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1  |   INTRODUCTION

Deep learning techniques are increasingly being used 
in clinical applications (Ker et al., 2018). Most of these 
applications focus on diagnostic imaging, such as the 
use of magnetic resonance imaging (MRI) to diagnose 
multiple sclerosis (MS) (Marzullo et al., 2019; McKinley 
et al., 2020; Salem et al., 2019). Given the important role 
of MRI in the diagnosis and treatment of MS, several 
studies have explored the application of artificial intelli-
gence (AI) to this disease (Bonacchi et al., 2022).

Multiple sclerosis is a chronic neurodegenerative dis-
ease that affects the central nervous system (CNS). It is 
characterized by high clinical variability, as each case is 
unique (Swanton et al., 2014). MS is diagnosed using the 
McDonald criteria (Thompson et al., 2018), which entail 
a lengthy process involving several invasive tests, such 

as MRI and lumbar puncture to analyse cerebrospinal 
fluid (CSF). Moreover, as the number of treatment op-
tions continues to increase, selecting the best therapy for 
each individual at the appropriate stage of the disease is 
a challenge. The development of reliable biomarkers that 
can be measured non-invasively is therefore essential.

Multiple sclerosis has been shown to affect the retina, 
which is an extension of the CNS, particularly affecting 
the retinal nerve fibre layer (RNFL) and the ganglion cell 
layer (GCL) (You et al., 2020). The scar tissue formed in 
this disease damages the nerve fibres of the retinal gan-
glion cells, interrupting the passage of nerve impulses. As 
a result, the cells stop transmitting information and cell 
death occurs (Eslami et al., 2020; Pietroboni et al., 2019). 
Non-invasive analysis of these retinal layers using op-
tical coherence tomography (OCT) has demonstrated 
its usefulness as an MS biomarker (Alonso et al., 2018; 
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Abstract
Purpose: The macular ganglion cell layer (mGCL) is a strong potential bio-
marker of axonal degeneration in multiple sclerosis (MS). For this reason, this 
study aims to develop a computer-aided method to facilitate diagnosis and 
prognosis in MS.
Methods: This paper combines a cross-sectional study of 72 MS patients and 30 
healthy control subjects for diagnosis and a 10-year longitudinal study of the 
same MS patients for the prediction of disability progression, during which the 
mGCL was measured using optical coherence tomography (OCT). Deep neural 
networks were used as an automatic classifier.
Results: For MS diagnosis, greatest accuracy (90.3%) was achieved using 17 
features as inputs. The neural network architecture comprised the input layer, 
two hidden layers and the output layer with softmax activation. For the predic-
tion of disability progression 8 years later, accuracy of 81.9% was achieved with 
a neural network comprising two hidden layers and 400 epochs.
Conclusion: We present evidence that by applying deep learning techniques to 
clinical and mGCL thickness data it is possible to identify MS and predict the 
course of the disease. This approach potentially constitutes a non-invasive, 
low-cost, easy-to-implement and effective method.
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Frohman et al., 2006), particularly since OCT is an easy-
to-use, cost-effective and objective technology that pro-
vides high-resolution images.

Although the RNFL has been widely used to iden-
tify MS (Montolío et al., 2019; Pueyo et al., 2008; Toledo 
et al.,  2008), the macular GCL (mGCL) also indicates 
neurodegeneration in MS as it is formed by the cell bod-
ies of the RNFL axons (Britze et al., 2017). The mGCL 
and the inner plexiform layer (IPL) are usually measured 
together (referred to as the mGCIPL) because of the 
low contrast that hinders their segmentation (Petzold 
et al., 2017). It has been shown that mGCIPL thinning in 
MS patients is significantly greater than in healthy con-
trol subjects, associating faster rates of atrophy of these 
layers with disability progression (Graham et al.,  2016; 
Saidha et al., 2015). Shi et al. (2019) found a horseshoe-
like reduction in mGCIPL thickness at the nasal sector 
and revealed its relationship to visual dysfunction and 
disability in MS patients. Lambe et al.  (2021) demon-
strated that a basal GCIPL thickness <70 μm was as-
sociated with a four-fold increase in the likelihood of 
significant worsening of disability. In this sense, other 
authors have associated a basal mGCIPL thickness 
<77 μm with a higher progression of disability. Moreover, 
annual mGCIPL thickness loss ≥1 μm served to identify 
patients with disability progression (Bsteh et al., 2020). 
Schurz et al. (2021) also established that mGCIPL thin-
ning ≥1 μm/year represents an increased risk of worsen-
ing disability in MS patients.

