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Abstract
In this article, we consider an infinite family of normal surface singularities with an integral
homology sphere link which is related to the family of space monomial curves with a plane
semigroup. These monomial curves appear as the special fibers of equisingular families of
curves whose generic fibers are a complex plane branch, and the related surface singularities
appear in a proof of the monodromy conjecture for these curves. To investigate whether the
link of a normal surface singularity is an integral homology sphere, one can use a character-
ization that depends on the determinant of the intersection matrix of a (partial) resolution.
To study our family, we apply this characterization with a partial toric resolution of our
singularities constructed as a sequence of weighted blow-ups.

Keywords Normal surface singularities · Rational and integral homology sphere link ·
(partial) Resolution of singularities
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1 Introduction

For (S, 0) ⊂ (Cn, 0) a germ of a normal surface singularity, the link L(S, 0) is defined as the
intersection of S with a small closed ball centered at the origin inCn . The topology of L(S, 0)
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can provide interesting information about the singularity (S, 0). For example, Mumford [15]
showed that L(S, 0) is simply connected if and only if S is smooth at 0, and Neumann [18]
showed that L(S, 0) determines and is determined by the dual graph of a good resolution
of (S, 0) (it is a graph manifold whose plumbing decorated graph is a dual resolution graph
of (S, 0)). In this article, we are interested in normal surface singularities whose link is a
integral homology sphere or ZHS, that is, whose link has the same integral homology as
a three-dimensional sphere. More generally, we can consider normal surface singularities
having a rational homology sphere or QHS link.

More precisely, we will study the link of an infinite family of normal surface singularities
(S, 0) ⊂ (Cg+1, 0) with g ≥ 2 related to the family of space monomial curves with a
plane semigroup. These monomial curves arise as the special fibers of certain equisingular
deformations of irreducible plane curve singularities. Such deformations are classical objects
in singularity theory, and have been studied and generalized by, among others, Teissier,
Goldin, González-Pérez, and Tevelev. Recently, they have played an important role in the
solution of Yano’s conjecture [5], and the solution of Dimca-Greuel’s conjecture for branches
by Alberich-Carramiñana et al. [1]. The motivation of the present work is the question
by Némethi whether weighted blow-ups can be used to find examples of normal surface
singularities having a ZHS link. Némethi has intensely studied surfaces singularities and,
more specifically, surface singularities with a QHS link, see for instance [19] or, for a more
modern approach [7, 12], and the references listed there.Wewill also compare our familywith
two important families of surface singularities. First, we will take a look at the Brieskorn–
Pham surface singularities {xa1

1 + xa2
2 + xa3

3 = 0} ⊂ (C3, 0), whose link is a ZHS if
the exponents ai ≥ 2 for i = 1, 2, 3 are pairwise coprime. Second, we will consider the
singularities of splice type, having a ZHS link, introduced by Neumann and Wahl [21]. We
will see that our surface singularities (S, 0) ⊂ (Cg+1, 0)with aZHS link are always of splice
type, but they are never Brieskorn–Pham if g ≥ 3.

To construct a space monomial curve with a plane semigroup, we start with a germ C :=
{ f = 0} ⊂ (C2, 0) of a complex plane curve defined by an irreducible series f ∈ C[[x0, x1]]
with f (0) = 0. Let

νC : R := C[[x0, x1]]
( f )

−→ N ∪ {∞} : h �→ dimC

C[[x0, x1]]
( f , h)

be the associated valuation. The semigroup �(C) := {νC(h) | h ∈ R\{0}} ⊂ N is finitely
generated, and we can identify a unique minimal system of generators (β̄0, . . . , β̄g) of �(C).
Define (Y , 0) ⊂ (Cg+1, 0) as the image of themonomial map M : (C, 0) → (Cg+1, 0) given
by M(t) = (t β̄0 , . . . , t β̄g ). This is an irreducible curve with the ‘plane’ semigroup �(C) as
its semigroup, and it is the special fiber of a flat family η : (χ, 0) ⊂ (Cg+1 ×C, 0) → (C, 0)
whose generic fiber is isomorphic to C. We call Y a space monomial curve, and the explicit
equations defining Y in C

g+1 are of the form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 := xn1
1 − xn0

0 = 0
f2 := xn2

2 − xb20
0 xb21

1 = 0
...

fg := x
ng
g − x

bg0
0 x

bg1
1 · · · x

bg(g−1)
g−1 = 0.

where ni > 1 and bi j ≥ 0 are integers that are defined in terms of (β̄0, . . . , β̄g).
The monodromy conjecture for these space monomial curves Y ⊂ C

g+1 with g ≥ 2 is
proven in [16] together with [17]; an overview of these two articles can be found in the short
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note [14]. Roughly speaking, the monodromy conjecture for Y ⊂ C
g+1 states that the poles

of the motivic, or related, Igusa zeta function of Y induce monodromy eigenvalues of Y . The
computation of the motivic Igusa zeta function and its poles is the main subject of [17]; the
study of the monodromy eigenvalues and proof of the monodromy conjecture can be found
in [16]. A key ingredient in this proof is the consideration of the curve Y as the Cartier divisor
{ fi = 0} for some i ∈ {1, . . . , g} on a generic embedding surface S ⊂ C

g+1 defined by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1 + λ2 f2 = 0
f2 + λ3 f3 = 0

...

fg−1 + λg fg = 0.

