some generalizations of Bernstein polynomials
have been proposed in the literature such as the q-Bernstein polynomials (Oruç and
Tuncer, 2001).

1.2 Bézier curves and surfaces

Standard polynomial parametrizations are set by means of a power basis form. By
using the canonical basis of the polynomial space Pk, the k−th power basis form of
a curve C(t) = (x(t), y(t), z(t)) is given by

C(t) =
k

∑
i=0

Piti, (1.10)

where Pi = (xi, yi, zi) are vector coefficients. However, power basis forms are not
suitable for geometric modelling since they have only an algebraic essence. In ad-
dition, the vector coefficients lack a relationship with the geometry. At this point,
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Bézier proposed to use Bernstein polynomials rather than the canonical basis for
curves parametrization. Thus, a k−th degree Bézier curve is given by

Ck(t) =
k

∑
i=0

PiBk
i (t). (1.11)

With Bézier’s method, the vector coefficients obtain an important geometric mean-
ing for the parametrization by making a good use of Bernstein polynomials proper-
ties. For instance, the non-negativity and partition of unity properties imply the con-
vex hull property of Bézier curves, that is, the curve is totally contained in the convex
hull of the vector coefficients. Furthermore, Bernstein polynomials basis end-point
interpolation property makes the curves to be interpolatory at the end-points vector
coefficients. Thus, the vector coefficients for Bézier forms are called control points
and the polygon formed by the segments connecting the control points is known as
control polygon. As an example, we show a quartic Bézier curve in Figure 1.2 with
its corresponding control points.
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FIGURE 1.2: Bézier curve
Example of a fourth degree Bézier curve with control points P0 = (0.5, 0), P1 =
(0, 2), P2 = (1, 4), P3 = (3.5, 4.5) and P4 = (5, 3).

As observed in Figure 1.2, the Bézier curve shape tends to imitate the control
polygon’s shape. In fact, Bézier curves inherit the variation diminishing property
from the non-negativity property of Bernstein polynomials. In other words, the
number of intersections between a Bézier curve and a given straight line is bounded
by the intersections between that line and the corresponding control polygon of the
curve.

For the efficient point evaluation of Bézier curves, the first step is to realize that
any given k-th degree Bézier curve Ck can be expressed as a convex combination of
two (k− 1)-th degree Bézier curves (see Piegl and Tiller, 1996) as follows

Ck[P0, . . . , Pk](t) = (1− t)Ck−1[P0, . . . , Pk−1] + tCk−1[P1, . . . , Pk], (1.12)

where Ck[P0, . . . , Pk] denotes a k-th degree Bézier curve with k + 1 control points
P0, . . . , Pk. As pointed out in Piegl and Tiller, 1996, this property follows from the
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recursive definition of Bernstein polynomials given in (1.6). In fact, this recursion can
be transferred to the control points level such that the evaluation of Ck at any point
t is obtained. Thus, convex combination of the starting control points {Pi}k

i=0 ≡
{P0

i }k
i=0 leads us recursively to new control polygons formed by a reduced number of

control points {Pj
i}

k−j
i=0. Hence, the process finishes when Ck(t) = Pk

0(t) is computed.
This was the idea of de Casteljau, whose algorithm (see Böhm, Farin, and Kahmann,
1984; Gardan and Casteljau, 1985; Piegl and Tiller, 1996) is based on the formula

Pj
i(t) = (1− t)Pj−1

i (t) + tPj−1
i+1(t), (1.13)

where j = 1, . . . , k and i = 0, . . . , k− j. De Casteljau’s algorithm allows us to evaluate
Bézier curves and it is actually a corner cutting process since intermediate control
polygons are constructed until a point of the curve is reached. Thus, in Figure 1.3 we
show the control points and control polygons of the quartic Bézier curve in Figure 1.2
obtained recursively by using (1.13) in order to compute C4(0.6) = (2.216, 3.6336).

FIGURE 1.3: Corner cutting process
Control points and control polygons of the quartic Bézier curve in Figure 1.2 ob-
tained recursively by using (1.13) in order to compute C4(0.6) = (2.216, 3.6336).

However, polynomials do not provide a parametrization to capture the exact
geometry of circles, cylinders, etc. On the other hand, it is well-known that the use
of rational polinomial functions is enough to parametrize conic sections. Hence,
Bézier curves based on rational polinomials are capable to parametrize a wider set
of geometries and they are a more powerful tool in geometric modelling. Let us
introduce the definition of a k-th degree rational Bézier curve as follows

Ck(t) =

k

∑
i=0

wiBk
i (t)Pi

k

∑
i=0

wiBk
i (t)

, (1.14)

where {wi}k
i=0 is a set of weights. Usually, these rational basis functions are denoted

by
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Rk
i (t) =

wiBk
i (t)

k

∑
j=0

wjBk
j (t)

, i = 0, . . . , k. (1.15)

Weights have to be chosen carefully since they have a geometrical meaning. First,
they are usually taken positive in order to hold the convex hull property of Bézier
curves. Secondly, each weight wi represents the importance of its associated control
point/basis function on the curve shape. Thus, weights serve to quantify how much
the curve is pulled towards the corresponding control points. The case of wi = 1,
∀i = 0, . . . , k corresponds to a Bézier curve based on polynomials. Hence, rational
Bézier curves are a generalization of Bézier curves. In order to visualize the weights
effect on the curve, in Figure 1.4 we compare the quartic Bézier curve shown in
Figure 1.2 with its rational Bézier counterpart by changing w2 = 10.
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FIGURE 1.4: On the right, the previous quartic Bézier curve shown in
Figure 1.2 with wi = 1, i = 0 . . . , 4. On the left, we show the resulting

quartic rational Bézier curve by only changing w2 = 10.

As long as the weights wi > 0, for i = 0, . . . , k, rational Bézier curves hold all the
desirable properties of Bézier curves. In practice, rational Bézier curves/surfaces/solids
in Rd are algorithmically treated as geometric entities in Rd+1 by means of projective
transformations, see Patterson, 1985. Thus, applying this projective transformation
to a k−th degree rational Bézier curve Ck(t) in R3 leads to a nonrational Bézier curve
Cw

k (t) in R4 as follows

Cw
k (t) = (x̃(t), ỹ(t), z̃(t), w̃(t)), (1.16)

where

x̃(t) =
k

∑
j=0

wjxjBk
j (t), (1.17)

ỹ(t) =
k

∑
j=0

wjyjBk
j (t), (1.18)

z̃(t) =
k

∑
j=0

wjzjBk
j (t), (1.19)

w̃(t) =
k

∑
j=0

wjBk
j (t). (1.20)

Thus, in order to evaluate the rational curve, one has only to evaluate the four
fields of Cw

k by applying de Casteljau’s algorithm and then divide the first three fields
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(x̃(t), ỹ(t), z̃(t)) by w̃(t).
Remark: Bézier curves can also be parametrized in any closed interval [a, b] ⊂ R

with a variable change t̃ = a + t(b− a). In addition, one can split the domain [a, b]
into subintervals such that more Bézier polygons are obtained without changing the
original shape of the curve. Thus, each polygon controls a local part of the curve
leading to a more local control and design of the geometry. However, these tech-
niques are out of the scope of this work, for a further reading see Gardan and Castel-
jau, 1985; Farin, 2001.

In geometric modeling of surfaces, Bézier techniques are also applied and Bézier
surfaces are constructed by means of tensor product. In this framework, the basis of
Bézier surfaces are bivariate Bernstein polynomials given by

Bk,l
i,j (s, t) := Bk

i (s)Bl
j(t), with 0 ≤ s, t ≤ 1. (1.21)

Note that different polynomial degrees can be considered for each parametric
direction. Bézier surfaces make a good use of these polynomials and the so-called
control nets {Pi,j}i=0,...,k

j=0,...,l
guide their shape:

S(s, t) :=
k

∑
i=0

l

∑
j=0

Pi,jB
k,l
i,j (s, t). (1.22)

Rational Bézier surfaces can be constructed following the same procedure carried
for curves. In this case, the rational polynomial functions are defined as follows

Rk,l
i,j (s, t) :=

wi,jB
k,l
i,j (s, t)

k

∑
i=0

l

∑
j=0

wi,jB
k,l
i,j (s, t)

, with 0 ≤ s, t ≤ 1, (1.23)

where {wi,j}i=0,...,k
j=0,...,l

is the corresponding net of weights. Hence, rational Bézier sur-

faces are given by

S(s, t) :=
k

∑
i=0

l

∑
j=0

Pi,jR
k,l
i,j (s, t). (1.24)

These surfaces can model many geometries as commented before. Finally, we
show in Figure 1.5 a quartic rational Bézier surface of the top hemisphere centered
at the origin with radius r = 1, see Eberly, 2016. In order to understand this
parametrization, the control points and their corresponding weights are also shown
in Figure 1.6. With this last example, one can fully understand the power and utility
of Bézier’s method for geometric modelling.

1.3 B-spline basis functions

As pointed out in Prautzsch, Boehm, and Paluszny, 2002, the word spline firstly
appeared in the shipbuilding industries. In this context, splines were elastic beams
intended for modelling the shape of the ships hull. These beams were fixed and
weights were placed at specific points such that the spline adopted a desired shape.
From the mathematical point of view, spline functions (splines) were firstly devel-
oped by I. J. Schoenberg in Schoenberg, 1946a; Schoenberg, 1946b. In those two pa-
pers, splines were introduced as piecewise polynomial curves for the interpolation



8 Chapter 1. Parametric construction of curves and surfaces

FIGURE 1.5: Hemisphere
Top hemisphere centered at the origin with ra-
dius r = 1: Quartic rational Bézier parametriza-
tion with its control net.

i j Pi,j wi,j
1 1 (0, 1, 0) 1
1 2 (0, 1, 0) 1/3
1 3 (0, 1, 0) 1/3
1 4 (0, 1, 0) 1
2 1 (2, 1, 0) 1/3
2 2 (2, 1, 4) 1/9
2 3 (−2, 1, 4) 1/9
2 4 (−2, 1, 0) 1/3
3 1 (2,−1, 0) 1/3
3 2 (2,−1, 4) 1/9
3 3 (−2,−1, 4) 1/9
3 4 (−2,−1, 0) 1/3
4 1 (0,−1, 0) 1
4 2 (0,−1, 0) 1/3
4 3 (0,−1, 0) 1/3
4 4 (0,−1, 0) 1

FIGURE 1.6:
Hemisphere:

Control points and their corre-
sponding weights for the quar-
tic rational Bézier parametriza-
tion shown in Figure 1.5.

of functions and some of their derivatives at some interpolation points. In the litera-
ture, many works have been devoted to the approximation and interpolation using
splines, see Ahlberg, Nilson, and Walsh, 1967; Boor, 1978; Lyche and Schumaker,
1973; Schoenberg, 1973; Heinemann, 1977. Hence, let us introduce the definition of
spline functions as given in Prautzsch, Boehm, and Paluszny, 2002:

Definition 1.3.1. A curve C(ξ) is a spline of degree k with knots or breakpoints
ξ1, . . . , ξm+k+1, where ξi ≤ ξi+1 and ξi < ξi+k+1 for all possible i, if

• C(ξ) is k− r times differentiable at any r−times repeated knot.

• C(ξ) is a polynomial of degree ≤ k over each knot interval [ξi, ξi+1], for i =
1, . . . , m + k.

In other words, a k− th degree univariate spline is a mapping C : [ξ1, ξm+k+1]→
R such that the image of each knot span is a k−th degree polynomial and the smooth-
ness at each knot depends on its repetitions. Also, note that with this definition the
global smoothness of splines can vary from continuous to k− 1 differentiable if we
allow to repeat each internal knot k times at most. In order to represent spline curves
in Bézier form, that is, as a linear combination of some control points Pi, special k−th
degree basis functions N̂k

i must be used. These basis functions were firstly called B-
splines by Schoenberg in Schoenberg, 1967 and their recursive definition was found
by de Boor and Mansfield (de Boor, 1972) and Cox (Cox, 1972). First, given a knot
vector Ξ = {ξ1, . . . , ξm+k+1} with ξi ≤ ξi+1, i = 1, . . . , m + k, the piecewise constant
B-splines are defined as step functions

N̂0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1,
0 otherwise,

(1.25)
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where i = 1, . . . , m. Then, B-spline basis functions of degree j with 1 ≤ j ≤ k are
defined by means of the Cox-de Boor recursion formula:

N̂ j
i (ξ) =

ξ − ξi

ξi+j − ξi
N̂ j−1

i (ξ) +
ξi+j+1 − ξ

ξi+j+1 − ξi+1
N̂ j−1

i+1 (ξ), (1.26)

with 1 ≤ i ≤ m + k − j. Note that in some cases a 0/0 quotient might appear in
(1.26), these terms are always considered equal to 0, see Piegl and Tiller, 1996. As
mentioned before, some repeated knots might be considered in knot vector Ξ and
it consequently effects on the smoothness of the spline curve at the breakpoints. In
order to show the wide range of possibilies provided by knots repetitions, in Fig-
ure 1.7 we show the smoothness of cubic B-splines basis functions through internal
knots obtained with a knot vector Ξ = {0, 0, 0, 0, 1

4 , 1
2 , 1

2 , 3
4 , 3

4 , 3
4 , 1, 1, 1, 1}where all the

possible numbers of knots repetitions appear.
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FIGURE 1.7: B-splines
Smoothnesses of cubic B-splines basis functions through internal knots obtained
with a knot vector Ξ = {0, 0, 0, 0, 1

4 , 1
2 , 1

2 , 3
4 , 3

4 , 3
4 , 1, 1, 1, 1}.

In practice, the end-point interpolation property is desirable for splines. Due to
this, it is common to consider the so-called open knot vectors, that is, knot vectors
whose first and last knots are repeated exactly k + 1 times. Also, the knots are usu-
ally taken equally spaced since there might not be any known reason to group more
knots in a local part of the curve/surface. This type of knot vectors with equally
spaced knots are called uniform knot vectors and they are often used as a first ap-
proach for the numerical approximation of PDEs.

1.4 Properties of B-splines

B-splines functions overcome many issues related to Bernstein polynomials as basis
for Bézier curves. For instance, Bézier curves restrict the number of control points to
k + 1, where k is the polynomial degree. Hence, if many control points were needed,
an excessively high polynomial degree would be required. On the other hand, it is
also possible to apply subdivision and deal with composite Bézier curves, but this
does not seem to be very suitable for geometric modelling from a practical point of



10 Chapter 1. Parametric construction of curves and surfaces

view. In addition, control points have a global effect on Bézier curves due to the
global support of Bernstein polynomials. In order to surpass these difficulties, B-
splines offer a local control and spline degree is only conditioned by the complexity
of the computational domain geometry. Let us introduce the following B-splines
properties (see Piegl and Tiller, 1996; Prautzsch, Boehm, and Paluszny, 2002):

• Compact support:
supp(N̂k

i ) = [ξi, ξi+k+1] . (1.27)

• Nonzero basis functions on each knot span: In each knot interval, at most k + 1
B-spline basis functions do not vanish.

• Nonnegativity:
N̂k

i (ξ) ≥ 0, ∀i, k ∈N and ∀ξ ∈ R. (1.28)

In addition:
N̂k

i (ξ) > 0, for ξ ∈ (ξi, ξi+k+1). (1.29)

• Partition of unity:
m

∑
i=1

N̂k
i (ξ) = 1, ξ ∈ [ξ1, ξm+k+1]. (1.30)

• Differentiability: There exist all the derivatives of basis functions in the interior
of knot intervals. The derivative of a B-spline basis function is given by

d
dξ

N̂k
i (ξ) = k

(
1

ξi+k − ξi
N̂k−1

i (ξ)− 1
ξi+k+1 − ξi+1

N̂k−1
i+1 (ξ)

)
. (1.31)

• Recursion formulas for j−th derivatives of B-splines:

dj

dξ j N̂k
i (ξ) = k

(
1

ξi+k − ξi

dj−1

dξ j−1 N̂k−1
i (ξ)− 1

ξi+k+1 − ξi+1

dj−1

dξ j−1 N̂k−1
i+1 (ξ)

)
.

(1.32)

• Linear independency: B-splines {N̂k
i }m

i=1 with a knot sequence ξ1, . . . , ξm+k+1
form a basis for all splines of degree k.

As the reader might observe, B-splines hold all the good properties of Bernstein
polynomials. In fact, B-splines can be understood as an extension of Bernstein basis
since open knot vectors without inner knots provide the same polynomial basis for
each k. Furthermore, B-splines basis functions offer a local control of the geometry
due to (1.27) and the number of basis functions can be increased by adding knots.

1.5 B-spline curves and surfaces

B-spline curves imitate the Bézier form for geometry representation by using B-
splines basis functions as polynomial basis. Hence, a B-spline curve is given by

C(ξ) =
m

∑
i=1

PiN̂k
i (ξ), (1.33)

where Pi, i = 1, . . . , m are control points. As an example, in Figure 1.8 we show a
cubic B-spline curve with knot sequence Ξ = {0, 0, 0, 0, 1

4 , 1
2 , 3

4 , 1, 1, 1, 1} and control
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points P1 = (0, 0), P2 = ( 1
8 , 1), P3 = ( 3

8 , 1), P4 = ( 1
2 , 0), P5 = ( 5

8 ,−1), P6 = ( 3
4 , 3

2 )

and P7 = (1, 1
2 ). In the case of B-spline curves, control points do not have a global

effect on the geometry due to property (1.27). In fact, any control point Pi affects
the B-spline curve only in [ξi, ξi+k+1] and inversely the polynomial curve described
in [ξi, ξi+1] depends only on the control points Pi−k, . . . , Pi. Additionally, B-splines
inherit the variation diminishing property and the convex hull property such that
at any knot interval [ξi, ξi+1] the curve lies in the convex hull of the corresponding
control points Pi−k, . . . , Pi.
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FIGURE 1.8: B-spline curve
Cubic B-spline curve with knot sequence Ξ = {0, 0, 0, 0, 1

4 , 1
2 , 3

4 , 1, 1, 1, 1} and control
points P1 = (0, 0), P2 = ( 1

8 , 1), P3 = ( 3
8 , 1), P4 = ( 1

2 , 0), P5 = ( 5
8 ,−1), P6 = ( 3

4 , 3
2 )

and P7 = (1, 1
2 ).

The same way that de Casteljau found an efficient algorithm for the point evalua-
tion of Bézier curves, de Boor invented an efficient and numerically stable algorithm
for the point evaluation of B-spline curves, see de Boor, 1972. In order to evaluate the
B-spline curve at ξ ∈ [ξ1, ξm+k+1] his algorithm firstly finds the knot interval [ξi, ξi+1)
such that ξ ∈ [ξi, ξi+1). At this point, let us denote P0

j = Pj for j = i− k, . . . , i. Thus,
the recursive de Boor’s evaluation algorithm reads as follows

Pl
j(ξ) =

ξ j+k+1−l − ξ

ξ j+k+1−l − ξ j
Pl−1

j−1(ξ) +
ξ − ξ j

ξ j+k+1−l − ξ j
Pl−1

j (ξ), (1.34)

where l = 1, . . . , k and j = i − k + l, . . . , i. Finally, one obtains C(ξ) = Pk
i (ξ). In

Figure 1.9, we show the intermediate control points computed during de Boor’s
algorithm in order to evaluate at ξ = 1

8 the previous curve given in Figure 1.8. For
the same example, we show in Figure 1.10 the triangular scheme of computed points
during de Boor’s algorithm.

By looking more deeply into this evaluation algorithm, one realizes that de Boor’s
algorithm mimics the cutting process carried out by de Casteljau for the point evalu-
ation of Bézier curves. Indeed, this fact might be even clearer if the reader compares
Figure 1.9 with Figure 1.3. In the literature, more sophisticated techniques have been
developed for the efficient evaluation of B-splines. For instance, we can evaluate the
k + 1 non-vanished B-splines basis functions for a given ξ ∈ Ξ and then compute
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FIGURE 1.9: de Boor’s algorithm
Intermediate control points computed during de Boor’s algorithm in order to eval-
uate at ξ = 1

8 the previous curve given in Figure 1.8.

(1.33). Furthermore, for this purpose we can avoid to repeat some computations by
saving the recursive terms given in (1.26) when our task is to evaluate the corre-
sponding B-spline basis functions, see Piegl and Tiller, 1996.

As we mentioned before, the number of basis functions describing a B-spline can
be increased by inserting some additional knots to the knot vector Ξ. Thus, a more
local and flexible control of the B-spline is achieved by considering a different basis
{M̂k

i }m̄
i=1 for the B-spline representation of the curve with a refined knot vector Ξ̄.

Therefore, the new basis allows us to represent the same curve without any para-
metric nor geometric change since span

{
N̂k

1 , . . . , N̂k
m
}
⊂ span

{
M̂k

1, . . . , M̂k
m̄
}

. That
is:

C(ξ) =
m

∑
i=1

PiN̂k
i (ξ) =

m̄

∑
i=1

Qi M̂k
i (ξ), (1.35)

where m̄ denote the new number of B-spline basis functions and Qi are the new
control points. At this point, the actual problem is to compute the new control points
{Qi}m̄

i=1. This process is known as knot insertion and it is one of the most important
algorithms for splines. Knot insertion was developed by CAGD community in order
to render and intersect B-splines, see Goldman and Lyche, 1992. The first general
knot insertion algorithm was developed by Boehm in Boehm, 1980. This algorithm
allows to insert one new knot ξ̄ into Ξ by detecting the non-degenerate knot interval
such that ξ̄ ∈ [ξ j, ξ j+1). Hence, the new control points are calculated as follows

Qi = αiPi + (1− αi)Pi−1, (1.36)

where

αi =


1, if i ≤ j− k,

ξ̄ − ξi

ξi+k − ξi
, if j− k + 1 ≤ i ≤ j,

0, if i ≥ j + 1.

(1.37)
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FIGURE 1.10: de Boor’s algorithm
Triangular scheme of computed points during de Boor’s algorithm in order to eval-
uate at ξ = 1

8 the cubic B-spline curve given in Figure 1.8.

Moreover, it can be very interesting to insert the same knot multiple times in one
step. Thus, if the knot ξ j has multiplicity s in the knot vector Ξ and has to be inserted
r times (with s + r ≤ k) then the formula for the new control points changes to (see
Piegl and Tiller, 1996):

Qi,r = αi,rPi,r−1 + (1− αi,r)Pi−1,r−1, (1.38)

where Qi,r denotes the i−th control point in the r−th insertion of ξ j and

αi,r =


1, if i ≤ j− k + r− 1,

ξ̄ − ξi

ξi+k−r+1 − ξi
, if j− k + r ≤ i ≤ j− s,

0, if i ≥ j− s + 1.

(1.39)

In Figure 1.11, we show the B-spline curve given in Figure 1.8 after insertion of
a knot at ξ̄ = 7/8 and its new control polygon with control points Q1 = (0, 0),
Q2 = ( 1

8 , 1), Q3 = ( 3
8 , 1), Q4 = ( 1

2 , 0), Q5 = ( 29
48 ,− 5

6 ), Q6 = ( 23
32 , 7

8 ), Q7 = ( 7
8 , 1),

Q8 = (1, 1
2 ).

Despite we can insert several knots one by one by applying Boehm’s algorithm,
it might be necessary to insert many knots and it is desirable from the computational
point of view to do it simuntaneously. For this purpose, Cohen, Lyche and Riesen-
feld developed the so-called Oslo algorithm in Cohen, Lyche, and Riesenfeld, 1980.
In addition, this algorithm was improved in Lyche and Mørken, 1986; Goldman,
1990 and knot insertion algorithms still receive a lot of attention in the literature,
for further information see Goldman and Lyche, 1992. The opposite process to knot
insertion is knot deletion. Knot deletion is not suitable to any B-spline since it might
change the geometry of the curve.
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FIGURE 1.11: Knot insertion
B-spline curve given in Figure 1.8 after insertion of a knot at ξ̄ = 7/8 and its new
control polygon with control points Q1 = (0, 0), Q2 = ( 1

8 , 1), Q3 = ( 3
8 , 1), Q4 =
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48 ,− 5
6 ), Q6 = ( 23
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8 ), Q7 = ( 7
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An important derivation of knot insertion is degree elevation. This process con-
sists in elevate the spline degree to k+ 1 in (1.33) such that the curve does not change
parametrically nor geometrically. In this case, the goal of degree elevation is to find
control points {Qi} such that

C(ξ) =
m

∑
i=1

PiN̂k
i (ξ) =

m̄

∑
i=1

Qi M̂k+1
i (ξ). (1.40)

Note that this process is always possible since the initial B-spline basis for the
curve C generates a spline space embedded in the new one spanned by B-spline
basis functions of degree k+ 1, see Cohen, Lyche, and Schumaker, 1986. The simplest
way to compute the new control points is to evaluate (1.40) in adequate collocation
points and then solve the corresponding linear system. However, given that this
process is really expensive, many degree elevation algorithms have been developed,
see Prautzsch, 1984; Cohen, Lyche, and Schumaker, 1986. A very popular degree
elevation algorithm was developed by Piegl and Tiller in Piegl and Tiller, 1994 based
on applying knot insertions until each internal knot is folded k times. Hence, that
technique divides the B-spline curve into Bézier segments, then the degree elevation
is carried out for each segment and finally the unnecesary knots are deleted. The
opposite process to degree elevation is degree reduction. As it occurs with knot
deletion, this algorithm is not always suitable to any curve. Thus, an artificial criteria
must be set in order to determine whether a curve is degree reducible or not, see
Piegl and Tiller, 1996.

B-spline surfaces are constructed by means of tensor product of two univariate
B-splines. Thus, bivariate B-spline basis functions are given by

N̂k,l
i,j (ξ, η) := N̂k

i (ξ)N̂l
j (η), with 0 ≤ ξ, η ≤ 1, (1.41)

where k and l are the spline degrees considered for each direction. Note that for
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the bivariate case, two different knot sequences Ξ and H can be considered for the
parametric space (usually taken as [0, 1]2). Hence, B-spline surfaces are constructed
as a linear combination of bivariate B-spline basis functions multiplied by a net of
control points {Pi,j}i=1,...,m1

j=1,...,m2

that determine the geometrical mapping:

S(ξ, η) :=
m1

∑
i=1

m2

∑
j=1

Pi,jN̂
k,l
i,j (ξ, η). (1.42)

In Figure 1.12 we show a bicubic B-spline surface with knot vectors Ξ = (0, 0, 0, 0,
1, 1, 1, 1) and H = (0, 0, 0, 0, 1, 1, 1, 1) and its control points. Evaluation algorithms
for the univariate case such as de Boor algorithm can be extended to B-spline sur-
faces by applying it at both directions. However, for this purpose we can also eval-
uate the non-vanishing univariate B-spline basis functions and perform a vector-
matrix-vector product as follows:

S(ξ, η) :=
(

N̂k
i−k(ξ), . . . , N̂k

i (ξ)
) Pi−k,j−l . . . Pi−k,j

...
...

...
Pi,j−l . . . Pi,j

(N̂l
j−l(η), . . . , N̂l

j (η)
)

,

(1.43)
with ξ ∈ [ξi, ξi+1) and η ∈ [ηj, ηj+1). In addition, this strategy is also useful for eval-

uating the partial derivatives of B-spline surfaces. Let us denote with
∂r+s

∂rξ∂sη
S(ξ, η)

the r times partial derivative with respect to ξ and s times partial derivative with
respect to η of S. Then, applying (1.41):

∂r+s

∂rξ∂sη
S(ξ, η) :=

k

∑
c1=0

l

∑
c2=0

∂r

∂rξ
N̂k

i−k+c1
(ξ)Pi−k+c1,j−l+c2

∂s

∂sη
N̂l

j−l+c2
(η). (1.44)

The algorithms for knots insertion, knot deletion, degree elevation and degree
reduction are applied to B-spline surfaces by applying the univariate case to both
directions. Thus, the implementation of these algorithms for the bivariate case is
just a tedious task based on the same schemes that we do not include here, for the
interested reader on the implementational details see Piegl and Tiller, 1996.

i j Pi,j
1 1 (1, 1, 0)
1 2 (2, 2, 0)
1 3 (3, 2, 0)
1 4 (4, 1, 0)
2 1 (1, 2, 1)
2 2 (2, 7/3, 1)
2 3 (3, 7/3, 1)
2 4 (4, 2, 1)
3 1 (1, 3, 1)
3 2 (2, 8/3, 1)
3 3 (3, 8/3, 1)
3 4 (4, 3, 1)
4 1 (1, 4, 0)
4 2 (2, 3, 0)
4 3 (3, 3, 0)
4 4 (4, 4, 0)

FIGURE 1.12: B-spline surface
Bicubic B-spline surface with knot vectors Ξ = (0, 0, 0, 0, 1, 1, 1, 1) and its control

points.
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1.6 NURBS

Non-rational uniform B-splines(NURBS) enlarge the capabilities of B-splines by as-
signing weights to each basis function such that the partition of unity property holds.
Univariate NURBS basis functions of spline degree k are defined as follows

R̂k
i (ξ) =

wiN̂k
i (ξ)

m

∑
j=1

wjN̂k
j (ξ)

, (1.45)

where {wj}m
j=1 is a given set of weights. These basis functions hold all the good prop-

erties shown for B-splines if all the weights are positive and they allow us to capture
the exact geometry of conic sections. In Figure 1.13 we show cubic NURBS basis
functions generated with a knot vector Ξ = (0, 0, 0, 0, 1

4 , 1
2 , 3

4 , 1, 1, 1, 1) and weights
w1 = 1, w2 = 1 ,w3 = 2, w4 = 1, w5 = 1

2 , w6 = 1 and w7 = 1. As a special case, when
all weights wj = 1 for j = 1 . . . , m this definition of NURBS basis functions coincide
with the B-spline counterpart since B-spline basis functions hold partition of unity
property (1.30). In addition, they do coincide with rational Bézier polynomials when
there are not internal knots.
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FIGURE 1.13: NURBS basis functions
Cubic NURBS basis functions generated with a knot vector Ξ =
(0, 0, 0, 0, 1

4 , 1
2 , 3

4 , 1, 1, 1, 1) and weights w1 = 1, w2 = 1, w3 = 2, w4 = 1, w5 = 1
2 ,

w6 = 1 and w7 = 1.

Following the same procedure for B-splines, NURBS curves are defined by means
of these basis functions and control points as follows:

C(ξ) =
m

∑
i=1

PiR̂k
i (ξ). (1.46)

The efficient evaluation of NURBS curves is based on the combination of B-
splines evaluation techniques and projective transformation as in (1.16). Hence, a
k-th degree NURBS curve in R3 can be described as follows

Cw(ξ) = (x̃(ξ), ỹ(ξ), z̃(ξ), w̃(ξ)), (1.47)
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where

x̃(ξ) =
m

∑
i=1

wjxjN̂k
i (ξ), (1.48)

ỹ(ξ) =
m

∑
i=1

wjyjN̂k
i (ξ), (1.49)

z̃(ξ) =
m

∑
i=1

wjzjN̂k
i (ξ), (1.50)

w̃(ξ) =
m

∑
i=1

wjN̂k
i (ξ), (1.51)

and (xi, yi, zi) are the three components of the control points {Pm
i=1}. Thus, one is able

to perform a B-spline evaluation of these fields and then obtain the actual evaluation
of the curve by computing

C(ξ) =

(
x̃(ξ)
w̃(ξ)

,
ỹ(ξ)
w̃(ξ)

,
z̃(ξ)
w̃(ξ)

)
. (1.52)

Therefore, by applying this approach, all the algorithms presented for B-splines
can be used for NURBS too. In Figure 1.14 we show a planar quadratic NURBS curve
with knot vector Ξ = (0, 0, 0, 1

3 , 1
3 , 2

3 , 2
3 , 1, 1, 1) depicting the unit circle centered at the

origin and its control points, see the details on how to obtain NURBS constructions
of circles in Piegl and Tiller, 1996.
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FIGURE 1.14: NURBS curve
Planar quadratic NURBS curve with knot vector Ξ = (0, 0, 0, 1

3 , 1
3 , 2

3 , 2
3 , 1, 1, 1)

depicting the unit circle centered at the origin and its control points.

NURBS are also defined for multivariate cases by considering the corresponding
multivariate NURBS basis functions and assigning weights to them. For the bivari-
ate case, k−th degree NURBS basis functions are defined as follows

R̂k,l
i,j (ξ, η) =

wi,jN̂
k,l
i,j (ξ, η)

m1

∑
s1=1

m2

∑
s2=1

ws1,s2 N̂k,l
s1,s2

(ξ, η)

. (1.53)

With these basis functions, NURBS surfaces are constructed by means of
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S(ξ, η) :=
m1

∑
i=1

m2

∑
j=1

Pi,jR̂
k,l
i,j (ξ, η). (1.54)
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FIGURE 1.15: NURBS Surface
Planar biquadratic k = l = 2 NURBS surface with knot sequences

Ξ = (0, 0, 0, 1, 1, 1) andH = (0, 0, 0, 1
2 , 1, 1, 1) together with the coordinates of the

control points and their corresponding weights.

Note that algorithms for B-splines surfaces are extended to NURBS surfaces ap-
plying the projective transformation as done for the univariate case. In Figure 1.15,
we show a planar biquadratic k = l = 2 NURBS surface with knot sequences
Ξ = (0, 0, 0, 1, 1, 1) and H = (0, 0, 0, 1

2 , 1, 1, 1) together with the coordinates of the
control points and their corresponding weights. Hence, the evolution from Bézier
curves to B-splines and finally to NURBS proves that NURBS represent the most
general of these geometric design tools and they will be used for the numerical ap-
proximation of PDEs along the next chapter.
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Chapter 2

Isogeometric Analysis

2.1 Introduction

In computer engineering, the most used tool for numerical simulations has been typ-
ically finite element analysis (FEA). The reason why finite elements were so attrac-
tive to analysts is their simplicity and suitability for a wide range of problems such
as fluid dynamics, structural mechanics, thermodynamics, etc. This analysis had its
origins at the 1950s, being the first published paper on FEA the one by Turner et al.,
1956, but the term “finite elements” was firstly coined in Clough, 1960. FEA is based
on basis functions with an interpolatory behavior at the nodes. In fact, these basis
functions are typically Lagrange polynomials and they are known as interpolating
functions. Moreover, in FEM the use of Lagrage polynomials was not restricted
to the numerical approximation of partial differential equations (PDEs) but also to
representation of computational domains. However, finite element meshes allowed
only to approximate the exact geometry of simple computational domains such as
polygonal domains. On the other hand, the actual geometries for real models are
designed with CAD and consequently any FEM mesh refinement requires commu-
nication with the corresponding CAD model. This existing gap between analysis
and design working on the same models has been an important bottleneck in or-
der to improve analysis efficiency. In this framework, one of the most concerned
people on overcoming this issue was Thomas J.R. Hughes and he pursuited the in-
tegration of CAD and FEA. Together with J.A. Cottrell and Y. Bazilevs, the result
of their efforts was the invention of isogeometric analysis (IGA) firstly mentioned
in their paper Cottrell, Hughes, and Bazilevs, 2005. IGA is a numerical technique
based on the use of spline-type basis functions for the numerical analysis and the
design of the computational domain. The main purpose of IGA is to delete any
gap between CAD and FEA by applying basis functions typically used for geomet-
ric modelling to the approximation of the numerical solution of simulations carried
out in the corresponding models. Thus, it is possible to overcome any unefficiency
of model creation problem for its analysis. Since its first appearance, isogeomet-
ric analysis has gained a huge appreciation and relevance in the numerical analysis
community. Thus, the seminal work Cottrell, Hughes, and Bazilevs, 2009 on IGA
was published to introduce this approach to new starters. This topic has received
a lot of attention in the last years, being applied to many fields such as fluid dy-
namics (Tagliabue, Dedè, and Quarteroni, 2014; Nielsen et al., 2011; Akkerman et
al., 2011), structural analysis (Cottrell et al., 2006; Reali, 2006; Cottrell, Hughes, and
Reali, 2007), optimization problems (Dedè, Borden, and Hughes, 2012; Li and Qian,
2011; Seo, Kim, and Youn, 2010), etc.

In this chapter, the basics of isogeometric analysis based on B-splines and NURBS
are explained. In addition, we apply IGA for the discretization of several classical
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problems through Galerkin’s approximation method. As a starting point, the unidi-
mensional and bidimensional versions of the Poisson equation are treated in Section
2.2.1. Secondly, we consider the heat equation in Section 2.2.2 as an evolutionary
problem. Then, the biharmonic equation is given in Section 2.2.3 as an example of
high-order problem. In addition, we cover vector field problems with linear elastic-
ity problem in Section 2.2.4. Finally, we solve the Stokes equations in Section 2.2.5
in order to illustrate the good performace of isogeometric discretizations for saddle
point problems.

2.2 Isoparametric approach

The isoparametric concept consists to apply the same basis functions for geome-
try representation and numerical approximation of the solution. IGA and FEA ap-
ply this approach and show a similar procedure for the Galerkin approximation of
PDEs. In addition, both of them are suitable for numerical analysis since they pro-
pose basis functions with compact support, hold partition of unity property and
their discretizations yield matrices with a bandwidth related to the polynomial de-
gree k. However, there are many differences between these analysis as we point
out in Table 2.1. Firstly they apply the isoparametric approach by means of differ-
ent polynomials, typically Lagrange polynomials in FEM and B-splines in IGA. In
FEM, the basis interpolates the numerical solution at the nodes, but the degrees of
freedom are harder to interpret in IGA since spline-type basis functions are non-
interpolatory. IGA benefits from CAD technology and works on the exact geometry
of every model whereas FEA can only achieve an approximation of it. In addition,
IGA and FEA differ in the global smoothness of their basis. It is well known that the
first one provides discretizations with a C0 inter-element continuity, but isogeomet-
ric discretizations hold up to Ck−1 global continuity. Furthermore, although classical
h− and p−refinements can be considered for both of them, IGA introduces a new
refinement strategy called k−refinement (see Cottrell, Hughes, and Bazilevs, 2009).
This strategy consists of increasing the polynomial degree and the global smooth-
ness of the basis at the same time. The pure k−refinement starts with one single el-
ement that is firstly p−refined and then uniform knot insertion is carried out. Thus,
the number of elements is increased as in FEA but the number of basis functions is
reduced and the global smoothness is maximum Ck−1.

Finite element analysis Isogeometric analysis
Lagrange polynomials (in general) B-splines

Interpolatory basis Non-interpolatory basis
Approximation of the geometry Exact representation of the geometry
C0 inter-element continuity Up to Ck−1 global continuity

Classical h− and p−refinements Additional new k− refinement

TABLE 2.1: FEA vs IGA
Differences between FEA and IGA.

The classical isoparametric approach considers a reference element with para-
metric coordinates. Then, for the construction of each element in the physical do-
main a different geometrical transformation is applied. Nevertheless, this proce-
dure changes for isogeometric discretizations since there are two different notions of
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element (see Cottrell, Hughes, and Bazilevs, 2009). The first notion of element cor-
responds to patches. Patches are usually related to the macro-element concept since
they contain smaller structures called knot-spans. On the other hand, a knot-span is
the parametric subdomain delimited by two consecutive knots (for each parametric
direction). Given that knot-spans are the smallest structures in the parameter space,
we identify the classical concept of element with knot spans. Moreover, in IGA the
same B-spline or NURBS geometrical transformation is applied to each patch and
that transformation is locally transferred to every knot-span. Knot vectors contain
knots that serve to set the elements in the parameter domain, but they allow knots
repetitions as mentioned in Section 1.3. Hence, knots repetitions yield knot-spans
with zero length that are not relevant as elements. Due to this, it is convenient to
introduce an index space in order to discriminate zero length knot spans. Finally,
during the matrix assembly numerical integration is performed at each element. Al-
though more efficient quadrature rules have been developed for IGA discretizations
(see Hughes, Reali, and Sangalli, 2010; Auricchio et al., 2012), the standard approach
is to apply Gauss quadrature rules. Thus, the parent domain is usually taken as
[−1, 1]d where d denotes the number of parametric spatial directions. In Figure
2.1, we show a biquadratic isoparametric construction scheme using knot vectors
Ξ = {0, 0, 0, 0.5, 1, 1, 1} andH = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}.
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FIGURE 2.1: Biquadratic isoparametric construction scheme
using knot vectors Ξ = {0, 0, 0, 0.5, 1, 1, 1} and H =
{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. First, the indices of the knots de-
limiting every knot span are given in the index space. Second, the
parametric location of every element is represented in the parameter
space. Then, a geometrical transformation is applied to the whole
patch and every element is mapped to the physical domain. Finally,
numerical integration is performed at the parent domain during the

matrix assembly.

The NURBS basis functions defined in (1.53) act on the parameter space Ω̂. How-
ever, for the numerical solution in the computational domain we need a basis de-
fined on Ω. In order to define these basis functions, we introduce the geometrical
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mapping

F : Ω̂ −→ Ω, (2.1)

with the form given in (1.54), assigning to each pair of parametric coordinates (ξ, η)
the corresponding physical coordinates (x, y). Thus, any function v : Ω → R is
constructed as the composition

v = v̂ ◦ F−1, (2.2)

where v̂ : Ω̂ → R denotes any function defined on the parametric space Ω̂. In the
isoparametric approach, the B-spline/NURBS basis employed for the transforma-
tion in (2.1) are the same basis functions with form (2.2) to approximate the solution
of PDEs.

In this chapter, we consider Garlerkin’s method for the numerical approxima-
tion of several model problems. Instead of working with the strong form of these
problems, this method uses a weak form of it, also called variational formulation.
For this formulation, trial and test spaces have to be appropriately chosen. Then,
a function in the trial space is said to be a weak solution if it holds the variational
equations for all the test functions. Secondly, finite dimensional approximations of
these spaces are considered such that we can generate a discrete problem. Then, the
last point is to obtain the discrete solution. However, in the discrete problem some
integrals on Ω are involved and they have to be well approximated by means of
proper quadrature rules:

∫
Ω

f dΩ ≈
nq

∑
i=1

wi f (qi), (2.3)

which are determined by quadrature points qi, associated quadrature weights wi,
i = 1, . . . , nq and the number of quadrature points is denoted by nq. At this point,
the usual procedure is to compute the integrals on each element and then obtain the
sum of all of them. For this purpose, Gauss quadrature rules are pretty used since
they have proved to be exact for polynomial functions of degree up to 2nq − 1 with
nq the number of quadrature points. The implementation of these rules requires to
introduce linear mappings adapted to each element as follows

φe : [−1, 1]d −→ Ω̂e, (2.4)

where the elements in the parameter space (knot spans) are denoted with Ω̂e, e =
1, . . . , ne and ne is the number of elements. Thus, these linear mappings allocate the
quadrature points to the corresponding element where the basis functions are then
evaluated. Finally, the discretization yields a linear system of equations where the
unknowns are the coefficients that, by multiplying the corresponding basis functions
of the approximation space, yield the numerical solution of the method. In IGA,
the basis for approximation spaces are B-splines or NURBS basis functions and the
degrees of freedom correspond to the values of the control points for the solution.
Finally, the isogeometric analysis applying Galerkin’s method is explained for sev-
eral problems in the following subsections: The unidimensional and bidimensional
versions of Poisson equation in Section 2.2.1, the heat equation in Section 2.2.2, bi-
harmonic equation in Section 2.2.3, linear elasticity in Section 2.2.4 and the Stokes
equations in Section 2.2.5.
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2.2.1 Poisson equation

For the first model problem, we consider the simple unidimensional case (d = 1)
of the Poisson equation. Thus, let us introduce the following two-point boundary
problem with computational domain Ω = (0, 1):

− u′′(x) = f (x), x ∈ Ω, u(0) = u(1) = 0, (2.5)

where f is a continuous source function. Therefore, note that a strong solution of
this problem has to be u ∈ C2(0, 1). Given the strong form, the next step is to set up
a variational formulation and obtain a weak solution for this problem. First, let us
denote with V the variational space of test functions. Secondly, we test both sides of
the equation (2.5) with any test function v ∈ V . In order to do this, both sides are
multiplied by v and then integrated in the interval (0, 1):

−
∫ 1

0
u′′(x)v(x)dx =

∫ 1

0
f (x)v(x)dx.