As detailed above, MRI is the test most commonly 
combined with AI in MS diagnosis and prognosis 
(Rocca et al., 2021; Yoo et al., 2019; Zhang et al., 2019). 
However, researchers have also combined AI with im-
aging techniques such as OCT (Betzler et al.,  2022). 
Cavaliere et al.  (2019) developed a diagnostic method 
based on the support vector machine (SVM) and RNFL 
and GCIPL measurements taken with the deep range 
imaging (DRI) OCT Triton device. These data were 
also used by Garcia-Martin et al.  (2021) when compar-
ing the SVM and artificial neural networks (ANNs). 
Pérez del Palomar et al.  (2019) analysed the ability of 
machine learning techniques to improve the detection 
of RNFL and GCIPL damage in MS patients. Another 
MS diagnosis method was proposed by López-Dorado 
et al.  (2021), who used a convolutional neural network 
(CNN) to classify OCT images from 48 recently diag-
nosed MS patients and 48 control subjects. The results of 
the above-mentioned studies did not provide a clear-cut 
recommendation on whether it is better to use the RNFL 
or the GCIPL to diagnose the disease. Thus, in this new 
analysis we wanted to conduct an additional study to cor-
roborate whether the GCL is as good a biomarker as the 
RNFL. In addition, this study assessed GCL thickness 
independently of IPL, in contrast to previous studies.

Regarding MS prognosis using AI, most studies pre-
dicted disability progression based on data from the 
evaluations included in the McDonald criteria, such as 
MRI, CSF analysis and evoked potentials (EPs) (Seccia 
et al., 2021). Thus, very few studies based their predic-
tion of disease progression on OCT data. Our previous 
studies proposed several machine learning techniques 
to predict long-term disability progression using RNFL 

thickness measured by Cirrus HD-OCT and Spectralis 
OCT (Montolío et al., 2021, 2022). In addition, it is neces-
sary to evaluate the potential offered by GCL thickness 
for the same purpose. Therefore, in this study ANNs 
were used to diagnose and predict progression in MS 
patients based on GCL thickness. The use of the non-
invasive OCT test to measure thickness as an MS bio-
marker would reduce the need for many invasive tests 
and would facilitate early diagnosis. This would allow 
earlier initiation of treatment for patients, thus improv-
ing their quality of life (Yap et al., 2019).

2  |   M ATERI A LS A N D M ETHODS

2.1  |  Participants

This study enrolled 102 participants (72 MS patients 
and 30 healthy subjects) of white European origin. The 
study was approved by the Ethics Committee of the 
Miguel Servet Hospital and adhered to the Declaration 
of Helsinki. All participants provided written informed 
consent before enrolment.

This paper combines a cross-sectional study of MS 
patients and healthy control subjects for diagnosis and 
a 10-year longitudinal study of 72 MS patients for pre-
diction of disability progression. MS patients were di-
agnosed by a neurologist based on the 2010 revision of 
the McDonald criteria (Polman et al., 2011) and patient 
disability was registered using the Expanded Disability 
Status Scale (EDSS). One eye was randomly selected to 
avoid possible bias due to interrelationship between eyes 
of the same subject. In subjects with exclusion criteria in 
one eye, the other eye was selected.

Neuro-ophthalmological evaluation and OCT scans 
were performed at the baseline visit on both MS patients 
and healthy participants. These were followed by five an-
nual visits plus a final visit for MS patients to complete 
the 10-year follow-up. The baseline visit constitutes the 
first evaluation and is the starting point of the study in 
which each patient is at a different stage of the disease.

Based on our preliminary studies related to MS 
(Cordon et al., 2020; López-Dorado et al., 2021), the sam-
ple size necessary to detect differences of at least 2 μm in 
OCT-measured thicknesses was determined by applying 
a bilateral test with α 5% risk and β 10% risk (i.e. with 
90% power). In order to obtain a sufficient sample of MS 
patients to allow an in-depth study of the natural course 
of the disease, the unexposed/exposed ratio was deter-
mined to be 0.5. From these data, it was concluded that 
at least 28 eyes would be needed in each group.