(1)

For generic coefficients (λ2, . . . , λg) ∈ (C\{0})g−1, the scheme S := S(λ2, . . . , λg) is a
normal complete intersection surface which is smooth outside the origin. In this article, we
are interested in the link of these normal surface singularities (S, 0) ⊂ (Cg+1, 0).

For g = 2, one can easily see that (S, 0) ⊂ (C3, 0) is a Brieskorn–Pham surface singular-
ity with exponents n0, n1 and n2. For g ≥ 3, we will show that (S, 0) ⊂ (Cg+1, 0) is never
Brieskorn–Pham by considering the rupture exceptional curves in the minimal good reso-
lution of (S, 0), that is, the exceptional curves that are either non-rational or have valency
at least 3 (i.e., they have at least 3 intersections with other exceptional curves). While a
Brieskorn–Pham surface singularity has at most one rupture exceptional curve in its minimal
good resolution, our surface singularities have at least g − 1 rupture exceptional curves. To
show this, we will make use of a good Q-resolution of (S, 0), see Proposition 3.1. This is a
resolution in which the final ambient space can have abelian quotient singularities, and the
exceptional locus is a simpleQ-normal crossing divisor on such a space. A goodQ-resolution
can be obtained as a sequence of weighted blow-ups and induces a good resolution by resolv-
ing the singularities of the final ambient space, which are Hirzebruch–Jung singularities.
The good Q-resolution ϕ̂ : Ŝ → S that we will consider consists of the first g − 1 steps of
the embedded Q-resolution of Y ⊂ S constructed in [16, Section 5]. In particular, the dual
graph of ϕ̂ is a tree as in Fig. 1.

Since we already know that (S, 0) for g = 2 has a ZHS link if and only if its exponents ni

are pairwise coprime, it remains to investigate when (S, 0) ⊂ (Cg+1, 0) has a ZHS link for
g ≥ 3. For this purpose, we will make use of a characterization for a general normal surface
singularity (S, 0) ⊂ (Cn, 0) to have a ZHS link depending on the determinant of (S, 0). The
determinant of a partial or good resolution of a normal surface singularity (S, 0) is defined
as the determinant of the intersection matrix of the resolution, that is, it is the determinant of
the matrix (Ei · E j )1≤i, j≤r , where E1, …, Er are the exceptional curves of the resolution.
Geometrically, the cokernel of the intersection matrix of a good resolution of (S, 0) is equal
to the torsion part of H1(L(S, 0),Z). The determinant det(S) of a normal surface singularity
(S, 0) is the absolute value of the determinant of some good resolution of (S, 0). Since the
torsion part of H1(L(S, 0),Z) is a finite group of order det(S), this is independent of the
chosen good resolution. In practice, det(S) can be computed as the product of the absolute
value of the determinant of a partial resolution of (S, 0) and the determinants of the remaining
singularities of the new ambient space,which are the orders of the corresponding small groups
in the abelian quotient singular case, see (3).

In terms of the determinant det(S) and a good resolution π : S̃ → S of a normal surface
singularity (S, 0), the characterization can now be formulated as follows: the link L(S, 0)
is a ZHS if and only if det(S) = 1 and π has only rational exceptional curves and a tree
as dual graph. Because the good Q-resolution ϕ̂ : Ŝ → S of our singularities has a tree as
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dual graph, and the singularities of Ŝ can be resolved with rational exceptional curves and a
bamboo-shaped dual graph, we only need to check when both det(S) = 1 and the exceptional
curves of ϕ̂ are rational. Furthermore, we can express det(S) in terms of the orders of the
singularities of Ŝ and the determinant of ϕ̂. To compute the latter determinant, we will first
prove in Proposition 4.3 a formula for the determinant of a general good Q-resolution with
the same dual graph as in Fig. 1 by rewriting it in terms of a specific kind of tridiagonal
matrices. For our good Q-resolution ϕ̂ : Ŝ → S, this immediately implies the expression for
the determinant of ϕ̂ and of the singularity (S, 0) in Corollaries 4.4 and 4.6, respectively.
Together with the properties of ϕ̂, this yields the following theorem. As the same approach
also gives conditions for (S, 0) to have aQHS link, which is true if and only if the dual graph
of a good resolution is a tree with only rational exceptional curves, we can state our main
result as the following generalization of the characterization for Brieskorn–Pham surface
singularities.