Applying integration by parts yields∫ 1

0
u′(x)v′(x)dx−

[
u′(x)v(x)

]1
0 =

∫ 1

0
f (x)v(x)dx. (2.6)

Note that a necessary imposition of this problem is V = H1(0, 1), where the
Sobolev space H1(0, 1) is defined as follows

H1(0, 1) =
{

v ∈ L2(0, 1)
∣∣v′ ∈ L2(0, 1)

}
. (2.7)

At this point, the next step is to set the trial space U = V such that the test
functions v also hold the homogeneous Dirichlet boundary conditions. Thus, the
test space V is

H1
0(0, 1) =

{
v ∈ H1(0, 1)

∣∣v(0) = v(1) = 0
}

. (2.8)

Hence, the second term at the left-hand side of (2.6) vanishes. Finally, the varia-
tional formulation of (2.5) reads as follows: Find u ∈ V such that for every v ∈ V ,

a(u, v) = b(v), (2.9)

where

a(u, v) =
∫ 1

0
u′(x)v′(x)dx, b(v) =

∫ 1

0
f (x)v(x)dx.

The existence and uniqueness of solution to this variational problem is proved
via Lax-Milgram theorem using that the bilinear form a is bounded and coercive. In
addition, any weak solution of problem (2.9) is also a solution of (2.5). The numerical
approximation of the solution requires a discrete version of the variational formula-
tion. For this purpose, let us consider finite dimensional approximation subspaces
Vh ⊂ H1

0(0, 1). Hence, the discrete problem is given by: Find uh ∈ Vh such that for
every vh ∈ Vh:

a(uh, vh) = b(vh). (2.10)

In IGA the choice of Vh is a spline space. For this case, the parametric space and
the physical space coincide (x = ξ) for this problem and therefore the geometrical



24 Chapter 2. Isogeometric Analysis

mapping is the identity. Thus, we will use B-spline basis functions as basis for the
approximation space. A priori, the logical approach is to consider a uniform control
mesh since we do not know the behavior of the solution. Thus, let us denote with
ne the number of knot spans with nonzero length, that is, the number of elements.
Moreover, we denote with Ξk

s,h an open and uniform knot vector with inner knots
repeated r = k− s times, global smoothness Cs of the corresponding basis functions,
spline degree k and knot spans of length h = 1/ne. In addition, let us denote the i-th
element with Ii = ((i− 1)h, ih). Thus, the knot vector Ξr

k,h generates a B-spline basis
for the corresponding spline space

S k
s (Ξ

k
s,h) = {uh ∈ Cs(0, 1) : uh|Ii ∈ Pk, i = 1, . . . , ne, uh(0) = uh(1) = 0}, (2.11)

where Pk denotes the set of polynomials with degree less or equal than k. Hence,
we consider S k

s (Ξk
s,h) as approximation space since they contain univariate B-spline

approximations for the discrete problem (2.10). Note that the dimension of these
spaces is given by

dimS k
s (Ξ

k
s,h) = (k− s)(ne − 1) + k− 1, (2.12)

since the first and last B-spline basis functions have to be zero in order to satisfy the
Dirichlet boundary conditions. Given this spline approximation space, the numeri-
cal solution is given by the following linear combination

uh(x) =
m

∑
i=1

Nk
i (x)ui (2.13)

where we keep using m for the total number of spline basis functions as in Chapter 1
and ui are the so-called control variables. In order to obtain the control variables, it is
enough to test the discrete problem with every B-spline basis function spanning the
approximation space S k

s (Ξk
s,h). Thus, by using (2.13) in (2.10) we obtain the following

equations:
m

∑
j=1

(∫ 1

0

dNk
j (x)

dx
dNk

i (x)
dx

dx

)
uj =

∫ 1

0
f (x)Nk

i (x)dx, (2.14)

for i = 1 . . . , m. At this point, we only need to compute the integrals of the equation
above involving B-spline basis functions, their derivatives and the source term. Once
these integrals are computed, we generate a linear system

Ku = F, (2.15)

where u = (ui) is the vector of control variables and

Ki,j =
∫ 1

0

dNk
j (x)

dx
dNk

i (x)
dx

dx, Fi =
∫ 1

0
f (x)Nk

i (x)dx.

Instead of computing these integrals directly for each B-spline basis function,
they are expressed in terms of the integrals on each element Ii. However, since Gauss
quadrature rules are performed on the parent domain (−1, 1)d, we need also to in-
troduce the linear mappings given in (2.4). We define them for this case as follows

φi : [−1, 1] −→ Ii, (2.16)

for i = 1, . . . , ne and ruled by
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x = φi(ξ̂) =
1
2
(ξi+1 − ξi)ξ̂ +

1
2
(ξi+1 + ξi). (2.17)

With the help of connectivity arrays, the index of non-vanishing B-spline basis
functions on each element can be determined and saved into a matrix. This last in-
gredient completes all the requirements for assembling the so-called stiffness matrix
and its right-hand side, similar to any FEA implementation. Hence, we show the
pseudo-algorithm for the stiffness matrix assembly process in Algorithm 1. Firstly,
a loop through the elements is carried out, the corresponding end-points are set and
we save the global indices of the B-spline basis functions by recalling the connec-
tivity matrix. Secondly, we perform a second loop over the quadrature points by
applying a chosen Gaussian quadrature rule. We save the corresponding coordinate
of the quadrature point in the parent domain and its weight. Then, the parametric
(physical) coordinates are computed by means of φi. In addition, we compute |φi|
and the derivative of the B-spline basis functions with support in Ii sortened. They
are saved in a vector B and then the local stiffness matrix Ke is computed. Finally,
the contribution of Ke is added to the stiffness matrix K.

Algorithm 1 Stiffness matrix assembly: One dimensional case with B-splines

1: for i = 1 : ne do . Loop through elements
2: Ii ← (ξi, ξi+1)
3: conn← connectivity(i, :)
4: for q = 1 : nq do . Loop through the number of quadrature points
5: qp ← q−th quadrature point
6: qw ← q−th quadrature weight
7: x = φi(qp)

8: |φi| = 1
2 (ξi+1 − ξi)

9: B← dNk
j

dξ (x) · φ−1
j , with j ∈ conn

10: Ke = B′B · |F| · |φi| · qw
11: Ke → K
12: end
13: end

Remark: Dirichlet boundary conditions can be imposed by making zero the non-
diagonal elements of the corresponding rows in K. Then, in order to maintain the
number condition of K, the respective diagonal elements are replaced by the mean
value of the diag(K). In addition, the boundary conditions are imposed to the right-
hand side vector by substituting the corresponding values.

The solution of the discrete problem is a B-spline curve as given in (1.33). In fact,
the choice of the approximation space sets the basis with its knot-spans length h and
the spline degree k whereas the solution of linear system (2.15) yields the control
variables that guide the curve. In order to illustrate this, in Figure 2.2 we show the
control variables obtained by solving (2.15) with k = 2, s = 1 and h = 1/8. We plot
also the exact solution uex(x) = sin 5πx and the B-spline curve guided by the control
variables.

The error estimates given in Bazilevs et al., 2011 for linear elasticity suggest that
NURBS discretizations for Poisson’s equation provide (k+ 1)−th order convergence
rates in L2 and k−th order convergence rates in H1:

‖uex − uh‖L2 ≤ Chk+1, ‖uex − uh‖H1 ≤ Chk, (2.18)
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FIGURE 2.2: B-spline curve
Control variables obtained by solving (2.15) with k = 2, s = 1 and h = 1/8. We plot
also the exact solution uex(x) = sin 5πx and the B-spline curve guided by the control
variables.

where C is a constant that depends on the exact solution u and the shape of the
computational domain. In order to check these results, in Table 2.2 we show the
errors in L2−norm and convergence rates using spline degrees k = 2, 3, 4, maximum
global smoothness Ck−1 and several values of mesh size h for problem (2.5) with
exact solution uex(x) = sin 5πx. In addition, the corresponding errors in H1−norm
are shown in Table 2.3.

h k = 2 k = 3 k = 4
2−6 5.1514e− 05 − 2.3421e− 06 − 9.4128e− 08 −
2−7 6.3254e− 06 8.1440 1.4332e− 07 16.3415 2.8601e− 09 32.9111
2−8 7.8712e− 07 8.0362 8.9098e− 09 16.0858 8.8783e− 11 32.2142
2−9 9.8278e− 08 8.0091 5.5611e− 10 16.0215 2.7707e− 12 32.0441

TABLE 2.2: 1D Poisson equation
Errors in L2−norm and convergence rates using spline degrees k = 2, 3, 4,

maximum global smoothness Ck−1 and several values of mesh size h for problem
(2.5) with exact solution uex(x) = sin 5πx.

Now, let us consider the bidimensional Poisson equation:

−∆u = f , in Ω,
u = 0, on Γt,

∂nu = g, on Γn,
(2.19)

where n denotes the normal vector to Ω, ∂nu = ∇u · n is the normal derivative of u,
∂Ω = Γt ∪ Γn and Γt ∩ Γn = ∅. Again, we look for a weak solution of this problem by
setting up its variational formulation. Let V denote the variational space of weight
functions v. If this problem is tested with any weight function v ∈ V , it yields
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h k = 2 k = 3 k = 4
2−6 2.5117e− 02 − 9.5917e− 04 − 3.7156e− 05 −
2−7 6.2452e− 03 4.0218 1.1851e− 04 8.0936 2.2911e− 06 16.2177
2−8 1.5592e− 03 4.0055 1.4770e− 05 8.0236 1.4293e− 07 16.0293
2−9 3.8966e− 04 4.0014 1.8449e− 06 8.0059 8.9364e− 09 15.9944

TABLE 2.3: 1D Poisson equation
Errors in H1−norm and convergence rates using spline degrees k = 2, 3, 4,

maximum global smoothness Ck−1 and several values of mesh size h for problem
(2.5) with exact solution uex(x) = sin 5πx.

−
∫

Ω
v∆udΩ =

∫
Ω

f vdΩ.

Now, let us note that

∇ · (v∇u) = (∇u) · (∇v) + v∆u.

Using this together with Green’s theorem, we obtain∫
Ω
(∇u) · (∇v) dΩ−

∫
∂Ω

(v∇u) · ndS =
∫

Ω
f vdΩ.

Finally, we choose V = {v ∈ H1(Ω)
∣∣v|Γt = 0} and then the homogeneous Dirich-

let boundary conditions makes the integral on Γt equal to zero. Hence, the varia-
tional problem for (2.19) reads as follows: Find u ∈ V such that for every u ∈ V ,∫

Ω
(∇u) · (∇v) dΩ =

∫
Ω

f vdΩ +
∫

Γn

v · gdS. (2.20)

The existence and uniqueness of solution to (2.20) are provided using again the Lax-
Milgram theorem. At this point, the discrete problem is formulated by considering
finite dimensional approximation spaces Vh ⊂ V that actually are B-spline/NURBS
spaces. For the bidimensional case, NURBS discretizations acquire importance in
order to capture complex geometries while applying the isoparametric approach.
Firstly, we introduce the bivariate B-spline approximation spaces defined on the
parametric space, that is, Ω = Ω̂ = (0, 1)2. For this case, the approximation spaces
are obtained by means of tensorization of the spaces given in (2.11). Note that differ-
ent mesh sizes, spline degrees and global smoothnesses can be considered on each
direction:

S k1,k2
s1,s2

(Ξk1
s1,h1

,Hk2
s2,h2

) := S k1
s1
(Ξk1

s1,h1
)× S k2

s2
(Hk2

s2,h2
). (2.21)

Now, let us introduce B-spline approximation spaces when the physical space Ω
differs from the parametric space Ω̂. In this case, the geometrical mapping F defined
as a B-spline transformation in (1.42) takes an important role for the construction of
the approximation space Vh. In fact, given a bivariate B-spline approximation space
S on Ω̂ the actual B-spline approximation space defined on Ω is given by

Vh = S ◦ F−1. (2.22)

Therefore, this space is spanned by basis functions with the form Nk,l
i,j := N̂k,l

i,j ◦
F−1, with N̂k,l

i,j defined as in (1.41), k, l the spline degrees on each direction, i =

1, . . . , m1, j = 1, . . . , m2, and m1, m2 the number of basis functions on each direction,
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respectively. Hence, the B-spline approximation of (2.19) is given by:

uh(x) =
m1

∑
i=1

m2

∑
j=1

Nk,l
i,j (x)ui,j. (2.23)

For the NURBS approximation of problem (2.19), in general it is not possible
to apply a tensor product of univariate NURBS spaces since different weights are
assigned to every basis function. Thus, we consider bivariate NURBS basis functions
defined on Ω̂, that is, the basis functions {R̂k,l

i,j }i=1,...,m1
j=1,...,m2

given in (1.53). Then, the

inverse of the NURBS transformation F is applied to them in order to obtain the
NURBS basis on the physical domain Ω:

Vh = span{Rk,l
i,j = R̂k,l

i,j ◦ F−1, i = 1, . . . , m1; j = 1, . . . , m2}. (2.24)

In Figure 2.3, we show the computational domain of a quarter of an annulus with
inner radius r = 0.5 and outer radius R = 1 together with its control points and
weights. Using this NURBS transformation, in Figure 2.4 we show the biquadratic
NURBS basis functions with h = 1, s = 1 used for the approximation of problem
(2.19) on the quarter of an annulus given in Figure 2.3, applying the isoparametric
approach.

i j Pi,j wi,j
1 1 ( 1

2 , 0) 1
1 2 ( 3

4 , 0) 1
1 3 (1, 0) 1
2 1 ( 1

2 , 1
2 )

1√
2

2 2 ( 3
4 , 3

4 )
1√
2

2 3 (1, 1) 1√
2

3 1 (0, 1
2 ) 1

3 2 (0, 3
4 ) 1

3 3 (0, 1) 1

FIGURE 2.3: Quarter of annulus
Computational domain of a quarter of an annulus with inner radius r = 0.5 and

outer radius R = 1 together with its control points and weights.

Hence, the corresponding NURBS approximation of (2.19) is given by:

uh(x) =
m1

∑
i=1

m2

∑
j=1

Rk,l
i,j (x)ui,j. (2.25)

B-spline and NURBS discretizations yield a linear system with the form (2.15)
and the unknowns are again the control variables that determine the approxima-
tion uh. Thus, the entries of the stiffness matrix K using NURBS basis functions are
computed as follows

Ki,j =
∫

Ω
∇Ri(x) · ∇Rj(x)dx, (2.26)
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FIGURE 2.4: Biquadratic NURBS basis functions with h = 1, s = 1
used for the approximation of problem (2.19) on the quarter of an

annulus given in Figure 2.3 applying the isoparametric approach.

where the indices i, j are global indices that are related to the indices of each direc-
tion by means of an “element nodes” array (IEN array), see Cottrell, Hughes, and
Bazilevs, 2009. However, the assembly process is again carried out element by ele-
ment. Let us denote with Ke the local stiffness matrix corresponding to element Ωe
and let Re denote the vector of NURBS basis functions with support in Ωe. Hence:

Ke =
∫

Ωe

∇Re(x) · ∇Re(x)dx. (2.27)

For the computation of these integrals, a change of variable ξ = (ξ, η) = F−1(x, y)
is applied such that

Ke =
∫

Ω̂e

(
JF−T∇R̂e(ξ)

)T
· JF−T∇R̂e(ξ) |JF| dξ, (2.28)

where JF−T denotes the transposed jacobian matrix of the NURBS transformation
F−1. In the bivariate case, given an element Ω̂e limited by [ξi, ξi+1] and [ηj, ηj+1] the
linear mapping φe : [−1, 1]2 → Ω̂e such that φe(ξ̃, η̃) = (ξ, η) is ruled by

ξ = ξi +
ξi+1 − ξi

2
(ξ̃ + 1),

η = ηj +
ηj+1 − ηj

2
(η̃ + 1).

The efficient assembly of mass and stiffness matrices is a key point specially for
high-order spline discretizations. With tensor-product spline basis functions, one of
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the top numerical techniques for this purpose is the so-called sum-factorization. This
technique was firstly introduced in Orszag, 1980 for spectral methods in complex
geometries and then applied to high-order FEM (see Melenk, Gerdes, and Schwab,
2001; Ainsworth, Andriamaro, and Davydov, 2011). More recently, this technique
has been applied to IGA in Antolin et al., 2015 and further studied in Bressan and
Takacs, 2019. In addition to this, the representation of tensor-product IGA matrices
by means of kronecker products of univariate/lower-dimensional auxiliar matrices
was presented in Mantzaflaris et al., 2015. A simple but useful case is the construc-
tion of bivariate mass and stiffness matrices using B-splines on Ω̂ by means of kro-
necker products of lower-dimensional mass and stiffness matrices. Let us denote
with M(1)

i and K(1)
i the univariate mass and stiffness matrices, respectively, on the

i−th spatial direction, i = 1, 2. Then, the corresponding bivariate B-spline mass
M(2) and stiffness K(2) matrices on (0, 1)2 are given by

M(2) = M(1)
1 ⊗M(1)

2 , (2.29)

K(2) = M(1)
1 ⊗ K(1)

2 + K(1)
1 ⊗M(1)

2 . (2.30)

This technique is not restrictive to the whole global matrix, it is also really useful
for the construction of stencils and therefore helpful for matrix-free implementa-
tions. Note that these constructions can be extended to higher-dimensional cases.
As pointed out in Hofreither, 2018, the multivariate mass and stiffness matrices with
d spatial dimensions on the parametric domain are obtained as follows

M(d) = M(d−1)
1 ⊗M(1)

2 , (2.31)

K(d) = M(d−1)
1 ⊗ K(1)

2 + K(d−1)
1 ⊗M(1)

2 . (2.32)

As expected, the convergence order of bivariate B-splines do coincide with the
one-dimensional case in ‖ · ‖L2 and ‖ · ‖H1 . In Table 2.4 and Table 2.5, we show the
errors in L2−norm and H1−norm respectively next to the convergence rates using
spline degrees k = 2, 3, 4, maximum global smoothness Ck−1 and several values of
mesh size h for problem (2.19) on the square domain Ω = (0, 1)2 with exact solution
uex(x, y) = sin (5πx) sin (5πy) and homogeneous Dirichlet boundary conditions on
Γt = Γ. In these tables, we can see that the convergence order tends to k + 1 in L2

and k in H1.

h k = 2 k = 3 k = 4
2−4 4.4e− 03 − 8.5329e− 04 − 1.5032e− 04 −
2−5 4.3917e− 04 10.0145 4.0609e− 05 21.0124 3.3506e− 06 44.8641
2−6 5.1451e− 05 8.5356 2.3421e− 06 17.3389 9.4126e− 08 35.5963
2−7 6.3234e− 06 8.1366 1.4332e− 07 16.3415 2.8601e− 09 32.9105

TABLE 2.4: 2D Poisson equation: Square domain.
Errors in L2−norm next to the convergence rates using spline degrees k = 2, 3, 4,
maximum global smoothness Ck−1 and several values of mesh size h for problem

(2.19) on the square domain Ω = (0, 1)2 with exact solution
uex(x, y) = sin (5πx) sin (5πy) and homogeneous Dirichlet boundary conditions on

Γt = Γ.

It was shown in Cottrell, Hughes, and Bazilevs, 2009 that NURBS discretizations
yield the same convergence rates obtained with FEA. In Table 2.6 and Table 2.7 we
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h k = 2 k = 3 k = 4
2−4 4.515e− 01 − 7.65e− 02 − 1.30e− 02 −
2−5 1.029e− 01 4.3882 8.1e− 03 9.5082 6.3538e− 04 20.4488
2−6 2.51e− 02 4.0943 9.5987e− 04 8.3874 3.7186e− 05 17.0866
2−7 6.2e− 03 4.0234 1.1853e− 04 8.0981 2.2915e− 06 16.2274

TABLE 2.5: 2D Poisson equation: Square domain.
Errors in H1−norm next to the convergence rates using spline degrees k = 2, 3, 4,
maximum global smoothness Ck−1 and several values of mesh size h for problem

(2.19) on the square domain Ω = (0, 1)2 with exact solution
uex(x, y) = sin (5πx) sin (5πy) and homogeneous Dirichlet boundary conditions on

Γt = Γ.

show the errors in L2−norm and H1−norm respectively next to the convergence
rates using spline degrees k = 2, 3, 4, maximum global smoothness Ck−1 and several
values of mesh size h for problem (2.19) on the quarter of an annulus described in
Figure 2.3 with exact solution

uex(x, y) = sin (5πx) sin (5πy)
(
x2 + y2 − 1/4

) (
x2 + y2 − 1

)
,

and homogeneous Dirichlet boundary conditions on Γt = Γ. Here, we observe that
despite a faster convergence for coarse meshes, the error reduction with NURBS
discretizations tends to imitate the behavior shown for B-splines.

h k = 2 k = 3 k = 4
2−4 1.8615e− 03 − 8.2871e− 04 − 1.5990e− 04 −
2−5 1.2770e− 04 14.5771 2.3173e− 05 35.7615 4.2286e− 06 95.4313
2−6 1.3055e− 05 9.7819 1.1131e− 06 20.8186 9.0398e− 08 46.7772
2−7 1.5423e− 06 8.4645 6.4525e− 08 17.2508 2.5166e− 09 35.9203

TABLE 2.6: 2D Poisson equation: Quarter of an annulus.
Errors in L2−norm next to the convergence rates using spline degrees k = 2, 3, 4,
maximum global smoothness Ck−1 and several values of mesh size h for problem

(2.19) on the quarter of an annulus described in Figure 2.3 with exact solution
uex(x, y) = sin (5πx) sin (5πy)

(
x2 + y2 − 1/4

) (
x2 + y2 − 1

)
and homogeneous

Dirichlet boundary conditions on Γt = Γ.

2.2.2 Heat equation

The heat equation is a parabolic partial differential equation that models the heat
diffusion through a domain Ω ⊂ Rd. The strong formulation of this problem with
homogeneous Dirichlet boundary conditions is given by

∂tu− ∆u = f , in Ω× (0, T),
u = 0, on Γ× (0, T),
u = u0, on Ω× {0}.

(2.33)

In order to obtain the weak formulation of this problem, we apply the same steps
given in Section 2.2.1 by introducing the following variational space V = H1

0(Ω).
With this variational space, the weak formulation of (2.33) reads as follows: For each
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h k = 2 k = 3 k = 4
2−4 1.053e− 01 − 4.2147e− 02 − 1.9555e− 02 −
2−5 2.0413e− 02 5.1608 3.0621e− 03 13.7642 5.2368e− 04 37.3425
2−6 4.7708e− 03 4.2788 3.2731e− 04 9.3553 2.5021e− 05 20.9298
2−7 1.1726e− 03 4.0687 3.9253e− 05 8.3386 1.4496e− 06 17.2600

TABLE 2.7: 2D Poisson equation: Quarter of an annulus.
Errors in H1−norm next to the convergence rates using spline degrees k = 2, 3, 4,
maximum global smoothness Ck−1 and several values of mesh size h for problem

(2.19) on the quarter of an annulus described in Figure 2.3 with exact solution
uex(x, y) = sin (5πx) sin (5πy)

(
x2 + y2 − 1/4

) (
x2 + y2 − 1

)
and homogeneous

Dirichlet boundary conditions on Γt = Γ.

t ∈ (0, T), find u ∈ V such that the initial condition u = u0 holds on Ω× {0} and for
every v ∈ V , ∫

Ω
∂tu · vdΩ +

∫
Ω
(∇u) · (∇v) dΩ =

∫
Ω

f vdΩ. (2.34)

For the discretization of this parabolic evolution problem, there exist two main
approaches: Space-time discretizations and time-stepping methods combined with
spatial discretizations such as finite differences (FD), finite volumes (FV) or FEA.
In the first group, space-time methods treat time as an extra spatial variable and
PDEs are fully discretized at once. These methods generate sparse linear systems
with all the unknowns in Ω × (0, T), but the global matrix is a kronecker product
of other matrices corresponding to the time derivative, mass and stiffness matrix
(for a comprehensive description, see Loli et al., 2020). Thus, this structure can be
used to apply time-parallel integration techniques for the efficient solution of the
global system, see Gander, 2015. In addition, space-time discretizations have been
recently combined with IGA in the literature (Loli et al., 2020; Langer, Moore, and
Neumüller, 2016; Benedusi et al., 2021).

On the second group, we have the horizontal method (also known as Rothe’s
method). This method is based on approximating the time derivative by finite dif-
ferences (that is, the discretization in time is applied directly to the differential equa-
tion) and then the spatial discretization is performed. We propose this type of time-
stepping methods and more concretely we consider an implicit backward Euler
scheme due to its numerical stability. In this approach, the time step τ and a finite
approximation space Vh is set. Let us denote with ui

h the numerical approximation
of (2.34) at time ti. Then, at each time ti the following fully discretized problem has
to be solved: Find ui

h ∈ Vh such that∫
Ω

(
ui

h − ui−1
h

)
· vhdΩ + τ

∫
Ω
∇ui · ∇vhdΩ = τ

∫
Ω

f vhdΩ. (2.35)

In matrix form, it reads,

(M + τK) ui = τF + Mui−1, (2.36)

where M is the mass matrix, K is the stiffness matrix, and ui is the vector of control
variables for the solution at ti. However, this backward implicit Euler scheme yields
only first-order convergence in time whereas the same convergence rates shown in
Section 2.2.1 are hold in space. Hence, in Table 2.8 we show the L2 errors next to the
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error reduction for the one-dimensional case of (2.33) with exact solution uex(x, t) =
sin (πx) sin (πt), T = 1, using spline degrees k = 2 and k = 3 with maximum
smoothness respectively and several values of h and τ such that the error reduction
can be appreciated.

k = 2 L2 k = 3 L2

h = 2−4, τ = 2−4 0.1414 − h = 2−4, τ = 2−4 0.1414 −
h = 2−5, τ = 2−7 0.0181 7.8100 h = 2−5, τ = 2−8 0.0091 15.5990
h = 2−6, τ = 2−10 0.0023 7.9814 h = 2−6, τ = 2−12 5.6728e− 04 15.9805

TABLE 2.8: 1D Heat equation
L2 errors next to the error reduction at T = 1 for the one-dimensional case of (2.33)
with exact solution uex(x, t) = sin (πx) sin (πt), using spline degrees k = 2, 3 with

maximum smoothness respectively and several values of h and τ such that the
error reduction can be appreciated.

2.2.3 Biharmonic equation

The biharmonic equation is used for modelling some problems in engineering and
sciences. More concretely, this equation arises in mechanics, plates theory (see Tim-
oshenko and Woinowsky-Krieger, 1959; Ciarlet, 2002) and fluid dynamics (Girault
and Raviart, 2011). The strong formulation of the biharmonic equation in a physical
domain Ω ⊂ Rd is given by

∆2u = f , in Ω,
u = 0, on ∂Ω,

∇u · n = 0, on ∂Ω,

(2.37)

where n is the outer normal vector to ∂Ω. As we can observe, this is a fourth-order
partial differencial equation that requires at least C1−continuous piecewise poly-
nomial basis functions for the approximation of its solution. It is hard to obtain
H2−conforming discretizations in the FEM framework and their implementations
are not straightforward. Some FEM approaches for the discretization of (2.37) are
the so-called Argyris elements defined by means of fifth-order polynomials on tri-
angular meshes (see Argyris, Fried, and Scharpf, 1968), the Bogner-Fox-Schmit ele-
ment defined on rectangular meshes by means of cubic polynomials (Bogner, Fox,
and Schmit, 1965) or some nonconforming finite elements (Brenner and Scott, 2008).
However, IGA is suitable for the numerical solution of 2.37 since isogeometric dis-
cretizations offer global C1 smoothness with k ≥ 2. In fact, IGA has been applied
successfully to the biharmonic equation in Moore, 2018 and Pé de la Riva, Rodrigo,
and Gaspar, 2020. For the variational formulation of problem (2.37) we consider the
following Sobolev space:

H2
0(Ω) = {v ∈ H2(Ω) : v = ∇v · n = 0 on ∂Ω}.

Thus, we test the equation given in (2.37) with trial functions v ∈ H2
0(Ω) and the

variational formulation is given by: Find u ∈ H2
0(Ω) such that∫

Ω
∆u ∆v dΩ =

∫
Ω

f v dΩ, ∀v ∈ H2
0(Ω). (2.38)
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Now, we introduce a finite dimensional space Vh ⊂ H2
0(Ω) based on B-spline

basis functions. Thus, the corresponding discrete problem is given by: Find uh ∈ Vh
such that ∫

Ω
∆uh ∆vh dΩ =

∫
Ω

f vh dΩ. (2.39)

The discrete formulation yields a linear system Au = b where the (i, j) entry of
the matrix is given by

Ai,j =
∫

Ω
∆Nj ∆Ni dΩ,

where {Ni}dim Vh
i=1 are the B-splines basis functions that span the discrete space Vh ⊂

H2
0(Ω). Note that in (2.39) we have to compute the second derivatives of the basis

functions during the matrix assembly process. In practice, matrix A is obtained by
assembling the following elemental matrices:

Ae =
∫

Ωe

(∆Ne) (∆Ne)
′ dΩe,

where Ne denotes the vector of the B-spline basis functions with support in element
Ωe. For the fast formation of matrix A when Ω = Ω̂2, it can be used the following
kronecker product of matrices that represent univariate integrals:

A(2) = K(1) ⊗M(1) + M(1) ⊗ K(1) + 2K(1) ⊗ K(1), (2.40)

where K(1) and M(1) are the stiffness and mass matrices of the univariate case. In
fact, this approach was used in Pé de la Riva, Rodrigo, and Gaspar, 2020 for the
construction of the bivariate global matrix and its stencils. In Table 2.9 we show the
errors in H2−norm next to the convergence rates using spline degrees k = 2, 3, 4,
maximum global smoothness Ck−1 and several values of mesh size h for problem
(2.37) on the square domain (0, 1)2 with exact solution uex(x, y) = sin (πx) sin (πy).
Finally, as we can see in this table the convergence order for the biharmonic equation
is k− 1.

h k = 2 k = 3 k = 4
2−4 0.3959 − 0.0101 − 2.9191e− 04 −
2−5 0.1978 2.0013 0.0025 4.0154 3.7143e− 05 7.8592
2−6 0.0989 2.0003 6.2691e− 04 4.0040 4.6920e− 06 7.9163
2−7 0.0494 2.0000 1.5669e− 04 4.0010 5.9021e− 07 7.9497

TABLE 2.9: 2D Biharmonic equation
Errors in H2−norm next to the convergence rates using spline degrees k = 2, 3, 4,
maximum global smoothness Ck−1 and several values of mesh size h for problem

(2.37) on the square domain (0, 1)2 with exact solution uex(x, y) = sin (πx) sin (πy).

2.2.4 Linear elasticity

Elasticity theory studies the deformations of a body under external forces acting on
it. In this context, the external forces applied on the elastic material are called stresses
whereas the quantity of deformation is known as strain. First, the strain tensor ε is
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defined as follows:
ε(u) =

1
2

(
∇u+ (∇u)T

)
, (2.41)

where u is the displacement vector. The previous governing equation is known as
kinematic compatibility or geometric equation. Stress and strain tensors are related
by the generalized Hooke’s law:

σ = Cε, (2.42)

where σ denotes the stress tensor, and C is a fourth-order elasticity tensor whose
elements ci,j,k,l are called elastic coefficients. For our linear elastic problems, we will
consider the body to be homogeneous, that is, the elasticity tensor C shows the fol-
lowing symmetry properties:

ci,j,k,l = ci,j,l,k, (2.43)
ci,j,k,l = cj,i,k,l , (2.44)
ci,j,k,l = ck,l,i,j. (2.45)

In addition, we consider that the body is an isotropic elastic material (in other words,
the elastic properties are the same in all directions) and we focus our study on the
plane strain framework. With this approach, the stress tensor has only 3 nonzero
components that are related to the strain tensor by means of the following equation σxx

σyy
σxy

 =
E

(1 + ν)(1− 2ν)

 1 ν 0
ν 1 0
0 0 1−ν

2

 εxx
εyy
εxy

 , (2.46)

where E is the Young’s modulus that measures the stiffness of the body and ν is
the Poisson ratio that measures the strain in the elastic material at a perpendicular
direction to the stress. Usually, it is interesting to rewrite Hooke’s law in terms of
the so-called Lamé parameters λ and µ. These parameters are related to E and ν as
follows

λ =
νE

(1 + ν)(1− 2ν)
, (2.47)

µ =
E

2(1 + ν)
. (2.48)

Thus, the isotropic linear elastic version of Hooke’s law in terms of Lamé parameters
is given by

σ = λ tr(ε)I + 2µε, (2.49)

where tr(ε) is the trace of the strain tensor. Thus, the strong formulation of the linear
elastostatic problem is given by:

∇σ = f , in Ω,
u = 0, on Γt,

σ ·n = 0, on Γn,
(2.50)

where Γ = Γt ∪ Γn is the boundary of the physical domain Ω with Γt ∩ Γn = ∅. In
this formulation, the stress can be expressed in terms of u by combining (2.49) and
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(2.41) giving rise to the displacement formulation:

(λ + µ)∇ (∇ · u) + µ∇2u+ f =0, in Ω,
u =0, on Γt,

σ ·n =0, on Γn.

(2.51)

Since we are interested in the formulation (2.51), the unknowns are the displace-
ments u and for its weak formulation we introduce the following variational space

V = {u ∈ H1(Ω)d∣∣u|Γt = 0}.

Thus, the variational formulation of (2.51) reads as follows: Find u ∈ V such that

2µ
∫

Ω
ε(u) : ε(v) dΩ + λ

∫
Ω
(∇ · u) (∇ · v) dΩ+

∫
Ω
fv dΩ = 0, ∀v ∈ V . (2.52)

Following the steps given for the previous problems, we introduce a finite dimen-
sional approximation space Vh ⊂ V and hence the discrete problem reads: Find
uh ∈ Vh such that

2µ
∫

Ω
ε(uh) : ε(vh) dΩ + λ

∫
Ω
(∇ · uh) (∇ · vh) dΩ +

∫
Ω
fvh dΩ = 0, ∀vh ∈ Vh.

(2.53)
The discrete problem results in a linear system with the form:

Elu = Fu,

where we denote with El the global elasticity matrix, u is the vector with the control
variables for the displacements field and Fu is the corresponding right-hand side.
In order to obtain this matrix, elemental elasticity matrices are computed and then
assembled on the global one. Thus, the following integrals over each element Ωe are
computed:

Ae =
∫

Ωe

(
∂xRe 0 ∂yRe

0 ∂yRe ∂xRe

)
C

 ∂xRe 0
0 ∂yRe

∂yRe ∂xRe

 dΩe, (2.54)

where Re denotes the vector of B-spline/NURBS basis functions with support on the
element Ωe and the material matrix C with the elastic coefficients of the body given
in terms of the Lamé parameters is

C =

 2µ + λ λ 0
λ 2µ + λ 0
0 0 µ

 .

By using IGA discretizations, the error reduction in plane linear elastostatic prob-
lems shows the same behavior seen for the two dimensional Poisson equation. As
a first example, let us consider problem (2.51) in the square domain (0, 1)2 with the
following conditions:

σ ·n = g, on Γn = (0, 1)× {1},
u = 0, on Γt = Γ \ Γn,

E = 3 · 104, ν = 0.2,
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and g and the right-hand side f are taken such that the exact solution is

u =

(
sin (πx) sin (πy)
sin (πx) sin (πy)

)
. (2.55)

For this problem, in Table 2.10 and Table 2.11, we show the errors in L2 and H1

norms respectively next to the convergence rates using spline degrees k = 2, 3, 4,
maximum global smoothness Ck−1 and several values of the mesh size h. In the

h k = 2 k = 3 k = 4
2−4 7.9381e− 05 − 1.3672e− 06 − 5.9067e− 08 −
2−5 9.8893e− 06 8.0269 8.3192e− 08 16.4347 1.8454e− 09 32.0072
2−6 1.2364e− 06 7.9986 5.1638e− 09 16.1106 5.7766e− 11 31.9468
2−7 1.5463e− 07 7.9955 3.2218e− 10 16.0277 2.0765e− 12 27.8193

TABLE 2.10: 2D Linear Elasticity: Square domain.
Errors in L2 norm next to the convergence rates using spline degrees k = 2, 3, 4,

maximum global smoothness Ck−1 and several values of the mesh size h.

h k = 2 k = 3 k = 4
2−4 0.0045 − 1.3816e− 04 − 4.0923e− 06 −
2−5 0.0011 4.0165 1.7139e− 05 8.0610 2.5955e− 07 15.7668
2−6 2.8221e− 04 4.0042 2.1382e− 06 8.0156 1.6387e− 08 15.8392
2−7 7.0534e− 05 4.0010 2.6715e− 07 8.0039 1.0301e− 09 15.9080

TABLE 2.11: 2D Linear Elasticity: Square domain.
Errors inH1 norm next to the convergence rates using spline degrees k = 2, 3, 4,

maximum global smoothness Ck−1 and several values of the mesh size h.

previous tables, we can observe that B-spline discretizations applied to linear elas-
ticity problems hold (k + 1)−th order of convergence in L2 norm and k−th order of
convergence in H1 norm. In order to show the convergence rates with NURBS, let
us consider the quarter of an annulus given in Figure 2.3 as computational domain
with

u = uD, on Γt = Γ
E = 3 · 104, ν = 0.2,

and f is taken such that the exact solution is the one given in (2.55). Thus, in Table
2.12 and Table 2.13, we show the errors in L2 and H1 norms respectively next to
the convergence rates using spline degrees k = 2, 3, 4, maximum global smoothness
Ck−1 and several values of the mesh size h with the computational domain given
in Figure 2.3. Hence, we can observe that NURBS discretizations provide the same
convergence rates for elastostatic problems.

2.2.5 Stokes equations

The Stokes equations model the flow of an incompressible, viscous Newtonian fluid
when the inertia forces are negligible compared to the viscous forces. The strong
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h k = 2 k = 3 k = 4
2−4 8.4425e− 05 − 9.2368e− 06 − 1.0359e− 06 −
2−5 9.8545e− 06 8.5671 5.0746e− 07 18.2019 2.6638e− 08 38.8875
2−6 1.2142e− 06 8.1162 3.0644e− 08 16.5602 7.8726e− 10 33.8361
2−7 1.5148e− 07 8.0157 1.8985e− 09 16.1408 2.4231e− 11 32.4903

TABLE 2.12: 2D Linear Elasticity: Quarter of an annulus.
Errors in L2 norm next to the convergence rates using spline degrees k = 2, 3, 4,

maximum global smoothness Ck−1 and several values of the mesh size h.

h k = 2 k = 3 k = 4
2−4 0.0069 − 6.1846e− 04 − 6.4746e− 05 −
2−5 0.0017 4.1259 7.1803e− 05 8.6133 3.5489e− 06 18.2436
2−6 4.1508e− 04 4.0318 8.8081e− 06 8.1519 2.1464e− 07 16.5344
2−7 1.0356e− 04 4.0082 1.0958e− 06 8.0378 1.3316e− 08 16.1184

TABLE 2.13: 2D Linear Elasticity: Quarter of an annulus.
Errors inH1 norm next to the convergence rates using spline degrees k = 2, 3, 4,

maximum global smoothness Ck−1 and several values of the mesh size h.

formulation of Stokes equations with non-slip boundary conditions reads as follows:
−∇ · (2νε(u)) +∇p = f, in Ω,
∇ · u = 0, in Ω,
u = g, on ∂Ω,

(2.56)

where we consider Ω to be an open bounded domain in R2, u is the velocity of the
incompressible fluid, ν is the kinematic viscosity of the fluid, p is the pressure and f
is the density of the external forces. In this system, we assume that the fluid is homo-
geneous (constant density) and the viscosity ν remains constant. Both equations are
derived from conservation laws. Thus, the first of these equations is known as mo-
mentum equation whereas the second one is named mass continuity equation. For a
detailed explanation on the theoretical aspects and applications of Stokes equations,
we refer the reader to Thorpe, 1982; Galdi, 1994; Charru, 2011. In order to introduce
the variational formulation of (2.56), we consider the following variational spaces V
for the velocities and Q for the pressure:

V = H1
0(Ω)2, Q = L2

0(Ω), (2.57)

where

L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣ ∫
Ω

q = 0
}

.

Note that this choice of the pressure spaceQ is necessary in order to ensure the well-
possedness of the variational formulation of the Stokes equations when there are not
Dirichlet boundary conditions acting on p. In this case the pressure is determined up
to a constant and thus we need to enforce the following condition for its uniqueness:∫

Ω
p = 0.
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Thus, we proceed to test the momentum equation with trial functions v ∈ V and the
mass continuity equation with q ∈ Q. Then, the mixed variational formulation is
given by: Find (u, p) ∈ V ×Q such that{

a(u, v) + b(v, p) =
∫

Ω
fv dΩ, ∀v ∈ V ,

b(u, q) = 0, ∀q ∈ Q,
(2.58)

where the bilinear forms a(·, ·) and b(·, ·) are defined as
a(u, v) = 2ν

∫
Ω

ε(u) : ε(v) dΩ,

b(v, q) =
∫

Ω
(∇ · v) qdΩ.