2.2  |  Inclusion/exclusion criteria

The inclusion criteria applied were as follows: best-
corrected visual acuity (BCVA) of 20/40 or higher, 
refractive error within ±5.00 dioptres (D) equivalent 
sphere and ±2.00 D astigmatism and transparent oc-
ular media (nuclear colour/opalescence, cortical or 
posterior subcapsular lens opacity <1), according to 
the Lens Opacities Classification System III (Chylack 
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et al., 1993). Exclusion criteria included previous reti-
nal and optic nerve affectation, other diseases affect-
ing the visual field or nervous system, refractive errors 
>5 D of equivalent spherical dioptres or >2 D of astig-
matism and intraocular pressure >20 mmHg, as well as 
exclusion of those eyes with a family history of glau-
coma. A previous history of optic neuritis was not an 
exclusion criterion (in order to analyse its influence on 
MS progression).

Multiple sclerosis patients were recruited between 
2006 and 2010 and followed for 10 years by MS neurolo-
gists who referred all patients with EDSS ≤8 and disease 
duration ≤35 years at the baseline visit from the neurology 
department of the Miguel Servet Hospital. All consecu-
tive patients meeting all inclusion criteria and not meet-
ing any exclusion criteria were included in the study, and 
no retrospective patient selection was performed. There 
were initially 86 MS patients, but 14 dropped out during 
follow-up and only those who completed the study were 
included in the analysis. The reasons for drop-out were 
change of residence, patient decision or poor mobility 
(no dropouts were due to death).

2.3  |  Optical coherence tomography

OCT scans were performed on all participants using the 
Spectralis OCT device (Heidelberg Engineering, Inc.). 
The eye-tracking function was enabled to achieve great-
est accuracy and to use the baseline scan to align sub-
sequent scans with the same area of the retina. Scans 
were evaluated following the quality control criteria 
(OSCAR-IB) and the Advised Protocol for OCT Study 
Terminology and Elements (APOSTEL) (Cruz-Herranz 
et al.,  2016; Petzold et al.,  2021). Automated segmenta-
tion was performed with the manufacturer's software 
(heyex version 1.9.10.0, viewing module version 6.0.9.0) 
and subsequently corrected by trained graders. In the 
macular area, the regions analysed are generally defined 
by the Early Treatment Diabetic Retinopathy Study 
(ETDRS) grid automatically centred on the fovea by the 
fovea finder (see Figure 1). This acquisition protocol pro-
vides total volume and mGCL thickness in nine sectors: 
central fovea (CF), inner nasal (IN), outer nasal (ON), 
inner superior (IS), outer superior (OS), inner temporal 
(IT), outer temporal (OT), inner inferior (II) and outer 
inferior (OI).

2.4  |  Expanded disability status scale

Disability was assessed at every visit of the 10-year lon-
gitudinal study by neurologists specialized in clinical 
MS studies. Following the standard criteria (Kalincik 
et al., 2015), which represents a significant worsening of 
disability, disability progression was defined by the refer-
ence EDSS and the EDSS variation (ΔEDSS). Disability 
progression was considered as follows: ΔEDSS of 1.5 
or more points if reference EDSS was 0, ΔEDSS of 1 or 
more points if reference EDSS was between 1 and 5.5, 
and ΔEDSS of 0.5 or more points if reference EDSS was 
above 5.5.

2.5  |  Statistical analysis

Statistical analyses were performed using matlab (ver-
sion 2020b, Mathworks Inc.). All hypothesis tests were 
evaluated at a significance level of 0.05. Comparison 
between groups was performed using the Wilcoxon test 
due to the non-normality of the variables after analys-
ing the normality of the continuous variables using the 
Kolmogorov–Smirnov test. For categorical variables, 
p-value was obtained with Fisher's exact test since this 
test is preferable to the Chi-square test because of its ac-
curacy. Moreover, the Chi-square test should be avoided 
if there are few observations (as is the case of our data).

2.6  |  Deep learning

This paper aimed to assess the possibility of diagnosing 
MS and predicting disability progression in MS patients 
based on GCL thickness and deep learning techniques. 
This process was implemented in python 3.9 using 
PyTorch.