Theorem A Let (S, 0) ⊂ (Cg+1, 0) be a normal surface singularity defined by the equa-
tions (1) with g ≥ 2. The link of (S, 0) is a QHS if and only if for all k = 1, . . . , g − 1,

we have gcd(nk, lcm(nk+1, . . . , ng)) = 1 or gcd( β̄k
ek

, lcm(nk+1, . . . , ng)) = 1, where ek :=
gcd(β̄0, . . . , β̄k). The link of (S, 0) is a ZHS if and only if the exponents ni for i = 0, . . . , g

are pairwise coprime and gcd( β̄k
ek

, ek) = 1 for k = 2, . . . , g − 1.

Once we have shown this result, it is easy to check that our surface singularities (S, 0) ⊂
(Cg+1, 0) with g ≥ 2 having a ZHS link are of splice type. To this end, we will determine
their splice diagram. This is a finite tree in which every vertex has either valency 1, called a
leaf, or valency at least 3, called a node, and inwhich aweight is assigned to each edge starting
at a node. Every dual graph of a normal surface singularity with a ZHS link corresponds to
a unique splice diagram of special type. Hence, such a splice diagram also determines and
is determined by the link. Furthermore, if a splice diagram of a ZHS link satisfies the so-
called semigroup condition, thenNeumann andWahl constructed in [21] an isolated complete
intersection surface singularity having this link, called a singularity of splice type. In addition,
they conjectured that every normal complete intersection surface singularity with aZHS link
is of splice type. To compute the splice diagram of our surface singularities having a ZHS
link, we will once more consider the good Q-resolution ϕ̂ : Ŝ → S. We will see that the
semigroup condition is fulfilled and that our surface singularities with a ZHS link are always
of splice type. In particular, they support the conjecture of Neumann and Wahl.

This article is organized as follows. We start in Sect. 2 by briefly discussing the necessary
background. In Sect. 3, wewill introduce our surface singularities (S, 0) ⊂ (Cg+1, 0) inmore
detail, list the main properties of the considered good Q-resolution of (S, 0), and use this
resolution to show that (S, 0) is not Brieskorn–Pham for g ≥ 3 and to show the conditions
for its link to be a QHS. In Sect. 4, we will prove the characterization for (S, 0) to have a
ZHS link by computing its determinant, give some concrete examples in Example 4.7, and
show that our surface singularities with a ZHS link are always of splice type.

2 Preliminaries

In this preliminary section, we give a short overview of the background needed in this arti-
cle. We start by fixing some notation and conventions. First, by a (complex) variety, we
mean a reduced separated scheme of finite type over C, which is not necessarily irreducible.
A one-dimensional ( resp. two-dimensional) variety is called a curve (resp. surface). Sec-
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ond, for a rational number a
b , we denote by [ a

b ] its integer part. Third, for a set of integers
m1, . . . , mr ∈ Z, we denote by gcd(m1, . . . , mr ) and lcm(m1, . . . , mr ) their greatest com-
mon divisor and lowest common multiple, respectively. To shorten the notation, we will
sometimes use (m1, . . . , mr ) for the greatest common divisor.

2.1 Spacemonomial curves with a plane semigroup

Let C := { f = 0} ⊂ (C2, 0) be an irreducible plane curve singularity defined by a complex
series f ∈ C[[x0, x1]] with f (0) = 0, and let

νC : C[[x0, x1]]
( f )

\{0} −→ N : h �→ dimC

C[[x0, x1]]
( f , h)

be its associated valuation. The semigroup �(C) is the image of this valuation and can be
generated by a unique minimal system of generators (β̄0, . . . , β̄g) with β̄0 < · · · < β̄g and
gcd(β̄0, . . . , β̄g) = 1. Furthermore, the sequence (β̄0, . . . , β̄g) determines and is determined
by the topological type of C, see for instance [28]. Therefore, it is a natural question how one
can recover the equation of a plane curve singularity from a given topological type.

In [27], Teissier provides a way to describe every plane curve singularity with given
data �(C) = 〈β̄0, . . . , β̄g〉 as an equisingular deformation of the monomial curve Y ⊂
(Cg+1, 0) defined as the image of the monomial map M : (C, 0) → (Cg+1, 0) given by t �→
(t β̄0 , . . . , t β̄g ). This is an irreducible (germ of a) curve which has the ‘plane’ semigroup �(C)

as semigroup, which is smooth outside the origin, and which can be seen as a deformation of
C in the following way. First, if we define the integers ei := gcd(β̄0, . . . , β̄i ) for i = 0, . . . , g
satisfying β̄0 = e0 > e1 > · · · > eg = 1, and ni := ei−1

ei
≥ 2 for i = 1, . . . , g, then ni β̄i

for i = 1, . . . , g is contained in the semigroup generated by β̄0, . . . , β̄i−1. Hence, there exist
non-negative integers bi j for 0 ≤ j < i such that

ni β̄i = bi0β̄0 + · · · + bi(i−1)β̄i−1,

and these integers are unique under the extra condition that bi j < n j for j �= 0. For simplicity,
we put n0 := b10, and we state the following useful properties that we will use later on:

(i) for i = 0, . . . , g − 1, we have that ei = ni+1 · · · ng;
(ii) for i = 0, . . . , g − 1, we have that n j | β̄i for all j > i ;

(iii) for i = 1, . . . , g, we have that gcd( β̄i
ei

, ni ) = gcd( β̄i
ei

,
ei−1

ei
) = 1, and, in particular, that

gcd(n0, n1) = gcd( β̄1
e1

, n1) = 1; and

(iv) for i = 1, . . . , g, we have that ni β̄i < β̄i+1.

Using a minimal generating sequence of the valuation νC , one can construct a family
η : (χ, 0) ⊂ (Cg+1 × C, 0) → (C, 0) of germs of curves in (Cg+1 × C, 0), which is
equisingular, for instance, in the sense that �(C) is the semigroup of all curves in the family.
The generic fiber η−1(v) for v �= 0 is isomorphic to C, and the special fiber η−1(0) is defined

in (Cg+1, 0) by the equations xni
i − ci xbi0

0 · · · x
bi(i−1)
i−1 = 0 for i = 1, . . . , g. The coefficients

ci are needed to see that any irreducible plane curve singularity with semigroup �(C) is an
equisingular deformation of such a monomial curve. However, for simplicity, we can assume
that every ci = 1, which is always possible after a suitable change of coordinates. This yields
the monomial curve Y .

Clearly, we can also consider the global curve in C
g+1 defined by the above binomial

equations; from now on, we define a (space) monomial curve Y ⊂ C
g+1 as the complete

intersection curve given by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 := xn1
1 − xn0

0 = 0

f2 := xn2
2 − xb20

0 xb21
1 = 0

...

fg := x
ng
g − x

bg0
0 x

bg1
1 · · · x

bg(g−1)
g−1 = 0.

(2)

This is still an irreducible curve which is smooth outside the origin. In [16], the monodromy
eigenvalues for such a space monomial curve Y ⊂ C

g+1 with g ≥ 2 are investigated by
considering Y as a Cartier divisor a generic embedding surface S ⊂ C

g+1. Together with
the results from [17], this yields a proof of the monodromy conjecture for Y ⊂ C

g+1. In this
article, we are interested in the topology of these generic embedding surface singularities
(S, 0) ⊂ (Cg+1, 0). We will introduce them in detail in Sect. 3.

2.2 Link of a normal surface singularity

Let (S, 0) ⊂ (Cn, 0) be a germ of a normal surface singularity. Its link L(S, 0) is an oriented
three-dimensional manifold which is defined as the intersection of S with a small enough
closed ball centered at the origin in C

n . In this article, we are interested in normal surface
singularities whose link is a rational ( resp. integral) homology sphere, that is, whose link
has the same rational ( resp. integral) homology as a three-dimensional sphere. In this case,
we will say that the link is a QHS ( resp. a ZHS). To study when the link L(S, 0) is a QHS
or a ZHS, we can make use of a practical criterion in terms of the determinant and a good
resolution of (S, 0).

By a good resolution of (S, 0), we mean a proper birational morphism π : S̃ → S from
a smooth surface S̃ to S which is an isomorphism over S\{0} and whose exceptional locus
π−1(0) is a simple normal crossing divisor (i.e., its irreducible components, called the excep-
tional curves, are smooth and intersect normally). It is well known that such a resolution
always exists as a sequence of blow-ups at well-chosen points. A good resolution π : S̃ → S
is called minimal if every other good resolution of (S, 0) factors through π . Equivalently,
π is minimal if there is no exceptional curve that can be contracted (by blowing down) so
that the resulting morphism is still a good resolution of (S, 0). It is worth mentioning that,
by Castelnuovo’s Contractibility Theorem, the only possible exceptional curves that can be
contracted in such a way are rational and have self-intersection number −1. Furthermore, a
minimal good resolution of a normal surface singularity (S, 0) always exists and is unique
up to isomorphism. Therefore, we call it the minimal good resolution of (S, 0).