(2.59)

Now, let us denote with Vh ⊂ V and Qh ⊂ Q two finite dimensional discrete spaces.
Thus, the discrete problem reads as follows: Find (uh, ph) ∈ Vh ×Qh such that{

a(uh, vh) + b(vh, ph) =
∫

Ω
fvh dΩ, ∀vh ∈ Vh,

b(uh, qh) = 0, ∀qh ∈ Qh,
(2.60)

For this problem, the pair of spaces (Vh, Qh) has to be chosen carefully in order to
obtain a stable discretization. In fact, there is a stability condition that the discrete
spaces must hold. This condition is known as inf-sup condition or LBB condition
(see Brezzi and Fortin, 1991):

inf
qh∈Qh

sup
vh∈Vh

b(vh, ph)

‖ph‖L2(Ω)‖vh‖H1
0 (Ω)

≥ c, (2.61)

where c is called the inf-sup constant. There are several inf-sup stable pairs of finite
element spaces in the literature. Some of these pairs such as Raviart-Thomas (RT)
elements (Raviart and Thomas, 1977), Nédélec (N) elements of the second family
(Nedelec, 1986) and Taylor-Hood (TH) elements (Taylor and Hood, 1973; Brezzi and
Falk, 1991) have been successfully extended to IGA in 2D. The isogeometric gen-
eralization of these spaces defined on the parametric domain Ω̂ = (0, 1)2 is given
by

V̂RT
h (k, s) = Sk+1,k

s+1,s (Gh)× Sk,k+1
s,s+1 (Gh), Q̂RT

h (k, s) = Sk,k
s,s (Gh), (2.62)

V̂N
h (k, s) = Sk+1,k+1

s+1,s (Gh)× Sk+1,k+1
s,s+1 (Gh), Q̂N

h (k, s) = Sk,k
s,s (Gh), (2.63)

V̂TH
h (k, s) = Sk+1,k+1

s,s × Sk+1,k+1
s,s (Gh), Q̂TH

h (k, s) = Sk,k
s,s (Gh), (2.64)

where in each case Gh is a mesh determined by two univariate uniform open knot
vectors with the corresponding spline degrees and global smoothnesses of the space
and the knot intervals length is h. These pairs of isogeometric spaces were formally
introduced in Buffa, Falco, and Sangalli, 2010. In that paper, the stability of these
spaces was shown by means of inf-sup numerical tests. In addition, the stability
of isogeometric Taylor-Hood elements was proved in Bressan and Sangalli, 2012 by
using the macro-element technique. The definition of these spaces in the physical
domain Ω takes into account the geometrical transformation F. In case of discrete
spaces for the pressure, their definition is given by

Qh =
{

qh = q̂h ◦ F−1∣∣q̂h ∈ Q̂h

}
. (2.65)
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This construction is the same for the pressure spaces in (2.62),(2.63),(2.64). However,
there are two different approaches for velocities since the component wise com-
position with F−1 is not divergence-preserving in the case of Raviart-Thomas and
Nédélec spaces, as pointed out in Buffa, Falco, and Sangalli, 2010. Thus, whereas the
definition of Taylor-Hood spaces on the physical domain Ω is given by

VTH
h (k, s) =

{
vh = v̂h ◦ F−1∣∣v̂h ∈ V̂TH

h (k, s)
}

, (2.66)

Raviart-Thomas and Nédélec spaces for the velocities defined in Ω need of the so-
called Piola mapping:

VRT
h (k, s) =

{
vh =

JF
|JF| v̂h ◦ F−1∣∣v̂h ∈ V̂RT

h (k, s)
}

, (2.67)

VN
h (k, s) =

{
vh =

JF
|JF| v̂h ◦ F−1∣∣v̂h ∈ V̂N

h (k, s)
}

, (2.68)

where JF denotes the jacobian matrix of the geometrical transformation F. For our
numerical experiments, we consider the isogeometric Taylor-Hood elements Q2−
Q1 (globally continuous) and Q3−Q2 holding C1 global smoothness. Taylor-Hood
finite elements show the following convergence rates:

‖uh − u‖H1 + ‖ph − p‖L2 ≤ Chk

Now, let us consider problem (2.56) with ν = 1
2 and exact solution

u(x, y) =
(

sin(πx) cos(πy)
− cos(πx) sin(πy)

)
, p(x, y) = sin(πx) sin(πy).

Thus, in Table 2.14 we show these errors ‖uh − u‖H1 + ‖ph − p‖L2 next to the corre-
sponding convergence rates using the Q2− Q1 and Q3− Q2 (with global smooth-
ness C1) Taylor-Hood elements for several values of the mesh size h. Hence, we can
observe that the convergence rates for these isogeometric elements are also optimal.

h Q2−Q1 Q3−Q2
2−4 0.0048 − 1.5643e− 04 −
2−5 0.0012 4.1025 1.9936e− 05 7.8465
2−6 2.8632e− 04 4.0541 2.5158e− 06 7.9244
2−7 7.1077e− 05 4.0284 3.1595e− 07 7.9628

TABLE 2.14: 2D Stokes equations: Unit square domain.
Errors ‖uh − u‖H1 + ‖ph − p‖L2 next to the convergence rates using the Q2−Q1

and Q3−Q2 (with global smoothness C1) Taylor-Hood elements for several values
of the mesh size h.

Remark: For domains with a non-trivial geometry, it is hard to find an exact
solution with non-homogeneous essential boundary conditions. As it was pointed
out in Cottrell, Hughes, and Bazilevs, 2005; Shojaee, Izadpenah, and Haeri, 2012,
the imposition of this type of boundary conditions requires the use of some addi-
tional techniques in order to avoid any loss of accuracy. Thus, the convergence rates
for NURBS are not shown here although both discretizations yield the same conver-
gence order, see Cottrell, Hughes, and Bazilevs, 2009.
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Chapter 3

Multigrid Methods

Multigrid methods are high efficient algorithms for the numerical solution of lin-
ear systems arised from discretizations of PDEs. The first studies on multigrid took
place in the 60s with the aim of accelerating the convergence of classical relaxation
schemes when they are applied to elliptic boundary value problems, see Fedorenko,
1962; Fedorenko, 1964; Bakhvalov, 1966. Then, the efficiency of multigrid methods
was pointed out during the 70s by Brandt in Brandt, 1973; Brandt, 1977 and also
multigrid convergence theory was developed, see Hackbusch, 1977; Hackbusch,
1980; Hackbusch, 1981. Hence, multigrid methods have become popular over the
years and many multigrid guides, monographies and books have been devoted to
them (Trottenberg, Oosterlee, and Schüller, 2001; Briggs, Henson, and McCormick,
1987; Wesseling, 2004). Furthermore, some international conferences such as the
European Multigrid Conference (EMG) and the Copper Mountain Conference on
Multigrid methods have manifested the interest of the research community on multi-
grid methods.

It is well known that multigrid techniques are among the fastest elliptic solvers
with a computational cost ofO(NlogN) operations, where N denotes the number of
unknowns. Besides their efficiency, one of the main features of multigrid methods
is their generality. For instance, their application is not restricted to the type of dis-
cretization, number of spatial dimensions of the problem, shape of computational
domain, etc. In addition, multigrid methods are used for the numerical solutions
of problems arising in many fields such as control theory, fluid dynamics, structural
analysis, statistics, etc. Robustness is another desirable feature of multigrid methods,
that is, instead of designing the method for an specific problem, its components can
be fixed to solve efficiently different problems where some parameters are involved.

3.1 Basics of Multigrid

The goal of multigrid methods is to solve efficiently linear systems arising from par-
tial differential equations. In order to work in a general framework, let us denote
with L a differential operator such that our problem can be written as

Lu = f , in Ω, (3.1)

where u is the exact solution, f is the corresponding righ-hand side and Ω is the
computational domain. Then, the discretization of a PDE by means of a grid Gh with
mesh size h leads to a discrete problem. For this problem, the continuous functions
and differential operators become grid functions and discrete operators respectively:

Lhuh = fh, in Ωh, (3.2)
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where Ωh = Gh(Ω), uh and fh are grid functions on Ωh and the discrete differential
operator is defined as a linear mapping

Lh : S(Ωh) −→ S(Ωh), (3.3)

with S(Ωh) the space of grid functions in Ωh. Multigrid methods make use of a
hierarchy of grids where the differential problem is defined. Depending on how the
grid hierarchy is constructed, there are three different types of multigrid methods:

• h−multigrid methods: The hierarchy is constructed by means of h−refinement.

• p−multigrid methods: Degree elevation or degree reduction on the grid func-
tions determines the hierarchy.

• hp−multigrid methods: Both h− and p−refinements performed together on
the grid functions provide the grid hierarchy.

We focus now on the introduction of standard h−multigrid. However, in Section
5.2 a two-level method based on an aggresive p−multigrid will be proposed. Also,
the location of grid functions can be chosen in different ways. For instance, some
finite element discretizations work with vertex-centered grids whereas FV can work
with cell-centered grids.

As mentioned before, the discrete operators Lh are linear mappings acting on
grid functions. The standard way to represent discrete operators is the use of sten-
cils. Each stencil is related to a given grid function such that it shows the coefficients
applied to grid functions with common support in the neighbourhood. Hence, any
linear discrete operator Lh can be described as follows

Lhuh(x, y) = ∑
(i,j)∈I

`i,juh(x + ih, y + jh),

where I is a subset of Z2 such that (0, 0) ∈ I and (x+ ih, y+ jh) ∈ Gh, with (i, j) ∈ I .
In this way, the stencil notation of the corresponding discrete operator Lh is repre-
sented as follows:

Lh := [`i,j] =



. . .
...

...
... . . .

. . . `−1,1 `0,1 `1,1 . . .

. . . `−1,0 `0,0 `1,0 . . .

. . . `−1,−1 `0,−1 `1,−1 . . .

. . . ...
...

...
. . .

 . (3.4)

For example, let us denote with Ak
s,h the two-dimensional discrete Laplace op-

erator using spline degree k, global smoothness Cs of the solution and length h of
the knot spans on both directions. Thus, the corresponding stencil centered on an
internal point (i, j) (3 ≤ i, j ≤ N − 2) by using the spline space S2,2

1,1 (Gh) yields the
equation

A2
1,huh(x, y) = f (x, y),

where
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A2
1,huh(x, y) =



− 1
360 − 7

180 − 1
12 − 7

180 − 1
360

− 7
180 − 13

90
1
30 − 13

90 − 7
180

− 1
12

1
30

11
10

1
30 − 1

12

− 7
180 − 13

90
1
30 − 13

90 − 7
180

− 1
360 − 7

180 − 1
12 − 7

180 − 1
360


uh(x, y)

=
2

∑
i,j=−2

A2
1,h(i + 3, j + 3) · uh(x + jh, y + ih).

Naturally, the stencils of discrete operators centered on boundary points or close
to them change but we cover the general case for internal points. Once we have set
a grid and the corresponding discrete operator, the problem is stated at the so-called
fine grid.

The next step on the understanding of multigrid is to introduce its main princi-
ples. Multigrid methods are based on the combination of smoothing error effect of
relaxation schemes and the so-called coarse grid correction. These two principles are
described as follows:

• Smoothing principle: Iterations of classical relaxation schemes cause a smooth-
ing effect on the error.

• Coarse grid correction: A smooth error is well-approximated in a coarse grid
where less computations have to be made.

In order to combine these principles, more than one grid has to be considered.
Hence, the simplest way to explain the multigrid procedure is to introduce the two-
grid cycle. As a starting point, let us consider model problem (3.2) in a fine grid
Gh and an initial approximation um

h for the m−th iteration of this cycle. First, ν1
iterations of a relaxation scheme with iteration matrix Sh are applied such that we
obtain:

ūm
h = Sν1

h um
h .

In this context, Sh is called smoother operator and ν1 is the number of pre-smoothing
steps. If we denote the corresponding error by

em
h = uh − ūm

h ,

the smoothing principle claims that em
h is smooth and then we can achieve a good

approximation of it in a coarse grid GH. In order to work with the coarse grid cor-
rection, we introduce the residual or defect

dm
h = fh − Lhūm

h . (3.5)

Now, the substraction of Lhūm
h to both sides of (3.2) yields the defect equation (or

residual equation)
Lhem

h = dm
h . (3.6)



44 Chapter 3. Multigrid Methods

Since the error em
h can be well approximated in a coarse grid, the two-grid strategy

consists to transfer the defect dm
h to GH by means of a restriction operator RH

h :

dm
H = RH

h dm
h . (3.7)

Thus, we solve the defect equation on ΩH and the correction is obtained by solving
a smaller linear system than the original one:

LHem
H = dm

H. (3.8)

However, the correction has to be transfered to the fine grid in order to update the
approximation in the fine grid. This transfer is carried out by a prolongation opera-
tor Ph

H:
em

h = Ph
Hem

H. (3.9)

The next step is to add the correction to the smooth approximation

ûm
h = ūm

h + em
h . (3.10)

Finally, additional ν2 iterations of the relaxation scheme (also called post-smoothing
steps) can be performed and the next approximation is obtained:

um+1
h = Sν2

h ūm
h . (3.11)

To sum up, in Figure 3.1 we show the scheme of the two-grid cycle procedure.
Each iteration of the two-grid cycle multiplies the error is by the following error
propagation matrix:

Sν1
h

um
h um

h

Pre-smoothing:

dm
h = fh − Lhum

h

Compute defect:

RH
h

dm
H em

H

defect equation

LHem
H = dm

H

Solve

dm
h

Ph
H

Restrict residual Prolongate correction

em
h

ûm
h

Post-smoothing:

Sν2
h

um+1
h

approximation:
Correct

ûm
h = um

h + em
h

TWO-GRID CYCLE

FIGURE 3.1: Two-grid cycle.
Scheme of two-grid cycle procedure.

M2g
h := Sν2

h

(
Ih − Ph

H L−1
H RH

h Lh

)
Sν1

h . (3.12)

However, two-grid cycles are not practical since solving the defect equation ex-
actly at the coarse grid can be still expensive from the computational cost point of
view. The idea of multigrid arises from a nested iteration of two-grid cycle: The con-
vergence of a two-grid cycle is not deteriorated if we get a suitable approximation
to the defect equation on ΩH. For this approximation, we can introduce as many
grids as necessary such that the coarsest grid implies to solve a linear system with
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negligible computational cost. Furthermore, the solution at the coarsest grid can be
approximated even by applying an iterative scheme.

The performance of multigrid methods depends strongly on the choice of their
components. Hence, one component of multigrid methods is the coarsening strat-
egy. In some cases, it might be possible to consider an aggresive coarsening if the
convergence rates do not deteriorate. However, we consider as our general approach
the standard coarsening H = 2h, that is, the grid size is doubled in each direction.
Following this strategy, in Figure 3.2 we show the hierarchy of l = 4 grids obtained
with finesh grid size h = 1

16 :

h = 1
16 h = 1

8 h = 1
4 h = 1

2

FIGURE 3.2: Grid hierarchy.
Hierarchy of l = 4 grids with finesh grid size h = 1

16 using standard coarsening.

At this point, smoothers, transfer operators and the number of smoothing steps
are clearly crucial. In addition, the number of times that the correction has to be
updated at each level/grid can be changed. This number γ is referred as cycle index
and has also an important role on convergence speed and computational cost. The
two most common types of cycles are V−cycles (γ = 1) and W−cycles (γ = 2). In
order to illustrate the effect of γ, in Figure 3.3, we show the structure of a V−cycle
and a W−cycle by considering l = 4 grids. Moreover, in Algorithm 2 we intro-
duce the general procedure of a multigrid cycle with cycle index γ with l levels or
grids. For this purpose, we substitute index h with index j in order to denote the
corresponding j−th grid.

V−cycle

γ = 1

W−cycle

γ = 2

FIGURE 3.3: Types of cycle.
Structure of a V−cycle (γ = 1) and a W−cycle (γ = 2) with l = 4 grids.

In order to study the convergence of multigrid, it is necessary to introduce the
error propagation matrix, see Trottenberg, Oosterlee, and Schüller, 2001:

Mj = Sν2
j

(
Ij − Pj

j−1

(
Ij−1 −Mγ

j−1

)
L−1

j−1Rj−1
j Lj

)
Sν1

j , for j = 1, . . . , l, (3.13)
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Algorithm 2 Multigrid.

um+1
j = MG(Lj, Rj−1

j , Pj
j−1, um

j , f j, ν1, ν2, γ, j)
1: if j = l then
2: Solve the defect equation: Ljem

j = dm
j .

3: return em
j

4: end
5: Pre-smoothing: ūm

j = Sν1
j um.

j
6: Computation of the defect: dm

j = f j − Ljūm
j .

7: Restrict the residual: dm
j−1 = Rj−1

j dm
j .

8: Approximate the correction by nested iteration:

em
j−1 = MG(Lj−1, Rj−2

j−1, Pj−1
j−2 , dm

j−1, 0, ν1, ν2, γ, j− 1).

9: Prolongate the correction: em
j = Pj

j−1em
j−1.

10: Update approximation: ûm
j = ūm

j + em
j .

11: Post-smoothing: um+1
j = Sν2

j ûm.
j

where Ij denotes the identity operator in the j−th grid and M0 = 0. Since the error
is multiplied by this iteration matrix, the asymptotic convergence factor is deter-
mined by the spectral radius of the previous matrix Mj and it allows us to differ-
entiate the performances of V-cycles and W-cycles by means of rigurous analysis or
local Fourier analysis (LFA). However, the cycle index γ can also depend on j giving
place to new types of cycles. One of these new cycles is the so-called F-cycle, shown
in Figure 3.4. The computational cost of F-cycles is in between of that of V-cycles
and W-cycles but in general they provide convergence rates very similar to those
from W−cycles. The idea of F-cycles is to perform the smoothing and restriction
process until the coarsest grid. Then, during the prolongation process a V−cycle is
performed before the correction is interpolated to a finer grid for the first time.

F−cycle

FIGURE 3.4: F-cycle
Structure of an F−cycle with l = 4 grids.

Transfer operators are constructed taking into account that h−refinement of the
approximation spaces yields also a hierarchy of approximation spaces with a proper
subset relation. That is, every coarse grid function ψH

i , i = 1, . . . , d1 can be expanded
exactly as a linear combination of fine grid functions ϕh

j , j = 1, . . . , d2. Hence, there
exist some coefficients ci,j ∈ R, with i = 1, . . . , d1 and j = 1, . . . , d2 such that
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ψH
i (x) =

d2

∑
j=1

ci,j ϕ
h
j (x), ∀x ∈ GH, i = 1, . . . , d1. (3.14)

In order to compute the coefficients of the previous linear combination, one can
take some collocation points where the basis functions are evaluated and solve a
linear system per basis function ψH

i of the coarse space. The standard approach is
to consider d2 equally spaced collocation points xc, c = 1, . . . , d2. Hence, one has to
solve the following linear systems:


ϕh

1(x1) ϕh
2(x1) · · · ϕh

d2
(x1)

ϕh
1(x2) ϕh

2(x2) · · · ϕh
d2
(x2)

...
...

. . .
...

ϕh
1(xd2) ϕh

2(xd2) · · · ϕh
d2
(xd2)




ci,1
ci,2
...

ci,d2

 =


ψH

i (x1)
ψH

i (x2)
...

ψH
i (xd2)

 , for i = 1, . . . , d1.

(3.15)
Thus, the coefficients obtained with the solution of the previous i−th linear sys-

tem provide the entries of the i−th row of the prolongation operator Ph
H. Then, the

restriction can be chosen as the transpose of the prolongation operator. In the bivari-
ate case, we can make a good use of the tensor product structure of isogeometric dis-
cretizations and take the bivariate transfer operators as the kronecker product of two
univariate transfer operators. Furthermore, in the case of NURBS discretizations we
must multiply B-spline transfer operators by the inverse of a diagonal matrix with
the corresponding weights given in (1.45).

3.2 Classical iterative methods

Classical iterative methods solve linear systems by means of a numerical scheme.
However, our main interest lies on their smoothing properties as pointed out in Sec-
tion 3.1. Let us consider the following linear system:

Au = b. (3.16)

Iterative methods are based on a splitting of matrix A = M− N such that M is
easily invertible. With this splitting, the new approximation for (3.16) at the m + 1
iteration is computed by

Mum+1 = Num + b. (3.17)

It is interesting to rewrite this iterative scheme as

um+1 = Sum + M−1b, (3.18)

where S = M−1N is the iteration matrix of the corresponding method. In addition,
the previous matrix is also the error propagation matrix when the iterative method
is considered as a solver. Let us denote with em = u − um the error in the m−th
iteration. Then, we have

em+1 := u− um+1 = Su + M−1b−
(

Sum + M−1b
)
= S(u− um) = Sem. (3.19)
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Instead of computing the next approximation um+1 directly, a practical approach
is to obtain the correction δu := um+1 − um and then get um+1 = um + δu. For this
purpose, equation (3.17) is rewritten is terms of the correction as

Mδu = rm, (3.20)

where rm = b− Aum is the residual at the m−th iteration. This technique based on
the correction δu is known as iterative refinement (see Higham, 1997) and is essen-
tial for the understanding of multiplicative Schwarz methods introduced in Section
3.3.1. In order to improve the efficiency of the iterative scheme in (3.18), we can add
a relaxation parameter ω such that the new approximation is given by

um+1 = ωu∗ + (1−ω)um. (3.21)

where

u∗ = Sum + M−1b. (3.22)

Thus, the damped relaxation scheme given in (3.21)-(3.22) can be written as

um+1 = Sωum + ωM−1b, Sω = ωS + (1−ω)I. (3.23)

Moreover, the corresponding relaxation scheme for correction δu by adding the
damped parameter ω is given by

Mδu = ωrm. (3.24)

At this point, let us introduce some of the most classical iterative methods. These
methods consider the following matrix splitting:

A = D− L−U, (3.25)

where D is the diagonal of A, −L is the lower strict part and −U is the upper strict
part of A. For instance, the choice of M = D and N = L + U in (3.25) yields Jacobi
iterative method:

Jacobi: Dum+1 = (L + U)um + b. (3.26)

If we isolate the new approximation, then one gets

um+1 = SJum + D−1b, (3.27)

with iteration matrix

SJ = D−1(L + U). (3.28)

Furthermore, the efficiency of Jacobi scheme can be improved with the intro-
duction of a damping coefficient ω. Thus, we obtain the damped Jacobi relaxation
scheme by applying (3.23):

um+1 = SJω um + ωD−1b, (3.29)

where the iteration matrix SJω is given by

SJω = ωD−1(L + U) + (1−ω)I. (3.30)
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The main advantage of damped Jacobi relaxation scheme is that the next ap-
proximation of every unknown does not require updated values of the rest of un-
knowns. Hence, this scheme is fully parallelizable and all the unknowns can be
updated simuntaneously. However, it has been proved that this iterative scheme
has a poor performance as smoother.

If we recall matrix splitting (3.25) and take M = D− L, N = U, then we obtain
the Gauss-Seidel relaxation scheme:

Gauss-Seidel: (D− L) um+1 = Uum + b, (3.31)

that can be rewritten as

um+1 = SGum + (D− L)−1b, (3.32)

where the Gauss-Seidel iteration matrix is given by

SG = (D− L)−1U. (3.33)

As done with Jacobi, a damping parameter ω can be considered for Gauss-Seidel
relaxation scheme:

um+1 = SGω
um + ωM−1b, (3.34)

where the iteration matrix SGω
is given by

SGω
= ω(D− L)−1U + (1−ω)I. (3.35)

When the damping parameter ω > 1, the previous scheme is known as suc-
cessive over-relaxation Gauss-Seidel (SOR). On the other hand, the case ω < 1 is
called under-relaxed Gauss-Seidel. Due to the matrix splitting, Gauss-Seidel iter-
ative method takes into account updated values of other grid points for the next
approximation of each unknown. Furthermore, this dependence on updated values
makes Gauss-Seidel not fully parallelizable and the order in which the unknowns
are updated becomes important. In fact, the performance of Gauss-Seidel depends
strongly on the grid points ordering. The standard grid points ordering is called
forward or lexicographic ordering and it gives place to lexicographic Gauss-Seidel
scheme. In this approach, a grid point (i1, j1) is updated before another grid point
(i2, j2) if i1 < i2 or i1 = i2 and j1 < j2.

On the other hand, an odd-even ordering of the grid points can be considered.
The odd-even or red-black ordering yields the red-black Gauss-Seidel (RB-GS) itera-
tive method. With this grid points ordering, a grid point (i, j) is said to be odd/even
if i + j is odd/even. The odd-even or red-black ordering of grid-points is illustrated
in Figure 3.5. RB-GS updates first the odd points and then the even points sequen-
tially. In general, RB-GS outperforms lexicographic Gauss-Seidel since it yields bet-
ter convergence rates and both have the same computational cost.

The splitting of matrix A = M − N can be understood as a splitting of the dis-
crete operator into Lh = L+

h + L−h , where L−h denotes the discrete operator with the
coefficients of unknowns that have been relaxed before and L+

h corresponds to the
discrete operator with coefficients of unknowns that are going to be relaxed. For this
purpose, it is really useful to describe the operators by means of the stencil notation
given in (3.4). Then, the relaxation scheme given in terms of stencils is

L+
h um+1

h = −L−h um
h + fh, (3.36)
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FIGURE 3.5: Red-black ordering of grid-points

and it is described for each unknown separately. For instance, let us give an ex-
ample of how to compute the new approximation of each unknown by using the
Jacobi relaxation scheme. If we consider the isogeometric discretization of the Pois-
son equation in a unit square by means of S2,2

1,1(Gh), then the discrete operator is split
into the two following stencils:

L+
h =


0 0 0 0 0
0 0 0 0 0
0 0 11

10 0 0
0 0 0 0 0
0 0 0 0 0

 , L−h =


− 1

360 − 7
180 − 1

12 − 7
180 − 1

360
− 7

180 − 13
90

1
30 − 13

90 − 7
180

− 1
12

1
30 0 1

30 − 1
12

− 7
180 − 13

90
1

30 − 13
90 − 7

180
− 1

360 − 7
180 − 1

12 − 7
180 − 1

360

 .

Thus, the new approximation applying Jacobi relaxation scheme is given by

um+1
h (x, y) =

10
11

(
fh(x, y)−

5

∑
i=1

5

∑
j=1

L−h (i, j) · um
h (x + (j− 3)h, y + (i− 3)h)

)
.

Moreover, the damped Jacobi relaxation scheme for this case yields:

um+1
h (x, y) =ω

10
11

(
fh(x, y)−

2

∑
i,j=−2

L−h (i + 3, j + 3) · um
h (x + jh, y + ih)

)
+ (1−ω)um

h (x, y).

In addition, the lexicographic Gauss-Seidel splitting of the same discrete operator
in terms of stencils yields:

L+
h =


0 0 0 0 0
0 0 0 0 0
− 1

12
1

30
11
10 0 0

− 7
180 − 13

90
1
30 − 13

90 − 7
180

− 1
360 − 7

180 − 1
12 − 7

180 − 1
360

 ,

L−h =


− 1

360 − 7
180 − 1

12 − 7
180 − 1

360
− 7

180 − 13
90

1
30 − 13

90 − 7
180

0 0 0 1
30 − 1

12
0 0 0 0 0
0 0 0 0 0

 .



3.3. Block-wise smoothers 51

3.3 Block-wise smoothers

In the previous Section 3.2, some iterative schemes were proposed as point-wise
smoothers. Within a multigrid framework, a natural extension of point-wise smoothers
are patch-wise smoothers. In order to apply such a relaxation, the computational do-
main is divided into small (overlapping or non-overlapping) patches, and then, one
smoothing step consists of solving local problems on each patch one-by-one either in
a Jacobi-type or Gauss-Seidel-type manner. This results in an additive or multiplica-
tive Schwarz-type smoother, respectively. One of the best-known multigrid methods
based on this type of relaxations was proposed by Vanka in Vanka, 1986 for solving
the steady state incompressible Navier-Stokes equations in primitive variables, dis-
cretized by a finite volume scheme on a staggered grid. The computational domain
is divided into cells with pressure nodes at the cell centers and velocity nodes at the
cell faces. The smoothing procedure is a so-called symmetric coupled Gauss-Seidel
technique (SCGS), which consists of solving local problems for each cell involving
all the unknowns located at the cell. This is done cell by cell in a Gauss-Seidel-type
manner and, therefore, can be viewed as a multiplicative Schwarz-type iteration.

The previous classical relaxation schemes update the new approximation at each
grid point separately by solving its corresponding equation. On the other hand,
box-type smoothers are based on a splitting of the grid into blocks of unknowns
that can be constructed in many ways. In fact, one can consider any possible block
size and overlapping among the blocks of unknowns. For the one-dimensional
case, one possibility is to split the grid into symmetric blocks of odd size, cen-
tered at each grid point ui and considering maximum overlapping. For instance
a block of three points centered at ui is given by B = (ui−1, ui, ui+1) and the cor-
responding blocks of five and seven points are B = (ui−2, ui−1, ui, ui+1, ui+2) and
B = (ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3). In Figure 3.6, we show the splittings of a
one-dimensional grid into: (a) blocks of three points, (b) blocks of five points and (c)
blocks of seven points, all of them with maximum overlapping among the blocks.

!

!" !!"#$! !"%$!

!"%$!!" ! !"%&!

!"#$%&''()*+

!

!" !!"#$! !"%$!

!"%$!!" ! !"%&!

!"#&! !"%&!

!"#$! !"%'!

!"#$%&''()*+

(a) (b)

!

!" !!"#$! !"%$!

!"%$!!" ! !"%&!

!"#&! !"%&!

!"#$! !"%'!

!"#$%&''()*+

!"#'! !"%'!

!"#&! !"%(!

(c)

FIGURE 3.6: Splittings of a one-dimensional grid into: (a) blocks of
three points, (b) blocks of five points and (c) blocks of seven points,

all of them with maximum overlapping among the blocks.

The two-dimensional version of these splittings originate square blocks of un-
knowns around each unknown ui,j. For instance, the square block of 9 (3× 3) points
centered at ui,j, illustrated in Figure 3.7, is given by

B = {ui−1,j−1, ui,j−1, ui+1,j−1, ui−1,j, ui,j, ui+1,j, ui−1,j+1, ui,j+1, ui+1,j+1}.
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ui−1,j−1 ui,j−1 ui+1,j−1

ui−1,j
ui,j

ui+1,j

ui−1,j+1 ui,j+1 ui+1,j+1

FIGURE 3.7: Square block of 9 (3× 3) points centered at ui,j.

Analogously, one can introduce the square blocks of 25 (5 × 5) and 49 (7 × 7)
points. Once the blocks of unknowns are set, the equations corresponding to the
grid points involved in each block are solved together. Let uB be the vector with
unknowns involved in block B, δuB the local corrections and dB the local defect.
Then, every local system of (3.16) is given by

ABδuB = dB, (3.37)

where AB is the local matrix corresponding to block B. The construction of local
matrices AB is carried out by means of a projection operator VB from the vector of
unkowns u to the vector of unknowns involved in the block B:

AB = VB AVT
B . (3.38)

Thus, one iteration of these smoothers consists of a loop over all the blocks such
that the corresponding local systems (3.37) are solved. Finally, it is important to
combine the local corrections δuB appropriately. For a correct combination of the
corrections, the overlapping among the blocks has to be taken into account. In ad-
dition, corrections can be combined via two different ways: Multiplicative Schwarz
methods or additive Schwarz methods.

3.3.1 Multiplicative Schwarz methods

Multiplicative Schwarz methods are derived from the alternating Schwarz method
introduced by H. A. Schwarz in Schwarz, 1870 as a domain decomposition algo-
rithm for the strong formulation of the Poisson equation. Then, the discretization of
the alternating Schwarz method gave rise to the computational tools that are known
as multiplicative Schwarz methods, for more details see Gander, 2008. Moreover,
these methods have received many attention as domain decomposition methods and
smoothers in the literature, see Chan and Mathew, 1994; Smith, Bjørstad, and Gropp,
1996; Smith, 1997; Kinnewig, Roth, and Wick, 2021; Kanschat and Mao, 2016. In
a multigrid framework, multiplicative Schwarz methods are block-wise smoothers
that always make use of the most recent updates of u. That is, for every local system
(3.38) the defect is obtained after a global update of u with the previous local correc-
tions. Since we need to recompute the defect constantly, the local systems have to
be solved sequentially. Hence, we show the algorithm of a multiplicative Schwarz
method in Algorithm 3. In this algorithm, A is the global matrix with size n× n, sB is
the size of all the blocks, NB denotes the number of blocks and MB is a matrix whose
i− th row contains the indices of the unknowns involved in block Bi.
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Algorithm 3 Multiplicative Schwarz method

um+1 = Multiplicative(A, um
j , b, MB, NB, sB)

1: for i = 1 : NB do . Loop through blocks.
2: Bi ← B(i, :) . Indices of the unknowns involved in block Bi.
3: Vi = 0sB×n
4: Vi(:, Bi) = IsB . Construction of projection operator Vi.
5: ABi ← Vi AVT

i . Construction of local matrix.
6: rBi ← Vi(b− Aum) . Construction of local defect.
7: ABi δuBi = rBi . Solve the local system.
8: um+1 = um + VT

i δuBi . Local correction of u.

9: end

This structure suggests that multiplicative Schwarz methods can be understood
as block Gauss-Seidel relaxation schemes. In addition, the global iteration matrix
of the multiplicative Schwarz method is given by the product of iteration matrices
corresponding to the local corrections of each block:

SM =
NB

∏
i=1

(
I −VT

Bi
(ABi)−1VBi A

)
. (3.39)

As we mentioned for Gauss-Seidel, the ordering in which the blocks are visited
matters, and it can improve the efficiency of the method. Furthermore, we can con-
sider different ordering strategies given the block structure of Schwarz methods.
Instead of a lexicographic ordering, we can select several sets of grid points and
update the blocks of each set sequentially. These sets of grid points are commonly
known as colors. Thus, a colored multiplicative Schwarz method makes a loop over
the colors. Then for each color, the method proceeds sequentially with the blocks
centered at the grid points of the current color. In order to illustrate a multicolored
grid, in Figure 3.8 we show a grid with 9 (3× 3) colours numbered from 1 to 9.
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FIGURE 3.8: Grid with 9 (3× 3) colours numbered from 1 to 9.

Furthermore, in Figure 3.9 we show for the coloured version of the 9-point (3× 3)
multiplicative Schwarz method the blocks of unknowns that are updated together
with (a) the first color and (b) the fifth color.
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FIGURE 3.9: Coloured version of the 9-point (3 × 3) multiplicative
Schwarz method: Blocks of unknowns that are updated together with

(a) the first color and (b) the fifth color.

3.3.2 Additive Schwarz methods

Additive Schwarz methods arise from the discretization of the parallel Schwarz
method introduced in Lions, 1988, but their name was firstly used in Dryja and
Widlund, 1989. These methods have been studied in Schoeberl and Zulehner, 2003
as smoothers in a multigrid method for saddle point problems. It is shown that,
under suitable conditions, the iteration can be interpreted as a symmetric inexact
Uzawa method. Restrictive additive Schwarz methods (RAS) were introduced in
Cai and Sarkis, 1999 as an efficient alternative to the classical additive Schwarz pre-
conditioners. Convergence of RAS methods was proven in Frommer and Szyld,
2001. It was shown that this method reduces communication time while maintaining
the most desirable properties of the classical Schwarz methods. RAS precondition-
ers are widely used in practice and are implemented in several software packages.
In Saberi, Meschke, and Vogel, 2022, a restrictive Schwarz method was proposed
as smoother for solving the Stokes equations. It was observed that this smoother
achieves comparable convergence rates to the multiplicative version, while being
computationally less expensive per iteration.

Instead of updating the defect as soon as possible, additive Schwarz methods
solve all the local systems by using the same global defect and then the approxima-
tion is corrected at once by addition of all the local corrections. Since there is no
need of intermediate updates, all the local systems can be solved in parallel. Hence,
additive Schwarz methods can be understood as block Jacobi smoothers. Thus, the
ordering in which the blocks of unknowns are visited does not affect the conver-
gence rates of these methods. However, the efficiency of additive Schwarz methods
can be improved by means of a weights vector ω during the correction process. Tak-
ing this into account, in Algorithm 4 we show the pseudo-code of one iteration of an
additive Schwarz method.

Moreover, the iteration matrix of additive Schwarz methods is determined by the
addition of all the local corrections as follows:

SA = I −
(

NB

∑
i=1

ωVT
Bi

(
ABi
)−1

VBi

)
A. (3.40)
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Algorithm 4 Additive Schwarz method
um+1 = Additive(A, um

j , b, MB, NB, sB, ω)

1: r ← (b− Aum)
2: for i = 1 : NB do . Loop through blocks.
3: Bi ← B(i, :) . Indices of the unknowns involved in block Bi.
4: Vi = 0sB×n
5: Vi(:, Bi) = IsB . Construction of projection operator Vi.
6: ABi ← Vi AVT

i . Construction of local matrix.
7: rBi ← Vir . Construction of local defect.
8: ABi δuBi = rBi . Solve the local system.

9: end
10: um+1 = um + ∑NB

i=1 VT
i ωδuBi . Global correction of u.

The choice of ω depends strongly on the overlapping among the blocks given
that the unknowns are updated several times. Furthermore, one might consider dif-
ferent values for the weights in ω such that some grid points are relaxed differently.
This is specially useful if the discretization provides more than one stencil or there is
an intermediate overlapping. Thus, the smoothing effect of additive Schwarz meth-
ods is highly improved.

Algorithm 5 Restrictive additive Schwarz method
um+1 = Additive(A, um

j , b, MB, NB, sB, ω, ov)

1: r ← (b− Aum)
2: for i = 1 : NB do . Loop through blocks.
3: Bi ← B(i, :) . Indices of the unknowns involved in block Bi.
4: Vi = 0sB×n
5: Ṽi = 0sB×n . Auxiliar projection operator Ṽi.
6: Vi(:, Bi) = IsB . Construction of projection operator Vi.
7: Ṽi(:, Bi(1 : sB − ov)) = IsB−ov . ov is the overlapping among the blocks.
8: Pi = Ṽ ′i . Construction of restrictive prolongation operator Pi.
9: ABi ← Vi AVT

i . Construction of local matrix.
10: rBi ← Vir . Construction of local defect.
11: ABi δuBi = rBi . Solve the local system.

12: end
13: um+1 = um + ∑NB

i=1 PiωδuBi . Global correction of u.

Although overlapping additive Schwarz methods are parallelizable, the overlap-
ping among blocks requires communication between processors during the smooth-
ing process. In order to avoid it, we can keep solving all the previous local systems
but omit multiple local corrections of the same grid point. There are two possibles
ways to achieve this effect: To modify the weights associated to each block or to
construct a different prolongation operator PB instead of using directly VT

B . The first
approach requires to change to zero the weights multiplying local corrections such
that every point is updated only once. On the other hand, one can take PB as done for
the non-restrictive case but making zero the columns whose contribution overlap a
previous correction. Using this approach, in Algorithm 5 we show the pseudo-code
of one iteration of such an additive Schwarz method. However, both approaches are
known as restrictive additive Schwarz methods.
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Chapter 4

Local Fourier Analysis

4.1 Introduction

Local Fourier analysis is a very useful tool for the quantitative analysis and design of
multigrid algorithms. This analysis was firstly introduced by Achi Brandt in Brandt,
1977 and then developed in Brandt, 1981; Brandt and Livne, 2011; Brandt, 1994. In
those papers, Brandt proposed that the operations involved in multigrid algorithms
can be analyzed as local processes by Fourier expansion of the error function. How-
ever, it is necessary to make some assumptions for the analysis. In fact, the discrete
operator is assumed to be linear with constant coefficients. This assumption does
not affect the generality of LFA since any general discrete operator can be locally
linearized and local constant coefficients can be considered. Hence, LFA can be ap-
plied to a wide range of different problems. In addition, the analysis deals with the
problem in an infinite grid

Gh = {x = ch
∣∣c ∈ Zd, h = (h1, . . . , hd)

T},

and the effect of boundary conditions is neglected. Moreover, LFA is based on a
Fourier decomposition of the error in eigenvectors of the discrete operator. Formally,
the error is considered as a grid function that can be expanded as a linear combi-
nation of complex exponential functions. This expansion comes from the Fourier
transform of any given u ∈ L2(Rd) defined as follows

û(θ) :=
1

2π

∫
Rd

e−ıθ·x/hu(x)dx, (4.1)

where the frequency θ = (θ1, . . . , θd). Nevertheless, it is well known that the function
u can be pulled back by using the Fourier inversion formula:

u(x) :=
1

2π

∫
Rd

eıθ·x/hû(θ)dθ. (4.2)

Thus, the contribution of every eıθ·x/h in u(x) is quantified as its corresponding
û(θ). This interpretation suggests that any grid function can be expanded as a linear
combination of the so-called Fourier modes:

ϕh(θ, x) = eıθ·x/h = eıθ1x1/h1 · · · eıθdxd/hd . (4.3)

Indeed, the error function is assumed to be a linear combination of these Fourier
modes. Thus, LFA is also known as local mode analysis. Note that the Fourier modes
are 2π-periodic in the frequency domain
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ϕh(θ, x) = ϕh(θ
′, x)⇔


θ1 = θ1 (mod 2π) ,

...
θd = θd (mod 2π) .

(4.4)

Thus, the Fourier modes with θ ∈ Θh := (−π, π]d define a basis on Gh and they
span the so-called Fourier space:

F (Gh) := span{ϕh(θ, x)
∣∣θ ∈ Θh}. (4.5)

Moreover, LFA is able to predict the asymptotic convergence behavior of multi-
grid methods by studying the effect of each component of the algorithm on the
Fourier modes. The first operator involved in any multigrid method is the discrete
operator. By taking into account the assumptions mentioned previously, the Fourier
modes are eigenfunctions of discrete operators:

Lh ϕh(θ, x) = L̃h(θ)ϕh(θ, x), (4.6)

where the formal eigenvalue L̃h(θ) is called the Fourier symbol of Lh. In order to
illustrate Fourier symbols, let us show the stencil notation of the one-dimensional
quadratic IGA discrete Laplace operator with global smoothness C1:

Lh =
1
h

(
−1

6
,−1

3
, 1,−1

3
,−1

6

)
. (4.7)

Thus, its Fourier symbol is given by

L̃h(θ) =
1
h

(
1− 2 cos(θ)

3
− 2 cos(2θ)

6

)
=

2
3h

(2− cos θ(1 + cos θ)).

The study of the Fourier symbol of discrete operators gives us some insight about
the difficulties to annihilate the high-frequency components of the error during the
smoothing process. In fact, it was pointed out in Donatelli et al., 2017 that the ap-
pearance of small eigenvalues associated with high frequencies foretell the need of
an intense smoothing procedure to achieve a good convergence rate. In Figure 4.1,
we show the Fourier symbol of the IGA discrete operator for the one-dimensional
Poisson problem (2.5), with k = 2, 5, 8 and holding maximum global smoothness
Ck−1.