After filtering the databases by eliminating subjects 
with incomplete data and discarding variables that had 
not been collected in a suitably large number of subjects, 
classes were balanced if necessary. To reduce the risk 
of overfitting caused by class imbalance, the synthetic 
minority oversampling technique (SMOTE) was used 

F I G U R E  1   Standard Early Treatment Diabetic Retinopathy 
Study (ETDRS) grid on a right-eye retina. The macular area is 
divided into nine regions defined by three rings and four quadrants. 
The rings are central fovea (green), inner macular ring (orange) and 
outer macular ring (blue). The quadrants are superior (S), nasal (N), 
inferior (I) and temporal (T). In an optical coherence tomography 
(OCT) image, section A–A highlights the location of the ganglion 
cell layer (GCL) (CF, central fovea; II, inner inferior; IN, inner 
nasal; IS, inner superior; IT, inner temporal; OD, right eye; OI, outer 
inferior; ON, outer nasal; OS, outer superior; OT, outer temporal).
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(Kuhn & Johnson, 2013; Santos et al., 2018). This method 
increases the number of minority class subjects by syn-
thesizing new subjects.

In artificial intelligence, variable selection can bring 
benefits such as reduced overfitting, improved accuracy 
and reduced computational cost. To test this effect, the 
neural networks were used with and without the variable 
reduction performed by the Least Absolute Shrinkage 
and Selection Operator (LASSO) (Tibshirani,  1996). 
This technique generates regression coefficients to the 
model features and eliminates those with a regression 
coefficient equal to zero.

The architecture proposed in this study was composed 
of one fully connected neural network (FCNN) with one 
or more hidden layers (HLs), in particular, a feedforward 
backpropagation neural network. Feedforward is the 
process neural networks use to turn the input into an out-
put. Backpropagation is used to train the FCNN via the 
following steps: perform a feedforward operation, com-
pare the model output with the desired output, calculate 
the error and run the feedforward operation backwards 
(backpropagation) to spread the error to each of the 
weights. This method updates the weights and provides a 
better model. In practice, the activation function govern-
ing the output of neurons in HLs is the rectified linear 
unit (ReLU) function. The FCNN outputs were normal-
ized using the softmax function that assigns probabilities 
to them. The error function was the negative log likeli-
hood (NLL) loss. The Adam optimization algorithm, 
which is an extension of stochastic gradient descent, was 
used with a learning rate of 0.003. The optimizer decides 
by how much and in which direction to change the layer 
parameters. Finally, drop-out with 0.2 drop probability 
was used to reduce overfitting (Srivastava et al., 2014).

Another method used to minimize the risk of overfit-
ting, given the difficulty of creating large clinical data-
bases, was 10-fold cross-validation (Santos et al., 2018). 
Moreover, with k-fold cross-validation the final re-
sults are independent of the initial split (Rodriguez 
et al., 2010). For the numerical features, the training set 
was normalized with mean of 0 and a standard devia-
tion of 1, and the validation set was normalized with the 
mean and standard deviation of the training set. Thus, 
during training our FCNN has no information from the 
validation set. One-hot encoding was used to encode 
the categorical features as numerical features (Potdar 
et al., 2017).

For the MS diagnosis model, as can be seen in Table 1, 
the raw data set from our cross-sectional study had 17 
numerical features: 15 numerical features plus one cate-
gorical feature (sex) encoded into two numerical features.  
For the MS prognosis model, our 10-year longitudinal 
study was used with data from the first 3 years as input 
(see Table 2 and Figure 2) and the disability progression  
8 years later as output. This decision was based on our pre-
vious study, in which we compared model performance 
using 2 or 3 years of follow-up (Montolío et al.,  2022). 
In this case, the raw data set from 36 MS patients with 
disability progression (DP) and 36 MS patients with no 
disability progression (nDP) had 27 numerical features 
at each visit: 18 numerical features and four categorical 
features (sex, MS subtype, optic neuritis antecedent and 

relapse in preceding year) encoded into their respective 
numerical features. As we used data from the first 3 years 
of the follow-up, this raw data set contained 81 numeri-
cal features.

3  |   RESU LTS

Several neural network architectures were tested to 
analyse the performance of the MS diagnosis and prog-
nosis models based on GCL thickness measured using 
Spectralis OCT.

The mean total volume and mean thickness in each 
sector of the mGCL were computed for MS patients 
and healthy controls. It was observed that this volume 
and these thicknesses were lesser in MS patients than in 
healthy subjects. Table 1 shows the results of the Wilcoxon 
test for continuous features and of Fisher's exact test for 
categorical features. Statistically significant differences 
were obtained for BCVA in clinical characteristics and 
for all OCT data except for central fovea, centre and cen-
tre minimum thicknesses.