With a good resolution of (S, 0), we can associate a dual graph � whose vertices corre-
spond to the exceptional curves E1, …, Er , and two vertices Ei and E j are connected by an
edge if and only if Ei ∩ E j �= ∅. Often, each vertex Ei is labeled with two numbers (gi ,−κi ),
where gi is the genus of Ei and−κi its self-intersection number. It is a classical result that the
free part of H1(L(S, 0),Z) has rank 2

∑r
i=1 gi + b, where b is the first Betti number of the

dual graph, and that its torsion part is equal to coker(A), where A = (Ei · E j )1≤i, j≤r is the
intersection matrix of the good resolution, see for example [8, Ch. 2, Prop. 3.4]. In particular,
as A is negative definite, which was originally noted by DuVal but also shown by Mumford
in [15], the torsion part of H1(L(S, 0),Z) is a finite group of order | det(A)| = det(−A).

This result has two immediate consequences. First, it implies that det(−A) is independent
of the chosen good resolution of (S, 0). Hence, we can define the determinant of (S, 0) as
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det(S) := det(−A) with A the intersection matrix of any good resolution of (S, 0). Second,
we find the following easy conditions for (S, 0) to have a QHS or ZHS link.

Theorem 2.1 Let (S, 0) ⊂ (Cn, 0) be a normal surface singularity, and consider a good
resolution π : S̃ → S. The link of (S, 0) is a QHS if and only if all exceptional curves of π

are rational and the dual graph � of π is a tree. The link of (S, 0) is a ZHS if and only if it
is a QHS and det(S) = 1.

To compute the determinant of (S, 0) in practice, we do not really need a good resolution
of (S, 0): if π : S̃ → S is a proper birational morphism from a normal surface S̃ to S which
is an isomorphism over S\{0}, then

det(S) = det(−A)
∏

p∈π−1(0)

det(S̃, p), (3)

see for instance [2, Lemma 4.7]. Here, A = (Ei · E j )1≤i, j≤r is the intersection matrix of π ,
where E1, . . . , Er are the exceptional curves of π , and det(S̃, p) is the absolute value of the
determinant of the intersection matrix of some good resolution at p. Note that if p ∈ π−1(0)
is written as a Hirzebruch–Jung singularity of type 1

d (1, q) with d and q coprime, then

det(S̃, p) = d , see Sect. 2.5.

2.3 Brieskorn–Pham surface singularities

An important family of normal surface singularities whose link is a QHS or ZHS are
Brieskorn–Pham surface singularities

S(a1, a2, a3) := {F(a1,a2,a3) = xa1
1 + xa2

2 + xa3
3 = 0} ⊂ (C3, 0)

satisfying some conditions in terms of the exponents ai ≥ 2. The most classical characteri-
zation uses a graph G(a1, a2, a3) associated with these exponents, see for example [6, Satz
1] or [8, Ch. 3, Thm. 4.10]. In [2, Prop. 5.1], an equivalent characterization is obtained by
considering Brieskorn–Pham surface singularities as a special case of weighted Lê–Yomdin
singularities. More precisely, put e := gcd(a1, a2, a3) and αl := 1

e gcd(ai , a j ) for every
{i, j, l} = {1, 2, 3}. Then, F(a1,a2,a3) is ω-weighted homogeneous with

ω := 1

e2α1α2α3
(a2a3, a1a3, a1a2),

and S(a1, a2, a3) can be seen as an (ω, k)-weighted Lê–Yomdin singularity for any k ≥ 1.
Following the approach in [2, 4.3] for weighted Lê–Yomdin singularities, we can consider
the curve C := {xeα2α3

1 + xeα1α3
2 + xeα1α2

3 = 0} in the weighted projective plane P
2
(α1,α2,α3)

(see Sect. 2.5), which has genus

e2α1α2α3 − e(α1 + α2 + α3) + 2

2
.

Furthermore, the determinant of S(a1, a2, a3) is given by

edeα1−1
1 deα2−1

2 deα3−1
3 ,

where di := ai
eα j αl

for {i, j, l} = {1, 2, 3}. Now, S(a1, a2, a3) has a QHS ( resp. ZHS) link
if and only if the above genus is equal to 0 ( resp. and the determinant is equal to 1). This
yields the following result.
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Proposition 2.2 Using the above notations, the link of a Brieskorn–Pham surface singularity
S(a1, a2, a3) ⊂ (C3, 0) is a QHS if and only if either α1 = α2 = α3 = 1 and e = 2, or
αi = α j = e = 1 for some i �= j . It is a ZHS if and only if the exponents a1, a2 and a3 are
pairwise coprime.

Remark 2.3 In fact, we do not really need the theory of weighted Lê–Yomdin singularities
and the results from [2, 4.3] to obtain this result. Alternatively, one could directly consider
Theorem 2.1 with the partial resolution of S(a1, a2, a3) consisting of one weighted blow-up
at the origin with weight vector ω. This resolution has one exceptional curve E ⊂ P

2
ω which

is isomorphic to the curve C ⊂ P
2
(a1,a2,a3)

, and which contains three sets of singular points,

corresponding to the coordinate axes in P
2
ω. This gives the same genus and determinant as

above. For more details, see [13, Example 3.6].