We can observe in Figure 4.1 that the values of the eigenvalues associated with
high frequencies get reduced as the polynomial degree is increased. Thus, the same
smoother will deteriorate its performance for higher spline degrees and the search
of a suitable smoother for each k is not straightforward. For this task, we utilize the
power of LFA to design efficient and robust multigrid methods for IGA discretiza-
tions with respect to the polynomial degree k.

We organize the remaining part of this chapter as follows: In Section 4.2, we
introduce the standard analysis of LFA by presenting the smoothing analysis 4.2.1,
the two-grid analysis 4.2.2) and three-grid analysis 4.2.3. In Section 4.3, we show
the LFA for block-wise smoothers and a recent LFA based on infinite subgrids is
presented in Section 4.4. Finally, we introduce the analysis for systems of PDEs in
Section 4.5.
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FIGURE 4.1: Fourier symbol of the IGA discrete operator for the one-
dimensional Poisson problem (2.5), with k = 2, 5, 8 and holding max-

imum global smoothness Ck−1.

4.2 Standard analysis: h-multigrid methods

The standard local Fourier analysis is based on the Fourier modes presented in 4.1.
In addition, this analysis is often introduced for multigrid methods whose hierarchy
is based on an h−refinement of the mesh. It is also common to introduce the anal-
ysis with a standard coarsening strategy, that is, the grid size h is doubled H = 2h
on the following coarse grid of the hierarchy. Furthermore, we will consider the
same grid size on each spatial direction for the sake of simplicity. As pointed out
before, the goal of LFA is to predict the asymptotic convergence behavior of multi-
grid methods. This is achieved by studying the effect of each operator on the Fourier
modes and considering that the operations are local processes. The idea within LFA
is to simplify the computation of the spectral radius of the iteration matrices and
the use of local Fourier modes allows to do this task accurately. Hence, the com-
mon approaches of standard LFA are the smoothing analysis (or one-grid analysis),
two-grid analysis and three-grid analysis. Although k−grid analysis can also be
considered, those analysis use to provide enough information about the asymptotic
convergence behavior of multigrid methods. Now, we proceed to introduce them
one by one.

4.2.1 Smoothing analysis

Given the importance of smoothers for the performance of multigrid methods, a
special analysis is devoted to this operator in LFA. As it happened with discrete
operators, Fourier modes are eigenfunctions of the smoother:

Sh ϕh(θ, x) = S̃h(θ)ϕh(θ, x), (4.8)
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where S̃h(θ) denotes the Fourier symbol of the smoother operator Sh. For instance,
let us compute the Fourier symbol of Gauss-Seidel for a B-spline discretization of the
1D Poisson equation with k = 2 and C1 global smoothness. Then, the corresponding
discrete operator Lh given in 4.7 is split into

L+
h =

(
0, 0, 1,−1

3
,−1

6

)
, L−h =

(
−1

6
,−1

3
, 0, 0, 0

)
,

and therefore the Fourier symbol of Gauss-Seidel is

S̃(θ) =
(

L̃+
h (θ)

)−1
L̃−h (θ) =

− e−ıθ

3 −
e−2ıθ

6

1− eıθ

3 −
e2ıθ

6

.

As pointed out in Chapter 3, the purpose of the smoother is to annihilate the
high-frequency components of the error. With a standard coarsening H = 2h, the set
of low frequencies is usually denoted by Θ2h and it is given by

Θ2h := (−π

2
,

π

2
]d. (4.9)

On the other hand, the set of high frequencies is given by Θh \Θ2h. Accordingly
to this, the Fourier modes are called low/high-frequency components when the as-
sociated θ is a low/high frequency. At this point, the smoothing factor of a smoother
Sh is defined as follows:

µ = sup
θ∈Θh\Θ2h

|S̃h(θ)|. (4.10)

Hence, the smoothing factor measures how much the high components of the er-
ror are reduced after one iteration of the smoother. In Figure 4.2, we show the Fourier
symbol of Gauss-Seidel smoother for the 1D Poisson equation (2.5), discretized with
B-splines of degree k = 2, 5, 8 and holding maximum global smoothness.
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Gauss-Seidel

FIGURE 4.2: Fourier symbol of Gauss-Seidel smoother for the 1D
Poisson equation (2.5), discretized with B-splines of degree k = 2, 5, 8

and holding maximum global smoothness.
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As we can see, the eigenvalues of Gauss-Seidel smoother for these discretizations
associated to high frequencies get closer to 1 when the spline degree is increased.
Moreover, the same situation can be observed in the two-dimensional case. In fact,
we show in Figure 4.3 the Fourier symbol of Gauss-Seidel smoother for the 2D Pois-
son equation discretized with B-splines holding maximum global smoothness and
spline degrees (a) k = 2 and (b) k = 5. We conclude with the smoothing analysis
that the performance of point-wise smoothers such as Gauss-Seidel deteriorates for
high-order IGA discretizations.

(a) (b)

FIGURE 4.3: Fourier symbol of Gauss-Seidel smoother for the 2D
Poisson equation discretized with B-splines holding maximum global

smoothness and spline degrees (a) k = 2 and (b) k = 5.

4.2.2 Two-grid analysis

In order to analyze the interplay between the smoother and the coarse-grid correc-
tion, it is necessary at least a two-grid analysis that takes into account the coarse-grid
principle for the acceleration of multigrid convergence. The aim of this analysis is to
compute the spectral radius of the two-grid operator. Hence, the error propagation
matrix of a two-grid method with a standard coarsening is given by

M2h
h = Sν2

h

(
Ih − Ph

2h(L2h)
−1R2h

h Lh

)
Sν1

h , (4.11)

where Lh and L2h represent the discrete operators in the fine and coarse grids. More-
over, the Fourier symbol of this two-grid operator is

M̃2h
h = S̃ν2

h

(
Ĩh − P̃h

2h(L̃2h)
−1R̃2h

h L̃h

)
S̃ν1

h . (4.12)

We have already introduced the Fourier symbol of the discrete operator and
smoother. However, the Fourier symbol of the inter-grid transfer operators I2h

h and
Ih
2h requires a special attention since they produce an aliasing effect on the frequen-

cies θ: In the transition between fine and coarse grids, each low frequency θ0 ∈ Θ2h
is coupled with 2d − 1 high frequencies. In other words, those high frequencies are
not visible in the coarse grid and the high-frequency components are coupled. In
the one-dimensional case each low frequency θ0 is coupled with one high frequency
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θ1 = θ0 − sign(θ0)π and the components associated to these frequencies span the
so-called spaces of 2h−harmonics:

F 2(θ0) = span
{

ϕh(θ
0, ·), ϕh(θ

1, ·)
}

. (4.13)

One can observe that

ϕh(θ
0, x) = ϕh(θ

1, x) = ϕ2h(2θ0, x), x ∈ G2h.

Then, we obtain as a direct consequence that the spaces of 2h−harmonics are
invariant under the restriction and prolongation operators and therefore the two-
grid operator as well:

R2h
h : F 2(θ0) −→ span

{
ϕ2h(2θ0, ·)

}
,

Ph
2h : span

{
ϕ2h(2θ0, ·)

}
−→ F 2(θ0).

Hence, we denote the matrix representation of the restriction with respect the 2h−harmonics
with (R2h

h )2g = (R̃2h
h (θ0), R̃2h

h (θ1)) ∈ C1×2 whereas for the prolongation we have
(Ph

2h)
2g = (P̃h

2h(θ
0), P̃h

2h(θ
1))′ ∈ C2×1. As an example, let us compute the Fourier sym-

bol of restriction operator for quadratic B-spline basis functions with global smooth-
ness C1. Note that

R2h
h ϕh(θ, x) =

1
4

ϕ2h(θ, x− 3
2

h) +
3
4

ϕ2h(θ, x− 1
2

h) +
3
4

ϕ2h(θ, x +
1
2

h) +
1
4

ϕ2h(θ, x +
3
2

h)

=

(
1
4

e−
3
2 ıθ +

3
4

e−
1
2 ıθ +

3
4

e
1
2 ıθ +

1
4

e
3
2 ıθ
)

ϕ2h(2θ, x).

Then, the Fourier symbol R̃2h
h (θ) is given by

R̃2h
h (θ) =

1
4

e−
3
2 ıθ +

3
4

e−
1
2 ıθ +

3
4

e
1
2 ıθ +

1
4

e
3
2 ıθ .

In addition, the prolongation operator is taken as its transpose operator and we
have that

Ph
2h ϕ2h(2θ, x) =

1
4

ϕh(2θ, x− 3h) +
3
4

ϕh(2θ, x− h) +
3
4

ϕh(2θ, x + h) +
1
4

ϕh(2θ, x + 3h)

=

(
1
4

e−3ıθ +
3
4

e−ıθ +
3
4

eıθ +
1
4

e3ıθ
)

ϕh(θ, x).

Therefore, the Fourier symbol P̃h
2h(θ) is

P̃h
2h(θ) =

1
4

e−3ıθ +
3
4

e−ıθ +
3
4

eıθ +
1
4

e3ıθ .

Given that the rest of operators do not couple frequencies, it is clear that the rest
of operators hold

Sh : F 2(θ0) −→ F 2(θ0),
Lh : F 2(θ0) −→ F 2(θ0),

L2h : span
{

ϕ2h(2θ0, ·)
}
−→ span

{
ϕ2h(2θ0, ·)

}
.

Note that the matrix representations of Sh and Lh are (2× 2) diagonal matrices
whose diagonal elements are their corresponding Fourier symbols associated to the
frequencies {θ0, θ1}. Hence, it results that
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M2h
h : F 2(θ0) −→ F 2(θ0).

Then, the matrix representation of the two-grid operator (M2h
h )2g with respect to

F 2(θ0) is in this case a 2× 2-matrix. This matrix is obtained by means of

(M2h
h )2g = (S2g

h )ν2
(

I2g
h − (Ph

2h)
2g(L2g

2h)
−1(R2h

h )2gL2g
h

)
(S2g

h )ν1 . (4.14)

In addition, given the linear independence of the Fourier modes the spaces of
2h−harmonics form a decomposition of the Fourier space, it holds that:

F (Gh) =
⊕

θ0∈Θ2h

F 2(θ0).

At this point, we conclude that the spectral radius of M2h
h can be computed by

calculating the spectral radius of the smaller matrices (M2h
h )2g as follows

ρ2g = ρ(M2h
h ) = sup

θ0∈Θ̃2h

ρ((M2h
h )2g(θ0)), (4.15)

where the frequency space Θ̃2h is given by

Θ̃2h = Θ2h \
{

θ0 ∈ Θ2h
∣∣L̃2h(2θ0) = 0 or L̃h(θ

0) = 0
}

. (4.16)

Note that it is necessary to introduce the previous frequency space since the error
propagation matrix includes the inverse of L2h. On the other hand, in the two-
dimensional case we denote with θ00 = (θ00

1 , θ00
2 ) ∈ Θ2h = (−π/2, π/2]2 any low

frequency that is coupled with the three following frequencies:

θ11 := θ00 − (sign(θ00
1 )π, sign(θ00

2 )π),
θ10 := θ00 − (sign(θ00

1 )π, 0),
θ01 := θ00 − (0, sign(θ00

2 )π).

In order to illustrate this, in Figure 4.4 we show a low frequency θ00 in the low-
frequency domain with its coupling three high frequencies on the high-frequency
region (gray).

Therefore, the 2h−harmonics space for the d = 2 case is given by the following
four-dimensional space

E4(θ00) = span
{

ϕh(θ
00, ·), ϕh(θ

10, ·), ϕh(θ
01, ·), ϕh(θ

11, ·)
}

. (4.17)

Using these 2h−harmonics, we obtain that

E(Gh) =
⊕

θ00∈Θ2h

E4(θ00), (4.18)

where we denote with E(Gh) the Fourier space on an infinite grid Gh with two spatial
directions. In this case, the matrix representation of the two-grid operator (M2h

h )2g

is a (4× 4)-matrix. In fact, this matrix is obtained by means of the matrix represen-
tation of (4.14) but using the corresponding operators with respect to subspaces of
2h−harmonics for d = 2:

S2g
h (θ00) = diag

{
S̃2g

h (θ00), S̃2g
h (θ10), S̃2g

h (θ01), S̃2g
h (θ11)

}
∈ C4×4, (4.19)
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π

FIGURE 4.4: Low frequency θ00 in the low-frequency domain with its
coupling three high frequencies on the high-frequency region (gray)

L2g
h (θ00) = diag

{
L̃2g

h (θ00), L̃2g
h (θ10), L̃2g

h (θ01), L̃2g
h (θ11)

}
∈ C4×4, (4.20)

(R2h
h )2g(θ00) =

(
(R̃2h

h )2g(θ00), (R̃2h
h )2g(θ10), (R̃2h

h )2g(θ01), (R̃2h
h )2g(θ11)

)
∈ C1×4,

(4.21)

(Ph
2h)

2g(θ00) =
(
(P̃h

2h)
2g(θ00), (P̃h

2h)
2g(θ10), (P̃h

2h)
2g(θ01), (P̃h

2h)
2g(θ11)

)′
∈ C4×1.

(4.22)
Hence, the spectral radius of M2h

h in the two-dimensional case is computed as
follows

ρ2g = ρ(M2h
h ) = sup

θ00∈Θ̃2h

ρ((M2h
h )2g(θ00)), (4.23)

where Θ̃2h is given by

Θ̃2h = Θ2h \
{

θ00 ∈ Θ2h
∣∣L̃2h(2θ00) = 0 or L̃h(θ

00) = 0
}

. (4.24)

4.2.3 Three-grid analysis

Although the two-grid analysis is capable to capture the interplay between smoother
and coarse-grid correction, that analysis does not distinguish between V−cycles and
W−cycles. In order to notice the effect of the index cycle γ, at least a three-grid anal-
ysis is required. In addition, this analysis allows us to study the difference between
the choice of pre- and post-smoothing steps. Considering a standard coarsening, the
mesh sizes are taken as h, 2h and 4h for the corresponding grids. Following this strat-
egy, the goal of three-grid analysis is to compute the spectral radius of the following
error propagation matrix.

M4h
h = Sν2

h (Ih − Ph
2h(I2h − (M4h

2h)
γ)L−1

2h R2h
h Lh)S

ν1
h , (4.25)

where M4h
2h is the two-grid operator between the two coarse grids

M4h
2h = Sν2

2h(I2h − P2h
4h L−1

4h R4h
2hL2h)S

ν1
2h. (4.26)
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As it happened with the two-grid analysis, the three-grid analysis requires to
take into account the aliasing effect of the inter-grid transfer operators on Fourier
modes. However, this coupling takes place twice: In the transition from the finest to
the second grid and in the transition from the second to the coarsest grid. Thus, in
the one-dimensional case the low frequency space is given by

Θ4h = (−π

4
,

π

4
].

Hence, in the transition from the fine grid to the coarsest grid any low frequency
θ0

0 ∈ Θ4h is coupled with the following three frequencies

θ1
0 := θ0 − sign(θ0)π/2,

θ0
1 := θ0 − sign(θ0)π

θ1
1 := θ0 − sign(θ0)π/2 + sign(θ0)π.

In addition, an usual way to introduce these four frequencies is by using the
following formula:

θα
β = θ0 − α sign(θ0)π/2 + (−1)α+ββ sign(θ0)π, α, β ∈ {0, 1}. (4.27)

More specifically, in the transition from the finest grid to the second grid the low
frequency θ0

0 ∈ Θ4h ⊂ Θ2h is coupled with the high frequency θ0
1 ∈ Θ \Θ2h whereas

θ1
0 ∈ Θ2h is coupled with θ1

1 ∈ Θ \ Θ2h. Then, θ0
0 ∈ Θ4h is coupled with the high

frequency θ1
0 ∈ Θ2h \Θ4h in the transition from the second grid to the coarsest grid.

Thus, in Figure 4.5 we show the scheme on how frequencies θα
β are coupled in the

transition from fine grid to second grid and in the transition from second grid to
third grid.

−π −π
2 −π

4 0 π
4

π
2 π

θ0
0θ1

0θ0
1 θ1

1
h

2h

4h

FIGURE 4.5: Scheme on how frequencies θα
β are coupled in the tran-

sition from fine grid to second grid and in the transition from second
grid to third grid.

These four frequencies θα
β define the so-called spaces of 4h−harmonics as follows:

F 4(θ0
0) = span

{
ϕh(θ

α
β, ·) | α, β ∈ {0, 1}

}
, (4.28)
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with θ0
0 ∈ Θ4h. In addition, the Fourier space can be decomposed as a direct sum of

spaces of 4h−harmonics:

F (Gh) =
⊕

θ0∈Θ4h

F 4(θ0
0).

This decomposition allows us to compute the spectral radius of the three-grid
error propagation matrix by studying smaller (4× 4)−matrices. In order to under-
stand the formation of this process, let us analyze each one carefully. As we men-
tioned, discrete operators and smoothers do not couple frequencies. In fact, they
leave invariant the spaces of 4h−harmonics

Lh : F 4(θ0
0) −→ F 4(θ0

0),
Sh : F 4(θ0

0) −→ F 4(θ0
0).

Thus, the matrix representation of Lh and Sh are diagonal matrices (4× 4) given
by

L3g
h = bdiag(L2g

h (θ0
0), L2g

h (θ1
0)) ∈ C4×4,

S3g
h = bdiag(S2g

h (θ0
0), S2g

h (θ1
0)) ∈ C4×4.

Since the error propagation matrix includes the inverse of discrete operators L2h
and L4h, it will be necessary to apply the analysis on the following frequency space

Θ̃4h = {θ0
0 ∈ Θ4h

∣∣L̃4h(4θ0
0) 6= 0, L̃2h(2θα

0 ) 6= 0, L̃2h(θ
α
β) 6= 0, with α, β ∈ {0, 1}}.

(4.29)
In order to get more insight on the mappings of inter-grid transfer operators, let

us note that

ϕh(θ
0
0 , x) = ϕh(θ

0
1 , x) = ϕ2h(2θ0

0 , x), x ∈ G2h,
ϕh(θ

1
0 , x) = ϕh(θ

1
1 , x) = ϕ2h(2θ1

0 , x), x ∈ G2h.

Moreover, it is clear that each space of 4h−harmonics can be decomposed into
the following direct sum of two spaces of 2h−harmonics:

F 4(θ0
0) = F 2(θ0

0)⊕F 2(θ1
0). (4.30)

At this point, we can define the inter-grid transfer operators as mappings be-
tween the Fourier space F4 and some spaces spanned by Fourier modes whose fre-
quencies are high frequencies with respect to G4h but low frequencies with respect
to G2h. These are the so-called subspaces of (2h, 4h)−harmonics

F 4
2 (θ

0
0) = span{ϕh(θ

α, ·)
∣∣α ∈ {0, 1}}, (4.31)

where θ0
0 ∈ Θ4h. Then, the inter-grid transfer operators:

R2h
h : F 4(θ0

0) −→ F 4
2 (θ

0
0)},

Ph
2h : F 4

2 (θ
0
0) −→ F 4(θ0

0).

Given that the restriction and prolongation operators couple frequencies by pairs,
the matrix representation of these operators (with d = 1) is given by
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(R2h
h )3g(θ0

0) =


R2h

h (θ0
0) 0

R2h
h (θ1

0) 0
0 R2h

h (θ0
1)

0 R2h
h (θ1

1)

 , (4.32)

Ph
2h(θ

0
0) =

(
(Ph

2h)
3g(θ1

0) Ph
2h(θ

0
0) 0 0

0 0 Ph
2h(θ

0
1) Ph

2h(θ
1
1)

)
. (4.33)

In addition to this, the operators L2h and S2h maintain invariant the subspaces of
(2h, 4h)−harmonics:

L2h, S2h : F 4
2 (θ

0
0) −→ F 4

2 (θ
0
0).

Then, their matrix representation is

L3g
2h = diag(L̃h(θ

0
0), L̃h(θ

1
0)) ∈ C2×2, (4.34)

S3g
2h = diag(S̃h(θ

0
0), S̃h(θ

1
0)) ∈ C2×2, (4.35)

Let us also note that the coupling among frequencies in the transition from the
second grid to the coarsest grid yields

ϕh(θ
0
0 , x) = ϕh(θ

1
0 , x) = ϕ4h(4θ0

0 , x), x ∈ G4h.

Consequently, we obtain that

R4h
2h : F 4

2 (θ
0
0) −→ span

{
ϕ4h(4θ0

0 , ·)
}

,
P2h

4h : span
{

ϕ4h(4θ0
0 , ·)

}
−→ F 4

2 (θ
0
0),

and their matrix representation is given by

(R4h
2h)

3g(θ0
0) =

(
R̃4h

2h(θ
0
0)

R̃4h
2h(θ

1
0)

)
, (P2h

4h )
3g(θ0

0) =
(
(P̃2h

4h )
2g(θ0

0) , P̃2h
4h (θ

1
0)
)

.

Moreover, the discrete operator L4h holds the invariance on span
{

ϕ4h(4θ0
0 , ·)

}
:

L4h : span
{

ϕ4h(4θ0
0 , ·)

}
−→ span

{
ϕ4h(4θ0

0 , ·)
}

.

Hence, we can claim that the matrix representation of the three-grid operator
(M4h

h )3g on the Fourier space is given by a (4 × 4) matrix by composition of the
previous operators:

(M4h
h )3g = (S3g

h )ν2
(

I3g
h − (Ph

2h)
3g(I2h −

(
(M4h

2h)
3g
)γ

)(L3g
2h)
−1(R2h

h )3gL3g
h

)
(S3g

h )ν1 ,
(4.36)

where

(M4h
2h)

3g = (S3g
2h)

ν2(I3g
2h − (P2h

4h )
3g L̃−1

4h (R4h
2h)

3gL3g
2h)(S

3g
2h)

ν1 . (4.37)

Furthermore, the spectral radius of M4h
h can be computed by means of

ρ3g = ρ(M4h
h ) = sup

θ0
0∈Θ̃4h

ρ((M4h
h )3g(θ0

0)). (4.38)
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FIGURE 4.6: Coupled frequencies by the three-grid error propagation
matrix spanning the subspaces of 4h−harmonics in the bidimensional

case.

The same proceeding is carried out in the two-dimensional case. For this case,
we define the low frequency space as Θ4h = (−π/4, π/4]2. During the transition
between second and third grid, each low frequency θ00

00 ∈ Θ4h is coupled with the
following three frequencies

θ00
ij = θ00

00 − (isign1(θ
00
00)π/2, jsign2(θ

00
00)π/2), i, j ∈ {0, 1}. (4.39)

The corresponding Fourier modes associated to these frequencies generate the
(2h, 4h)−harmonics as follows

E16
4 (θ00

00) = span{ϕh(θ
00
ij , ·)

∣∣i, j ∈ {0, 1}}. (4.40)

Moreover, during the transition from the finest grid to the second grid each low
frequency θ00

ij ∈ Θ2h = (−π/2, π/2]2 is coupled with the following three high fre-
quencies in G2h:

θnm
ij = θ00

ij − (nsign1(θ
00
ij )π, msign2(θ

00
ij )π), n, m ∈ {0, 1}. (4.41)

The corresponding Fourier modes to these sixteen frequencies span the sub-
spaces of 4h−harmonics in the bidimensional case. Thus, we depict the coupled
frequencies by the three-grid error propagation matrix in Figure 4.6. In addition, the
subspaces of 4h−harmonics are given by

E16(θ00
00) = span

{
ϕh(θ

nm
ij , ·) | i, j, n, m ∈ {0, 1}

}
.

As it happened in the unidimensional case, the subspaces of 4h−harmonics can
be expressed in terms of direct sums of the 2h−harmonics:

E16(θ00
00) = E4(θ00

00)⊕ E4(θ00
10)⊕ E4(θ00

01)⊕ E4(θ00
11). (4.42)

Besides it, the Fourier space can be decomposed into direct sum of the subspaces
of 4h−harmonics
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E(Gh) =
⊕

θ00
00∈Θ4h

E16(θ00
00). (4.43)

With respect to the matrix representation of the operators involved in (4.36), their
matrix representations have a structure based on the subspaces of 4h−harmonics
and they are given by

S3g
h (θ00

00) = bdiag
{

S2g
h (θ00

00), S2g
h (θ00

10), S2g
h (θ00

01), S2g
h (θ00

11)
}
∈ C16×16, (4.44)

L3g
h (θ00

00) = bdiag
{

L2g
h (θ00

00), L2g
h (θ00

10), L2g
h (θ00

01), L2g
h (θ00

11)
}
∈ C16×16, (4.45)

(R2h
h )3g(θ00

00) = bdiag
{
(R2h

h )2g(θ00
00), (R2h

h )2g(θ00
10), (R2h

h )2g(θ00
01), (R2h

h )2g(θ00
11)
}
∈ C4×16,

(4.46)
(Ph

2h)
3g(θ00

00) = bdiag
{
(Ph

2h)
2g(θ00

00), (Ph
2h)

2g(θ00
10), (Ph

2h)
2g(θ00

01), (Ph
2h)

2g(θ00
11)
}
∈ C16×4,

(4.47)
S3g

2h(θ
00
00) = diag

{
S2g

2h(θ
00
00), S2g

2h(θ
00
10), S2g

2h(θ
00
01), S2g

2h(θ
00
11)
}
∈ C4×4, (4.48)

L3g
2h(θ

00
00) = diag

{
L2g

2h(θ
00
00), L2g

2h(θ
00
10), L2g

2h(θ
00
01), L2g

2h(θ
00
11)
}
∈ C4×4, (4.49)

(R4h
2h)

3g(θ00
00) = ((R4h

2h)
2g(θ00

00), (R4h
2h)

2g(θ00
10), (R4h

2h)
2g(θ00

01), (R4h
2h)

2g(θ00
11)) ∈ C1×4,

(4.50)
(P2h

4h )
3g(θ00

00) = ((P2h
4h )

2g(θ00
00), (P2h

4h )
2g(θ00

10), (P2h
4h )

2g(θ00
01), (P2h

4h )
2g(θ00

11)) ∈ C4×1. (4.51)

By using the Fourier representation of these operators with respect the 4h−harmonics,
the matrix representation of M4h

h is obtained as in the one-dimensional case (4.36).
Thus, the spectral radius of M4h

h is computed by means of

ρ3g = ρ(M4h
h ) = sup

θ0
0∈Θ̃4h

ρ((M4h
h )3g(θ00

00)), (4.52)

where

Θ̃4h = {θ00
00 ∈ Θ4h

∣∣L̃4h(4θ00
00) 6= 0, L̃2h(2θ00

ij ) 6= 0, L̃2h(θ
nm
ij ) 6= 0, with i, j, n, m ∈ {0, 1}}.

4.3 Analysis for block-wise smoothers

This section is devoted to the analysis of block-wise smoothers such as the multi-
plicative Schwarz methods. These methods hold the invariance property, that is, the
Fourier modes are eigenvectors of this type of smoother, for a rigorous proof see
MacLachlan and Oosterlee, 2011. The complexity of the analysis for these methods
lies on the overlapping among the blocks of unknowns. Due to the overlapping, the
unknowns are relaxed more than once and therefore some intermediate errors ap-
pear beside the initial and final errors. Hence, the appearance of these intermediate
errors ask for a special strategy for the analysis.

For the sake of simplicity, we consider the 1D Poisson equation discretized with
B-splines holding maximum global smoothness Ck−1. However, the analysis extends
straightforwardly to the 2D case and it is suitable to other problems by adapting
the corresponding stencils. Thus, let us denote with em

h the initial error function at
k−iteration and let em+j/b

h the intermediate error after the corresponding unknown
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has been updated j times out of an odd block size b = 2c + 1, with c ∈ N. Also,
we denote with ui the unknown with parametric location ξi. Furthermore, we de-
note with Bi the block of unknowns centered at ui. Then, associated to the block Bi
we have to solve the local system described in (3.37) where the local corrections to
compute are:

δuBi =



δui−c
...

δui
...

δui+c

 =



em+1
h (ξi−c)− em+(b−1)/b

h (ξi−c)
...

em+(b−c)/b
h (ξi)− em+c/b

h (ξi)
...

em+1/b
h (ξi+c)− em

h (ξi+c)


. (4.53)

Moreover, the local matrix LBi
h has size b× b and it is constructed by means of the

projection operators as described in (3.38). For this case, let us note that the entries of
LBi

h are based on the stencil Lk = [`k, `k−1, . . . , `1, `0, `1, . . . , `k−1, `k]. For example, the
local system associated to the block Bi using a quadratic discretization with global
smoothness C1 is given by

1
h

 1 −1/3 −1/6
−1/3 1 −1/3
−1/6 −1/3 1

 δui−1
δui

δui+1

 =

 ri−1
ri

ri+1

 , (4.54)

where ri denotes the i−th component of the residual. In addition, we can generalize
for every k the description of local matrix whose associated block has size b = 3. For
this purpose, let us denote with LB

h the local matrix associated with a block of three
grid points. Then, this matrix is given in terms of Lk as follows:

LB
h =

1
h

 `0 `1 `2
`1 `0 `1
`2 `1 `0

 . (4.55)

Unfortunately, we can not give a general description of every local matrix since
its structure depends on the relationship between the block size b and the length
of the stencil Lk. Without loss of generality, we can consider that the error is given
as a single Fourier mode multiplied by a coefficient α

(j)
θ , where j = 0, . . . , b is the

number of times that the corresponding unknown has been updated in the current
iteration. In this way, we can rewrite the local systems such that these coefficients
are the unknowns to solve. For instance, we can rewrite (4.54) by expressing the
local corrections and the residual in terms of the error. Then, we have that


em

h (ξ)

em+1/3
h (ξ)

em+2/3
h (ξ)
em+1

h (ξ)

 =


α
(0)
θ eıθξ

α
(1)
θ eıθξ

α
(2)
θ eıθξ

α
(3)
θ eıθξ

 .

Thus, the local corrections are given in terms of the error as follows

 δui−1
δui

δui+1

 =


(

α
(3)
θ − α

(2)
θ

)
e−ıθ(

α
(2)
θ − α

(1)
θ

)(
α
(1)
θ − α

(0)
θ

)
eıθ

 eıθξ .
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In addition to this, we have for the residuals that

 ri−1
ri

ri+1

 = −1
h


− 1

6 α
(3)
θ e−ı3θ − 1

3 α
(3)
θ e−ı2θ + α

(2)
θ e−ıθ − 1

3 α
(1)
θ −

1
6 α

(0)
θ eıθ

− 1
6 α

(3)
θ e−ı2θ − 1

3 α
(2)
θ e−ıθ + α

(1)
θ −

1
3 α

(0)
θ eıθ − 1

6 α
(0)
θ eı2θ

− 1
6 α

(2)
θ e−ıθ − 1

3 α
(1)
θ + α

(0)
θ eıθ − 1

3 α
(0)
θ eı2θ − 1

6 α
(0)
θ eı3θ

 eıθξ .

Then, we can rearrange the previous system 4.54 into a system of equations for
the updated coefficients:


− 1

6 eıθ − 1
3 e−ıθ − 1

3 e−ı2θ − 1
6 e−ı3θ

− 1
3 eıθ 1 − 1

3 e−ıθ − 1
6 e−ı2θ

eıθ − 1
3 − 1

6 e−ıθ


︸ ︷︷ ︸

P

 α
(1)
θ

α
(2)
θ

α
(3)
θ

 eıθξ =


0

1
6 eı2θ

1
3 eı2θ + 1

6 eı3θ


︸ ︷︷ ︸

Q

α
(0)
θ eıθξ .

Consequently, after canceling the factors eıθξ we obtain that α
(1)
θ

α
(2)
θ

α
(3)
θ

 = P−1Qα
(0)
θ .

At this point, the amplification factor for the error is given by the last component
of P−1Q, since this one represents how the Fourier coefficient of the fully corrected
error α

(3)
θ is related with that of the initial error α

(0)
θ . The previous rearragement can

be generalized for any IGA discretization with spline degree k and maximum global
smoothness Ck−1. Hence, the matrices P and Q for the three-point multiplicative
Schwarz smoother are given as follows:

P =


`2eıθ `1 ∑k

j=0 `je−ı(j+1)θ

`1eıθ `0 ∑k
j=1 `je−ıjθ

`0eıθ `1 ∑k
j=2 `je−ı(j−1)θ

 , Q =


−∑k

j=3 `jeı(j−1)θ

−∑k
j=2 `jeıjθ

−∑k
j=1 `jeı(j+1)θ

 .

Local Fourier analysis can be performed in the same way for bigger blocks of un-
knowns, but with heavier computations. Since we consider blocks centered around
a grid-point, the number of unknowns within the block, b, is odd. Thus, matri-
ces P and Q for an arbitrary b−point multiplicative Schwarz are (b× b)− and (b×
1)−matrices respectively given by

P = PDP, and Q =



−∑k
j=b `jeı(j− b−1

2 )θ

−∑k
j=b−1 `jeı(j− b−1

2 +1)θ

...
−∑k

j= b−1
2 +1 `jeıjθ

−∑k
j= b−1

2
`jeı(j+1)θ

...
−∑k

j=1 `jeı(j+ b−1
2 )θ


,

where DP is the following diagonal matrix
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DP = diag
{

eı b−1
2 θ , eı( b−1

2 −1)θ , · · · , eıθ , 1, e−ıθ , · · · , e−ı( b−1
2 −1)θ , 1

}
,

and the matrix P is given by



`b−1 `b−2 `b−3 · · · ` b−1
2
· · · `2 `1 ∑k

j=0 `je−ı(j+ b−1
2 )θ

`b−2 `b−3 · · ·
... . . . `1 `0 ∑k

j=1 `je−ı(j+ b−1
2 −1)θ

`b−3 · · ·
... · · · `0 `1 ∑k

j=2 `je−ı(j+ b−1
2 −2)θ

...
...

...
... `0 ∑k

j= b−1
2
`je−ıjθ

...
... .

...
`2 `1 `0 · · · . . . · · · `b−4 ∑k

j=b−3 `je−ı(j− b−1
2 +2)θ

`1 `0 `1 · · · . . . · · · `b−4 `b−3 ∑k
j=b−2 `je−ı(j− b−1

2 +1)θ

`0 `1 · · · · · · ` b−1
2
· · · `b−3 `b−2 ∑k

j=b−1 `je−ı(j− b−1
2 )θ



,

where `i = 0 for i > k. Using this analysis, we can obtain the Fourier symbol of
the multiplicative Schwarz methods for isogeometric discretizations. For instance,
in Figure 4.7 we show the Fourier symbol of the smoothing operator corresponding
to (a) the three-point and (b) the five-point multiplicative Schwarz smoothers, for
three different spline degrees k = 2, 5, 8.
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FIGURE 4.7: Symbol of the smoothing operator corresponding to
(a) the three-point and (b) the five-point multiplicative Schwarz

smoothers, for three different spline degrees k = 2, 5, 8.

Furthermore, we can perform this analysis for the matrix representation of the
smoother with respect the subspaces of 2h−harmonics such that the eigenvalues of
the two-grid operator based on these smoothers are obtained. Hence, in order to
find out the performance on high-order discretizations, we show in Figure 4.8 the
distribution of the eigenvalues of the two-grid method based on the three-, five- and
seven-point multiplicative Schwarz smoothers with maximum overlapping applied
to k = 8.
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FIGURE 4.8: Distribution of the eigenvalues of the two-grid method
based on the three-, five- and seven-point multiplicative Schwarz

smoothers with maximum overlapping applied to k = 8.

4.4 Infinite subgrids analysis

As mentioned in Section 4.2, the standard local Fourier analysis makes some as-
sumptions such as the discrete operator is linear with constant coefficients. This
limitation to the standard LFA prevents a direct analysis for some problems. This
fact was pointed out in Kumar et al., 2019, where the authors introduced a LFA
based on infinite subgrids such that the analysis is suitable for PDEs with jump-
ing and random coefficients. Instead of considering an infinite grid, the idea of this
LFA lies on the periodic extension of several infinite subgrids. Thus, the main dif-
ference among the standard analysis and the infinite subgrids analysis is the choice
of the basis functions considered for the error decomposition. This specific basis
for the Fourier spaces allows us to generalize the standard analysis. For this pur-
pose, let us consider a splitting of the grid Gh into nd

g infinite subgrids. Hence, we
proceed by taking a fixed window with size ng × . . .× ng︸ ︷︷ ︸

d

and then considering its

periodic extension. The size of the window is chosen such that the different sten-
cils provided by the corresponding discretization are taken into account. Note that
we are considering the same size ng at each direction for the sake of simplicity, but
this is not restrictive for this analysis. With a fixed size of the window, for every
j = (j1, . . . , jd), with j1, . . . , jd = 0, . . . , ng − 1, the infinite subgrids are defined as
follows:

Gjh = {jh + (l1, . . . , ld)ngh | l1, . . . , ld ∈ Z}. (4.56)

For instance, in Figure 4.9 we show the periodic extension of a window with size
2× 2 on an infinite grid with 4 infinite subgrids (�, •, ◦ and ×).

In the infinite subgrids LFA, the low-frequency space is given by

Θngh := (− π

ngh
,

π

ngh
]d. (4.57)

For each low frequency θ0 ∈ Θngh, we introduce the following grid functions:

ψjh(θ
0, x) = ϕh(θ

0, x)χGj
h
(x), (4.58)

where
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FIGURE 4.9: Periodic extension of a window with size 2 × 2 on an
infinite grid with infinite subgrids (�, •, ◦ and ×).

χGj
h
(x) =

{
1, if x ∈ Gjh

0, otherwise.
(4.59)

As it was seen in Kumar et al., 2019, the Fourier space spanned by these functions

F nd
g

h (θ0) = span{ψjh(θ
0, ·), j1, . . . , jd = 0, . . . , ng − 1}, (4.60)

is the same Fourier space generated by the standard Fourier modes

span{ϕh(θ
0
j , ·), θ0

j = θ0 + 2πj/(ngh), j1, . . . , jd = 0, . . . , ng − 1}. (4.61)

Whereas the Fourier representation of the discrete operators by means of the
standard Fourier modes is a diagonal matrix, with this specific basis the symbol
of the discrete operator is a dense matrix. Hence, let us consider the univariate
discrete Poisson operator using quadratic FEM with a fixed ng = 4. Then, the Fourier
representation of Lh with respect to {ψj

h(θ
0, ·)}4

j=1 is given by

L̂h(θ
0) =


8
3 − 2

3 eıθ0 − 2
3 (e

2ıθ0
+ e−2ıθ0

) − 2
3 e−ıθ0

− 2
3 e−ıθ0 4

3 − 2
3 eıθ0

0
− 2

3 (e
2ıθ0

+ e−2ıθ0
) − 2

3 e−ıθ0 8
3 − 2

3 eıθ0

− 2
3 eıθ0

0 − 2
3 e−ıθ0 4

3

 , (4.62)

with θ0 ∈ Θ4h. For this example, the points contained in the window are vertex,
mid-point, vertex, mid-point as depicted in Figure 4.10.

1 2 3 4 1 2 3 4 1 2 3 4

FIGURE 4.10: Periodic extension of the considered window of 4
points for the Fourier representation (4.62). The two infinite subgrids
consisting on vertices (•) and midpoints (◦) are depicted and they are

distributed as (•, ◦, •, ◦) in the window.
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Note that, with this analysis, the symbols of the discrete and smoother operators

are nd
g × nd

g matrices. In fact, these operators hold invariance property on F nd
g

h (θ)
since it is actually the Fourier space with a change of basis.

Lh : F nd
g

h (θ) −→ F nd
g

h (θ),

Sh : F nd
g

h (θ) −→ F nd
g

h (θ).

The structure of the matrix representation of the discrete operator and smoother
with respect the basis functions ψjh(θ

0, ·), with j1, . . . , jd = 0, . . . , ng − 1 depends
on the number of different subgrids, i.e. the number of stencils provided by the
discretization. Thus, there is not a general expression for the matrix construction.
For example, the matrix representation of Gauss-Seidel smoother with respect the
new basis using the previous quadratic FEM discretization with ng = 4 is:

ŜGS(θ
0) = −

(
L̂+

h (θ
0)
)−1

L̂−h (θ
0),

where

L̂+
h (θ

0) =


8
3 0 − 2

3 e−2ıθ0 − 2
3 e−ıθ0

− 2
3 e−ıθ0 4

3 0 0
− 2

3 e−2ıθ0 − 2
3 e−ıθ0 8

3 0
0 0 − 2

3 e−ıθ0 4
3

 , L̂−h (θ
0) = L̂h(θ

0)− L̂+
h (θ

0).

In addition, the Fourier representation of the smoother using the new basis has
additional issues when a block-wise smoother is considered. Since we already in-
troduced the LFA for multiplicative Schwarz methods, in this section we describe
the matrix representation of additive Schwarz smoothers using the infinite subgrids
approach. It is very important to set an appropiate window size ng suitable to the
block size b, the overlapping o, the number of stencils k− s and the type of analysis
(smoothing analysis, two-grid analysis, etc.). First, it is clear that necessarily ng > b
since otherwise the analysis can not capture the effect of the smoother on the win-
dow. However, the analysis based on infinite subgrids for these smoothers is very
specific to each case. Secondly, we should take into account that it is necessary to
hold ng > b. Moreover, the window size ng must be multiple of b − o in order to
apply uniformly the smoothing effect on the window points taking into account its
periodic extension. Furthermore, ng must be multiple of the number of stencils k− s
since they periodic extension of the window has to represent the infinite grid Gh. In
fact, the window size must be multiple of 2l−1(k− s), where l denotes here the num-
ber of grids considered for the analysis. Finally, the minimum value of the window
size on each direction is given by

nmin
g = l.c.m.

{
2l−1(k− s), min

j∈N
{(b− o)j

∣∣(b− o)j > b}
}

, (4.63)

where l.c.m. denotes the least common multiple. Note that for the sake of simplicity,
we consider the same window size on each direction. However, this is not restrictive
for the analysis carried out here. As we can see, to determine the minimum (even
any appropiate) value of the window size is not a straightforward task and this is
why the matrix representation of the smoother can not be generalized easily. Once
we have set ng, we need to construct the local matrices associated to the blocks of
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points that are updated on the window during the smoothing process. For this task,
we can apply local projection operators to the Fourier representation L̂h as done in
(3.38). The number of blocks of unknowns that take place on the window is given
by

nb =

(
ng

b− o

)d

. (4.64)

Hence, let us denote the local projection operators with Vi, i = 1, . . . , nb. Then,
the matrix representation of the local matrix associated to the block of unknowns Bi
is given by

L̂Bi
h (θ0) = Vi L̂h(θ

0)Vt
i . (4.65)

As an example, let us consider again the previous univariate quadratic FEM dis-
cretization with ng = 4 starting with a vertex point at the left side (see Figure (4.10)).
Then, the local projection operators are given by

V1 =

 0 0 0 1
1 0 0 0
0 1 0 0

 , V2 =

 1 0 0 0
0 1 0 0
0 0 1 0

 ,

V3 =

 0 1 0 0
0 0 1 0
0 0 0 1

 , V4 =

 0 0 1 0
0 0 0 1
1 0 0 0

 .