Since our cross-sectional study contained class-
imbalanced data, the SMOTE was used to create 42 
synthetic healthy controls in order to have 72 MS pa-
tients and 72 healthy controls. After applying variable 
selection using the LASSO, the selected features were: 
total volume, IN, OS and II thicknesses (regression 

TA B L E  1   Clinical characteristics and macular ganglion 
cell layer (mGCL) thicknesses from 72 multiple sclerosis (MS) 
patients and 30 healthy subjects. P-value comes from the Wilcoxon 
test for continuous variables and from Fisher's exact test for 
categorical variables. Statistically significant differences (p < 0.05) 
are highlighted in bold. (BCVA: best-corrected visual acuity; th: 
thickness).

MS patients 
(n = 72)

Healthy 
subjects 
(n = 30) P-value

Clinical characteristics

Age [years] 47.45 ± 10.62 47.62 ± 14.07 0.794

Sex, n [%]

Male 19 (26.4) 5 (16.7) 0.442

Female 53 (73.6) 25 (83.3)

BCVA [Snellen] 1.01 ± 0.24 1.00 ± 0.11 0.024

mGCL thickness

Total volume [mm3] 0.88 ± 0.14 1.10 ± 0.10 <0.001

Central fovea th. [μm] 14.14 ± 4.68 15.63 ± 4.17 0.084

Inner nasal th. [μm] 39.36 ± 9.82 52.47 ± 6.71 <0.001

Outer nasal th. [μm] 31.54 ± 4.58 37.63 ± 3.67 <0.001

Inner superior th. [μm] 40.90 ± 9.32 52.33 ± 5.64 <0.001

Outer superior th. [μm] 30.55 ± 7.32 36.63 ± 3.52 <0.001

Inner temporal th. [μm] 35.67 ± 10.09 46.93 ± 4.68 <0.001

Outer temporal th. [μm] 29.44 ± 6.34 36.50 ± 3.99 <0.001

Inner inferior th. [μm] 40.42 ± 9.60 53.00 ± 4.57 <0.001

Outer inferior th. [μm] 28.97 ± 7.50 33.30 ± 4.52 <0.001

Centre th. [μm] 5.10 ± 6.14 3.87 ± 2.53 0.847

Centre min. th. [μm] 1.53 ± 2.70 1.17 ± 1.09 0.631

Centre max. th. [μm] 33.29 ± 10.18 41.53 ± 8.96 <0.001
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coefficients: 0.0428, 0.0029, 0.0311 and 0.0059, respec-
tively). These features showed a statistically significant 
difference between MS patients and healthy controls (see 
Table 1). The influence of the reduced data set on model 
performance was thus analysed.

For MS diagnosis, the best neural network architec-
ture for both raw and reduced data is shown in Figure 3. 
With raw data (17 features), the greatest accuracy (90.3%) 
was obtained with two HLs and ReLU activation and 
softmax activation in the output layer. As can be seen in 
the confusion matrix (Figure 5), there were six false posi-
tives (FPs) and eight false negatives (FNs). After variable 
selection, the best accuracy (82.6%) was achieved with 
the FCNN architecture as follows: four input units, two 
HLs with 4 units and ReLU activation, and softmax ac-
tivation in the output layer. In this case, the confusion 
matrix shows 15 FPs and 10 FNs. Both results were ob-
tained using 400 epochs.

The statistical analysis performed on our raw data 
used for MS prognosis revealed that only EDSS showed 
statistically significant differences between MS patients 
with DP and MS patients with nDP at baseline, 1 and 
2 years (see Table 2).

Our 10-year longitudinal study for DP prediction was 
balanced as there were 36 MS patients with DP (EDSS 
at 10 years = 3.78 ± 2.28) and 36 MS patients with nDP 
(EDSS at 10 years = 3.49 ± 2.41). Variable selection was 
applied to the 81 raw features and the reduced data set 
contained 12 features. The regression coefficient for 
each feature is detailed below in square brackets. These 
features were as follows: five at baseline (EDSS [0.1087], 
MS duration [0.0034], OS [0.0098], OT [0.0018] and centre 
thicknesses [0.0380]), three at 1 year (EDSS [0.0845], MS 
duration [0.0043] and OS thickness [0.0483]) and four at 
2 years (EDSS [0.0768] MS duration [0.0023], IS [0.0956] 
and OS thicknesses [0.0007]). As can be seen, EDSS 
(p < 0.05), MS duration and OS thickness were chosen by 
LASSO for all time points.