2.4 Singularities of splice type

Since we know how to recover all plane curve singularities of a given topological type, it
is natural to ask whether this is also possible for surface singularities with a given link.
Unfortunately, this question is still open, even if the link is a QHS or ZHS. Here, we restrict
to briefly explaining some results and conjectures in the ZHS case. For more details, see [21,
22].

With a ZHS link, we can associate a unique splice diagram, originally introduced by
Siebenmann [25]. This is a finite tree in which every vertex has either valency 1, called a
leaf, or valency at least 3, called a node, and in which a weight is assigned to each edge
starting at a node. In [9], Eisenbud and Neumann showed that the links of normal surface
singularities that are a ZHS are in one-one correspondence with splice diagrams satisfying
the following conditions:

(i) the weights around a node are positive and pairwise coprime;
(ii) the weight on an edge connecting a node with a leaf is greater than 1; and
(iii) all edge determinants are positive.

Here, the edge determinant for an edge connecting two nodes is the product of the two
weights on the edge minus the product of the weights adjacent to the edge (i.e., the other
weights around the two nodes).

The dual graph � of a normal surface singularity with a ZHS link yields a unique splice
diagram 
 as follows. First, we suppress all vertices with valency 2. Then, for each edge
e starting at some node v, its weight dve is the absolute value of the determinant of the
intersection matrix of the subgraph �ve of � obtained from cutting at v in the direction of e.
The other way around, one can obtain the dual graph �, and, hence, the link, from the splice
diagram 
 by splicing or plumbing. For the details of this construction, we refer to [9] or,
for an easier method, to [22].

In [21], Neumann andWahl constructed for a ZHS link whose splice diagram satisfies the
so-called semigroup condition an isolated complete intersection surface singularity (S, 0)
with this link, called a complete intersection singularity of splice type. Up to date, there are
no known examples of normal complete intersection surface singularities with a ZHS link
whose splice diagram does not satisfy the semigroup condition, or that are not of splice type.
Therefore, Neumann and Wahl conjectured that every normal complete intersection surface
singularity with a ZHS link is of splice type (in particular, its splice diagram satisfies the
semigroup condition). Earlier, in [20], Neumann and Wahl already conjectured the same for
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every Gorenstein normal surface singularity with a ZHS link, but Luengo-Velasco, Melle-
Hernández and Némethi [11] found counterexamples to this conjecture. Furthermore, even
when the splice diagram satisfies the semigroup condition, there always exist plenty of other
analytic types (probably not complete intersections) with the same link.

Let us take a brief look at this semigroup condition and how to write the equations of the
associated singularity of splice type. Consider a splice diagram 
. For any vertices v and w

of 
, we define the linking number lvw of v and w as the product of all weights adjacent
to, but not on, the shortest path from v to w, and the number l ′vw as the same product in
which we omit the weights around v and w. Using this notation, 
 is said to satisfy the
semigroup condition if and only if for every node v and edge e starting at v, the weight dve is
contained in the semigroup 〈l ′vw | w is a leaf of 
 in 
ve〉 ⊂ N, where 
ve is the subgraph
of 
 cut off from v by e. If 
 satisfies this semigroup condition, we can associate admissible
monomials with each node v and an edge e starting at v as follows. Relate to each leaf w of

 a variable zw and give it v-weight lvw . Because 
 satisfies the semigroup condition, we
can find (possibly non-unique) integers αvw ∈ N such that

dve =
∑

w leaf in 
ve

αvwl ′vw.

Then, an admissible monomial associated with v and e is any monomial
∏

w leaf in 
ve

zαvw
w

Note that its v-weight is equal to the product of all weights around v, also denoted by dv . If
the node v has valency δv , then we choose for every edge e at v one admissible monomial
Mve and we make a system of δv − 2 linear equations of the form

∑

e edge at v

aie Mve = 0, i = 1, . . . , δv − 2,

where the coefficients aie are chosen such that all maximal minors of the matrix (aie)i,e have
full rank. Finally, in each equation, we can add higher order terms with respect to the weights
lvw . The total number of equations is equal to n − 2, where n is the number of leaves in 
,
and these equations define an isolated complete intersection singularity in Cn of splice type.
If one does not allow higher order terms, it is said to be of strict splice type.

Example 2.4 Consider a splice diagram with a single node v of valency n. In this case, the
semigroup condition is trivially fulfilled: l ′vw = 1 for any leaf w of 
. Hence, each edge e j

for j = 1, . . . , n with weight d j corresponds to a unique admissible monomial M j = z
d j
j ,

and the equations of strict splice type are of the form

n∑

j=1

ai j z
d j
j = 0, i = 1, . . . , n − 2,

where all maximal minors of the matrix (ai j )i, j have full rank. Equations of this type define
isolated Brieskorn–Pham complete intersections in C

n , which are generalizations of the
Brieskorn–Pham surface singularities.