Therefore we have that the Fourier representation of the local matrices is

L̂B1
h (θ0) = L̂B3

h (θ0) =

 4
3 − 2

3 eıθ0
0

− 2
3 e−ıθ0 8

3 − 2
3 eıθ0

0 − 2
3 e−ıθ0 4

3

 ,

L̂B2
h (θ0) = L̂B4

h (θ0) =

 8
3 − 2

3 eıθ0 − 2
3 e2ıθ0

− 2
3 e−ıθ0 4

3 − 2
3 eıθ0

− 2
3 e−2ıθ0 − 2

3 e−ıθ0 8
3

 .

At this point, the contribution obtained by solving the local system associated to
a block Bi is

ĉi(θ
0) = diag{ω}Vt

i (L̂Bi
h (θ0))−1Vi L̂h(θ

0), (4.66)

where ω is the vector of weights introduced in (3.40). Thus, the Fourier representa-
tion of additive Schwarz smoothers by means of infinite subgrids analysis is given
by

Ŝad(θ
0) = Î(θ0)−

nd
b

∑
i=1

ĉi(θ
0), (4.67)

which is a (nd
g × nd

g)-matrix. As mentioned in Section 3.3.2, the weights contained
in ω have a crucial role for the performance of the smoother. In fact, the analysis
described here allows us to find the optimal values of ω for every case. In addition,
when we have more than one stencil (k− s > 1) and there is not maximum overlap-
ping among the blocks (b− o > 1) there is more than one way to select the blocks of
unknowns uniformly located on the periodic extension of the window. Thus, each
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of these ways provide a different smoothing effect since their corresponding local
systems are also different. Thanks to LFA, we can find out which way is the best to
place the blocks.

Based on their invariance property for the 2h−harmonics, the inter-grid transfer
operators (considering a standard coarsening H = 2h) also hold

R2h
h : F nd

g
h (θ0) −→ F nd

g/2d

2h (2θ0),

Ph
2h : F nd

g/2d

2h (2θ0) −→ F nd
g

h (θ0),

with θ0 ∈ Θ2ngh. However, there is not a general expression for matrix representation
of the restriction and prolongation operators using this analysis. The length of the
stencils appearing in the inter-grid tranfer operators changes with respect to k and
s. In addition, the structure of these operators varies depending on the location of
the window within the infinite grid. For instance, in Figure 4.10 the first point of the
window is a vertex point but it could be chosen as a midpoint. In order to illustrate
the construction of the restriction operator for the case depicted in Figure 4.10, we
show in Figure 4.11 a scheme with the existing contributions of the grid-points on
the fine grid to the ones of the coarse grid.

1 2 3 4 1 2 3 4 1 2 3 4

1 2 1 2 1 2

1
4

1
2 1 1

2
1
4

1
2

1
2

1
2

FIGURE 4.11: Scheme with contributions of the grid-points on the fine
grid to the ones of the coarse grid.

Hence, the Fourier representation of the restriction operator for this case is given
by

R̂2h
h (θ0) =

(
1 1

2 eıθ0 1
4 (e
−2ıθ0

+ e2ıθ0
) 1

2 e−ıθ0

0 1
2 e−ıθ0 1

2
1
2 eıθ0

)
.

About the prolongation operator, its matrix representation can be taken as the
transposed conjugate matrix of R̂2h

h :

P̂h
2h(θ

0) =


1 0

1
2 eıθ0 1

2 e−ıθ0

1
4 (e
−2ıθ0

+ e2ıθ0
) 1

2
1
2 e−ıθ0 1

2 eıθ0

 .

Fortunately, opposite to the rest of operators the matrix representation of inter-
grid transfer operators for a d−dimensional problem can be obtained by means of
d times the kronecker product of the univariate counterpart. Now, for a two-grid
analysis only the discrete operator L2h is left. Thus, let us note that this discrete
operator holds
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L2h : F nd
g/2d

2h (2θ0) −→ F nd
g/2d

2h (2θ0).

Note that its matrix representation can be obtained exactly by the same way we
did with L̂h or we can approximate it by means of Galerkin approximation as fol-
lows:

L̂2h(2θ0) = R̂2h
h (θ0)L̂h(θ

0)P̂h
2h(2θ0).

Hence, due to the relation between the grid-functions of the given new Fourier
basis and the standard Fourier modes we can claim that the two grid operator satis-
fies for any frequency θ0 ∈ Θngh the following invariance property:

M2h
h : F nd

g
h (θ0) −→ F nd

g
h (θ0). (4.68)

Finally, the goal of this analysis is to compute the spectral radius of the two-grid
operator M2h

h described in (4.11) by means of

ρ2g = sup
θ0∈Θ̃2ngh

ρ(M̂2h
h (θ0)). (4.69)

where

M̂2h
h (θ0) = Ŝν2

h (θ0)
(

Îh(θ
0)− P̂h

2h(θ
0)(L̂2h(θ

0))−1R̂2h
h (θ0)L̂h(θ

0)
)

Ŝν1
h (θ0), (4.70)

and the frequency space Θ̃2ngh is given by

Θ̃2ngh = Θ2ngh \
{

θ0 ∈ Θ2ngh
∣∣ det

(
L̂2h(2θ0)

)
= 0 or det

(
L̂h(θ

0)
)
= 0

}
.

4.5 Analysis for systems of PDEs

Local Fourier analysis is also useful for the design of multigrid methods applied
to systems of PDEs. In fact, it is specially difficult to find appropiate methods for
this type of problems. Thus, the analysis previously introduced for scalar problems
is extended to systems of PDEs by means of vector forms. In this framework, let
q be the number of variables involved in the PDE system. Based on the Fourier
transform for vector functions, the analysis assumes that the error function eh(θ, x)
can be decomposed into the following Fourier modes:

ϕh(θ,x) :=

 1
...
1

 eıθ·x/h, (4.71)

where h = (h1, . . . , hq), x = (x1, . . . , xq), xi ∈ Gh, i = 1, . . . , q, θ = (θ1, . . . , θq),
θj ∈ Θh with j = 1, . . . , q. For the sake of simplicity, we consider the same grid
size h = h1 = . . . = hq for all the variables. However, it is also possible for the
analysis to consider a different grid size for every variable of the PDE system. LFA
for systems of PDEs neglects the effect of boundary conditions and considers linear
discrete operators with constant coefficients. Hence, the discrete problem Lhuh =
fh can be written as follows:
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
L1,1

h . . . L1,q
h

...
. . .

...
Lq,1

h . . . Lq,q
h


 u1

h
...

uq
h

 =

 f 1
h
...
f q
h

 , (4.72)

where every Li,j
h , i, j = 1, . . . , q are scalar discrete operators defined as in (3.2). At

this point, the vector Fourier modes are eigenfunctions of the discrete operators Lh,
that is,

Lhϕh(θ,x) = L̃h(θ)ϕh(θ,x) =


L̃1,1

h . . . L̃1,q
h

...
. . .

...
L̃q,1

h . . . L̃q,q
h

ϕh(θ,x), (4.73)

where the Fourier symbol L̃h is composed of the scalar Fourier symbols L̃i,j
h corre-

sponding to the scalar discrete operators Li,j
h , with i, j = 1, . . . , q. The smoothing

analysis for PDE systems is carried out applying this vector version of the discrete
operator. In fact, classical iterative methods such as Jacobi or Gauss-Seidel split the
vector discrete operator as follows

Lh = L+
h +L−h ,

with L+
h and L−h denoting the parts of Lh corresponding to the unknowns that are

going to be updated and the ones that have been already updated, respectively. This
partition gives place to the numerical iterative scheme

L+
hu

m+1
h = fh −L−hu

m
h .

With this scheme, the smoother operator is given by

Sh = −L+
hL
−
h . (4.74)

and its Fourier symbol is

S̃h(θ) = −L̃+
h (θ)L̃

−
h (θ).

Remark: It might not possible to apply standard smoothers for some coupled
systems of PDEs. In fact, sometimes it is necessary to apply a coupled smoother with
a special structure. This is the case for example of the Stokes equations. A suitable
smoothing strategy for these equations is to apply a coupled Schwarz method, that
is, the grid is split into blocks such that each block Bi is associated to one pressure
variable pi. Furthermore, each block is constructed such that the velocity field un-
knowns involved in the corresponding pressure equation are also part of the block.
Thus, the coupled smoother has the structure given in (3.39) or (3.40) but with par-
ticular projection operators acting on the whole set of variables unknowns.

At this point, the smoothing factor for PDE systems is defined as

µ = sup
θ∈Θh\Θ2h

|ρ(S̃h(θ)|. (4.75)

In addition, the two-grid analysis is extended to PDE systems by means of the
Fourier representation of the operators with respect to the subspaces of 2h−harmonics.
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Here, the goal of the two-grid analysis is to compute the spectral radius of the two-
grid operator given by

M 2h
h = Sν2

h

(
Ih −P h

2h(L2h)
−1R2h

h Lh

)
Sν1

h , (4.76)

where ν1, ν2 are the pre- and post- smoothing steps, R2h
h , P h

2h are the restriction and
prolongation operators andL2h is the discrete operator at the coarse grid considering
a standard coarsening H = 2h. The subspaces of 2h−harmonics are defined as in
the scalar case and all the operators hold the corresponding invariance property.
Thus, the matrix representation of the error propagation matrix M 2h

h with respect
the subspaces of the 2h−harmonics is a (4q× 4q) matrix given by

(M 2h
h )2g(θ) = (S

2g
h (θ))ν2

(
I

2g
h (θ)− (P h

2h)
2g(θ)(L

2g
2h(θ))

−1(R2h
h )2g(θ)L

2g
h (θ)

)
(S

2g
h (θ))ν1 ,

(4.77)
where S2g

h , (P h
2h)

2g, (R2h
h )2g,L2g

h and L2g
2h are the matrix representations of the cor-

responding operators with respect the subspaces of 2h−harmonics. Given that the
spaces of 2h−harmonics form a decomposition of the Fourier space, the spectral ra-
dius ofM 2h

h is computed with

ρ2g = ρ(M 2h
h ) = sup

θ0∈Θ̃2h

ρ((M 2h
h )2g(θ0)), (4.78)

where

Θ̃2h = Θ2h \
{
θ ∈ Θ2h

∣∣ det
(
L̃h(θ)

)
= 0 or det

(
L̃2h(θ)

)
= 0

}
.

Analogously, the three-grid analysis can be extended to PDE systems. For this
analysis, the matrix representation of the error propagation operator with respect
the subspaces of 4h−harmonics is given by

(M4h
h )3g(θ)=

(S
3g
h )ν2(θ)(I

3g
h (θ)− (P h

2h)
3g(θ)(I2h(θ)− ((M4h

2h )
3g(θ))γ)(L

3g
2h(θ))

−1(R2h
h )3g(θ)L

3g
h (θ))(S

3g
h )ν1(θ),

(4.79)

where

(M 4h
2h )

3g(θ) = (S
3g
2h(θ))

ν2(I
3g
2h (θ)− (P 2h

4h )
3g(θ)(L̃4h(θ))

−1(R4h
2h)

3g(θ)L
3g
2h(θ))(S

3g
2h(θ))

ν1 .
(4.80)

Note that the subspaces of 4h−harmonics and (2h, 4h)−harmonics are the same
for the vector case, but now the matrix representation of the three-grid operator is a
(16q, 16q) matrix. By applying the same invariance properties given in 4.2.3 for the
scalar case, the spectral radius of the three-grid operator is computed with

ρ3g = ρ(M 4h
h ) = sup

θ∈Θ̃4h

ρ((M 4h
h )3g(θ)), (4.81)

where

Θ̃4h =
{
θ0 ∈ Θ4h

∣∣det
(
L4h(4θ0)

)
6= 0, det

(
L2h(2θ0i )

)
6= 0, det (L2h(2θni )) 6= 0

}
,

(4.82)
and θ0i , θni denote the frequencies that generate the corresponding subspaces of
(2h, 4h)− and 4h−harmonics.
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Chapter 5

Multigrid methods for IGA
discretizations for scalar problems

Given their optimality, the aim of many recent works has been the application of
multigrid algorithms to isogeometric discretizations, see Gahalaut, Kraus, and Tomar,
2013; Hofreither and Zulehner, 2014; Hofreither and Zulehner, 2016; Donatelli et al.,
2016; Hofreither and Zulehner, 2015; Chemin, Elguedj, and Gravouil, 2015; Hofre-
ither and Takacs, 2017; Hofreither, Takacs, and Zulehner, 2017. In some of these
works (Donatelli et al., 2016; Hofreither and Zulehner, 2015; Hofreither and Takacs,
2017; Hofreither, Takacs, and Zulehner, 2017), it was pointed out the fact that the
convergence rates of multigrid methods with classical relaxation schemes deterio-
rate when the spline degree k is increased. In order to overcome this issue, a multi-
grid method based on preconditioned CG or GMRES smoothers was proposed in
Donatelli et al., 2016. In addition, mass smoothers were proposed based on stable
splittings of spline spaces (Hofreither and Takacs, 2017) or using boundary correc-
tion (Hofreither, Takacs, and Zulehner, 2017). Although these works showed robust-
ness with respect to k, the proposed multigrid methods (for d ≥ 2) required many
iterations to converge (Hofreither and Takacs, 2017). Thus, our attention is devoted
to the design of robust multigrid methods with respect to the spline degree k. With
this purpose, Schwarz methods are proposed as smoothers within the multigrid al-
gorithm (see Pé de la Riva, Rodrigo, and Gaspar, 2019; Pé de la Riva, Rodrigo, and
Gaspar, 2020; Pé de la Riva, Rodrigo, and Gaspar, 2021).

In this chapter, our goal is to propose robust multigrid methods for IGA dis-
cretizations applied to some scalar problems. We will show that the use of point-
wise smoothers such as Gauss-Seidel is ineffective for the design of robust multigrid
methods with respect to the spline degree k. In order to achieve robustness, it is
necessary to find smoothers with a powerful smoothing effect which are suitable
for different values of the polynomial degree. In IGA, the number of basis functions
sharing a common support increase linearly with k and therefore the size of the sten-
cils as well. Block-wise smoothers seem to be ideal for our purpose. However, it is
necessary to set the block size and the overlapping among the blocks for each spline
degree k. For this task, we make use of the LFA introduced in Chapter 4. As we
will see, our LFA and numerical results show an excellent match for the considered
problems. Thus, the analysis proves to be useful also for the design of multigrid
methods when applied to IGA.

This chapter is structured as follows: First, we propose h−multigrid methods in
Section 5.1. The Poisson equation with d = 1 and d = 2 is proposed for IGA dis-
cretizations of two model problems in Section 5.1.1 as our first model problem. Thus,
the Schwarz methods mentioned in Section 3.3 are proposed as smoothers in order
to achieve robustness with respect the polynomial degree k, those are, the multiplica-
tive Schwarz methods, additive Schwarz methods and Restrictive additive Schwarz
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methods. Then, in Section 5.1.2 multigrid methods based on overlapping multiplica-
tive Schwarz iterations are applied to the biharmonic equation in order to show their
robustness for high-order scalar problems. Finally, we improve the h−multigrid
method proposed for Poisson problem by introducing a two-level algorithm in Sec-
tion 5.2. For this two-level method, again iterations of the multiplicative Schwarz
smoothers are applied in the fine level.

5.1 h-multigrid methods

In this section, we propose robust h−multigrid methods for isogeometric discretiza-
tions of two model problems. In order to analyze their convergence, numerical re-
sults provided by LFA are shown together with the numerical results of our multi-
grid codes. As pointed out before, we consider the Schwarz methods introduced in
Section 3.3 for the Poisson equation. Then, multigrid methods based on multiplica-
tive Schwarz iterations are proposed for the biharmonic equation. For each problem,
the corresponding LFA is carried out in order to design robust methods.

In order to perform the analysis of IGA discretizations, it is important to note
that the location of each grid function is placed where the corresponding basis func-
tions gets its highest value rather than guided by the knot lines. However, for IGA
discretizations with maximum global smoothness Ck−1 derived from uniform knot
vectors these locations are equally spaced and the distance between grid functions
coincides with the knot spans length. In order to illustrate this, in Figure 5.1 we
show the values of unique knot lines and the locations of each grid function(•) con-
sidering the unit square domain and a spline space S2,2

1,1 (Gh) with h = 2−3. In this
figure, we can observe that the location of grid functions coincide with the center of
inner cells but not close to the boundary. However, special cases arise when inter-
mediate global smoothnesses are considered, that is, the number of knot repetitions
r satisfies 1 < r < k.
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FIGURE 5.1: Location of B-spline grid functions
Unique values of knot lines and the locations of each grid function(•) considering
the unit square domain and a spline space S2,2

1,1 (Gh) with h = 2−3.
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5.1.1 Poisson equation

Here, we consider the two-point boundary value problem given in (2.5) as a model
problem for the one-dimensional case. In addition, the Poisson equation described in
(2.19) serves us as model problem with d = 2. For these problems, we propose a ge-
ometric h−multigrid based on multiplicative Schwarz smoothers. The choice of the
block size depends on the spline degree k in order to maintain a robust performance
of our solver. Thus, we can obtain a good performance by applying V(1, 0)−cycles of
the most appropriate multiplicative Schwarz method. In addition, we consider the
canonical spline embedding operator as the prolongation operators and their adjoint
for the restriction operators. Numerical experiments with our in-house codes are
shown in the search of robust multigrid methods. First, the LFA results are shown
providing a correct choice of the smoother for each k, that is, the number of un-
knowns involved in the blocks. Furthermore, in order to improve the performance
of the methods, we decided to apply a coloured version of the Schwarz methods
giving place to high efficient solvers.

Multiplicative Schwarz methods

As a starting point, we consider the two-point boundary value problem given in
(2.5) with a right-hand side f (x) = π2 sin(πx). We discretize this problem with
B-splines holding maximum global smoothness Ck−1. First, in Table (5.1) we pro-
vide the smoothing (ρ1g), two-grid (ρ2g) and three-grid (ρV

3g) convergence factors ob-
tained from standard LFA (see Section (4.2)), considering one smoothing step of a
Gauss-Seidel relaxation, together with the asymptotic convergence factors provided
by the W(1, 0)− and V(1, 0)−cycle multigrid codes (ρW

h and ρV
h , respectively). We

provide these results for different values of k ranging from k = 2 to k = 8. We can
observe a perfect match between the experimental factors and those predicted by
standard LFA for both W- and V-cycles. Also, we can see that the performance of the
multigrid method based on point-wise smoothers, as the Gauss-Seidel relaxation is,
deteriorates when k gets bigger.

Gauss-Seidel
ρ1g ρ2g ρW

h ρV
3g ρV

h
k = 2 0.31 0.19 0.19 0.19 0.19
k = 3 0.26 0.22 0.22 0.22 0.22
k = 4 0.38 0.38 0.38 0.38 0.38
k = 5 0.62 0.62 0.62 0.62 0.62
k = 6 0.79 0.79 0.80 0.79 0.80
k = 7 0.89 0.89 0.90 0.89 0.90
k = 8 0.99 0.99 0.96 0.99 0.96

TABLE 5.1: One-dimensional case: smoothing (ρ1g), two-grid (ρ2g)
and three-grid (ρV

3g) convergence factors predicted by LFA together
with the asymptotic convergence factors provided by the W(1,0) and
V(1,0) cycle multigrid codes (ρW

h and ρV
h , respectively), for different

spline degrees k.

Given that the Gauss-Seidel smoother seems to be useless for the design of robust
multigrid methods, we propose the use of three-, five- and seven-point multiplica-
tive Schwarz methods as smoothers. Hence, in Table 5.2, we show the smoothing
and three-grid convergence factors predicted by the analysis and the experimentally
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obtained asymptotic convergence factors of a V−cycle multigrid with one pre- and
no post-smoothing steps. These results are shown for the three considered multi-
plicative Schwarz smoothers and for different spline degrees from k = 2 to k = 8.
We consider V−cycles because we have seen that their convergence rates are as those
provided by W−cycles but with a lower computational cost. We observe in the ta-
ble that the smoothing ability of the proposed three-point multiplicative Schwarz
relaxation deteriorates when k becomes larger. This affects the three-grid conver-
gence factor that also gets worse, showing the necessity of considering multiplica-
tive Schwarz smoothers coupling more than three points.

3p Schwarz 5p Schwarz 7p Schwarz
ρ1g ρV

3g ρV
h ρ1g ρV

3g ρV
h ρ1g ρV

3g ρV
h

k = 2 0.176 0.127 0.127 0.119 0.088 0.087 0.089 0.065 0.065
k = 3 0.156 0.114 0.113 0.112 0.086 0.086 0.086 0.066 0.066
k = 4 0.146 0.127 0.127 0.104 0.084 0.084 0.082 0.067 0.067
k = 5 0.209 0.209 0.211 0.101 0.095 0.095 0.078 0.069 0.069
k = 6 0.389 0.389 0.389 0.147 0.147 0.147 0.077 0.077 0.077
k = 7 0.564 0.564 0.564 0.279 0.279 0.276 0.119 0.119 0.121
k = 8 0.712 0.712 0.712 0.424 0.424 0.426 0.221 0.221 0.224

TABLE 5.2: One-dimensional case: smoothing (ρ1g) and three-grid
(ρV

3g) convergence factors predicted by LFA together with the asymp-
totic convergence factors provided by the V(1,0)-cycle multigrid code

(ρV
h ), for different spline degrees k.

Notice that the different blocks within the multiplicative Schwarz smoothers can
also be visited in different orderings, for instance, they can also be treated with some
patterning scheme, yielding a multicolored version of these relaxation schemes. This
type of approaches usually provides better convergence. In our case, we have done
a comparison of the convergence rates of the considered multiplicative Schwarz
smoothers and their coloured counterparts. In particular, we have considered a
three-colour version of these relaxation procedures. In Figure 5.2, we compare the
convergence factors of the multigrid based on the lexicographic and coloured multi-
plicative Schwarz smoothers for the one-dimensional case. By using dotted lines, we
show the convergence rates provided by the proposed multigrid method based on
the lexicographic three-, five-, and seven-point multiplicative Schwarz smoothers,
for k = 2, . . . , 8. By using continuous lines, we display the asymptotic convergence
factors provided by a multigrid based on V(1, 0)−cycles and the coloured versions
of the considered three-, five- and seven-point multiplicative Schwarz smoothers.
We can observe that the qualitative behavior of the method is as in the case for the
non-coloured smoothers, but the convergence rates are much better. We will take
this into account in order to set our smoothing strategy and therefore we will con-
sider the coloured counterparts of the selected relaxations. Notice that, from Figure
5.2, it is observed that the convergence rates provided with the coloured multiplica-
tive Schwarz smoothers are five times smaller than those provided with the lexico-
graphic version of the smoothers, for the spline degrees for which they are chosen.

Now, we would like to compare the performance of the multigrid method based
on different smoothers: a standard Gauss-Seidel and the considered multiplicative
Schwarz relaxations with both lexicographic and coloured orderings. With this pur-
pose, we fix the grid-size to h = 2−18. The comparison is done in Table 5.3, where
the number of V(1,0)-multigrid iterations and the CPU times necessary to reduce
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FIGURE 5.2: Convergence rates of the multigrid method based on
overlapping multiplicative Schwarz smoothers for the three consid-
ered Schwarz relaxations and their coloured counterparts, and for

spline degrees k = 2, . . . , 8.

the initial residual in a factor of 10−8 are shown for different spline degrees for the
considered approaches. All the methods have been implemented in our in-house
Fortran code, and the numerical computations were carried out on a MacBook Pro
with a Core i5 2.7 GHz and 8 GB RAM, running OS X 10.10 (Yosemite). Thus, we
consider coloured multiplicative Schwarz smoothers with blocks composed of three
points for the cases k = 2, 3, 4, five points for k = 5, 6 and seven points for k = 7, 8.

GS 3p-Sch c-3p-Sch 5p-Sch c-5p-Sch 7p-Sch c-7p-Sch
k it cpu it cpu it cpu it cpu it cpu it cpu it cpu
2 10 0.28 9 0.36 5 0.22 7 0.43 5 0.32 7 0.62 4 0.36
3 10 0.33 7 0.33 5 0.25 7 0.49 4 0.28 6 0.58 4 0.40
4 16 0.56 8 0.41 5 0.27 7 0.52 4 0.32 6 0.64 4 0.44
5 29 1.24 10 0.55 8 0.48 7 0.57 4 0.35 6 0.71 4 0.47
6 55 2.29 14 0.84 12 0.71 7 0.63 5 0.45 6 0.83 4 0.52
7 106 4.98 20 1.24 19 1.20 10 0.96 6 0.59 6 0.79 4 0.53
8 201 10.44 31 2.05 38 2.52 13 1.26 9 0.88 8 1.15 5 0.68

TABLE 5.3: One-dimensional case. Number of V(1, 0) multigrid itera-
tions (it) and computational time (cpu) necessary to reduce the initial
residual in a factor of 10−8, for different values of the spline degree k,
using Gauss-Seidel (GS) smoother or the multiplicative Schwarz re-
laxations considered here: three-point (3p-Sch), five-point (5p-Sch),
seven-point (7p-Sch), coloured three-point (c-3p-Sch), coloured five-
point (c-5p-Sch), and coloured seven-point (c-7p-Sch) multiplicative

Schwarz smoothers.

The next step is to see the scalability of the chosen strategy with respect to h and
k. We apply the proposed V(1, 0) multigrid cycle based on the coloured multiplica-
tive Schwarz smoother for solving the linear system. Table 5.4 shows the number of
iterations needed to reduce the initial residual by a factor of 10−8 for several mesh
sizes h = 2−` with ` = 16, . . . , 20, and different spline degrees k = 2, . . . , 8. We
also report the computational time (in seconds) needed for solving the linear system
by the proposed multigrid method. We observe that our approach shows an excel-
lent convergence with respect to the mesh refinement, for all the polynomial orders.
But overall, we would like to remark the robustness of the method with respect to
the spline degree. In all cases, only four or five V(1, 0)−cycles are needed to reach
the stopping criterium, independently of the mesh size and the polynomial order.
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Regarding the computational cost, we observe a very good scaling, not only with
respect to h but also with respect to k.

Color 3p Schwarz Color 5p Schwarz Color 7p Schwarz
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

` it cpu it cpu it cpu it cpu it cpu it cpu it cpu
16 5 0.07 5 0.07 5 0.08 4 0.11 5 0.13 4 0.15 5 0.19
17 5 0.13 5 0.15 5 0.15 4 0.18 5 0.24 4 0.28 5 0.36
18 5 0.22 5 0.25 5 0.27 4 0.35 5 0.45 4 0.53 5 0.68
19 5 0.43 5 0.47 5 0.51 4 0.66 5 0.88 4 1.07 5 1.35
20 5 0.82 5 0.91 5 0.99 4 1.28 5 1.70 4 2.08 5 2.69

TABLE 5.4: One-dimensional test problem. Number of V(1, 0) multi-
grid iterations (it) and computational time (cpu) necessary to reduce
the initial residual in a factor of 10−8, for different grid-sizes h and
for different values of the spline degree k, using the most appropriate

coloured multiplicative Schwarz smoother for each k.

Now, let us focus on the bidimensional Poisson problem defined in (2.19) with
Ω = (0, 1)2 and dirichlet boundary conditions in ∂Ω. Since the problem is solved in
the parametric domain, we choose the basis functions as B-splines. For this problem,
we consider square blocks centered on each unknown by extending the previous
one-dimensional approaches to each spatial direction. More concretely, 9(3× 3)−
25(5× 5)− and 49(7× 7)−point multiplicative Schwarz smoothers are considered.
Due to the tensor-product structure of IGA discretizations, transfer operators can
be obtained by means of kronecker product of their corresponding one-dimensional
version. For the LFA of the two-dimensional problem, the analysis results are com-
pared to the ones provided by our multigrid codes on a square domain. Thus, in Ta-
ble 5.5, the three-grid convergence factors predicted by LFA are shown together with
the corresponding asymptotic convergence factors calculated by using the proposed
V(1, 0) multigrid method. A lexicografic Gauss-Seidel smoother and the multiplica-
tive Schwarz relaxations with blocks of 9(3× 3), 25(5× 5) and 49(7× 7) unknowns
(9p Schwarz, 25p Schwarz and 49p Schwarz, respectively) are considered. The re-
sults are presented again for different spline degrees ranging from k = 2 to k = 8.
The good match between the estimates predicted by LFA and the real asymptotic
convergence factors is shown in the table. It is also observed that the bad behav-
ior of the multigrid based on Gauss-Seidel smoother, which was seen in the one-
dimensional results, is even more remarkable in this two-dimensional case. Finally,
it can be seen that, given a spline degree k, a multiplicative Schwarz smoother which
provides a multigrid method with an efficient performance can be found.

At this point, we have demonstrated that the local Fourier analysis is a very
useful tool to obtain information about the performance of multigrid for IGA since
it predicts very accurately the convergence of the method. This is very interesting
since for a fixed spline degree k, we can choose the appropriate number of points
in the blocks to construct an efficient multiplicative Schwarz smoother. As we did
in the one-dimensional case, we propose to use the colored version of the Schwarz
methods. Given that we considered 3 colors in the one-dimensional case, 9 different
colors are considered for the two-dimensional case (3 colors per spatial dimension).
Now, we test the performance of the geometric multigrid solver based on overlap-
ping multiplicative Schwarz smoothers with a right-hand side

f (x) = 2π2 sin(πx) sin(πy). (5.1)
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Gauss-Seidel 9p Schwarz 25p Schwarz 49p Schwarz
ρV

3g ρV
h ρV

3g ρV
h ρV

3g ρV
h ρV

3g ρV
h

k = 2 0.510 0.510 0.099 0.099 0.067 0.066 0.050 0.050
k = 3 0.827 0.830 0.212 0.214 0.065 0.067 0.052 0.051
k = 4 0.954 0.955 0.452 0.455 0.127 0.145 0.051 0.053
k = 5 0.990 0.990 0.701 0.703 0.260 0.262 0.098 0.119
k = 6 0.999 0.999 0.870 0.872 0.447 0.440 0.190 0.165
k = 7 0.999 0.999 0.947 0.955 0.650 0.657 0.317 0.325
k = 8 0.999 0.999 0.985 0.982 0.816 0.807 0.473 0.440

TABLE 5.5: Two-dimensional case: Three-grid (ρV
3g) convergence fac-

tors predicted by LFA together with the asymptotic convergence fac-
tors provided by the V(1,0)-cycle multigrid code (ρV

h ), for different
spline degrees k.

Hence, in Table 5.6, we show the behavior of the multigrid method based on dif-
ferent smoothers: Gauss-Seidel and lexicographic/coloured multiplicative Schwarz
relaxations. For a mesh of size 512× 512, we display the number of V(1,0)-multigrid
iterations together with the CPU times necessary to reduce the initial residual in a
factor of 10−8. Again, the bad behavior of the Gauss-Seidel based multigrid method
due to the presence of many small eigenvalues associated with oscillatory compo-
nents of the error, is clearly observed. There are some cases, indicated with the sym-
bol −, for which more than 500 iterations would be needed for convergence. For the
optimal smoothing strategy, we choose the coloured multiplicative Schwarz relax-
ations with blocks of size 3× 3 for the cases k = 2, 3, 4, blocks of size 5× 5 for the
cases k = 5, 6 and blocks of size 7× 7 for splines degree k = 7, 8. We now apply this
proposed strategy for different grids with mesh-sizes from 128× 128 to 1024× 1024
and various spline degrees ranging from k = 2 to k = 8 in order to show the good
scalability of the solver. Again, we use V−cycles with one pre-smoothing step and
no post-smoothing steps. The number of iterations needed to reduce the initial resid-
ual by a factor of 10−8 together with the computational time (in seconds) are given
in Table 5.7. We observe that the iteration numbers are robust with respect to both
the size of the grid h and the spline degree k. Moreover, we see that the number of it-
erations is similar to those reported in the one-dimensional case. We emphasize that
a small number of V(1, 0)−cycles are needed to reach the stopping criterium, inde-
pendently of h and k. Just like in the one-dimensional case, we can conclude that the
multigrid method based on an appropriate multiplicative Schwarz smoother pro-
vides an efficient and robust solver for B-spline isogeometric discretizations.

The next experiment demonstrates the efficiency and robustness of the proposed
multigrid method based on multiplicative Schwarz iterations when dealing with a
nontrivial geometry. Hence, we take as domain the quarter of an annulus,

Ω = {(x, y) ∈ R2 | r2 ≤ x2 + y2 ≤ R2, x, y ≥ 0},

with r = 0.3 and R = 0.5. We consider the 2D Poisson problem (2.19) in such domain
with homogeneous Dirichlet boundary conditions and f (x, y) is such that the exact
solution is

u(x, y) = sin(πx) sin(πy)(x2 + y2 − r2)(x2 + y2 − R2).

The geometry of the computational domain is described exactly by quadratic C1

NURBS and depicted in Figure 5.3.
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GS 9p-Sch c-9p-Sch 25p-Sch c-25p-Sch 49p-Sch c-49p-Sch
k it cpu it cpu it cpu it cpu it cpu it cpu it cpu
2 20 1.10 8 1.29 4 0.68 7 4.89 4 2.88 6 14.21 3 7.46
3 57 4.90 8 2.13 4 0.99 6 5.60 4 4.02 6 17.80 3 9.30
4 166 21.04 14 4.66 7 2.40 7 8.38 4 5.08 6 22.40 4 15.56
5 492 96.03 19 17.26 17 10.40 9 17.83 4 6.09 6 39.96 3 14.69
6 − 31 21.53 40 28.40 11 20.01 5 9.33 7 39.90 3 16.06
7 − 60 48.04 112 98.70 15 34.32 9 21.80 9 60.44 3 17.15
8 − 88 105.62 254 310.55 22 71.19 15 48.87 11 88.17 4 26.01

TABLE 5.6: Two-dimensional case. Number of V(1, 0) multigrid itera-
tions (it) and computational time (cpu) necessary to reduce the initial
residual in a factor of 10−8, for different values of the spline degree k,
using Gauss-Seidel (GS) smoother or the multiplicative Schwarz re-
laxations considered here: three-point (9p-Sch), five-point (25p-Sch),
seven-point (49p-Sch), coloured three-point (c-9p-Sch), coloured five-
point (c-25p-Sch), and coloured seven-point (c-49p-Sch) multiplica-

tive Schwarz smoothers.

Color 9p Schwarz Color 25p Schwarz Color 49p Schwarz
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Grid it cpu it cpu it cpu it cpu it cpu it cpu it cpu
1282 4 0.06 4 0.10 7 0.22 4 0.62 5 0.99 3 2.22 4 3.35
2562 4 0.21 4 0.29 7 0.69 4 1.40 5 2.86 3 6.03 4 9.24
5122 4 0.68 4 0.99 7 2.40 4 6.09 5 9.33 3 17.15 4 26.01
10242 4 2.60 4 3.80 7 9.13 3 16.49 5 33.05 3 53.69 4 80.74

TABLE 5.7: Two-dimensional case. Number of V(1, 0) multigrid itera-
tions (it) and computational time (cpu) necessary to reduce the initial
residual in a factor of 10−8, for different grid-sizes and for different
values of the spline degree k, using the most appropriate coloured

multiplicative Schwarz smoother for each k.

To discretize this problem, we use NURBS of degree k = 2, . . . , 8 with maximal
smoothness Ck−1. We solve the corresponding linear systems using V(1, 0)− cycles.
If Gauss-Seidel smoother is considered, the bad behavior of the multigrid method
reported in the previous experiments is also observed here. More concretely, for
k = 2 around 50 iterations are required to achieve the desired convergence, about 70
iterations are needed when k = 3 and for k ≥ 4 the resulting number of iterations
is bigger than 200. We consider then the coloured multiplicative Schwarz smoother
used for the square domain. The size of the blocks of the Schwarz smoother de-
pends on k, and they are chosen following the same strategy than in the previous
experiment. The numbers of iterations and CPU times needed to reach the stopping
criterium, for various degrees k and for different mesh sizes, are reported in Table
5.8. We observe an excellent performance, obtaining similar results to those of the
example with the parametric domain. We can conclude that the proposed solver
is robust with respect to this geometry transformation, having a great potential for
solving problems in more complicated multi-patch geometries, which is subject of
future research.

Additive Schwarz methods

In this section, we focus on the use of additive Schwarz methods as smoothers for
multigrid methods. However, a standard LFA is not suitable for the analysis of



5.1. h-multigrid methods 89

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

!

FIGURE 5.3: Computational domain for the Poisson problem on a
quarter of an annulus with r = 0.3 and R = 0.5.

Color 9p Schwarz Color 25p Schwarz Color 49p Schwarz
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Grid it cpu it cpu it cpu it cpu it cpu it cpu it cpu
322 4 0.02 4 0.02 8 0.05 4 0.13 5 0.20 3 0.65 4 0.72
642 4 0.03 4 0.04 7 0.08 4 0.30 5 0.46 3 1.28 5 2.15
1282 4 0.07 4 0.10 8 0.25 4 0.96 6 1.42 3 3.70 5 7.01
2562 4 0.20 4 0.30 7 0.74 4 3.44 6 5.01 3 13.13 5 23.75

TABLE 5.8: Quarter of an annulus problem. Number of V(1, 0) multi-
grid iterations (it) and computational time (cpu) necessary to reduce
the initial residual in a factor of 10−8, for different grid-sizes and for
different values of the spline degree k, using the most appropriate

coloured multiplicative Schwarz smoother for each k.

these smoothers. Thus, we carry out a LFA based on the infinite subgrids approach
in this section. It is not surprising that multiplicative Schwarz smoothers provide
better convergence rates than their additive counterparts. However, the efficiency of
additive Schwarz methods lies on its parallelizability while they still provide good
asymptotic convergence factors.

Thus, let us consider the Poisson problem (2.5) discretized with B-splines hold-
ing maximal global smoothness. As a starting point, let us consider the three-, five-
and seven-point additive Schwarz methods as smoothers with maximum overlap-
ping among the blocks. Therefore, it looks natural to apply weights ω = 1/b since
each unknown is updated b times (b is the size of the blocks). Hence, we show in
Table 5.9 the two-grid (ρ2g) asymptotic convergence factors predicted by LFA ap-
plied to IGA discretizations holding maximum global continuity Ck−1 together with
the asymptotic convergence factors provided by our multigrid code (ρh) based on
one smoothing step of additive Schwarz iterations, with a mesh size h = 2−11 and
different spline degrees k.

We would like to point out the good match among the asymptotic convergence
factors provided by the analysis and the ones obtained by means of our numerical
experiments. However, these asymptotic convergence factors suggest that by us-
ing additive Schwarz smoothers the block size should be more enlarged in order
to achieve robustness with respect the polynomial degree. The convergence rates
of these methods is similar if we consider FEM discretizations applied to the same
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3p ad Schwarz 5p ad Schwarz 7p ad Schwarz
ω = 1/3 ω = 1/5 ω = 1/7

ρ2g ρh ρ2g ρh ρ2g ρh
k = 1 0.33 0.33 0.20 0.20 0.14 0.14
k = 2 0.37 0.37 0.19 0.19 0.16 0.16
k = 3 0.41 0.41 0.22 0.22 0.18 0.18
k = 4 0.45 0.45 0.30 0.30 0.22 0.22
k = 5 0.62 0.62 0.47 0.47 0.37 0.37
k = 6 0.76 0.77 0.62 0.62 0.50 0.50
k = 7 0.86 0.86 0.74 0.74 0.62 0.63
k = 8 0.92 0.93 0.83 0.83 0.72 0.73

TABLE 5.9: 1D Poisson problem: Two-grid (ρ2g) asymptotic conver-
gence factors predicted by LFA applied to IGA discretizations hold-
ing maximum global continuity Ck−1 together with the asymptotic
convergence factors provided by our multigrid code (ρh) based on
one smoothing step of additive Schwarz iterations, with a mesh size

h = 2−11 and different spline degrees k.

problem. In fact, we show in Table 5.10 the two-grid (ρ2g) asymptotic convergence
factors predicted by LFA applied to FEM discretizations together with the asymp-
totic convergence factors provided by our multigrid code (ρh) based on one smooth-
ing step of additive Schwarz iterations, with a mesh size h = 2−11 and different
spline degrees k.

3p ad Schwarz 5p ad Schwarz 7p ad Schwarz
ω = 1/3 ω = 1/5 ω = 1/7

ρ2g ρh ρ2g ρh ρ2g ρh
k = 1 0.33 0.33 0.20 0.20 0.14 0.14
k = 2 0.24 0.23 0.13 0.13 0.11 0.10
k = 3 0.39 0.38 0.25 0.25 0.18 0.18
k = 4 0.33 0.36 0.22 0.23 0.16 0.17
k = 5 0.48 0.48 0.31 0.30 0.23 0.23
k = 6 0.69 0.69 0.44 0.44 0.31 0.31
k = 7 0.83 0.83 0.58 0.58 0.41 0.42
k = 8 0.92 0.92 0.72 0.72 0.52 0.52

TABLE 5.10: 1D Poisson problem: Two-grid (ρ2g) asymptotic con-
vergence factors predicted by LFA applied to FEM discretizations
together with the asymptotic convergence factors provided by our
multigrid code (ρh) based on one smoothing step of additive Schwarz
iterations, with a mesh size h = 2−11 and different spline degrees k.

Now, let us show the performance of additive Schwarz methods in the case d = 2
and let us check the utility of LFA in order to predict the asymptotic convergence
factors too. Hence, let us consider the 2D Poisson equation:

−∆u = f , in Ω,
u = 0, on ∂Ω,

(5.2)

on the square domain Ω = (0, 1)2. For this problem, we use again B-spline dis-
cretizations holding maximum global continuity and FEM discretizations. Thus, we
suggest to apply a multigrid method based on V(1,1) cycles using additive Schwarz



5.1. h-multigrid methods 91

methods as smoothers with maximum overlapping. In this problem, we consider
9(3 × 3)-point, 25(5 × 5)-point and 49(7 × 7)-point additive Schwarz smoothers.
Moreover, the number of points considered in our LFA based on the infinite subgrids
approach is ng = 16, 36, 64 points respectively, see (4.63). The solution obtained at
each local problem is multiplied by ω = 1/b, where b the block-size of the corre-
sponding smoother. Hence, in Table 5.11 we show the two-grid (ρ2g) asymptotic
convergence factors predicted by LFA (based on the infinite subgrids approach) ap-
plied to IGA discretizations holding maximum global continuity Ck−1 together with
the asymptotic convergence factors provided by our multigrid code (ρh) based on
two smoothing steps of additive Schwarz iterations, for different spline degrees k.