We evaluated the ability of different FCNNs to predict 
whether a MS patient would suffer long-term DP based 
on GCL data collected in the first 3 years. Using the raw 
data and the FCNN architecture detailed at the top of 
Figure 4, an accuracy of 65.3% was obtained for 300 ep-
ochs. With a reduced data set and the FCNN structure 
indicated at the bottom of Figure  4, the accuracy was 
81.9% for 400 epochs. The confusion matrices for both 
MS prognosis models can be seen in Figure 5, where the 
model before variable selection presented 14 FPs and 12 
FNs, while the model with reduced data obtained seven 
FPs and six FNs.

4  |   DISCUSSION

In this paper, we propose and implement a deep learn-
ing approach to MS diagnosis and prognosis that analy-
ses GCL data obtained using Spectralis OCT. Very few 
studies have investigated AI model performance in the 
diagnosis and prediction of disability progression of 
this disease using OCT data because most papers focus 
on MRI data. In recent years, several authors have 
tested the feasibility of using GCIPL measurements 
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      |  7MONTOLÍO et al.

to diagnose MS with techniques such as the SVM or 
ANNs (Cavaliere et al., 2019; Garcia-Martin et al., 2021). 
However, when predicting disability progression, GCL 
thickness has only been analysed from a statistical point 
of view (Lambe et al., 2021; Schurz et al., 2021).

GCIPL thinning in MS is caused by axonal degener-
ation and is related to worsening physical and cognitive 
disability and brain atrophy (Bsteh et al.,  2020; Coric 
et al., 2018; Zimmermann et al., 2018). As can be seen in 
the statistical analysis between MS patients and healthy 
controls (Table 1), both macular volume and the different 
mGCL thicknesses were lower in the MS patients and 
exhibited significant difference (except for CF). The MS 
patients were divided into patients with DP and patients 
with nDP following the standard criteria defined above. 
Of all the characteristics, the difference was only signifi-
cant in the EDSS in the 3 years used (see Table 2). In line 
with this result, Dekker et al. (2019) showed the power of 
the EDSS for disability progression prediction. Figure 2a 

shows how the EDSS score for MS patients with nDP is 
higher than for MS patients with DP. On the contrary, 
macular volume and mGCL thickness were higher for 
MS patients with DP and their decrease in the first 
3 years was also greater (see Figure 2b–e). These findings 
are in line with those of previous studies that corrobo-
rated that axonal damage occurs cumulatively from the 
onset of MS and that most retinal thinning occurs in the 
early stages of the disease (Montolío et al., 2021, 2022). 
However, while the differences between MS patients 
with DP and MS patients with nDP were significant in 
the RNFL in previous studies, these differences were not 
significant in the GCL.

For MS diagnosis purposes, the best accuracy was 
90.3% (AUC: 0.9028), achieved with our raw data set. 
Pérez del Palomar et al.  (2019) obtained an accuracy 
lower than 75% for macular area using GCIPL thick-
ness measured by DRI OCT Triton. Although Cavaliere 
et al.  (2019) did not use mGCL separately, a result 

F I G U R E  2   Changes over time in several characteristics from 36 multiple sclerosis (MS) patients with disability progression (DP) and 36 
MS patients no disability progression (nDP). (a) Expanded Disability Status Scale (EDSS). (b) Total volume of the macular ganglion cell layer 
(mGCL). (c, d) Thickness of the mGCL in rings defined by the standard Early Treatment Diabetic Retinopathy Study (ETDRS): central fovea 
(green), inner macular ring (orange) and outer macular ring (blue). * indicates statistically significant differences (p < 0.05) (CF, central fovea; 
I, inferior; II, inner inferior; IN, inner nasal; IS, inner superior; IT, inner temporal; N, nasal; OI, outer inferior; ON, outer nasal; OS, outer 
superior; OT, outer temporal; S, superior; T, temporal).
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8  |      MONTOLÍO et al.

comparable with this study is the AUC of 0.835 obtained 
using the retinal thickness in macular and peripapillary 
areas by SVM. An AUC of 0.83 was also obtained by 
Garcia-Martin et al. (2021) using the GCL thickness in 
a 9 × 12 mm area encompassing the macula and the optic 
nerve. Therefore, using only the mGCL thickness, our 
result was better than those obtained in previous papers.