For other examples of this construction, we refer to [21, 22]. In Sect. 4.3, we will check
the semigroup condition and write the equations of strict splice type for our normal surface
singularities having a ZHS link. In particular, we will see that they are of splice type. Hence,
they support the conjecture of Neumann and Wahl.
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2.5 Quotient singularities andQ-resolutions

To determine the conditions under which our surface singularities (S, 0) have a QHS or
ZHS link, we will make use of a good Q-resolution of (S, 0). Roughly speaking, this a
resolution in which the final ambient space can have abelian quotient singularities, and the
exceptional divisor must have normal crossings on such a variety. In this section, we give
a short introduction to quotient singularities and Q-resolutions. We also touch briefly on an
intersection theory on surfaces with abelian quotient singularities. More details can be found
in [3] and [4].

Consider an abelian quotient space C
n/G for G ⊂ GL(n,C) a finite abelian group. If

we write G = μd1 × · · · × μdr as a product of finite cyclic groups, where μdi is the group
of the di th roots of unity, then there exists a matrix A = (ai j )i, j ∈ Z

r×n such that Cn/G is
isomorphic to the quotient of Cn under the action (μd1 × · · · × μdr ) × C

n → C
n defined

by ((ξ1, . . . , ξr ), (x1, . . . , xn)) �→ (ξ
a11
d1

· · · ξar1
dr

x1, . . . , ξ
a1n
d1

· · · ξarn
dr

xn). This is called the
quotient space of type (d, A), where d := (d1, . . . , dr ), and denoted by

X(d; A) := X

⎛

⎜
⎝

d1 a11 · · · a1n
...

...
. . .

...

dr ar1 · · · arn

⎞

⎟
⎠ .

Note that we can always consider the i th row of A modulo di . The class of an element
x := (x1, . . . , xn) ∈ C

n under such an action (d; A) is denoted by [x](d;A), where we omit
the subindex if there is no possible confusion. Every quotient space X(d; A) is a normal
irreducible n-dimensional variety whose singular locus is of codimension at least two and is
situated on the coordinate hyperplanes {xi = 0} for i = 1, . . . , n, which are the images of
the coordinate hyperplanes {xi = 0} in C

n under the natural projection C
n → X(d; A).

If n = 2, then one can show that each quotient space X(d; A) = C
2/G is cyclic, that

is, it is isomorphic to a quotient space of type (d; a, b). A cyclic type (d; a, b) is said to
be normalized, and the corresponding quotient space X(d; a, b) is said to be written in a
normalized form, if and only if gcd(d, a) = gcd(d, b) = 1. If this is not the case, we can
normalize X(d; a, b) as follows. First, we can assume that gcd(d, a, b) = 1 as X(d; a, b)

is isomorphic under the identity morphism to X( d
k ; a

k , b
k ) for any k dividing d, a and b.

Second, for k dividing d and b, the morphism defined by [(x1, x2)] �→ [(xk
1 , x2)] induces an

isomorphism X(d; a, b) � X( d
k ; a, b

k ), and similarly for some k dividing d and a. Hence,
X(d; a, b) can be normalized with the isomorphism

X(d; a, b) −→ X

(
d

(d, a)(d, b)
; a

(d, a)
,

b

(d, b)

)

: [(x1, x2)] �→ [
(x (d,b)

1 , x (d,a)
2 )

]
.

For general n ≥ 1, we call a (not necessarily cyclic) type (d; A) normalized if μd is a
small subgroup of GL(n,C) (i.e., it does not contain rotations around hyperplanes other
than the identity) acting freely on (C∗)n or, equivalently, if for all x ∈ C

n with exactly n − 1
coordinates different from 0, the stabilizer subgroup is trivial. It is possible to convert any
type into a normalized form.

For n = 2, we can simplify a normalized type (d; a, b) even further. More precisely, as
gcd(d, a) = 1, there exists an integer a′ ∈ Zwith gcd(d, a′) = 1 such that aa′ ≡ 1 mod d .
Then, the space X(d; a, b) is isomorphic to X(d; a′a, a′b) = X(d; 1, a′b) under the identity
morphism. In other words, every two-dimensional quotient space singularity (X(d; A), [0])
is a Hirzebruch–Jung singularity (C2/μd , 0) where the action of μd on C

2 is given by
(ξ, (x1, x2)) �→ (ξ x1, ξq x2) for some integer q ∈ {1, . . . , d −1} with gcd(d, q) = 1. This is

123



Normal surface singularities with an integral homology sphere… 313

called aHirzebruch–Jung singularity of type 1
d (1, q). Similarly, we could start with an integer

b′ ∈ Z such that gcd(d, b′) = 1 and bb′ ≡ 1 mod d . In this case, we find that X(d; a, b)

is isomorphic to X(d; q ′, 1), where q ′q ≡ 1 mod d . In other words, a Hirzebruch–Jung
singularity of some type 1

d (1, q) is always equal to the Hirzebruch–Jung singularity of type
1
d (q ′, 1) for q ′ ∈ {1, . . . , d −1} the unique solution of qq ′ ≡ 1 mod d . It is well known that
the minimal good resolution of a Hirzebruch–Jung singularity has only rational exceptional
curves and a bamboo-shaped (i.e., linear) dual graph.