9p ad Schwarz 25p ad Schwarz 49p ad Schwarz
ω = 1/9 ω = 1/25 ω = 1/49

ρV
2g ρV

h ρV
2g ρV

h ρV
2g ρV

h
k = 1 0.09 0.10 0.05 0.09 0.03 0.06
k = 2 0.24 0.23 0.12 0.12 0.07 0.07
k = 3 0.57 0.57 0.35 0.34 0.21 0.21
k = 4 0.80 0.81 0.60 0.59 0.41 0.41
k = 5 0.93 0.93 0.79 0.78 0.61 0.61
k = 6 0.97 0.98 0.90 0.89 0.76 0.77
k = 7 - - 0.96 0.95 0.87 0.87
k = 8 - - 0.98 0.98 0.93 0.93

TABLE 5.11: 2D Poisson problem: Two-grid (ρ2g) asymptotic con-
vergence factors predicted by LFA applied to IGA discretizations
holding maximum global continuity Ck−1 together with the asymp-
totic convergence factors provided by our multigrid code (ρh) based
on two smoothing steps of additive Schwarz iterations, for different

spline degrees k.

This match between the experimental factors and those predicted by the anal-
ysis proves again that LFA is a useful tool for IGA in the two-dimensional case.
The asymptotic convergence factors show again that the size (and/or overlapping)
of the blocks shall be enlarged since the convergence rates per iteration of additive
Schwarz smoothers decay. Something similar happens with the case of FEM dis-
cretizations applied to the same problem. Hence, in Table 5.12 we show the two-grid
(ρ2g) asymptotic convergence factors predicted by LFA (based on the infinite sub-
grids approach) applied to FEM discretizations together with the asymptotic con-
vergence factors provided by our multigrid code (ρh) based on two smoothing steps
of additive Schwarz iterations, for different spline degrees k.

Hence, we have already seen that the LFA can predict the asymptotic conver-
gence behavior of multigrid algorithms based on additive Schwarz methods. Now,
we would like to improve the performance of additive Schwarz smoothers by using
optimal weights ω. For this task, we start performing a LFA based on infinite sub-
grids but starting with linear discretizations of the 1D Poisson equation considering
fixed weights. Our first choice of these weights is the natural weight 1/b, with b de-
noting the number of blocks where each unknown appears. Thus, in Table 5.13 we
show the two-grid asymptotic convergence factors applying a linear finite element
discretization p = 1 for the 1D Poisson problem with ν = 1 smoothing steps of ad-
ditive Schwarz methods, block-size (b) ranging from 2 to 7, overlapping ov ranging
from 1 to b− 1 and considering natural weights:
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9p ad Schwarz 25p ad Schwarz 49p ad Schwarz
ω = 1/9 ω = 1/25 ω = 1/49

ρ2g ρh ρ2g ρh ρ2g ρh
k = 1 0.09 0.10 0.05 0.09 0.03 0.06
k = 2 0.21 0.22 0.10 0.11 0.06 0.06
k = 3 0.49 0.48 0.28 0.27 0.17 0.17
k = 4 0.71 0.72 0.45 0.45 0.29 0.29
k = 5 − − 0.62 0.62 0.43 0.43
k = 6 − − 0.78 0.76 0.56 0.56
k = 7 − − 0.88 0.85 0.68 0.67
k = 8 − − 0.96 0.96 0.79 0.78

TABLE 5.12: 2D Poisson problem: Two-grid (ρ2g) asymptotic con-
vergence factors predicted by LFA (based on the infinite subgrids
approach) applied to FEM discretizations together with the asymp-
totic convergence factors provided by our multigrid code (ρh) based
on two smoothing steps of additive Schwarz iterations, for different

spline degrees k.

Block-size (b)
ov 2 3 4 5 6 7
1 0.33 0.99 0.40 0.50 0.43 0.50
2 - 0.33 0.20 0.50 0.29 0.25
3 - - 0.20 0.50 0.21 0.99
4 - - - 0.20 0.14 0.25
5 - - - - 0.14 0.33
6 - - - - - 0.14

TABLE 5.13: Linear finite element discretization p = 1 for the 1D
Poisson problem. Two-grid asymptotic convergence factors applying
ν = 1 smoothing steps of an additive Schwarz method. Block-size (b)
ranges from 2 to 7 and the size of the overlapping ov from 1 to b− 1.

Natural weights are taken in the smoother.

In the previous table, we observe that a bigger block-size or overlapping among
blocks do not always ensure us a better asymptotic convergence factor. However,
this fact might take place because we are not taking the optimal weight for each case.
At this point, our LFA based on infinite subgrids allows us to perform an analysis
to find the optimal weights. Depending on the block-sizes and overlappings, we
found out that our search lies on two parameters. In Table 5.14 we show the optimal
convergence factors for the previous cases together with the corresponding optimal
weights between brackets:

The results obtained in Table 5.14 shows that even using the optimal weights, the
best choice of block-size and overlapping for linear discretization of Poisson problem
is not straightforward. Again, a bigger block-size or overlapping do not guarantee a
better asymptotic convergence factor. Among the previous cases, the most efficient
additive Schwarz method for k = 1 seems to be block-size 2 with overlapping 1
between the blocks. Furthermore, with a deeper search of the optimal weight, an
asymptotic factor of ρ2g = 8e− 09 is obtained with weights (0.375, 0.375).

Restrictive additive Schwarz methods can be considered as a particular case of
additive Schwarz methods that avoid communication between processors. Thus, we
are interested on comparing them with their non-restrictive counterparts. Hence,
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Block-size
ov 2 3 4 5 6 7
1 0.01 (0.38) 0.15 (0.57) 0.10 (0.55,0.77) 0.07 (0.7,0.71) 0.18 (0.49,0.82) 0.20 (0.8)
2 - 0.08 (0.27) 0.01 (0.42) 0.08 (0.47,0.61) 0.04 (0.51,0.78) 0.12 (0.45,0.89)
3 - - 0.01 (0.21) 0.07 (0.35) 0.10 (0.45) 0.07 (0.53)
4 - - - 0.04 (0.17) 0.01 (0.29) 0.06 (0.35,0.42)
5 - - - - 0.03 (0.15) 0.04 (0.26)
6 - - - - - 0.04 (0.13)

TABLE 5.14: Linear finite element discretization k = 1 for the 1D Pois-
son problem. Asymptotic convergence factors and optimal weights,
between brackets, provided by our two-grid analysis by using one
iteration of additive Schwarz methods with optimal weights. Block-
size (b) ranges from 2 to 7 and the size of the overlapping (ov) from 1

to b− 1.

we consider restrictive additive Schwarz methods for the 1D Poisson equation dis-
cretized with linear basis functions and natural weights ω = 1. In addition, we
performed a LFA based on infinite subgrids for this case. In Table 5.15 we show the
two-grid asymptotic convergence factors applying ν = 1 smoothing steps of the re-
strictive additive Schwarz method with natural weights, block-sizes ranging from 2
to 7 and all the possible overlappings among the blocks.

Block-size
ov 2 3 4 5 6 7
1 0.75 0.99 0.40 0.50 0.43 0.50
2 - 0.99 0.60 0.50 0.57 0.44
3 - - 0.87 0.87 0.29 0.99
4 - - - 1.00 0.71 0.44
5 - - - - 0.93 0.99
6 - - - - - 0.99

TABLE 5.15: Linear finite element discretization k = 1 for the 1D
Poisson problem. Two-grid asymptotic convergence factors applying
ν = 1 smoothing steps of the restrictive additive Schwarz method
with natural weights. Block-size (b) ranges from 2 to 7 and the size of

the overlapping ov from 1 to b− 1.

We observe that LFA predicts a very poor performance of restrictive additive
Schwarz methods as smoothers in some cases. Fortunately, our LFA based on infinite
subgrids do not fall behind regarding the search of optimal weights for restrictive
cases. Hence, in Table 5.16 we show the two-grid asymptotic convergence factors
applying ν = 1 smoothing steps of the restrictive additive Schwarz method with
optimal weights, block-sizes ranging from 2 to 7 and all the possible overlappings
among the blocks.

We can observe a significant improvement of the asymptotic convergence fac-
tors when appropiate, non-trivial weights are applied. Once again, better asymp-
totic convergence factors are not directly related to bigger block-sizes or overlap-
pings among blocks. The potential of our analysis allows us to extend LFA to other
polynomial degrees. In practice, for FEM discretizations, additive Schwarz meth-
ods are often applied with overlapping 1 among the blocks and an usual strategy
is to make a splitting of the grid such that each block contains all the basis func-
tions with support in the corresponding element. That is, the size of the blocks is
chosen as k + 1 for FEM. Hence, we consider this approach for additive Schwarz



94 Chapter 5. Multigrid methods for IGA discretizations for scalar problems

Block-size
ov 2 3 4 5 6 7
1 0.45 (0.6) 0.34 (0.67) 0.17 (0.83) 0.20 (0.8) 0.18 (0.82) 0.20 (0.8)
2 - 0.37 (0.68) 0.15 (0.71) 0.20 (0.8) 0.23 (0.78) 0.18 (0.82)
3 - - 0.43 (0.71) 0.34 (0.66) 0.16 (0.84) 0.34 (0.67)
4 - - - 0.36 (0.66) 0.20 (0.7) 0.18 (0.82)
5 - - - - 0.40 (0.7) 0.34 (0.66)
6 - - - - - 0.35 (0.66)

TABLE 5.16: Linear finite element discretization k = 1 for the 1D Pois-
son problem. Asymptotic convergence factors and optimal weights,
between brackets, provided by our two-grid analysis by using one
iteration of the restrictive additive Schwarz method with optimal
weights. Block-size (b) ranges from 2 to 7 and the size of the over-

lapping (ov) from 1 to b− 1.

methods and their restrictive counterparts with natural and optimal ones provided
by our LFA. Thus, in Table 5.17 we show the asymptotic convergence factors pre-
dicted by our two-grid analysis by using one smoothing step of the element-based
additive Schwarz method (AS), restrictive additive Schwarz method (RAS) and their
versions with optimal weights (AS opt and RAS opt), for polynomial degrees rang-
ing from k = 2, . . . , 8. Note that in the case of additive Schwarz methods with op-
timal weights, these are shown between parenthesis. In this table, we observe that,
aside from the quadratic case with a poor performance, the AS and RAS methods
provide satisfying and robust convergence rates with respect the spline degree. Be-
sides it, the asymptotic convergence factors are improved with AS opt and RAS opt
and their performance is even more robust than by using natural weights.

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
AS 0.50 0.10 0.17 0.11 0.17 0.12 0.17

RAS 0.50 0.12 0.15 0.11 0.17 0.12 0.16
AS opt 0.13 (0.62,0.75) 0.07 (0.94,0.01) 0.08 (0.44,0.92) 0.05 (0.46,0.95) 0.08 (0.46,0.92) 0.06 (0.47,0.94) 0.08 (0.46,0.92)

RAS opt 0.16(1.17,0.77) 0.06(0.92,0.95) 0.07(0.94,0.93) 0.05(0.91,0.95) 0.08 (0.92,0.92) 0.06 (0.94,0.94) 0.08(0.91,0.92)

TABLE 5.17: High order FEM discretizations for the 1D Poisson
problem: Asymptotic convergence factors predicted by our two-grid
analysis by using one smoothing step of element-based the additive
Schwarz method (AS), restrictive additive Schwarz method (RAS)
and their versions with optimal weights (AS opt and RAS opt), for

polynomial degrees ranging from k = 2, . . . , 8.

For the two-dimensional case, we consider the same element-based smoothing
strategy using additive Schwarz methods obtained by tensorization. Thus, the size
of local linear systems will be (k + 1)2 and the overlapping among the blocks in both
directions is still one. Hence, in Table 5.18 we show the asymptotic convergence
factors predicted by the two-grid analysis by using two smoothing steps of the two-
dimensional version of the element-based additive Schwarz methods considered for
the one-dimensional case and polynomial degrees ranging from k = 1, . . . , 8.

We can observe that, although there is a slight deterioration of the asymptotic
convergence factors with respect to the spline degree k, these approaches provide
satisfying convergence rates. Element-based additive Schwarz methods show a sim-
ilar performance to their restrictive counterparts. Hence, the restrictive additive
Schwarz methods are more likely to be used since they avoid communication among
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
AS 0.14 0.15 0.21 0.25 0.31 0.36 0.40 0.43

RAS 0.19 0.15 0.21 0.25 0.31 0.36 0.40 0.43
AS opt 0.08 (0.46) 0.10 (0.52,1.06) 0.15 (0.55,1.05) 0.19 (0.57,1.05) 0.25 (0.57,1.06) 0.30 (0.62,1.04) 0.34 (0.63,1.05) 0.38 (0.64,1.04)

RAS opt 0.10 (0.94) 0.11 (1.01,1.06) 0.15 (1.10,1.05) 0.19 (1.15,1.05) 0.25 (1.2,1.05) 0.30 (1.25,1.04) 0.34 (1.18,1.05) 0.38 (1.27,1.04)

TABLE 5.18: High order FEM discretizations for the 2D Poisson
problem: Asymptotic convergence factors predicted by our two-grid
analysis by using one smoothing step of element-based the additive
Schwarz method (AS), restrictive additive Schwarz method (RAS)
and their versions with optimal weights (AS opt and RAS opt), for

polynomial degrees ranging from k = 2, . . . , 8.

processors. In addition, the use of optimal weights only improves slightly the per-
formance with natural weights. Then, optimal weights might not be worth to use in
practice. Thus, we propose the restrictive additive Schwarz methods based on ele-
ments with minimum overlapping among the blocks and natural weights. Further-
more, one is interested in the number of smoothing steps in order to achieve a deter-
mined performance for the solver. Hence, in Table 5.19 we show the asymptotic con-
vergence factors provided by LFA together with the asymptotic convergence factors
obtained with our multigrid codes using W(1, 0), W(1, 1), W(2, 1) and W(2, 2) cycles
of the element-based restrictive additive Schwarz methods with natural weights, for
polynomial degrees ranging from k = 1, . . . , 8:

k W(1, 0) W(1, 1) W(2, 1) W(2, 2)
ρ2g ρh ρ2g ρh ρ2g ρh ρ2g ρh

1 0.41 0.41 0.19 0.18 0.10 0.09 0.03 0.03
2 0.39 0.40 0.15 0.15 0.06 0.06 0.02 0.02
3 0.46 0.45 0.21 0.21 0.09 0.09 0.04 0.04
4 0.50 0.50 0.25 0.25 0.13 0.13 0.06 0.06
5 0.56 0.56 0.31 0.31 0.18 0.18 0.10 0.10
6 0.60 0.60 0.36 0.36 0.21 0.21 0.13 0.13
7 0.63 0.63 0.40 0.40 0.26 0.25 0.16 0.16
8 0.66 0.66 0.43 0.43 0.28 0.28 0.19 0.19

TABLE 5.19: FEM discretizations of 2D Poisson equation: Asymp-
totic convergence factors provided by LFA together with the asymp-
totic convergence factors obtained with our multigrid codes using
W(1, 0),W(1, 1),W(2, 1),W(2, 2) cycles of the element-based restric-
tive additive Schwarz methods with natural weights, for polynomial

degrees ranging from k = 1, . . . , 8.

Note that there is a very good match between the asymptotic convergence fac-
tors provided by LFA and the ones obtained with our multigrid codes. Also, the
use of W−cycles provides asymptotic convergence factors that are more robust with
respect to the spline degree k. We can reduce the computational cost of our solver
by performing V−cycles instead of W−cycles. In Table 5.20, we show the asymp-
totic convergence factors provided by our multigrid codes applying V−cycles of the
proposed smoothers for polynomial degrees ranging from k = 1, . . . , 8.

As we can see, the asymptotic convergence factors are substantially similar to
the ones obtained by applying W−cycles. Thus, we propose to use V−cycles of the
element-based restrictive additive Schwarz methods with natural weights as opti-
mal solver for FEM discretizations of the 2D Poisson equation. A further analysis
of these smoothers would determine whether restrictive or non-restrictive additive
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V(1, 0) V(1, 1) V(2, 1) V(2, 2)
k ρh ρh ρh ρh
1 0.40 0.19 0.09 0.03
2 0.40 0.15 0.06 0.02
3 0.45 0.20 0.09 0.04
4 0.50 0.25 0.13 0.06
5 0.56 0.31 0.18 0.10
6 0.60 0.36 0.21 0.13
7 0.63 0.40 0.25 0.16
8 0.66 0.43 0.28 0.19

TABLE 5.20: FEM discretizations of 2D Poisson equation: Asymptotic
convergence factors provided by LFA together with the asymptotic
convergence factors obtained with our multigrid codes using V(1, 0),
V(1, 1), V(2, 1), V(2, 2) cycles of the element-based restrictive addi-
tive Schwarz methods with natural weights, for polynomial degrees

ranging from k = 1, . . . , 8.

Schwarz methods should be applied to IGA discretizations holding maximal conti-
nuity. However, as commented for the additive Schwarz methods, this analysis is
still an ongoing work.

5.1.2 Biharmonic equation

In this section, we propose the use of multigrid methods based on multiplicative
Schwarz iterations as smoothers for the biharmonic equation. In order to set the most
suitable size of the blocks as we did for the Poisson problem in the previous section,
we carry out a LFA for this problem. Thus, we present some local Fourier analysis re-
sults starting with the one-dimensional biharmonic equation. In Table 5.21 we show
the smoothing factor (ρ1g) and three-grid convergence factors predicted by LFA for
W−cycle (ρW

3g) and for V−cycle (ρV
3g), for different spline degrees varying from k = 2

to k = 6, when using the three-point multiplicative Schwarz smoother. Together
with these results, we also display the asymptotic convergence factors provided by
the W(1, 0)− and the V(1, 0)−multigrid cycles (ρW

h and ρV
h , respectively). A perfect

match between the theoretical and experimental factors is observed from the table,
indicating the utility of this analysis for the design of multigrid methods for the iso-
geometric discretization of the one-dimenstional biharmonic equation. Moreover,
we can see from the table that, opposite to the case of the Laplacian operator for
which the multigrid based on the three-point multiplicative Schwarz smoother de-
teriorates when k gets bigger (see Pé de la Riva, Rodrigo, and Gaspar, 2019), in this
case such a multigrid method provides a solver for the biharmonic equation which
is robust with respect to the polynomial degree k. Finally, we want to remark that
the three-grid convergence factors obtained for V−cycles are very close to those pro-
vided by using a three-grid analysis for W−cycles, and therefore, it is preferred the
use of V−cycles.

Now, we extend the LFA to the two-dimensional case of the biharmonic equa-
tion. Hence, we consider the two-dimensional bilaplacian equation and analyze the
behavior of multigrid for this problem. With this purpose, in Figure 5.4, we display
the convergence factors predicted by LFA for different spline degrees k when multi-
grid based on Gauss-Seidel or 9(3× 3)- or 25(5× 5)-point multiplicative Schwarz
smoothers is considered. It can be clearly seen that in the two-dimensional case, a
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ρ1g ρW
3g ρW

h ρV
3g ρV

h
k = 2 0.33 0.33 0.33 0.33 0.33
k = 3 0.30 0.27 0.27 0.28 0.28
k = 4 0.28 0.22 0.22 0.23 0.23
k = 5 0.26 0.20 0.20 0.21 0.21
k = 6 0.25 0.20 0.20 0.20 0.20

TABLE 5.21: One-dimensional biharmonic equation. Smoothing fac-
tor (ρ1g) and three-grid convergence factors predicted by LFA for W−
and V−cycles (ρW

3g and ρV
3g, respectively) together with the asymptotic

convergence factors provided by the W(1, 0)− and V(1, 0)−multigrid
cycles (ρW

h and ρV
h , respectively) by using the three-point multiplica-

tive Schwarz relaxation, for different spline degrees k.

deterioration of the multigrid convergence appears when k becomes bigger and a
Gauss-Seidel or a nine-point multiplicative Schwarz smoothers are considered. This
behavior is similar to that observed for the laplacian equation in Pé de la Riva, Ro-
drigo, and Gaspar, 2019, and makes necessary the use of a bigger block of unknowns
within the Schwarz relaxation iteration for large values of k. Thus, we also consider
the twenty-five-point multiplicative Schwarz smoother which provides satisfactory
results for the values of k considered here, as seen also in the picture. For bigger val-
ues of the spline degree, the presented LFA can be used for the choice of an adequate
block-size within the multiplicative Schwarz smoother.
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FIGURE 5.4: Two-dimensional biharmonic equation. LFA con-
vergence factors for multigrid based on Gauss-Seidel, nine-point
Schwarz and twenty-five-point Schwarz smoothers for different val-

ues of the spline degree k.

From the convergence factors provided by Figure 5.4, and taking into account the
computational complexity of the proposed multiplicative Schwarz smoothers, we
can define a strategy to obtain a multigrid method for the isogeometric discretiza-
tion of the two-dimensional biharmonic problem which is robust with respect to the
spline degree k. This strategy is fixed as considering the nine-point multiplicative
Schwarz smoother within the multigrid method when k ≤ 4, and the twenty-five-
point counterpart of the Schwarz relaxation for k = 5, 6.
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Once again, we propose an improvement of the strategy by applying the three-
colour ordering per spatial direction as applied for the Poisson equation. By ap-
plying this smoothing strategy instead of the lexicographic order of the blocks, our
multigrid algorithm provides better convergence factors.

At this point, we demonstrate the robustness and efficiency of the proposed
multigrid solver based on multiplicative Schwarz smoothers. We consider two nu-
merical experiments such that the one-dimensional and two-dimensional cases are
included. For these numerical experiments we apply our solver based on the three-
coloured version of the proposed smoothers since they yield better results. As it
was observed in the local Fourier analysis, the good performance of V-cycles sug-
gest their use in order to obtain a more efficient multigrid method. In addition, only
one pre-smoothing and no post-smoothing steps are considered. The initial guess
is taken as a random vector and the stoping criterion for the presented examples
consists of reducing the initial residual by a factor of 10−8. In the first numerical
experiment we consider the following one-dimensional biharmonic problem:

d4u
dx4 (x) = π4 sin(πx), x ∈ Ω = (0, 1),

u(0) = u(1) =
du
dx

(0) =
du
dx

(1) = 0.

Here, we consider the uniform and open knot vector Ξk
k−1,h. Thus, the problem is

discretized with maximum continuity B-spline basis functions for different degrees
ranging from k = 2 until k = 6. In Table 5.22, we show the number of iterations
needed to reduce the initial residual by a factor of 10−8 for several mesh sizes h = 2−`

with ` = 16, . . . , 20, and different spline degrees k = 2, . . . , 6.

` k = 2 k = 3 k = 4 k = 5 k = 6
16 8 5 4 5 5
17 7 5 5 5 5
18 8 5 4 5 5
19 7 5 5 5 5
20 8 5 4 5 5

TABLE 5.22: One-dimensional biharmonic equation. Number of
V(1, 0) multigrid iterations necessary to reduce the initial residual in
a factor of 10−8, for different grid-sizes h = 2−` and for different val-
ues of the spline degree k, using the coloured three-point multiplica-

tive Schwarz smoother.

It is clearly seen that the proposed multigrid method based on the coloured ver-
sion of the three-point multiplicative Schwarz smoother is robust with respect to the
grid size, as expected, and also with respect to the polynomial degree k. In addition,
we observe that only few iterations are needed to reach the stopping criterion. In
fact, in most of the cases only four or five V(1, 0)−cycles are required for conver-
gence.

For the second numerical experiment, let us consider the following biharmonic
problem on a unit square domain:

∆2u = 4π4 sin(πx) sin(πy), (x, y) ∈ Ω = (0, 1)2,
u(x, y) = 0, (x, y) on ∂Ω,
∇u · n = 0, (x, y) on ∂Ω.
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We discretize this problem with B-spline basis functions and spline degrees rang-
ing from k = 2 to k = 6. Moreover, the parameter space is constructed by means of
the tensor product of two univariate, uniform and open knot vectors. Thus, the
considered basis functions hold maximum continuity for this problem.

Color 9p Schwarz Color 25p Schwarz
Grid k = 2 k = 3 k = 4 k = 5 k = 6
322 5 3 3 3 4
642 6 3 5 3 4
1282 7 4 5 3 5

TABLE 5.23: Two-dimensional biharmonic equation. Number of
V(1, 0) multigrid iterations (it) necessary to reduce the initial resid-
ual in a factor of 10−8, for different grid-sizes and for different values
of the spline degree k, using the most appropriate coloured multi-

plicative Schwarz smoother for each k.

In Table 5.23, we show the number of iterations required by our multigrid solver
based on the three-color version of the nine- and twenty-five-point multiplicative
Schwarz smoothers. It is observed again that a small number of V(1, 0) cycles is
needed in order to reduce the initial residual by a factor of 10−8. We also want to
remark that the proposed multigrid solver is robust with respect to the spline degree
k.

To sum up, geometric multigrid methods based on the proposed multiplicative
Schwarz smoothers provide efficient and robust solvers with respect to k for solving
the biharmonic equation discretized by using IGA. In the one dimensional case, this
is achieved by using a three-colour three-point multiplicative Schwarz iteration as
the smoothing operator within the multigrid method, which gives robust conver-
gence factors for any value of k. For the two-dimensional case, however, the behav-
ior of such a solver deteriorates when k becomes larger, and therefore, the size of the
blocks of unknowns within the multiplicative Schwarz smoother has to be chosen
appropriately for each spline degree. This choice is supported with the LFA intro-
duced in Chapter 4 and we have proved the accuracy of this analysis at predicting
the behavior of the multigrid algorithms applied to the biharmonic equation. Fur-
thermore, the proposed coloured version of the multiplicative Schwarz smoothers
improves the performance of our multigrid solvers and the use of V−cycles with
only one pre-smoothing step and no post-smoothing steps is enough to obtain an
excellent and robust convergence.

5.2 Two-level method for Poisson equation

In this section, we propose a two-level method for solving isogeometric discretiza-
tions of the Poisson problem with an arbitrary polynomial degree in an efficient and
robust way. This two-level method considers the target polynomial degree on the
fine level whereas the order of the approximation at the coarse level is as low as
possible, dictated by the parametrization of the physical domain. More concretely,
we will consider a linear/quadratic discretization on the coarse level. At this point,
let us denote with k and klow the polynomial orders of the discretization at the fine
and coarse level respectively. Thus, the goal of our two-level algorithm is to solve
the linear system:

Akuk = bk, (5.3)
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where Ak denotes the isogeometric discretization of spline degree k. One iteration of
our proposed two-level method consists of the following steps:

1. Apply ν1 pre-smoothing steps of a suitable smoother Sk to the initial approxi-
mation u0

k for the fine level:

um
k = um−1

k + Sk(bk − Akum−1
k ), m = 1, . . . , ν1.

2. Compute the defect on the fine level dk = bk− Akuν1
k and restrict it to the coarse

level by using the fine-to-coarse transfer operator

dklow = Rklow
k dk.

3. Compute the correction eklow in the coarse level by solving the defect equation

Aklow eklow = dklow ,

where Aklow denotes the isogeometric discretization of spline degree klow.

4. Prolongate and update the correction to the fine level by means of the coarse-
to-fine transfer operator

uν1
k = uν1

k + Pk
klow

eklow .

5. Apply ν2 post-smoothing steps of the same smoother Sk to the current approx-
imation:

uν1+m
k = uν1+m−1

k + Sk(bk − Akuν1+m−1
k ), m = 1, . . . , ν2.

As mentioned before, the performance of multigrid methods depend strongly on
the choice of their components. Thus, we focus now on the choice of the smoother
and transfer operators. In Section 5.1, we observed that h-multigrid methods based
on multiplicative Schwarz methods provide robust convergence with respect to the
spline degree k. Hence, we consider these smoothers for our two-level algorithm too.
We suggest that only one pre-smoothing step of the adequate multiplicative Schwarz
method is enough for this task. With respect to the transfer operators, one can fol-
low the strategy shown for geometric multigrid methods in Chapter 3. However,
the application of this strategy based on collocation points often leads to singular
systems when spline spaces of different spline degrees are considered. This might
be caused by the common support of their basis functions that makes impossible
or very complicated to find suitable collocation points. Another possible cause is
the fact that B-spline spaces of different spline degrees are not embedded. Thus, we
propose to construct the transfer operators by means of a L2 projection among spline
spaces with polynomial degrees k and klow, that is, Vk

h and Vklow
h . Let us suppose that

the solution on the fine level with spline degree k and mesh size h is given by

uk
h =

nk
h

∑
j=1

uk
j ϕk

j , (5.4)

where nk
h = dim Vk

h , {ϕk
j }

nk
h

j=1 are the basis functions of the approximation space Vk
h

and uk = (uk
j )

nk
h

j=1 is the vector with the corresponding control variables. Then, the
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restriction operator Rklow
k : Vk

h −→ Vklow
h applied to the solution uk

h can be expanded
as a linear combination of the spline basis functions of Vklow

h as follows

Rklow
k uk

h =
n

klow
h

∑
j=1

uklow
j ϕklow

j . (5.5)

In order to obtain the influence between the coefficients {uk
j }

nk
h

j=1 and {uklow
j }

n
klow
h

j=1 , we
test both the approximation on the fine level and its restricted term with every basis
function spanning Vklow

h . Hence, we obtain

n
klow
h

∑
l=1

uklow
l

(
ϕklow

l , ϕklow
i

)
=

nk
h

∑
j=1

uk
j

(
ϕk

j , ϕklow
i

)
, ∀i = 1, . . . , nplow

h . (5.6)

This system can also be described as follows,

Mklow
klow

uklow = Mklow
k uk, (5.7)

where uklow = (uklow
j )

n
klow
h

j=1 is the vector with the control variables for the approxima-

tion on Vklow
h and

(
Mklow

klow

)
i,j
=
∫

Ω
ϕklow

i ϕklow
j dx,(

Mklow
k

)
i,j
=
∫

Ω
ϕklow

i ϕk
j dx.

(5.8)

Therefore, the restriction operator is given by

Rklow
k =

(
Mklow

klow

)−1
Mklow

k . (5.9)

Moreover, the prolongation operator is taken as its adjoint, that is

Pk
klow

=
(

Mklow
k

)T (
Mklow

klow

)−T
. (5.10)

In both cases, it is desirable to approximate
(

Mklow
klow

)−1
by row-sum lumping in

order to avoid the computation of this inverse matrix exactly.
At the coarse level, the stiffness matrix is conveniently obtained by rediscretiza-

tion. In the case of a Galerkin aproximation, the resulting matrix is obtained by

Aklow = Rklow
k AkPk

klow
. (5.11)

However, the Galerkin approximation of Aklow may contain extra non-zero entries
and it yields a similar bandwidth to the matrix of the fine level. To sum up, in
Algorithm 6 we describe one iteration of our two-level algorithm. In this algorithm,
we denote with Sk an appropiate multiplicative Schwarz method as smoother for
isogeometric discretizations with spline degree k.

Although there is an open choice for the solver at the coarse level, instead of
solving exactly the coarse problem, it can also be approximated by using a suit-
able iterative method. The goal of this approach is to reduce the computational
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Algorithm 6 Two-level algorithm

um+1
k = Two-level(Ak, Aklow , bk, um

k , Sk, Rklow
k , Pk

klow
)

1: um+1
k = um

k + Sk(bk − Akum
k ) . Apply one step of the multiplicative Schwarz

method on the fine level.
2: dk = bk − Akum

k . Compute the defect on the fine level.
3: dklow = Rklow

k dk . Restrict the defect on the coarse level
4: Aklow eklow = dklow . Compute the correction eklow in the coarse level by solving the

defect equation.
5: um+1 = um+1 + Pk

klow
eklow . Prolongate and update the correction to the fine level.

Vk
hl

Vk
hl

Vklow
hl

Vk
hl

Vklow
hl

Vklow
hl−1

Vklow
h1

Vklow
hl−1

Vklow
hl

Vk
hl

Vklow
h0

h−multigrid

FIGURE 5.5: Schemes of the two-level method (left) and the two-level
with an h−multigrid method for the approximation of the coarse

level (right) pointing out the approximation spaces at each level.

cost at the coarse level. In addition, there are many efficient iterative solvers for
linear/quadratic discretizations. For instance, an h−multigrid method can be per-
formed to approximate the solution of the defect equation in the coarse level. Hence,
we can define a grids sequence with mesh sizes hl = h, hl−1, . . . , h1, and h0 for the
coarsest grid. In Figure 5.5 we show the schemes of the two-level method (left) and
the two-level with an h−multigrid method for the approximation of the coarse level
(right) pointing out the approximation spaces at each level.

A further improvement of the algorithm can be achieved by using a more ag-
gressive coarsening strategy. More concretely, we can take a discretization with klow
and double mesh size 2h as the coarse level. Thus, the computational cost can be
reduced.

5.2.1 LFA for the two-level method

Now, we carry out a local Fourier analysis in order to design efficiently the compo-
nents of the two-level algorithm presented above. As mentioned in there, an IGA
discretization with spline degree k is considered in the fine level whereas the spline
degree klow for the discretization at the coarse level is as low as possible. We will de-
note the discrete operator in the fine and coarse level with Ak and Aklow respectively.
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Moreover, let us denote with Rklow
k , Pk

klow
the restriction and prolongation operators

between the fine and coarse levels. Thus, the error propagation operator of the two-
level method is

Lklow
k = (I − Pk

klow
A−1

klow
Rklow

k Ak)Sk. (5.12)

In the previous expression, Sk represents the smoothing operator which is applied
within the two level method one time in the pre-smoothing step. Let us note that
the Fourier modes are eigenfunctions of all the operators involved in the two level
method. In this case, the transfer operators Rklow

k , Pk
klow

between levels do not couple
Fourier modes unlike the inter-grid transfer operators within the standard h−multigrid
method. Thus, the Fourier symbol of the error transfer operator for θ ∈ Θ =
(−π, π]d is given by

L̃klow
k (θ) = ( Ĩ(θ)− P̃k

klow
(θ)Ã−1

klow
(θ)R̃klow

k (θ)Ãk(θ))S̃k(θ). (5.13)

By using this Fourier symbol, the asymptotic convergence factor of the two-level
method is estimated by the following expression:

ρ2g = sup
θ∈Θ
|L̃klow

k (θ)|. (5.14)

Thus, we start our analysis by considering a linear discretization as the second
level, that is, klow = 1. In Table 5.24, the two-level convergence factors predicted by
LFA, ρ2g, are shown together with the asymptotic convergence factors, ρh, obtained
numerically for different values of the spline degree k varying from k = 2 to k =
8. The asymptotic converge factors are obtained numerically by solving problem
(2.19) with Ω = (0, 1)2, a zero right-hand side, Dirichlet boundary conditions in
∂Ω and a random initial guess. We consider the 9−point, 25−point and 49−point
multiplicative Schwarz iterations at the first level. It can be seen from Table 5.24
that the factors predicted by LFA match very accurately the asymptotic convergence
factors numerically obtained, and therefore the LFA results in a very useful tool to
analyze the performance of the method.

9p Schwarz 25p Schwarz 49p Schwarz
ρ2g ρh ρ2g ρh ρ2g ρh

k = 2 0.12 0.12 0.08 0.08 0.06 0.07
k = 3 0.22 0.21 0.09 0.09 0.06 0.07
k = 4 0.46 0.46 0.13 0.15 0.07 0.09
k = 5 0.71 0.71 0.27 0.28 0.10 0.12
k = 6 0.88 0.88 0.45 0.46 0.19 0.21
k = 7 0.96 0.96 0.66 0.66 0.33 0.33
k = 8 0.99 0.99 0.83 0.81 0.49 0.48

TABLE 5.24: Two-level (ρ2g) convergence factors predicted by LFA to-
gether with the asymptotic convergence factors obtained numerically
(ρh), for different values of the spline degree k. In this case, the second
level is a linear discretization with the same mesh size h considered

for the first level.

It is also observed from Table 5.24 that by choosing an appropriate multiplica-
tive Schwarz smoother for each polynomial degree k, we obtain a robust solver with
respect to k. This choice of the size of the blocks in the relaxation depending on the
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spline degree is done by taking into account the two-grid convergence factors pro-
vided by the LFA, as well as the computational cost of the algorithm. In particular,
we choose blocks of size 3× 3 (9−point Schwarz smoother) for the cases k = 2, 3, 4,
blocks of size 5× 5 (25−point Schwarz smoother) for the cases k = 5, 6 and blocks
of size 7× 7 (49−point Schwarz smoother) for spline degree k = 7, 8.

As previously mentioned, we can also consider to approximate the solution of
the defect equation at the coarse level by applying an h−multigrid. In order to
analyze this improvement of the method, a three-grid analysis is required and at
this time some frequencies are coupled in the transition from the second level with
parameters (klow, h) to the third level/grid with (klow, 2h). For this three-grid anal-
ysis, a different smoothing operator Sklow can be considered for the low-order IGA
discretization. Hence, the error propagation matrix of the two-level algorithm im-
proved with the h−multigrid approximation on the coarse grid is

Mklow,2h
k,h = (I − Pk

klow
(I − (Mklow,2h

klow,h ))A−1
klow

Rklow
k Ak)Sk, (5.15)

where Mklow,2h
klow,h is the two-grid operator between the second and third levels, that is,

Mklow,2h
klow,h = Sν2,2

klow
(I − Ph

2h A−1
klow,2hR2h

h Aklow,h)S
ν1,2
klow

, (5.16)

with the inter-grid transfer operators Rh
2h and P2h

h taken as the canonical spline em-
bedding operator. In addition, ν1,2 and ν2,2 denote the number of pre- and post-
smoothing steps of the smoother Sklow on the second level. As mentioned previously,
in the transition from the second to the third level some Fourier modes are coupled.
Hence, the Fourier components are split into high- and low-frequency components
on Gh as performed during the two-grid analysis in Section 4.2.2. Based on the de-
composition of the Fourier space in terms of the subspaces of 2h−harmonics, the
spectral radius of the three-grid operator can be computed as follows:

ρ3g = ρ(Mklow,2h
k,h ) = sup

θ∈Θ2h

ρ((Mklow,2h
k,h )2g(θ)), (5.17)

where (Mklow,2h
k,h )2g denotes the matrix representation of Mklow,2h

k,h with respect to the
subspaces of 2h−harmonics. Note that the construction of this matrix is straightfor-
ward by applying the same process performed during the two-grid analysis since
there is not aliasing effect of frequencies in the transition from the first to the second
level. Next, we present some LFA results in order to support the approach based on
approximating the defect equation on the second level by means of one h−multigrid
iteration. In this case, one single iteration of a V(1, 1)−cycle using red-black Gauss-
Seidel as smoother is considered to approximate the problem on the coarse level.
Thus, in order to analyze such approximation, we need to use the three-grid local
Fourier analysis introduced above. In Table 5.25, we show the three-grid conver-
gence factors (ρ3g) provided by LFA. One can observe that the predictions provided
by the three-grid LFA match very well with the two-grid convergence factors pre-
dicted by the analysis for the two-level algorithm (with exact solve on the coarse
level) shown in Table 5.24. This means that by doing such an approximation on the
coarse grid we are not deteriorating the convergence obtained with the two-level
method with exact solve on the coarse grid.

The previous version of the two-grid algorithm can be further improved by con-
sidering a more aggresive coarsening strategy. For instance, we propose to consider
directly a grid size 2h in the second level. This strategy can be also understood as
omitting any smoothing effect on the level with polynomial degree klow and grid size
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9p Schwarz 25p Schwarz 49p Schwarz
k = 2 0.13 0.08 0.06
k = 3 0.21 0.09 0.07
k = 4 0.46 0.13 0.07
k = 5 0.71 0.27 0.10
k = 6 0.88 0.45 0.19
k = 7 0.96 0.66 0.32
k = 8 0.99 0.83 0.47

TABLE 5.25: Three-level (ρ3g) convergence factors predicted by LFA,
for different values of the spline degree k.

h. Thus, it is enough a two-grid analysis for this version of our two-level method.
The corresponding error transfer operator is given by

Lklow,2h
k,h = (I − Pk,h

klow,2h A−1
klow,2hRklow,2h

k,h Ak)Sk, (5.18)

where the transfer operators Pk,h
klow,2h and Rklow,2h

k,h between the first and second level are

obtained by composition of Pk
klow

, Rklow
k and the transfer operators Ph

2h, R2h
h . From this

expression, the asymptotic convergence factor of the improved two level method
can be estimated by the following expression:

ρ
ag
2g = ρ(Lklow,2h

k,h ) = sup
θ∈Θ2h

ρ((Lklow,2h
k,h )2g(θ)), (5.19)

where (Lklow,2h
k,h )2g is the matrix representation ofLklow,2h

k,h with respect the subspaces of
2h−harmonics. Thus, we want to analyze the improvement of the two-level consid-
ering a more aggresive coarsening, that is, on the second level we keep considering
a polynomial degree klow but also the grid size h is doubled. Again, LFA is able
to support this approach by using a two-grid analysis. In Table 5.26, the two-level
convergence factors provided by this analysis are shown.

9p Schwarz 25p Schwarz 49p Schwarz
k = 2 0.17 0.11 0.08
k = 3 0.21 0.12 0.09
k = 4 0.46 0.13 0.09
k = 5 0.71 0.27 0.10
k = 6 0.88 0.45 0.19
k = 7 0.96 0.66 0.32
k = 8 0.99 0.83 0.47

TABLE 5.26: Two-grid (ρag
2g) convergence factors predicted by LFA for

different values of the spline degree k, for the improved version of the
algorithm.

Given that this last approach is more efficient and does not deteriorate the per-
formance of the two-level method introduced before, this will be the strategy used
for the numerical experiments.
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5.2.2 Numerical results

Here, we show some numerical results in order to see the efficiency of the proposed
solver by considering IGA discretizations with maximum global smoothness Ck−1.
For this purpose, we consider only one step of the coloured version of the multi-
plicative Schwarz method at the fine level. Instead of solving exactly at the coarse
level, we follow the approximation strategy based on applying one iteration of an
h−multigrid method. In addition, we use the aggresive coarsening approach and
therefore a mesh size H = 2h is considered on the second level with polynomial
degree klow. In these numerical experiments, the initial guess is taken as a random
vector and the stopping criterion for our two-level solver is set to reduce the ini-
tial residual by a factor of 10−8. All the methods have been implemented in our
in-house Fortran codes, and the numerical computations have been carried out on
an hp pavilion laptop 15-cs0008ns with a Core i7-8550U with 1,80 GHz and 16 GB
RAM, running Windows 10.

In order to support the robustness and efficiency of the proposed two-level method,
we have considered two different numerical experiments. In the first one, we ap-
ply our two-level method based on overlapping multiplicative Schwarz iterations to
the two-dimensional problem (2.19) defined on a square domain Ω = (0, 1)2 with
Dirichlet boundary conditions on ∂Ω and the right-hand side given in (5.1). Hence,
we discretize this problem with B-splines of different polynomial degrees ranging
from k = 2 until k = 8 on the fine level whereas linear B-splines (klow = 1) are con-
sidered for the second level. Thanks to the three-grid LFA, we are able to choose the
size of the blocks for each k such that a robust two-level method is achieved. Hence,
we choose blocks of size 3× 3 for the cases k = 2, 3, 4, blocks of size 5× 5 for the
cases k = 5, 6 and blocks of size 7× 7 for spline degree k = 7, 8.