In the case of MS prognosis, as can be seen in 
Figure 5b, the best result (acc: 81.9; AUC: 0.8194) was ob-
tained with our reduced data set. In this case, in contrast 
to the MS diagnosis model, the feature selection per-
formed using the LASSO increased model performance. 
Therefore, the feature-to-sample ratio in the raw data 
set was too high (81 features and 36 samples per class). 
With feature reduction, this ratio decreased (12 features 
shown in Figure  4) to a more effective value (Peduzzi 
et al., 1996). Given the lack of AI models that use GCL 
thickness to predict disability progression, another al-
ternative is to compare our model with those models 
that used RNFL thickness for the same purpose. In our 
previous paper based on the RNFL, and also measured 
using Spectralis OCT, the best results were an accuracy 

of 95.8% for MS diagnosis and of 91.3% for MS prognosis 
(Montolío et al., 2022). In view of the findings, we can 
conclude that the RNFL performed better than the GCL 
for these tasks and that both retinal layers are valuable 
biomarkers in MS.

Other biomarkers, in combination with artificial in-
telligence techniques, were used for the same purpose. 
Most of the studies are related to diagnostic imaging such 
as brain MRI, which has become one of the main clin-
ical tools for diagnosing and monitoring MS (Hashemi 
et al., 2019; Salem et al., 2019). The models developed by 
Zurita et al. (2018) were able to distinguish between pa-
tients and healthy subjects, reaching accuracy levels of 
89%. Pinto et al. (2020) predicted disability progression 
after 4 years based on 2-year follow-up with MRI, CSF 
analysis and EP data; and the result was an AUC of 0.89. 
Work by Yperman et al. (2020) obtained an AUC of 0.75 
when predicting disability progression after 2 years using 
EP time series. It was shown that the mGCL performed 
as well as the previous biomarkers analysed.

This study makes an important contribution to the 
available literature, since we used a real-life cohort in 

F I G U R E  3   Neural network architecture for MS diagnosis model. With the raw data set, a fully connected neural network (FCNN) was 
used with 17 input units, a hidden layer (HL) with 8 hidden units and rectified linear unit (ReLU) activation, then an HL with 4 units and 
ReLU activation, and finally an output layer with softmax activation. After variable selection using the least absolute shrinkage and selection 
operator (LASSO), the FCNN was as follows: 4 input units, 2 HLs with 4 units and ReLU activation, and softmax activation in the output layer 
(BCVA, best-corrected visual acuity; MS, multiple sclerosis; th, thickness).
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      |  9MONTOLÍO et al.

F I G U R E  4   Neural network architecture for MS prognosis model. With the raw data set, a fully connected neural network (FCNN) 
was used with 81 input units, four hidden layers (HL) with rectified linear unit (ReLU) activation, and finally an output layer with softmax 
activation. After variable selection using the least absolute shrinkage and selection operator (LASSO), the architecture comprised 12 input 
units, an HL with 6 hidden units and ReLU activation, then an HL with 3 units with ReLU activation, and the output layer with softmax 
activation (BCVA, best-corrected visual acuity; DP, disability progression; EDSS, expanded disability status scale; MS, multiple sclerosis; nDP, 
no disability progression; PPMS, primary-progressive multiple sclerosis; RRMS, relapsing–remitting multiple sclerosis; SPMS, secondary-
progressive multiple sclerosis; th, thickness).

 17553768, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/aos.15722 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [23/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10  |      MONTOLÍO et al.

F I G U R E  5   Confusion matrices and receiver operating characteristic (ROC) curves for the best results. (a) Multiple sclerosis (MS) model 
with raw and reduced data from our cross-sectional study. (b) MS prognosis model with raw and reduced data from the first 3 years of our  
10-year longitudinal study (AUC, area under the curve; DP, disability progression; nDP, no disability progression).

 17553768, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/aos.15722 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [23/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  11MONTOLÍO et al.

which OCT scans were obtained by the ophthalmology 
service at Miguel Servet Hospital as part of clinical rou-
tine. A decrease in mGCL thickness could be one of the 
most promising biomarkers of MS-associated neurode-
generation. Currently, disability progression is mostly 
measured by the EDSS. However, this scale is limited 
as it reflects neurodegenerative damage incompletely, 
has low sensitivity and does not take into account neu-
ropsychological disability (Hegen et al.,  2018). OCT is 
non-invasive, cost-effective, easy to perform, fast and 
provides standardized and reliable quantitative mea-
surements (London et al., 2019; Ontaneda & Fox, 2017). 
Furthermore, unlike brain volume measured by MRI, 
GCL thickness is not directly affected by inflammation 
and thus represents a valuable measure of neurodegen-
eration, an aspect especially relevant for MS prognosis 
(Petzold et al., 2017).

This study has several limitations. As in our previous 
research (Montolío et al., 2021, 2022), the sample size re-
mains low, which limits the reproducibility of the study. 
Measurement errors present in the real-word cohort were 
minimized by controlling the quality of the OCT scans 
and following the inclusion/exclusion criteria. Another 
important aspect is that the antecedent and timing of 
optic neuritis were considered in our model (see Table 2). 
The data collected in the clinical routine pertain to MS 
patients with a disease duration of 12.75 ± 7.53 years at 
baseline. Therefore, the disability status at the begin-
ning of our longitudinal study could be higher than in 
the early-stage MS population. In addition, the variation 
in disease duration and the EDSS at baseline may cause 
bias. However, with our inclusion criteria we aimed to 
represent as broad an MS population as possible. In 
order to reduce this bias, the standard criteria for dis-
ability progression depend on the reference EDSS in 
each MS patient. Thus, although the disability status of 
each patient is different, the prognosis of their disabil-
ity progression depends on their reference EDSS value. 
Disability progression could be affected by the treatment 
selected for each MS patient. However, this is not easy 
to capture as patients may change treatment more than 
once during follow-up. The distribution of the first treat-
ment received by MS patients during follow-up was as 
follows: 15 patients (8 DP and 7 nDP) received Avonex® 
(intramuscular interferon beta-1a), 19 patients (9 DP and 
10 nDP) received Betaseron® (interferon beta-1b), 17 
patients (8 DP and 9 nDP) received Rebif® (subcutane-
ous interferon beta-1a), 16 patients (7 DP and 9 nDP) re-
ceived Copaxone® (glatiramer acetate) and 5 patients (3 
DP and 2 nDP) received no treatment. Moreover, 57 MS 
patients (30 DP and 27 nDP) changed treatment at least 
once during the longitudinal study.

Another limitation is the class-imbalanced data in 
our cross-sectional study for MS diagnosis. As there 
were 72 MS patients and 30 healthy controls, the 
SMOTE was used to oversample the minority class 
and reduce the risk of overfitting to the majority 
class. However, the use of the SMOTE results in the 
variability of the minority class being underestimated 
and the training set samples are no longer indepen-
dent (Blagus & Lusa,  2013). An additional analysis 
was conducted following another approach with the 

30 available healthy controls and 30 randomly selected 
MS patients for MS diagnosis. The result with this new 
class-balanced data was an accuracy of 87.6%. This 
outcome, very similar to that obtained after applying 
the SMOTE, showed the robustness of our model.

Adopting the idea of harnessing the benefits of AI 
applied to MS (Afzal et al., 2020; Bonacchi et al., 2022), 
we contributed to the research field that uses OCT data 
in combination with AI models for MS diagnosis and 
prognosis (Kenney et al.,  2022). In addition to all the 
advantages already mentioned, OCT is a test that can 
be performed by any clinician in a few minutes without 
discomfort for the patient. In conclusion, both cross-
sectional and longitudinal measurements of mGCL 
thickness are reliable biomarkers with which to diagnose 
MS and predict disability progression in each patient. 
GCL thinning therefore represents a quantitative mea-
sure of MS-associated neuroaxonal damage. Including 
the use of OCT technology in the treatment of MS would 
bring great benefits to clinicians, who would make early 
and comprehensive diagnosis and would select the most 
specific treatments with which to improve patients' lives.

Future directions for this research could be validation 
in other cohorts of subjects with suspected MS and, in 
addition, prediction of its development, evaluating the 
specificity of the algorithms. It would also be of clinical 
interest to develop models with which to identify dis-
eases with MS-like symptoms.
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