Color 9p Schwarz Color 25p Schwarz Color 49p Schwarz
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Grid it cpu it cpu it cpu it cpu it cpu it cpu it cpu
642 6 0.05 6 0.06 7 0.08 5 0.19 5 0.25 4 0.89 4 1.04
1282 6 0.14 6 0.17 7 0.23 5 0.50 5 0.62 4 2.14 4 2.50
2562 6 0.46 6 0.55 7 0.79 5 1.45 5 1.78 5 6.68 5 7.63
5122 6 1.69 6 2.06 7 2.86 5 4.87 5 5.83 5 18.14 5 20.71

10242 6 6.83 6 8.34 7 11.21 6 21.22 5 21.12 5 55.76 5 62.86

TABLE 5.27: Square domain problem. Number of the proposed two-
level method iterations (it) and computational time (cpu) necessary
to reduce the initial residual in a factor of 10−8, for different mesh-
sizes h and for different values of the spline degree k, using the most

appropriate coloured multiplicative Schwarz smoother for each k.

In Table 5.27, we show the number of iterations (it) and the cpu time (cpu) in
seconds needed to reach the stopping criterion for several mesh sizes and different
spline degrees k = 2, . . . , 8. We observe that the iteration numbers are robust with
respect to the size of the grid h and the spline degree k. With these results, we can
conclude that our two-level method provides an efficient and robust solver for B-
spline isogeometric discretizations.

For the second experiment, our goal is to apply the two-level method to a two-
dimensional problem defined in a nontrivial geometry. Thus, we set as physical
domain the same quarter of an annulus used for the numerical experiments shown
in 5.1.1. Note that in order to construct this computational domain, the use of
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quadratic NURBS basis funcions is required. Thus, we consider discretizations of de-
gree k = 3, . . . , 8 with maximal smoothness for the fine level whereas the quadratic
discretization is used at the coarse level. In this case, we compare the performance
of the proposed multigrid method (MG) with a two-level based on a direct solver
(DS) at the second level. For this purpose, in Table 5.28 we show the number of it-
erations needed to reach the stopping criterion for several mesh sizes and different
spline degrees k = 3, . . . , 8. We observe that the use of the mentioned MG at the
coarse level slightly increases the number of iterations for some cases. Finally, we
conclude that our two-level method provides an efficient and robust solver also for
NURBS discretizations.

Color 9p Schwarz Color 25p Schwarz Color 49p Schwarz
k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Grid DS MG DS MG DS MG DS MG DS MG DS MG
322 5 5 8 8 4 4 6 6 3 3 4 4
642 5 7 8 8 4 5 6 6 4 4 5 5
1282 6 8 7 8 4 6 6 6 4 5 5 5
2562 6 9 8 8 4 6 6 6 4 6 5 6

TABLE 5.28: Quarter annulus problem. Number of the proposed two-
level method iterations (it) necessary to reduce the initial residual in a
factor of 10−8, for different mesh-sizes h and for different values of the
spline degree k, using the most appropriate coloured multiplicative
Schwarz smoother for each k, and considering both exact solver on
the coarse grid (DS) or an h−multigrid approach on the coarse level

(MG).

Thus, our purely algebraic two-level method solves the two-dimensional Poisson
discretized with isogeometric discretizations of an arbitrary polynomial degree in an
efficient and robust way. We would like to remark that our method acts as a black-
box in which only one iteration of an appropriate multiplicative Schwarz method is
applied on the fine level, and the coarse level can be exactly solved by using well-
known techniques for solving linear and quadratic discretizations. The user can
choose the preferred approach on the coarse level, but here we propose to approx-
imate the coarse problem by using one single iteration of a suitable h−multigrid.
In particular, we have applied one V(1, 1)−cycle based on a red-black Gauss-Seidel
smoother. An enhancement of the performance of the solver is obtained if we apply
a standard coarsening strategy from the first to the second level by considering a
grid of size h on the fine level and a coarse grid-size of 2h. In addition, the good
convergence results of the proposed method have been theoretically supported by
two- and three-grid local Fourier analysis and also they are demonstrated by means
of two numerical experiments.
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Chapter 6

Isogeometric analysis of
Poroelasticity

The theory of poroelasticity studies the interaction between the fluid flow and the
deformation of a elastic porous material. In this context, a porous medium is com-
posed of a skeleton or solid matrix and some pores that are fully or partially satu-
rated by a fluid. When the solid is subjected to any stress, the matrix experiments
some deformations which cause an increment on the pore fluid pressure. Conse-
quently, the fluid flows from high-pressure to low-pressure locations. In order to
describe these processes, poroelastic models must couple the mechanics of the solid
matrix and fluid dynamics and the result is a coupled system of PDEs. The theory of
poroelasticity was firstly developed by Terzaghi for a one-dimensional case with an
incompressible fluid and pore fluid, see Terzaghi, 1923. This theory was extended
and generalized to the three-dimensional case by Biot in Biot, 1941; Biot, 1955; Biot,
1956. Nowadays, Biot’s model is applied in practice and it has received the attention
of many authors in the literature, see Ehlers and Bluhm, 2002; Verruijt, 2018; Wang,
2001; Zienkiewicz, Chang, and Bettess, 1980. Nowadays, poroelasticity theory is es-
sential in many scientific and engineering areas such as hydrology, geomechanics,
reservoir engineering, biomechanics, etc.

In this chapter, we consider the quasi-static Biot’s model for soil consolidation
process. Our goal is to discretize the corresponding PDE system by using IGA.
In order to solve the discrete problem, both decoupled and monolithic (multigrid)
solvers are proposed. To design these latter, we make use of LFA in order to analyze
different types of smoothers. This chapter is structured as follows: In Section 6.1,
we introduce the governing equations for Biot’s poroelastic model and the two-field
formulation is proposed. Secondly, the variational formulation and isogeometric
discretization of Biot’s model is given in Section 6.2, including the proposal of a
new stabilization scheme in order to eliminate the spurious numerical oscillations
frequently appearing in the pressure approximation. Then, we comment on the dif-
ferent types of solvers for the poroelastic equations. Decoupled solvers are described
in Section 6.3 with special focus on the fixed-stress split method and a decoupled so-
lution method proposed by us. In order to support the stability and convergence of
our iterative decoupled method with IGA discretizations, a Von Neumann analysis
is presented in 6.3.3. In Section 6.4, monolithic solvers are described with special
attention devoted to monolithic multigrid methods. Finally, we give a description
of coupled smoothers in 6.4.1 and decoupled smoothers in 6.4.2 together with their
corresponding LFA results and some numerical experiments.
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6.1 Biot’s model

In this section, we describe the constitutive equations for poroelastic Biot’s model.
Among the basic principles of poroelasticity, we find the equilibrium, deformation
and motion equations of the porous medium. In addition, mass conservation laws
of the solid matrix and the pore fluid and momentum conservation equations for the
fluid flow must be considered. Hence, we proceed to formulate these equations one
by one in order to construct the Biot’s model.

6.1.1 Mass conservation

Given a reference elementary volume (such as an infinitesimal cube), the mass con-
servation states that the difference between the inflow and outflow of mass must be
equal to the total change of mass. Thus, let us consider an infinitesimal cube with
dimensions ∆x, ∆y and ∆z. We denote the mass flux of the fluid with q = (q1, q2, q3)
which represents the rate of mass flow per unit area per unit time. Hence, the total
inflow on each direction during a time interval ∆t is given by

Total inflow


x− direction : q1(x)∆y∆z∆t,
y− direction : q2(y)∆x∆z∆t,
z− direction : q3(z)∆x∆y∆t,

whereas the outflows on each direction during the same time are

Total outflow


x− direction : q1(x + ∆x)∆y∆z∆t,
y− direction : q2(y + ∆y)∆x∆z∆t,
z− direction : q3(z + ∆z)∆x∆y∆t.

In Figure 6.1, we depict an infinitesimal cube with the inflows and outflows on
each spatial direction. Moreover, the change of fluid mass in the cube during the
time interval ∆t is: (

ρ f (t + ∆t)− ρ f (t)
)

∆x∆y∆z, (6.1)

where ρ f (t) denotes the fluid density at time t. In addition, if we consider any exter-
nal source density f , the mass flow rate due to it during the time interval ∆t is given
by

ρ f f ∆x∆y∆z∆t. (6.2)

At this point, the mass conservation states that

(
ρ f (t + ∆t)− ρ f (t)

)
∆x∆y∆z =− (q1(x + ∆x)− q1(x))∆y∆z∆t

− (q2(y + ∆y)− q2(y))∆x∆z∆t
− (q3(z + ∆z)− q3(z))∆x∆y∆t
+ ρ f f ∆x∆y∆z∆t.

(6.3)

If the previous equation is divided by ∆x∆y∆z and we take the limits as the
dimensions of the reference volume tend to zero and the limit as ∆t → 0, then we
obtain the mass conservation equation

∂ρ f

∂t
+∇ · q = ρ f f . (6.4)
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q3(z+ ∆z)

q2(y+ ∆y)

q1(x+ ∆x)
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q3(z)

q2(y)
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FIGURE 6.1: Infinitesimal cube: Inflows and outflows on each spatial
direction.

In addition, the mass flux can be expressed as

q = ρ fv f , (6.5)

with v f denoting the fluid velocity. In a porous medium, the porosity is defined as
the fraction of the pores available for the fluid

φ =
Vv

Vt
, (6.6)

where Vv denotes the volume of void space and Vt denotes the total volume or bulk
volume including both solid and void components. Finally, by substituting the mass
flux in (6.4) with the expression given in (6.5) and taking into account the porosity
φ, the continuity equation for mass convservation in a porous medium is given by

∂ρ f φ

∂t
+∇ · (ρfφvf ) = ρ f f . (6.7)

6.1.2 Darcy’s law

Darcy’s law describes the conservation of momentum for fluid flow in a porous me-
dia. Darcy formulated his law in 1856 and stated that the percolation velocity of the
fluid relative to the soil is proportional to the gradient of the pore pressure:

Darcy’s law: v = − κ
η f

(∇p− ρ fg), (6.8)
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where κ is the permeability of the soil, η f is the viscosity of the fluid and p is the
pore pressure. Note that the product ρ fg is the volumetric weight of the fluid and
the relationship between Darcy’s velocity and fluid velocity v f is given by

v = φv f . (6.9)

In general, the permeability κ is a property of the soil that quantifies the ability
of a porous medium to transmit fluids through it. It is often represented by means
of a second order tensor as follows:

κ =

 κ11 κ12 κ13
κ21 κ22 κ23
κ31 κ32 κ33

 . (6.10)

However, if the porous medium is isotropic, the permeability tensor is a diagonal
matrix with equal coefficients on the diagonal. Due to this, we will treat the perme-
ability as an scalar value κ for our experiments since isotropic porous medium will
be considered for our model.

At this point, if we substitute Darcy’s law (6.8) in the continuity equation (6.7)
and take into account (6.9), we obtain the governing equation for a single phase flow:

∂ρ f φ

∂t
−∇ ·

(
ρ f
κ

η f
(∇p− ρ fg)

)
= ρ f f . (6.11)

Since there might be changes in porosity and fluid density, the time differentia-
tion of the previous equation yields

φ
∂ρ f

∂t
+ ρ f

∂φ

∂t
−∇ ·

(
ρ f
κ

η f
(∇p− ρ fg)

)
= ρ f f . (6.12)

Now, the fluid density under isothermal conditions can be expressed as

ρ f = ρ0
f ec f (p−p0), (6.13)

where ρ0
f is the fluid density at the reference pressure p0 and c f denotes the fluid

compressibility given by:

c f =
1
ρ f

dρ f

dp
. (6.14)

Differentiation with respect to t of both sides of equation (6.13) yields

∂ρ f

∂t
= c f ρ f

∂p
∂t

. (6.15)

Moreover, we have that the time differentiation of the porosity gives:

∂φ

∂t
=

dφ

dp
∂p
∂t

= csφ
∂p
∂t

, (6.16)

where the solid compressibility is defined as

cs =
1
φ

dφ

dp
. (6.17)

Then, substituting expressions (6.15) and (6.16) into (6.12), we obtain that
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ρ f ct
∂p
∂t
−∇ ·

(
ρ f
κ

η f
(∇p− ρ fg)

)
= ρ f f , (6.18)

where ct = φ(cs + c f ) is known as the total compressibility coefficient. Finally, if we
assume that the spatial changes in ρ f and g can be neglected, after cancellation of ρ f
on both sides we have that the governing equation for single phase flow is given by
the following parabolic equation

ct
∂p
∂t
−∇ ·

(
κ

η f
∇p
)
= f . (6.19)

6.1.3 Equilibrium equation

The fundamentals of solid mechanics are a crucial part of any poroelastic model. The
principles of solid mechanics are the equilibrium equation and the compatibility
condition. At this point, it is important to introduce the concept of stress tensor.
As briefly mentioned in 2.2.4, the stress is defined as the external force applied on
a body. In order to represent the stress vector effectively in a three-dimensional
framework, it is very useful to decompose the stress into the stress components as
follows:

σ =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 . (6.20)

Note that in the stress components the first index defines the direction of the
plane where the stress acts whereas the second index defines the direction of the
stress component. Hence, the stresses σxx, σyy, σzz are called normal stresses whereas
σxy, σxz, σyx, σyz, σzx and σzy are named shear stresses. Moreover, the stress tensor is
symmetric, that is

σxy = σyx, σxz = σzx, σyz = σzy.

The equilibrium equations describe the cancellation of all the external forces act-
ing on a body at rest. Let us consider again the infinitesimal cube shown in Figure
6.1. The stress forces are split into normal forces and shear forces corresponding to
the respective normal and shear stress components. Thus, we depict in Figure 6.2
the stress components acting on the infinitesimal cube. If we consider an additional
external body force f = ( fx, fy, fz) acting on the stressed infinitesimal cube, the total
sum of forces acting on each direction is given by

x− direction : (σxx(x + ∆x) + ∆x fx − σxx(x))∆y∆z +
(
σyx(y + ∆y)− σyx(y)

)
∆x∆z

+ (σzx(z + ∆z)− σzx(z))∆x∆y.

y− direction :
(
σyy(y + ∆y) + ∆y fy − σyy(y)

)
∆x∆z +

(
σxy(x + ∆x)− σxy(x)

)
∆y∆z

+
(
σzy(z + ∆z)− σzy(z)

)
∆x∆y.

z− direction : (σzz(z + ∆z) + ∆z fz − σzz(z))∆x∆y +
(
σyz(y + ∆y)− σyz(y)

)
∆x∆z

+ (σxz(x + ∆x)− σxz(x))∆y∆z.

If we make equal to 0 these forces divided by ∆x∆y∆z and take the limits ∆x → 0,
∆y→ 0 and ∆z→ 0, then we obtain
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FIGURE 6.2: Infinitesimal cube: Stress components.


∂σxx
∂x +

∂σyx
∂y + ∂σzx

∂z + fx = 0,
∂σxy
∂x +

∂σyy
∂y +

∂σzy
∂z + fy = 0,

∂σxz
∂x +

∂σyz
∂y + ∂σzz

∂z + fz = 0.

Hence, the equilibrium equation in a tensor form is given by

∇ · σ + f = 0. (6.21)

When the solid matrix is subjected to stress, its deformation is quantified by the
second-order strain tensor introduced also in the compatibility equation (2.41). Note
that in the compatibility equation, the strain tensor is related to the displacement
field u of the body due to external forces. Furthermore, the connection between
stress and strain tensors is given by means of the generalized Hooke’s law (2.42),
where the elasticity or stiffness tensor C is involved. In the three-dimensional case,
the number of independent elastic moduli appearing in C is reduced to 36. How-
ever, since we are considering homogeneous and isotropic materials, we can rewrite
Hooke’s law in terms of the two Lamé parameters λ and µ (see (2.49)).
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6.1.4 Poroelasticity equations

Here, we introduce the concept of effective stress and combine the previous equa-
tions for fluid flow and the elastic deformation of the solid matrix in order to for-
mulate the poroelastic Biot’s model. The concept of effective stress was firstly in-
troduced by Terzaghi and it claims that part of the total stress σ is carried by the
soil structure and the other part is carried by the fluid. Hence, the part of the stress
applied to the solid is called effective stress and it causes the rearrangement of the
soil grains. Terzaghi’s principle claims that the total stress is split into the effective
stress σ′ and the pore pressure p:

σ = σ′ − αIp, (6.22)

where α is the so-called Biot-Willis constant. This constant is determined by the
compressibilities of the solid cs and the porous medium cb:

α = 1− cs

cb
. (6.23)

In addition, it is common to express the Biot-Willis constant in terms of the bulk
modulus of the solid Ks and drained bulk modulus of the porous medium Kb. For
this purpose, let us note that:

cs =
1

Ks
, cb =

1
Kb

.

Thus, the effective stress coefficient can be rewritten as follows

α = 1− Kb

Ks
. (6.24)

Also, note that 0 ≤ α ≤ 1 since the compressibilities hold cs ≤ cb.
Another important ingredient in poroelastic Biot’s theory is the so-called varia-

tion in fluid content ς. In fact, the mass conservation equation (6.4) can be rewritten
in terms of ς (see Detournay and Cheng, 1993; Wang, 2001) by ignoring the effect of
fluid density ρ f :

∂ς

∂t
+∇ · v = f . (6.25)

The variation of fluid content depends on the pore pressure p and the pore vol-
ume measured by the volumetric strain εv = ∇ · u. More specifically,

ς =
p
M

+ α∇ · u, (6.26)

where M is known as Biot modulus. Moreover, the inverse of M is called storage
coefficient and it is related to the compressibilities cs, c f and the porosity φ as follows:

1
M

= cs(α− φ) + c f φ =
α− φ

Ks
+

φ

K f
, (6.27)

where K f = 1/c f is the bulk modulus of the fluid. At this point, if we substitute
(6.26) in the fluid mass conservation equation (6.25), then we obtain:

1
M

∂p
∂t

+ α
∂∇ · u

∂t
+∇ · v = f . (6.28)
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Thus, the previous equation together with the combination of the equilibrium
equation (6.21) and Terzaghi’s principle given in (6.22) yields the following system:

−∇ · σ′(u) + α∇p = f , (6.29)
1
M

∂p
∂t

+ α
∂

∂t
(∇ · u) +∇ · v = f . (6.30)

Finally, if we apply generalized Hooke’s law for linear isotropic and homoge-
neous materials to (6.29) and we use Darcy’s law (6.8) to substitute the percolation
velocity v in (6.30), the following poroelastic system is obtained:

−µ∆u− (λ + µ)∇ (∇ · u) + α∇p = f , (6.31)
1
M

∂p
∂t

+ α
∂

∂t
(∇ · u)−∇ ·

(
κ

η f
∇p
)
= f . (6.32)

The previous PDE system is known as the two-field or displacement-pressure
formulation of the quasi-static Biot’s model for soil consolidation process. Note that
in (6.32), the changes in the volumetric weight of the fluid have been neglected. In
order to complete the formulation of this problem, some boundary and initial con-
ditions must be added. Thus, let us denote with Ω ⊂ Rd an open and bounded
domain. In addition let us consider the splits of the boundary ∂Ω = ΓD

u ∪ ΓN
u and

∂Ω = ΓD
p ∪ ΓN

p , with ΓD
u ∩ ΓN

u = ∅ and ΓD
p ∩ ΓN

p = ∅. Thus, Dirichlet type bound-
ary conditions set the value of displacement field u and pressure p on ΓD

u and ΓD
p

respectively as follows:

Dirichlet b.c.:

{
u(x) = uD with x ∈ ΓD

u ,

p(x) = pD with x ∈ ΓD
p ,

(6.33)

whereas the Neumann type boundary conditions impose the traction tN on ΓN
u and

the normal flux vN on ΓN
p

Neumann b.c.:

{
σ′n = twith x ∈ ΓN

u ,

vn = vN with x ∈ ΓN
p .

(6.34)

Finally, the initial conditions for the quasi-stationary Biot’s model can be set ei-
ther for (6.31) with a initial displacement u or stress σ

u(x, 0) = u0 or σ(x, 0) = σ0, x ∈ Ω, (6.35)

and initial pressure or flux initial conditions for equation (6.32) as follows

p(x, 0) = p0 or v(x, 0) = v0, x ∈ Ω. (6.36)

6.2 Isogeometric discretization

In this section we introduce the strong formulation of the quasi-static Biot’s model
for soil consolidation and discretize this problem by using isogeometric discretiza-
tions. For our numerical experiments, we consider the following displacement-
pressure strong formulation:
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−µ∆u− (λ + µ)∇ (∇ · u) + α∇p = f , in Ω,
1
M

∂p
∂t

+ α
∂

∂t
(∇ · u)−∇ ·

(
κ

η f
∇p
)
= f , in Ω,

σ′n = t, p = 0, on Γt,
u = 0, ∇p ·n = 0, on Γc,( p

M
+ α∇ · u

)
= 0, in Ω× {0},

(6.37)

where Ω ⊂ Rd is an open, bounded domain and time t ∈ (0, T). Moreover, in terms
of the notation given in (6.33) and (6.34), we have set Γt = ΓN

u = ΓD
p , Γc = ΓD

u = ΓN
p .

For the variational formulation of this problem, let us consider the variational spaces

V = {u ∈ H1(Ω)d
∣∣ u|Γc = 0},

Q = {p ∈ H1(Ω)
∣∣ p|Γt = 0}.

Hence, if we test equations (6.31) and (6.32) with trial functions v ∈ V and q ∈ Q
respectively, the variational formulation reads as follows: For each t ∈ (0, T), find
(u(t), p(t)) ∈ V ×Q such that:

{
a(u(t),v) + α (∇p,v) = (f ,v) , ∀v ∈ V ,
α (∇ · u̇(t), q) + 1

M ( ṗ(t), q) + b(p, q) = ( f , q), ∀q ∈ Q,
(6.38)

where the bilinear forms a(·, ·) and b(·, ·) are given by

a(u,v) = 2
∫

Ω
µε(u) : ε(v)dΩ +

∫
Ω

λ∇ · u ∇ · vdΩ,

b(p, q) =
∫

Ω

κ

η f
∇p · ∇q dΩ.

As mentioned before, our goal is to discretize this problem with isogeometric
discretizations. Although there are not many published works about IGA discretiza-
tions of poroelasticity problems, discretizations of equal polynomial order for pres-
sure and displacements, that is, kp = ku were proposed in Irzal et al., 2013; Bekele
et al., 2022. In addition, this approach was compared with discretizations using
the polynomial degree relation ku = kp + 1 in Bekele et al., 2022 showing a better
performance of mixed degrees. Moreover, an isogeometric space-time method for
two-field Biot’s model was proposed in Arf and Simeon, 2022 and it was shown that
the use of mixed degrees reduce pressure oscillations and the locking effect. Due to
this, we consider the isogeometric generalization of Taylor-Hood finite dimensional
spaces (Vh, Qh) = (VTH

h (k, s), QTH
h (k, s)) introduced in (2.66). With regard to the time

discretization, we propose an implicit Euler scheme such that the fully discretized
scheme at time tm is written as: Find (um

h , pm
h ) ∈ Vh ×Qh such that

{
a(um

h ,vh) + α
(
∇pm

h ,vh
)
=
(
fm

h ,vh
)

, ∀vh ∈ Vh,
α
(
∇ · ūm

h , qh
)
+ 1

M

(
p̄m

h , qh
)
+ b(pm

h , qh) = ( f m
h , qh), ∀qh ∈ Qh,

(6.39)

where ūm
h := (um

h − u
m−1
h )/τ, p̄m

h := (pm
h − pm−1

h )/τ and τ is the time step. This
numerical scheme leads to a large sparse linear system that has to be solved at each
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time step tm:

A
(
Um

Pm

)
=

(
Fm

u
τFm

p

)
+

(
0 0
−B 1

M Mp

)(
Um−1

Pm−1

)
, (6.40)

where Um and Pm denote vectors with the control variables for um
h and pm

h respec-
tively, −B is related to the divergence operator multiplied by α and Mp denotes the
mass matrix associated to the pressure. In addition, the matrix A is structured as
follows

A =

(
El BT

−B τC + 1
M Mp

)
, (6.41)

where El is the elasticity matrix corresponding to the IGA discretization of a(um
h ,vh)

and C corresponds to the contribution of pm
h in the discretized continuity equation.

In practice, the value 1/M is very small and we will consider 1/M = 0 and α = 1
for our experiments. Thus, matrix C corresponds to the stiffness matrix of a Poisson
problem multiplied by κ/η f .

6.2.1 Mass stabilization

Standard discretizations of Biot’s model might give non-physical oscillations in the
numerical approximation of the pressure. Because of this, an stabilization term is
required for some cases such that the spurious oscillations are eliminated. This is
the case for example when very small time steps τ are taken or low permeabilities
κ close to zero are considered. For instance, in Aguilar et al., 2008; Rodrigo et al.,
2016 the authors proposed an stabilization of the flow equation based on the stiffness
matrix of p multiplied by a parameter that depends on h, the type of discretization
and Lamé moduli λ and µ.

Here, we propose a discretization of the Biot’s equations with a mass stabiliza-
tion term that suits perfectly to the application of the fixed-stress split method. This
stabilization has been introduced in Pé de la Riva et al., 2022 for finite element dis-
cretizations and it consists of adding two terms to the flow equation such that the
following discrete variational formulation is obtained:

a(um
h ,vh)− α(pm

h ,∇ · vh) = (fm
h ,vh), ∀ vh ∈ Vh, (6.42)

α(∇ · ūm
h , qh) + b(pm

h , qh) + L( p̄m
h , qh)0 − L( p̄m

h , qh) = ( f m
h , qh), ∀ qh ∈ Qh, (6.43)

where (·, ·)0 is an approximation of the L2(Ω) inner product defined by mass lump-
ing. Thus, in a matrix form the discrete problem is given by

Astab

(
Um

Pm

)
=

(
Fm

u
τFm

p

)
+

(
0 0
−B L(Ml −Mp)

)(
Um−1

Pm−1

)
, (6.44)

where Ml is the row-sum lumped mass matrix and the matrix Astab is given by

Astab =

(
El BT

−B τC + L(Ml −Mp)

)
. (6.45)

The motivation of this stabilization and the choice of parameter L comes from iso-
lating u on the mechanics equation at the discrete scheme in (6.39) without exter-
nal forces. Then, the expression obtained for u is substituted on the flow equa-
tion. If we isolate the displacement vector at the mechanics part of (6.44) we obtain
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Um = −E−1
l BTPm. Thus, by substituting on the flow equation (and considering that

τC is negligible) one gets

(−BE−1
l BT + L(Ml −Mp))Pm = (−BE−1

l BT + L(Ml −Mp))Pm−1, (6.46)

and then if we choose L such that (−BE−1
l BT + L(Ml − Mp)) is a M-matrix, an

oscillation-free solution is ensured. Note that the goal of discretizing both added
terms in two different ways lies on the spectral equivalence between −BE−1

l BT and
Mp. Applying mass-lumping provides a diagonal matrix that does not affect on the
off-diagonal entries. Thus, it is always possible to find a constant L big enough such
that −BE−1

l BT − LMp has non-positive off-diagonal entries. Moreover, the optimal
choice of L is the minimum value that satisfies that condition. At this point, let us
consider Terzaghi’s problem:

−(2µ + λ)
∂2u
∂x2 +

∂p
∂x

= 0, x ∈ (0, 1), t ∈ (0, 1),

∂

∂t

(
∂u
∂x

)
− ∂

∂x

(
κ

η f

∂p
∂x

)
= 0, x ∈ (0, 1), t ∈ (0, 1),

(6.47)

with the following initial and boundary conditions

−(2µ + λ)
∂u
∂x

(0, t) = 1, p(0, t) = 0, t ∈ (0, 1),

u(1, t) = 0,
κ

η f

∂p
∂x

(1, t) = 0, t ∈ (0, 1),

∂u
∂x

(x, 0) = 0, x ∈ (0, 1).

(6.48)

For this one-dimensional problem, the optimal choice of L using a linear Q1− Q1
discretization is

LQ1−Q1 =
3

2(2µ + λ)
. (6.49)

Also for Terzaghi’s problem, we consider the isogeometric Taylor-Hood elements.
More concretely we apply the Q2−Q1 elements and the global C1 smooth numerical
solution provided by the isogeometric Q3 − Q2 elements. For these isogeometric
Taylor-Hood elements, the optimal choice of the parameter L is

LTH =
1

(2µ + λ)
. (6.50)

By adding the mass stabilization term multiplied by a suitable value of L, all the
spurious oscillations in the numerical approximation of pressure are eliminated. In
order to visualize this, in Figure 6.3, we show the exact solution and numerical ap-
proximation plots of pressure for problem (6.47) with τ = 10−6, κ

η f
= 1, Lamé param-

eters such that 2µ + λ = 1, h = 2−6 by using those isogeometric elements Q1− Q1,
Q2−Q1 and Q3−Q2 (holding global C1 smoothness) (a) without stabilization and
(b) with the corresponding optimal mass stabilization term. As we can observe, this
stabilization based on the mass matrix annihilates all the non-physical oscillations.
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(a) (b)

FIGURE 6.3: Terzaghi’s problem: Exact solution and numerical ap-
proximation plots of pressure for problem (6.47) with τ = 10−6,
κ

η f
= 1, Lamé parameters such that 2µ + λ = 1, h = 2−6 by using

those isogeometric elements Q1− Q1, Q2− Q1 and Q3− Q2 (hold-
ing global C1 smoothness) (a) without stabilization and (b) with the

corresponding optimal mass-stabilization term.

6.3 Decoupled solvers

Decoupled solvers are one of the main approaches for solving Biot’s equations. The
iterative coupling approach consists of solving sequentially the flow and mechanics
parts using the latest solution available. At each time step, this process is repeated
until convergence is achieved. The main advantage of decoupled solvers is their
flexibility since they allow to use separate codes for each sub-problem of the system.
In addition, we can make a good use of already existing solvers for each problem
and only the interface between them has to be carefully treated.

Classification of decoupled solvers depends on which part is solved first, either
the mechanical or flow problem. Hence, there are two main methods that solve first
the mechanical problem: The undrained and drained split methods. The undrained

split imposes that
∂ς

∂t
remains constant during the mechanical step and then the

pressure is allowed to change, see Kim, Tchelepi, and Juanes, 2011a. Regarding the
drained split, this approach solves the mechanical problem first with a fixed pressure
and then the flow problem is solved with a fixed displacement field.

The two main approaches based on solving first the fluid flow sub-problem are
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the fixed-strain and fixed-stress split methods. The fixed-strain split method freezes
the volumetric strain εv = (εxx + εyy + εzz) in the flow equation. Then, the mechan-
ical problem is solved using the new approximation for the pressure p. Finally, the
fixed-stress split method fixes the volumetric mean stress for the solution of the flow
problem. Next, we are going to give a deeper insight on this latter.

6.3.1 Fixed-stress split method

Here, we describe in detail the fixed-stress split method whose stability and conver-
gence was firstly demonstrated in Mikelić and Wheeler, 2013. In physical terms, the
fixed-stress split scheme is an iterative method that assumes the volumetric mean
stress σv = Kbεv − αp to be constant, see for instance Kim, Tchelepi, and Juanes,
2011b; Both et al., 2017. Hence, let us rewrite the flow equation (6.32) in terms of σv
instead of the volumetric strain:(

1
M

+
α2

Kb

)
∂p
∂t

+
α

Kb

∂σv

∂t
−∇ ·

(
κ

η f
∇p
)
= f . (6.51)

Thus, the fixed-stress split scheme solves equation (6.51) with
α

Kb

∂σv

∂t
already

known and it results in the following splitting of the matrix A =MA −NA with

MA =

 El BT

0 τC +
α2

Kb
Mp

 , NA =

 0 0

B
α2

Kb
Mp

 . (6.52)

This splitting leads to fixed-stress as an iterative coupling method and a sequence
of approximations at each time tm are obtained. Given this matrix splitting, the fixed-
stress splitting algorithm can be understood as an iterative scheme based on adding
an stabilization term L ∂p

∂t on both sides of (6.32):(
1
M

+ L
)

∂p
∂t
−∇ ·

(
κ

η f
∇p
)
= f − α

∂

∂t
(∇ · u) + L

∂p
∂t

. (6.53)

Thus, parameter L has to be fixed carefully in order to achieve convergence for
fixed-stress splitting method. For this task, a rigorous convergence analysis of this
method was presented in Borregales et al., 2019 and it was proved that the fixed-
stress split method for the two-field formulation of Biot’s model converges for any
value of L such that

L ≥ α2

2 (λ + 2µ/d)
. (6.54)

In addition, it was proved in Both et al., 2017 that optimal convergence rates are
obtained in case of equality in (6.54). Thus, the fixed-stress split algorithm (consid-
ering 1/M ≈ 0) is performed in two steps:

• Step 1. Given (um,i−1
h , pm,i−1

h ) ∈ Vh ×Qh, find pm,i
h ∈ Qh such that

(Lpm,i
h , qh) + τb(pm,i

h , qh) = τ( fh, qh) + (∇ · um−1
h , qh) + (Lpm,i−1

h , qh)

− (∇ · um,i−1
h , qh), ∀qh ∈ Qh.

(6.55)
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• Step 2. Given pm,i
h ∈ Qh, find um,i

h ∈ Vh such that

a(um,i
h ,vh) = (f ,vh)− (∇pm,i

h ,vh), ∀vh ∈ Vh. (6.56)

In a matrix form, the fixed-stress iterative coupling method can be written as
follows: Given the approximations (Um,i−1, Pm,i−1), solve sequentially the two fol-
lowing linear systems until convergence is achieved:

{
(τC + LMp)Pm,i = τFp + B(Um,i−1 −Um−1) + LMpPm,i−1,

ElU
m,i = Fu − BTPm,i,

(6.57)

where Um,i and Pm,i denote the vector with the control variables for the displace-
ments and pressure approximation respectively at the i−th iteration of the fixed-
stress split method and time tm.

6.3.2 Mass stabilized iterative scheme

The mass stabilization introduced in Section 6.2.1 suits perfectly for the automatic
application of a decoupled algorithm of the type of the fixed-stress split method,
giving rise to a mass stabilized iterative scheme for the solution of (6.42)-(6.43). This
method is introduced in Algorithm 7: First, we solve the flow equation with the two
stabilization terms and then the updated approximation for the pressure is used in
the equilibrium equation for the next approximation of the displacements.

Algorithm 7 An iterative method for the solution of discrete problem (6.42)-(6.43)

for i = 1, 2, . . . do
Step 1: Given (um,i−1

h , pm,i−1
h ) ∈ Vh ×Qh, find pm,i

h ∈ Qh such that:

L

(
pm,i

h − pm−1
h

τ
, qh

)
0

+ b(pm,i
h , qh) = −α

(
∇ ·

um,i−1
h − um−1

h
τ

, qh

)
+

L

(
pm,i−1

h − pm−1
h

τ
, qh

)
+ ( f m

h , qh), ∀ qh ∈ Qh,

Step 2: Given pm,i
h ∈ Qh, find um,i

h ∈ Vh such that

a(um,i
h ,vh) = α(pm,i

h ,∇ · vh) + (fm
h ,vh), ∀ vh ∈ Vh.

In matrix form, this iterative scheme is based on the splitting of Astab as follows

Astab =MAstab −NAstab , (6.58)

where

MAstab =

(
El BT

0 τC + LMl

)
, NAstab =

(
0 0
B LMp

)
.

Note that this approach is similar to the fixed-stress method with the advantage of
using the mass term for two different purposes: The stabilization of the numerical
solution and the application of the iterative method.
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6.3.3 Von Neumann analysis

Now, we focus our attention on the convergence and stability analysis of the pre-
viously proposed decoupled method for solving isogeometric discretizations for
poroelastic problems. In order to prove that the optimal choice of L provides an
stable and convergent scheme, we perform the so-called von Neumann analysis.
The von Neumann analysis is an useful tool for the study of stability and conver-
gence of numerical schemes and it has been widely applied in the literature, see
for instance Strikwerda, 2004; Kim, Tchelepi, and Juanes, 2011a; Kim, Tchelepi, and
Juanes, 2011b. In this section we carry out the von Neumann analysis for stability
and convergence of the proposed decoupled scheme (6.58). We perform this analysis
for Terzaghi’s problem discretized with the pair of Q1−Q1 elements and isogeomet-
ric Taylor-Hood elements Q2− Q1 and Q3− Q2 holding a C1 global smoothness of
the solution. Then, we extend the results obtained for the one-dimensional case to
the Biot’s equations making a good use of the tensor-product structure of B-splines
discretizations. However, the authors are aware of the fact that the general extension
to d−dimensional cases is semi-heuristic.

The Von Neumann analysis is based on the Fourier transform as LFA and ana-
lyzes the amplification factor γ of the solution in advancing one time step for stabil-
ity. As it is described in Strikwerda, 2004, a shortcut to the transform theory consists
to consider that the solutions at tm can be expressed as

Um
j = γmeıjθÛ, Pm

j = γmeıjθ P̂, (6.59)

where Û, P̂ are the initial solutions and θ ∈ [−π, π]. As a starting point, let us con-
sider the pair of elements Q1−Q1. Hence, by substituting (6.59) into our decoupled
scheme applied to Terzaghi’s problem we obtain the following linear system:

ÃQ1−Q1
(

Û
P̂

)
=

(
0
0

)
, (6.60)

where matrix ÃQ1−Q1 is given by

ÃQ1−Q1 =

( 2(2µ+λ)
h γ(1− cos θ) γı sin θ

(γ− 1)ı sin θ γ
(

2κτ
η f h (1− cos θ)

)
+ (γ− 1) h

2(2µ+λ)
(1− cos θ)

)
.

In order to obtain the possible values of the amplification factor γ, we impose to the
previous matrix to be singular since the regular case yields directly γ = 0. Hence,
we obtain that the two values for the amplification factor γ are

γ1(θ) = 0, γ2(θ) =
(
1 + 2κτ(2µ + λ)(1− cos θ)/(η f h2)

)−1
.

Then, since |γ1| ≤ 1 and |γ2| ≤ 1, we conclude that this scheme is stable. We study
now the stability of our proposed iterative scheme by using the pair of Taylor-Hood
elements Q2−Q1. In this case, there are two different stencils for the displacements
u. Hence, we consider a linear system with vertex Uv and mid-point Um displace-
ments unknowns for the analysis. Therefore, the corresponding numerical scheme
is given by

ÃQ2−Q1

 Ûv
Ûm
P̂

 =

 0
0
0

 , (6.61)
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where the matrix ÃQ2−Q1 is given by

ÃQ2−Q1 =

 γ
4(2µ+λ)

3h (2− cos θ) −γ
4(2µ+λ)

3h cos θ γ 2ı
3 sin θ

−γ
4(2µ+λ)

3h cos θ γ
4(2µ+λ)

3h γ 2ı
3 sin θ

2
(γ− 1) 2ı

3 sin θ (γ− 1) 2ı
3 sin θ

2 γ 2τκ(1−cos θ)
µ f h + (γ− 1) h(1−cos θ)

3(2µ+λ)

 .

Thus, if we make the determinant of ÃQ2−Q1 equal to zero, we obtain that the values
for the amplification factor are

γ1(θ) = γ2(θ) = 0, γ3(θ) =
(
1 + 2κτ(2µ + λ)(1− cos θ)/(µ f h2)

)−1
.

Again, all the values of the amplification factor hold |γi| ≤ 1, i = 1, 2, 3. There-
fore, our proposed iterative scheme for the pair Q2−Q1 is stable.

At this point, we perform a stability analysis for the case in which we consider
the isogeometric Taylor-Hood pair of elements Q3−Q2 with global C1 smoothness.
In this case, the discretization for the displacements yields two different stencils and
therefore two different unknowns Uv, Um are considered. The numerical scheme for
this discretization is given by

ÃQ3−Q2

 Ûv
Ûm
P̂

 =

 0
0
0

 , (6.62)

where the elements {ãQ3−Q2
i,j }, i, j = 1, 2, 3 of the matrix ÃQ3−Q2 are

ãQ3−Q2
1,1 =γ

6(2µ + λ)

h
(

1
5
− 1

8
cos θ),

ãQ3−Q2
1,2 =− γ

3(2µ + λ)

40h
e

2ıθ
5 (5e−ıθ + eıθ),

ãQ3−Q2
1,3 =γ

e
ıθ
5

40

(
−5e

−3ıθ
2 − 9e

−ıθ
2 + 13e

ıθ
2 + e

3ıθ
2

)
,

ãQ3−Q2
2,1 =− γ

3(2µ + λ)

40h
e
−2ıθ

5 (e−ıθ + 5eıθ),

ãQ3−Q2
2,2 =γ

6(2µ + λ)

h
(

1
5
− 1

8
cos θ),

ãQ3−Q2
2,3 =γ

e
−ıθ

5

40

(
−e

−3ıθ
2 − 13e

−ıθ
2 + 9e

ıθ
2 + 5e

3ıθ
2

)
,

ãQ3−Q2
3,1 =(γ− 1)

e
−ıθ

5

40

(
−e

−3ıθ
2 − 13e

−ıθ
2 + 9e

ıθ
2 + 5e

3ıθ
2

)
,

ãQ3−Q2
3,2 =(γ− 1)

e
ıθ
5

40

(
−5e

−3ıθ
2 − 9e

−ıθ
2 + 13e

ıθ
2 + e

3ıθ
2

)
,

ãQ3−Q2
3,3 =γ

2κτ(1− 2
3 cos θ − 1

3 cos 2θ)

η f h
+ (γ− 1)

h
60(2µ + λ)

(27− 26 cos θ − cos 2θ) .

For this matrix, if we make det (ÃQ3−Q2) = 0, the two first obtained values for the
amplification factor are γ1 = γ2 = 0 since the first and second rows of ÃQ3−Q2 are
multiplied by γ. However, the third value γ3 = 0 requires tough computations that
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we can shortcut by means of an auxiliar matrix J defined as follows

J =


1
γ ãQ3−Q2

1,1
1
γ ãQ3−Q2

1,2
1
γ ãQ3−Q2

1,3
1
γ ãQ3−Q2

2,1
1
γ ãQ3−Q2

2,2
1
γ ãQ3−Q2

2,3
1

(γ−1) ãQ3−Q2
3,1

1
(γ−1) ãQ3−Q2

3,2
h

60(2µ+λ) (27− 26 cos θ − cos 2θ)

 .

Then, we have that

γ3 =
det (J)

det (J) + 18
(

2µ+λ
h

)2 (
2
( 8−5 cos θ

40

)2 − 13+5 cos(2θ)
1600

) (
2κτ(1− 2

3 cos θ− 1
3 cos 2θ)

η f h

) .

In the previous expression, det(J) and the second term in the denominator are non-
negative ∀θ ∈ [−π, π]. Consequently, we can claim that |γ3(θ)| ≤ 1, ∀θ ∈ [−π, π]
and therefore our decoupled method applied to Terzaghi’s problem discretized with
the Taylor-Hood pair Q3− Q2 (with global smoothness C1) is also stable. Thus, we
can conclude that our decoupled method is stable for all the proposed discretiza-
tions.

At this point, we make use of the von Neumann analysis in order to prove that
the previous schemes are also convergent. Hence, let us denote with ei

uj
the error

computed at the i−th iteration of the decoupled solver for the j−th unknown of
the displacements and ei

pj
is the respective error for the j−th pressure unknown at a

given time tm. Here, we assume that the errors at the i−th iteration of the decoupled
scheme have the form

ei
uj
= γieıjθ êuj , ei

pj
= γieıjθ êpj ,

where γ is the error amplification factor. Hence, the error equations can be ob-
tained for each discretization by following the procedure given in Kim, Tchelepi,
and Juanes, 2011b. For the pair Q1− Q1, our stabilized iterative method yields the
following error equations:

BQ1−Q1
(

êu
êp

)
=

(
0
0

)
, (6.63)

where

BQ1−Q1 =

( 2(2µ+λ)
h γ(1− cos θ) ı sin θ

ı sin θ γ
(

2κτ
µ f h (1− cos θ) + 3h

2(µ+2λ)

)
− h

2(2µ+λ)
(2 + cos θ)

)
.

If we make equal to zero the determinant of the previous matrix, we obtain that
the first value for the error amplification factor is γ1 = 0 and the second one is
γ2 = 1/(3 + 4κτ(2µ + λ)(1− cos θ)/h2). In fact, limτ→0 γ2 = 1/3 < 1. Then, the
previous scheme is convergent and the analysis claims that the error is reduced at
least in a factor of γ2 = 1/3 per iteration.

Now, we proceed to make the convergence analysis for our stabilized iterative
method by using the Taylor-Hood elements Q2−Q1. In this case, the error equation
is given by

BQ2−Q1

 êuv

êum

êp

 =

 0
0
0

 , (6.64)
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where the matrix BQ2−Q1 of this system is given by
γ

4(2µ+λ)
3h (2− cos θ) −γ

4(2µ+λ)
3h cos θ γ 2ı

3 sin θ

−γ
4(2µ+λ)

3h cos θ γ
4(2µ+λ)

3h γ 2ı
3 sin θ

2
2ı
3 sin θ 2ı

3 sin θ
2 γ

(
2τκ(1−cos θ)

µ f h + h
2µ+λ

)
− h(2+cos θ)

3(2µ+λ)

 .

In this error equation, the three values for the error amplification γ are equal to
zero. That means that the iterative method is convergent and furthermore it needs
theoretically only one iteration to converge.

Finally, the error equations for the isogeometric Taylor-Hood elements Q3− Q2
with global smoothness C1 are given by

BQ3−Q2

 êuv

êum

êp

 =

 0
0
0

 , (6.65)

where the elements {b̃Q3−Q2
i,j }, i, j = 1, 2, 3 of the matrix BQ3−Q2 are

b̃Q3−Q2
1,1 = ãQ3−Q2

1,1 ,

b̃Q3−Q2
1,2 = ãQ3−Q2

1,2 ,

b̃Q3−Q2
1,3 = ãQ3−Q2

1,3 ,

b̃Q3−Q2
2,1 = ãQ3−Q2

2,1 ,

b̃Q3−Q2
2,2 = ãQ3−Q2

2,2 ,

b̃Q3−Q2
2,3 = ãQ3−Q2

2,3 ,

b̃Q3−Q2
3,1 =

e
−ıθ

5

40

(
−e

−3ıθ
2 − 13e

−ıθ
2 + 9e

ıθ
2 + 5e

3ıθ
2

)
,

b̃Q3−Q2
3,2 =

e
ıθ
5

40

(
−5e

−3ıθ
2 − 9e

−ıθ
2 + 13e

ıθ
2 + e

3ıθ
2

)
,

b̃Q3−Q2
3,3 = γ

(
2κτ(1− 2

3 cos θ − 1
3 cos 2θ)

µ f h
+

h
2µ + λ

)

− h
60(2µ + λ)

(33 + 26 cos θ + cos 2θ) .

By imposing det(BQ3−Q2) = 0, we obtain that the three values of the error am-
plification factor are γ1 = γ2 = γ3 = 0. Hence, the von Neumann analysis for
this pair predicts that the iterative method is convergent and, as it happened for the
Taylor-Hood elements Q2−Q1, only one iteration is required to vanish the error.

We can conclude that the von Neumann analysis ensures us that the proposed
iterative method with the pairs of elements Q1−Q1, Q2−Q1 and Q3−Q2 is stable
and convergent. Moreover, the error amplification factor of this method for the pair
Q1− Q1 is 1/3 and the same iterative method needs only one iteration to converge
for the pairs Q2−Q1 and Q3−Q2.

6.3.4 Numerical experiments

Now, we present some numerical experiments applying the iterative method with
a mass stabilization described in Algorithm 7. By means of these experiments, we
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show that the von Neumann analysis predicts pretty accurately the performance of
our method with Q1− Q1, Q2− Q1 and Q3− Q2 (holding global C1 smoothness)
discretizations of Terzaghi’s problem. Moreover, we apply the stabilized iterative
method for the Biot’s equations in a quarter of annulus in order to prove its efficiency
for non-trivial geometries.

Terzaghi’s problem:

First, we consider the Terzaghi’s one-dimensional problem given in 6.47 in Section
6.2.1 with the initial and boundary conditions given in 6.48. We include the mass
stabilization presented in Section 6.2.1 and we discretize this problem by using the
isogeometric pairs of elements Q1 − Q1, Q2 − Q1 and Q3 − Q2 (holding global
C1 smoothness). In order to show the efficiency of our proposed iterative solution
method, in Table 6.1 we show the number of iterations of our mass stabilized itera-
tive algorithm such that the residual res holds ‖resi‖∞ ≤ 10−8, where resi denotes
the residual at the i−th iteration of the method. These results are shown for several
values of the permeability κ and mesh size h, and considering the pairs Q1− Q1,
Q2−Q1 and Q3−Q2 (holding a global smoothness C1).

h = 1/16 h = 1/32 h = 1/64 h = 1/128
κ Q1Q1 Q2Q1 Q3Q2 Q1Q1 Q2Q1 Q3Q2 Q1Q1 Q2Q1 Q3Q2 Q1Q1 Q2Q1 Q3Q2

10−6 17 2 2 17 2 2 17 2 2 17 2 2
10−8 17 2 2 17 2 2 17 2 2 17 2 2
10−10 17 2 2 17 2 2 17 2 2 17 2 2
10−12 17 2 2 17 2 2 17 2 2 17 2 2
10−14 17 2 2 17 2 2 17 2 2 17 2 2

TABLE 6.1: Terzaghi’s problem: Number of iterations of our mass
stabilized iterative method such that the residual res holds ‖resi‖∞ ≤
10−8, where resi denotes the residual at the i−th iteration of method,
for several values of the permeability κ and mesh size h and by using
the pairs Q1−Q1, Q2−Q1 and Q3−Q2 (holding global C1 smooth-

ness).

Note that the von Neumann analysis predicted that the amplification factor of the
error was 1/3 for the Q1-Q1 pair of elements whereas it was exact for Q2− Q1 and
Q3−Q2 with global C1 smoothness. Hence, the theoretical number of required iter-
ations to reduce the error in a factor of 10−8 coincide with the 17 iterations obtained
for Q1−Q1. Also, the pairs Q2−Q1 and Q3−Q2 need theoretically 1 iteration only
but in practice an additional iteration seems to be needed.

Quarter of an annulus:

For our second numerical experiment, we consider the two-field formulation of the
Biot’s equations given in (6.31)-(6.32) on the quarter of an annulus described in Fig-
ure 2.3, that is, Ω = {(x, y) ∈ R2 | r2 ≤ x2 + y2 ≤ R2, x, y ≥ 0}, with r = 0.5 and
R = 1. For discretization of this problem, the isogeometric pair of Q3− Q2 with
global smoothness C1 is required for parametrization of the physical domain Ω. Let
us consider that our domain is split in three subdomains Ω = Ω1 ∪Ω2 ∪Ω3 such
that Ω1 = {(x, y) ∈ R2 | (1/2)2 ≤ x2 + y2 ≤ (2/3)2, x, y ≥ 0} and Ω3 = {(x, y) ∈
R2 | (5/6)2 ≤ x2 + y2 ≤ 1, x, y ≥ 0} are highly permeable with κ = 10−2 whereas
Ω2 = Ω \ Ω1 \ Ω3 is low-permeable with κ = 10−7. In addition, we consider the
parameter values E = 3 · 104, ν = 0.2, η f = 10−3 and the following initial and
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boundary conditions:

u = 0, (∇p) ·n = 0, in Γ \ Γ2,

σ ·n = 104(cos θ, sin θ), p = 0, in Γ2,
(6.66)

where Γ = ∂Ω and Γ2 = {(x, y) ∈ R2 | x2 + y2 = (1/2)2, x, y ≥ 0}. In Figure 6.4, we
show these boundary conditions and regions Ω1, Ω2 and Ω3.

σ ·n = 104(cos θ, sin θ)

p = 0

Ω1
Ω2

Ω3

(∇p) ·n = 0
u = 0

(∇p) ·n = 0
u = 0

(∇p) ·n = 0
u = 0

FIGURE 6.4: Quarter of an annulus: Boundary conditions and regions
Ω1, Ω2 and Ω3.

In order to illustrate the stabilization effect, in Figure 6.5 we show the numerical
approximation of pressure p (a) without and (b) with mass-stabilization at t = 10−6.
We can observe that the extension of the stabilization term to the 2D case also seems
to remove the oscillations very efficiently. Finally, in Table 6.2 we show the number
of iterations of the proposed decoupled solution method by using the pair Q3−Q2
stabilized such that the residual resi in the i−th iteration holds ‖resi‖∞ ≤ 10−8, for
several mesh sizes h with time step τ = 10−2.

(a) (b)

FIGURE 6.5: Quarter of an annulus: Numerical approximation of
pressure (a) without and (b) with mass-stabilization at t = 10−6.

τ h = 1/16 h = 1/32 h = 1/64 h = 1/128
10−2 9 9 8 7

TABLE 6.2: Quarter of an annulus: Number of iterations of the pro-
posed decoupled solution method by using the pair Q3− Q2 stabi-
lized such that ‖resi‖∞ ≤ 10−8, for several mesh sizes h and time step

τ = 10−2.
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6.4 Monolithic solvers: Multigrid methods

Fully coupled methods solve all the unknowns of the PDE system simuntaneously.
With this approach, multigrid methods applied to PDE systems are called mono-
lithic multigrid methods. Given that multigrid methods are fast and highly effi-
cient solvers, they have been widely applied to poroelasticity problems in the liter-
ature, see Alpak and Wheeler, 2012; Luo et al., 2015; Rodrigo, 2016; Gaspar and
Rodrigo, 2017. As mentioned in Chapter 3, the performance of multigrid meth-
ods depends strongly on their components. For transfer operators we consider the
canonical restriction and prolongation operators. On the other hand, the choice of
suitable smoothers is not direct and requires special attention. In fact, the proposed
smoothers for scalar problems can not be applied straightforwardly for saddle point
problems. There are two different types of smoothing schemes for PDE systems:
Coupled or Schwarz-type smoothers and decoupled smoothers.

At this point, we introduce both types of smoothers for monolithic multigrid
methods applied to the quasi-static consolidation Biot’s model and show some nu-
merical results in order to prove their efficiency and robustness with respect the
mesh size h and physical parameters.

6.4.1 Coupled smoothers

This type of smoothers is based on coupled relaxation of the unknowns. Coupled or
Schwarz-type smoothers are specially important for PDE systems whose discretiza-
tion yields saddle point problems. Moreover, coupled smoothers must be adapted
to the algebraic equations of the problem and therefore the relaxation scheme de-
pends on the type of discretization. The classical Schwarz smoother for poroelastic
saddle-point problems is typically defined as a set of blocks that consist of one pres-
sure unknown and all the displacement unknowns that are connected to it. That is,
the degrees of freedom corresponding to the nonzero entries in the i−th row of B
plus the i-th pressure degree of freedom are simuntaneously relaxed. In the case of
the Q2−Q1 Taylor-Hood elements, this yields to solve local systems of size 51× 51
for two-dimensional problems.

Due to the high computational cost of this type of smoothers, the paralellization
of the relaxation method becomes crucial for real applications. The parallelization
of the multiplicative version of this smoother is a non-trivial task, and therefore the
additive and the restricted additive Schwarz smoothers become a natural alternative
to the former. However, the analysis of additive Schwarz methods applied to saddle
point problems has not received a lot of attention in the literature opposite to that of
their multiplicative counterpart, see Schöberl and Zulehner, 2003; Farrell, He, and
MacLachlan, 2020.

For the design of monolithic multigrid methods for Biot’s equations, we consider
an LFA based on infinite subgrids (see Section 4.4). We focus on the isogeometric
pair of Q2 − Q1 Taylor-Hood elements. For this case, each basis function for the
pressure shares common support with 5 displacement unknowns on each direction
and therefore the minimum window size required for the analysis will be 8× 8. In
Figure 6.6, we show the periodic extension of this window with a selected block of
unknowns in blue corresponding to the up-left pressure unknown.

We consider the two-field formulation given in (6.31)-(6.32) in the square domain
Ω = (0, 1)2 with Γt = (0, 1) × {1}, Γc = Γ \ Γt, t = −104 and 1/M ≈ 0. For our
experiments, we fix the Lamé parameters in such a way that the Young’s modulus
is E = 3 · 104, and the Poisson’s ratio is ν = 0.2 and we consider different values
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FIGURE 6.6: Two-grid analysis for the consolidation Biot’s model:
Considered window with minimum size. In blue, the block centered

in the up-left pressure unknown is shown.

for constant permeability κ, ranging from κ = 1 to κ = 1e − 15. First, we test the
multigrid algorithm based on additive Schwarz smoothers considering the natural
weights, i.e., w = 1 for the pressure and w = 1/9, 1/6 or 1/4 depending if the degree
of freedom of the displacement corresponds to a vertex, to an edge or a cell node,
respectively. In Table 6.3, we show the asymptotic convergence factors provided by
our analysis (ρ2g) together with the ones provided by our multigrid codes by using
W-cycles (ρh), considering different numbers of smoothing steps and different values
of permeability for the Q2−Q1 discretization on the unit square domain.

W(1, 0) W(1, 1) W(2, 1) W(2, 2)
κ ρ2g ρh ρ2g ρh ρ2g ρh ρ2g ρh
1 0.49 0.49 0.25 0.22 0.12 0.11 0.06 0.06

10−3 0.49 0.49 0.25 0.21 0.12 0.11 0.06 0.06
10−6 0.49 0.49 0.25 0.21 0.12 0.11 0.06 0.06
10−9 0.65 0.65 0.42 0.42 0.27 0.27 0.18 0.18
10−12 0.72 0.72 0.52 0.52 0.52 0.56 0.28 0.28
10−15 0.72 0.72 0.52 0.52 0.52 0.56 0.28 0.28

TABLE 6.3: Quasi-static Biot’s model: Asymptotic convergence fac-
tors provided by our analysis (ρ2g) together with the ones provided
by our multigrid codes (ρh) considering several permeability values
and different numbers of smoothing steps of our 51−point additive
Schwarz relaxation with natural weights for the Q2− Q1 discretiza-

tion on the unit square domain.

In the previous table, we can observe that there is a good match between the
factors provided by LFA and the ones experimentally obtained with the multigrid
codes. Besides, we can see that the performance of the multigrid method deteriorates
when κ tends to zero, yielding a non-robust algorithm. An additional advantage
of our analysis is that we can find the optimal weights for the additive Schwarz
smoother for a fixed permeability in order to obtain a robust algorithm. Since in
real applications the permeability is heterogeneous, we have found the following
weights in order to have a robust method:
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wopt
u =


0.0484 0.0924 0.0484 0.0924 0.0484
0.0924 0.1764 0.0924 0.1764 0.0924
0.0484 0.0924 0.0484 0.0924 0.0484
0.0924 0.1764 0.0924 0.1764 0.0924
0.0484 0.0924 0.0484 0.0924 0.0484

 ,

for the 25 unknowns of each displacement component and wopt
p = 1.02 for the pres-

sure considered on each block. In Table 6.4, we show the asymptotic convergence
factors obtained by applying the additive Schwarz smoother with these optimal
weights provided by our analysis, considering different number of smoothing steps
and several permeability values.

κ W(1, 0) W(1, 1) W(2, 1) W(2, 2)
1 0.58 0.34 0.19 0.11

10−3 0.58 0.34 0.19 0.11
10−6 0.58 0.34 0.19 0.11
10−9 0.58 0.34 0.19 0.11
10−12 0.60 0.36 0.21 0.13
10−15 0.60 0.36 0.21 0.13

TABLE 6.4: Quasi-static Biot’s model: Asymptotic convergence fac-
tors (ρ2g), considering several permeability values and different num-
ber of smoothing steps of the 51−point additive Schwarz smoother

with optimal weights wopt
u , wopt

p .

Given that V−cycles are less expensive than W−cycles, we would like to com-
pare their performance in number of iterations. Hence, in Table 6.5, we show the
number of iterations of our multigrid codes required to reduce the initial residual
in a factor of 10−10, using the optimal weights with V− and W−cycles for several
smoothing steps and permeabilities. We conclude that V−cycles are also robust with
respect to κ when applying V(2, 1) or V(2, 2)−cycles yielding a similar number of
iterations than W−cycles in order to reach the stopping criterion. Thus, the use of
V(2, 2)−cycles with the 51−point additive Schwarz smoother applying the optimal
weights wopt

u , wopt
p is a good alternative in order to solve the two-field formulation of

Biot’s equations.

Smoothing steps (ν1, ν2)
(1, 0) (1, 1) (2, 1) (2, 2)

κ V W V W V W V W
1 39 40 20 20 13 14 10 10

10−3 40 40 20 20 14 13 10 10
10−6 39 40 20 20 13 14 10 10
10−9 40 40 23 20 14 13 10 10
10−12 50 43 40 22 18 15 12 12
10−15 50 45 40 23 18 15 12 12

TABLE 6.5: Quasi-static Biot’s model: Number of iterations of our
multigrid codes required to reduce the initial residual in a factor of
10−10, using the optimal weights wopt

u , wopt
p with V− and W−cycles

for several smoothing steps and permeabilities.
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6.4.2 Decoupled smoothers

As a second type of smoothers suitable for saddle point problems we are going to
propose some decoupled smoothers. These smoothers relax separately the variables
involved in the PDE system. For instance, decoupled smoothers can be based on
decoupled solvers mentioned in Section 6.3 for the Biot’s equations. Hence, we pro-
pose the use of decoupled smoothers based on the fixed-stress split algorithm given
its unconditional stability. By applying directly the fixed-stress splitting method as
smoother, the new approximation (um, pm) is obtained with the following relaxation
procedure: [

um
pm

]
=

[
um−1
pm−1

]
+M−1

A

([
f
f

]
−NA

[
um−1
pm−1

])
, (6.67)

where

MA =

(
El BT

0 τC + LMp

)
, NA =

(
0 0
B LMp

)
.

However, solving exactly these linear systems could be very costly, specially on
fine grids. Thus, instead of computing M−1

A , an approximation can be obtained
by applying separately appropriate smoothers for displacements u and pressure p.
In other terms, we propose the following inexact version of fixed-stress splitting
method as smoother:

M̃ =

[
MEl BT

0 MS

]
, (6.68)

where MEl and MS are suitable smoothers for operators El and S = τC + LMp.
Applying this scheme, we obtain a decoupled smoother based on an inexact version
of the fixed-stress split algorithm that gives rise to the following iterative method:{

pm = pm−1 + M−1
S ( f − Bum−1 + Cpm−1) ,

um = um−1 + M−1
El

(
f − Elum−1 − BT pm

)
.

(6.69)

At this point, the choice of the smoothers MEl and MS and the number of smooth-
ing iterations for each operator is a crucial point. As observed in Chapter 5, point-
wise smoothers do not yield robust neither efficient multigrid solvers when high-
order spline discretizations are considered for discretization of Poisson’s problem.
Thus, we also propose the use of block-wise smoothers for quasi-static Biot’s model
equations. More precisely, additive Schwarz methods seem to be adequate candi-
dates for this task given their efficiency and parallelizability. As a starting point, we
consider a 50−point additive Schwarz method for the displacements and a 9−point
additive Schwarz method for the pressure. In order to provide a theoretical analysis
for this method, we carried out an LFA based on infinite subgrids for the problem
(6.37) considered in the numerical experiments of Section 6.4.1. Thus, the Fourier
symbol of the fixed-stress split algorithm as smoother is given by:

S̃ f s(θ) = −
(

M̃A(θ)
)−1

ÑA(θ), (6.70)
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where M̃A and ÑA are the Fourier symbols of the matrices MA and NA respectively.
The Fourier symbol of these matrices is

M̃A(θ) =

(
Ẽl(θ) B̃T(θ)

0 τC̃(θ) + LM̃p(θ)

)
, ÑA =

(
0 0

B̃(θ) LM̃p(θ)

)
,

where Ẽl(θ), B̃T(θ),−B̃(θ), C̃(θ) and M̃ are the Fourier symbols of the elasticity, gra-
dient, divergence, laplacian (multiplied by κ/η f ) and mass operators. However,
when we substitute the fixed-stress split scheme by an inexact version where suit-
able smoothers MEl for the displacements and MS for the pressure are employed,
the Fourier symbol of the resulting smoother is given by

S̃i f s(θ) = M̃approx(θ)

[(
Ẽl(θ) B̃T(θ)

−B̃(θ) τC̃(θ)

)
− M̃approx(θ)

]
, (6.71)

where the matrix M̃approx is given by

M̃approx(θ) =

Ẽl(θ)
(

Ĩ(θ)− M̃νu
El
(θ)
)−1 (

B̃T(θ)
)−1

0
(

τC̃(θ) + LM̃p(θ)
) (

Ĩ(θ)− M̃νp
S (θ)

)−1

 ,

and νu, νp denote the number of smoothing steps of the smoothers MEl , MS for the
displacements and pressure in order to construct the inexact version of the fixed-
stress split algorithm as smoother. Note that the rest of the operators for the 2−grid
analysis of the Biot’s equations by using the inexact version of the fixed-stress split
method as smoother are obtained as explained in 4.56. We consider the two-field
formulation of the Biot’s model given in (6.31)-(6.32) discretized with the pairs of
elements Q2−Q1 and Q3−Q2 (holding global smoothness C1). Hence, in Table 6.6
we show the corresponding asymptotic convergence factors of our multigrid code
based on W(1, 0)-cycles with the inexact version of fixed-stress as smoother, with one
iteration of 9−point additive Schwarz for the pressure and one iteration of 50−point
additive Schwarz for displacements u using natural weights, for different values of
the permeability κ.

Q2−Q1 Q3−Q2 C1

κ ρ2g ρh ρ2g ρh
1 0.3136 0.3110 0.5937 0.5895

1e− 3 0.3136 0.3110 0.5937 0.5895
1e− 6 0.3136 0.3109 0.5937 0.5895
1e− 9 0.3894 0.3853 0.7094 0.7152

1e− 12 0.4996 0.4948 0.8442 0.8486
1e− 15 0.5003 0.5010 0.8444 0.8516

TABLE 6.6: Two-level (ρ2g) convergence factors predicted by LFA
together with the asymptotic convergence factors obtained numeri-
cally (ρh) using W(1, 0)-cycles with the inexact version of fixed-stress
as smoother, with one iteration of 9−point additive Schwarz for the
pressure and one iteration of 50−point additive Schwarz for displace-
ments u using natural weights. These results are shown for differ-
ent values of the permeability κ applying the Q2− Q1 and Q3− Q2

(holding global smoothness C1) pairs of elements.
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In the previous table, we observe that there is a good match between the asymp-
totic convergence factors provided by the analysis and the ones obtained with our
multigrid codes. However, there is a deterioration of the asymptotic convergence
factors when we deal with low permeabilities and the convergence factors are not
very satisfactory with this approach. In order to improve the performance of our
monolithic multigrid solver based on an inexact version of the fixed-stress split
method as smoother, we propose to raise the number of iterations of the 50−point
additive Schwarz smoother for the displacements to two iterations. Thus, in Ta-
ble 6.7 we show the corresponding asymptotic convergence factors of our multigrid
code based on W(1, 0)-cycles with the inexact version of fixed-stress as smoother,
with one iteration of 9−point additive Schwarz for the pressure p and one iteration
of 50−point additive Schwarz for displacements u.

Q2−Q1 Q3−Q2 C1

κ ρ2g ρh ρ2g ρh
1 0.2736 0.2746 0.4857 0.4849

1e− 3 0.2736 0.2781 0.4857 0.4848
1e− 6 0.2703 0.2777 0.4859 0.4852
1e− 9 0.1914 0.1904 0.5692 0.5691
1e− 12 0.4191 0.4153 0.7013 0.7026
1e− 15 0.4192 0.4158 0.7016 0.7030

TABLE 6.7: Two-level (ρ2g) convergence factors predicted by LFA
together with the asymptotic convergence factors obtained numeri-
cally (ρh) using W(1, 0)-cycles with the inexact version of fixed-stress
as smoother, with one iteration of 9−point additive Schwarz for the
pressure p and two iterations of 50−point additive Schwarz for dis-
placements u using natural weights. These results are shown for dif-
ferent values of the permeability κ applying the Q2−Q1 and Q3−Q2

(holding global smoothness C1) pairs of elements.

Again, a good match between the asymptotic factors provided by our multi-
grid codes an the analysis is observed. Although the asymptotic convergence fac-
tors have been improved, we consider that the performance of this solver based
on W(1, 0)−cycles with the inexact version of fixed-stress as smoother is not good
enough. At this point, one way to get better results is to add a post-smoothing step
of the smoother. Hence, we show the corresponding asympotic convergence factors
in Table 6.8:

Table 6.8 provides more satisfying results for both discretizations of the Biot’s
equations by using iterations of the W(1, 1)-cycle based on the inexact version of
the fixed-stress split algorithm as smoother. However, there is still some deterio-
ration of the asymptotic convergence factor and it would be desirable to obtain a
method with better convergence rates. For this purpose, it seems natural to apply
different smoothing strategies for each discretization and to increase the number of
smoothing steps. Fortunately, LFA helps us again to design our multigrid meth-
ods based on this type of smoother. Thus, we proceed to analyze some smoothing
strategies for the pair Q2 − Q1 and then do the same for the pair Q3 − Q2 hold-
ing global smoothness C1. Hence, we start analyzing the performance of different
smoothing strategies for the Q2− Q1 Taylor-Hood elements. First, we propose to
apply the inexact version of the fixed-stress split algorithm as smoother by using the
18− and 9−point additive Schwarz methods for u and p respectively. In Table 6.9
we show the asymptotic convergence factors provided by a two-grid analysis (ρ2g)
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Q2−Q1 Q3−Q2 C1

κ ρ2g ρh ρ2g ρh
1 0.0904 0.0912 0.2359 0.2350

1e− 3 0.0904 0.0907 0.2359 0.2350
1e− 6 0.0888 0.0901 0.2361 0.2340
1e− 9 0.0365 0.0434 0.3236 0.3197

1e− 12 0.1749 0.1727 0.4911 0.4954
1e− 15 0.1755 0.1732 0.4916 0.4956

TABLE 6.8: Two-level (ρ2g) convergence factors predicted by LFA
together with the asymptotic convergence factors obtained numeri-
cally (ρh) using W(1, 1)-cycles with the inexact version of fixed-stress
as smoother, with one iteration of 9−point additive Schwarz for the
pressure p and two iterations of 50−point additive Schwarz for dis-
placements u using natural weights. These results are shown for dif-
ferent values of the permeability κ applying the Q2−Q1 and Q3−Q2

(holding global smoothness C1) pairs of elements.

and the ones obtained experimentally with our multigrid codes (ρh) for a high and
low value of the permeability κ by using W(1, 1)−cycles with the inexact version
of the fixed-stress split algorithm as smoother with different numbers of iterations
νu, νp of the 18− and 9−point additive Schwarz methods for u and p.

W(1, 1)−cycles with 18− and 9−point additive Schwarz.
νu = 1, νp = 1 νu = 2, νp = 1 νu = 2, νp = 2

κ ρ2g ρh ρ2g ρh ρ2g ρh
1 0.2116 0.2502 0.0904 0.0657 0.0457 0.0657

1e− 12 0.5203 0.5147 0.1391 0.1270 0.1122 0.1207

TABLE 6.9: Q2 − Q1: Asymptotic convergence factors provided by
a two-grid analysis (ρ2g) and the ones obtained experimentally with
our multigrid codes (ρh) for a high and low value of the permeability
κ by using W(1, 1)−cycles with the inexact version of the fixed-stress
split algorithm as smoother with different numbers of iterations νu, νp

of the 18− and 9−point additive Schwarz methods for u and p.

In Table 6.9, we can observe that using νu = 1, νp = 1 iterations of the 18−
and 9−point additive Schwarz methods for the displacements and pressure respec-
tively on the inexact version of the fixed-stress stress split algorithm as smoother
is not enough to achieve robustness and satisfying results. On the other hand, the
approaches with νu = 2, νp = 1 and νu = 2, νp = 2 provide a good performance
and they do seem to be robust with respect the permeability κ. However, the per-
formance of these two approaches is very similar. Due to this, although the results
provided by using νu = 2, νp = 2 are slightly better, it does not look to be worth the
use of two smoothing steps for the pressure. Therefore, among the proposed inex-
act versions of the fixed-stress split algorithm as smoother for the pair Q2− Q1 we
propose to use νu = 2, νp = 1 iterations of the 18− and 9−point additive Schwarz
methods for u and p respectively. Moreover, we are interested on how the perfor-
mance of this approach is by applying different numbers of smoothing steps. Thus,
in Table 6.10 we show asymptotic convergence factors provided by a two-grid anal-
ysis (ρ2g) and the ones obtained experimentally with our multigrid codes (ρh) for a
high and low value of the permeability κ by using W(1, 0)−, W(1, 1)−, W(2, 1)−,
and W(2, 2)−cycles with the inexact version of the fixed-stress split algorithm as
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smoother with νu = 2, νp = 1 iterations of the 18− and 9−point additive Schwarz
methods for u and p.

Q2−Q1, νu = 2, νp = 1.
W(1, 0) W(1, 1) W(2, 1) W(2, 2)

κ ρ2g ρh ρ2g ρh ρ2g ρh ρ2g ρh
1 0.2736 0.2516 0.0904 0.0657 0.0205 0.0228 0.0256 0.0262

1e− 12 0.3745 0.3708 0.1391 0.1270 0.0516 0.0400 0.0191 0.0253

TABLE 6.10: Q2− Q1: Asymptotic convergence factors provided by
a two-grid analysis (ρ2g) and the ones obtained experimentally with
our multigrid codes (ρh) for a high and low value of the permeability
κ by using W(1, 0)−, W(1, 1)−, W(2, 1)−, and W(2, 2)−cycles with
the inexact version of the fixed-stress split algorithm as smoother
with νu = 2, νp = 1 iterations of the 18− and 9−point additive

Schwarz methods for u and p.

At this point, we propose as optimal choice the use of W(2, 1)−cycles with νu =
2, νp = 1 iterations of the 18− and 9−point additive Schwarz methods within the
inexact fixed-stress split smoother since the performance of W(2, 2)−cycles is only
slightly better than the one provided by using W(2, 1)−cycles. In addition, we base
our optimal choice of W(2, 1)−cycles on the fact that this approach provide a robust
factor with respect to the permeability κ more clearly than the use of W(1, 1)−cycles.

Now, we focus on the search of the optimal smoothing strategy for the Q3− Q2
isogeometric Taylor-Hood elements by using additive Schwarz smoothers on the
inexact version of the fixed-stress split algorithm as smoother. For this purpose, we
started by considering νu = 1, νp = 1 iterations of the 18− and 9−point additive
Schwarz methods for the displacements and the pressure. As we can observe in
Table 6.11 by applying W(1, 1)−cycles with different numbers of iterations νu and
νp, the performance of the fixed-stress split algorithm as smoother with the 18− and
9−point additive Schwarz methods for the displacements and the pressure seems to
be too poor.

W(1, 1)−cycles of 18− and 9−point additive Schwarz.
νu = 1, νp = 1 νu = 2, νp = 1 νu = 2, νp = 2

κ ρ2g ρh ρ2g ρh ρ2g ρh
1 0.5905 0.5768 0.3488 0.3333 0.3488 0.3333

1e− 12 − − 0.5350 0.5653 0.5333 0.5378

TABLE 6.11: Q3− Q2: Asymptotic convergence factors provided by
a two-grid analysis (ρ2g) and the ones obtained experimentally with
our multigrid codes (ρh) for a high and low value of the permeability
κ by using W(1, 1)−cycles with the inexact version of the fixed-stress
split algorithm as smoother with several numbers of iterations νu, νp
of the 18− and 9−point additive Schwarz methods for u and p, re-

spectively

Given that the 18−point additive Schwarz smoother has not enough smooth-
ing effect for the displacements, we consider the inexact version of the fixed-stress
split algorithm as smoother with the 50−point additive Schwarz method for u and
the 9−point additive Schwarz method for p. Thus, in Table 6.12 we show asymp-
totic convergence factors provided by a two-grid analysis (ρ2g) and the ones ob-
tained experimentally with our multigrid codes (ρh) for a high and low value of the
permeability κ by using W(1, 1)−cycles with the inexact version of the fixed-stress
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split algorithm as smoother with several numbers of iterations νu, νp of the 50− and
9−point additive Schwarz methods for u and p, respectively.

W(1, 1)−cycles of 50− and 9−point additive Schwarz.
νu = 1, νp = 1 νu = 2, νp = 1 νu = 3, νp = 1 νu = 2, νp = 2

κ ρ2g ρh ρ2g ρh ρ2g ρh ρ2g ρh
1 0.3530 0.3365 0.2359 0.2183 0.2359 0.2333 0.1247 0.1203

1e− 12 0.7195 − 0.4911 0.4835 0.5206 0.4907 0.1773 0.1749

TABLE 6.12: Q3− Q2: Asymptotic convergence factors provided by
a two-grid analysis (ρ2g) and the ones obtained experimentally with
our multigrid codes (ρh) for a high and low value of the permeability
κ by using W(1, 1)−cycles with the inexact version of the fixed-stress
split algorithm as smoother with several numbers of iterations νu, νp
of the 50− and 9−point additive Schwarz methods for u and p, re-

spectively.

In the previous table, we observe that the performance of our solver is satisfac-
tory when we consider W(1, 1)−cycles with the inexact version of the fixed-stress
split algorithm as smoother with νu = νp = 2 iterations of the 50− and 9−point
additive Schwarz methods for u and p, respectively. Note that besides it seems
to be very efficient, it shows robustness with respect the permeability κ. Now, we
would like to know how the performance of this solver is if we change the number
of smoothing steps. Thus, in Table 6.13 we show the asymptotic convergence factors
provided by the analysis and our multigrid codes by applying W(1, 0)−, W(1, 1)−,
W(2, 1)− and W(2, 2)−cycles with the inexact version of the fixed-stress split algo-
rithm as smoother with νu = 2, νp = 2 iterations of the 50− and 9−point additive
Schwarz methosd for u and p:

50− and 9−point additive Schwarz methods: νu = 2, νp = 2
W(1, 0) W(1, 1) W(2, 1) W(2, 2)

κ ρ2g ρh ρ2g ρh ρ2g ρh ρ2g ρh
1 0.3530 0.3377 0.1247 0.1203 0.0440 0.0426 0.0156 0.0142

1e− 12 0.4191 0.5035 0.1773 0.1749 0.0752 0.0815 0.0465 0.0320

TABLE 6.13: Q3 − Q2: Asymptotic convergence factors provided
by the analysis and our multigrid codes by applying W(1, 0)−,
W(1, 1)−, W(2, 1)− and W(2, 2)−cycles with the inexact version of
the fixed-stress split algorithm as smoother with νu = 2, νp = 2 itera-
tions of the 50− and 9−point additive Schwarz methosd for u and p.

At this point, we observe that a good performance of the inexact version of the
fixed-stress split algorithm as smoother for the pair Q3− Q2 is achieved when we
apply W(1, 1)−, W(2, 1)− or W(2, 2)−cycles with νu = 2, νp = 2 iterations of the
50− and 9−point additive Schwarz smoothers to approximate the solution of u and
p respectively. Besides a very good asymptotic convergence factor, we obtain a ro-
bust method with respect the permeability κ with these approaches.
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Chapter 7

Conclusions and future work

In this work, efficient and robust multigrid methods have been proposed for IGA
discretizations of several problems that arise in physics and engineering. In order
to do this, the basics of the parametric construction of curves and surfaces have
been introduced and then the isogeometric analysis of some problems by means
of B-splines and NURBS as well. After this, the basics of multigrid methods and
local Fourier analysis were stablished with the purpose of giving a useful tool for
the design of multigrid methods. Then, we devoted our attention to the design of
efficient and robust multigrid methods for some scalar problems. Finally, the main
contribution of this thesis is to propose efficient and robust multigrid methods with
respect the spline degree k for isogeometric discretizations of the poroelastic Biot’s
equations.

The first important contribution of this work is to propose a robust and efficient
multigrid method for isogeometric discretizations of the Poisson equation hold-
ing maximum global smoothness Ck−1 based on multiplicative Schwarz methods
as smoothers with maximum overlapping among the blocks. For this purpose, we
carry out an LFA for block-wise smoothers for IGA discretizations. In fact, thanks to
this analysis we are able to set the most appropriate size of the blocks for every poly-
nomial degree until k = 8. All these contributions are published in Pé de la Riva,
Rodrigo, and Gaspar, 2019 and this research on the Poisson equation constitutes our
initial step towards the study of the Biot’s equations.

In order to analyze the efficiency and robustness with respect the polynomial de-
gree k of the previous approach for high-order PDEs, we have designed a multigrid
method based on multiplicative Schwarz smoothers for IGA discretizations of the
bilaplacian equation. Again, LFA has helped us with the design of this method and
we have achieved a robust method for the biharmonic equation, see Pé de la Riva,
Rodrigo, and Gaspar, 2020.

Another contribution derived of this work is an improvement of the multigrid
method previously mentioned for Poisson equation, based on a two-level method
that reduces the computational cost of the solution method. As described in Pé de
la Riva, Rodrigo, and Gaspar, 2021, this method considers a fine level with spline
degree k and mesh size h whereas a low polynomial degree klow is considered at the
second level with the same mesh size. This method has been improved by consid-
ering an approximation for the solution of the defect equation at the second level.
Our proposed approximation consists of applying one iteration of one h−multigrid
method and the efficiency of this approach has been improved by considering a more
aggresive coarsening (spline degree klow and mesh size H = 2h) in the second level.
Moreover, we would like to remark that the design of this method is supported by
LFA.

The next contribution of this thesis deals with the study of additive Schwarz
smoothers instead of considering the previously mentioned multiplicative Schwarz
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iterations. Our idea here was to make a good use of the parallelizability of this type
of smoother in order to design even more efficient solvers. Since a standard LFA is
not suitable to additive Schwarz methods, we have carried out a recent LFA based on
infinite subgrids for this case. This approach has been considered for scalar problems
and systems of saddle point type. We are currently working on the publication of
them in a joint work with professors Ludmil Zikatanov, Xiaozhe Hu, James H. Adler,
Carmen Rodrigo and Francisco J. Gaspar.

We have introduced the Biot’s model and explained in detail its constitutive
equations. In this work, we have considered the two-field or displacements-pressure
formulation of the Biot’s equations. Furthermore, we have proposed an innovative
mass stabilization that eliminates all the spurious oscillations of the pressure. In
fact, this stabilization was firstly introduced in Pé de la Riva et al., 2022 for FEM. As
pointed out in that paper, this mass stabilization enables the automatic application
of an innovative iterative decoupled method and we have applied it successfully to
the isogeometric pairs of elements Q1− Q1, Q2− Q1 and Q3− Q2 (holding global
smoothness C1). In order to analyze the stability and convergence of the proposed
method, we performed a von Neumann analysis for the previous pairs of elements.
In addition, some numerical experiments for Terzaghi’s problem and Biot’s equa-
tions demonstrate the good performance of this approach.

The main goal of this thesis is to design efficient and robust multigrid meth-
ods for isogeometric discretizations applied to poroelasticity problems. We have
considered monolithic multigrid methods for Biot’s equations with coupled and
decoupled smoothers. More concretely, we have proposed coupled Schwarz ad-
ditive smoothers and an inexact version of the fixed-stress split algorithm as de-
coupled smoother. The design of multigrid methods based on these smoothers has
been guided by the predictions of an LFA based on infinite subgrids. This analysis
for poroelasticity equations has allowed us to find robust and efficient monolithic
multigrid methods based on these smoothers. In fact, a 51−point coupled additive
Schwarz smoother has been proposed for the isogeometric pair Q2− Q1. Regard-
ing the inexact version of the fixed-stress split algorithm as smoother, we proposed
to use 18− and 9− point additive Schwarz smoothers for the approximation of dis-
placements and pressure, respectively, by using elements Q2− Q1. In the case of
Q3−Q2 with global smoothness C1, 50− and 9− point additive Schwarz smoothers
were considered for the approximation of displacements and pressure. Finally, by
means of some numerical experiments, we demonstrated the efficiency and robust-
ness with respect the permeability κ of the proposed multigrid solvers.

The field of multigrid methods for isogeometric discretizations applied to poroe-
lasticity problems is still very unexplored, this opens a wide range of topics for fu-
ture research. Although we considered the two-field formulation in this thesis, IGA
has not been applied to other formulations of Biot’s equations such as the classical
three-field formulation, for example. Modelling of cracks and multiphase problems
are also object of future research. Furthermore, non-tensor product discretizations
are becoming popular among the IGA community in order to allow adaptive re-
finement of the mesh. This is the case, for example, of T-splines and hierarchical
B-splines. Nowadays, some studies have been devoted to the implementation of
multigrid methods for this type of discretizations but there is still a lot of work to
do. In addition, triangular meshes can be considered for isogeometric discretiza-
tions. For instance, triangular Bézier splines or Powell-Sabin B-splines could be used
and multigrid methods could be designed for their solution. Moreover, LFA could
be applied to design new efficient and robust multigrid methods for the problems
and discretizations mentioned above.
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