E1 E2 ErEr−1

Furthermore, the self-intersection number −κi of Ei for i = 1, . . . r with κi ∈ N≥2 can
be computed from the continued fraction expansion

d

q
= κr − 1

κr−1 − 1
κr−2−···

,

and the positive integersd ,q andq ′ are the absolute value of the determinant of the intersection
matrix of all exceptional curves, of E1, …, Er−1, and of E2, …, Er , respectively.

Before we can give the precise definition of a good Q-resolution, we still need to intro-
duce two notions: V -manifolds and Q-normal crossing divisors. In [24], a V -manifold of
dimension n was introduced as a complex analytic space admitting an open covering {Ui }
in which each Ui is analytically isomorphic to some quotient Bi/Gi for Bi ⊆ C

n an open
ball and Gi a finite subgroup of GL(n,C). We consider V -manifolds in which every Gi is a
finite abelian subgroup of GL(n,C), which are normal varieties that can locally be written
like X(d; A). An important example of a V -manifold is the weighted projective space P

n
ω

of type ω for some weight vector ω = (p0, . . . , pn) of positive integers which is defined
as the quotient of Cn+1\{0} under the action C

∗ × (Cn+1\{0}) → C
n+1\{0} given by

(t, (x0, . . . , xn)) �→ (t p0 x0, . . . , t pn xn). A two-dimensional V -manifold with abelian quo-
tient singularities is also called a V -surface. A Q-normal crossing divisor on a V -manifold
X is a hypersurface D that is locally isomorphic to the quotient of a normal crossing divisor
under an action (d; A). More precisely, for every point p ∈ X , there exists an isomorphism
of germs (X , p) � (X(d; A), [0]) such that (D, p) ⊆ (X , p) is identified with a germ of the
form

({[x] ∈ X(d; A) | xm1
1 · · · xmk

k = 0}, [0]).
This notion was introduced in [26].

Remark 2.5 In modern language, one usually calls a V -manifold an orbifold. We keep saying
V -manifold in this article to emphasize that we follow Steenbrink’s approach.

We can now define a good Q-resolution for a germ (X , 0) of an isolated singularity as a
proper birational morphism π : X̃ → X such that the following properties hold:

(i) X̃ is a V -manifold with abelian quotient singularities;
(ii) π is an isomorphism over X\{0}; and
(iii) the exceptional divisor π−1(0) is a Q-normal crossing divisor on X̃ .

For (Y , 0) ⊂ (X , 0) a subvariety of codimension one, an embedded Q-resolution is a proper
birational morphism π : X̃ → X with the above three properties in which X\{0} is replaced
by X\Sing(Y ), and π−1(0) by π−1(Y ). As for a classical good or embedded resolution, we
can use the construction of blowing up to compute a good or embedded Q-resolution, but
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in this case, we use weighted blow-ups. Although weighted blow-ups can be placed in the
realm of toric resolutions, we follow the approach in [3, 4].

We end this section by briefly discussing an intersection theory on surfaces with abelian
quotient singularities. On normal surfaces, an intersection theory was first defined by Mum-
ford [15] and further developed by Sakai [23]; a general intersection theory can be found
in [10]. For V -manifolds of dimension 2, which are normal surfaces, an equivalent definition
was given in [4]. Here, we focus on explaining the definitions and properties presented in the
latter article that are needed in the present article. First of all, on a V -surface S, the notions
of Weil and Cartier divisor coincide after tensoring with Q. More precisely, for every Weil
divisor D on S, there exists an integer k ∈ Z such that k D is locally principal. Therefore,
we call the class of divisors on S with rational coefficients modulo linear equivalence the
Q-divisors on S, and we can develop a rational intersection theory. In this article, we will
only need to compute the local intersection number (D1 · D2)p of two Q-divisors D1 and
D2 at a point p ∈ S. For this purpose, we assume that p is the origin [0] in a normalized
cyclic quotient space X(d; a, b), that Di = { fi = 0} for i = 1, 2 is given by a reduced
polynomial in C[x, y], that the support of D1 is not contained in the support of D2, and that
D1 is irreducible. In this case, the local intersection number at p is well-defined and given
by

(D1 · D2)p := 1

d
dimC

(
C[[x, y]]
〈 f1, f2〉

)

∈ Q. (4)

Another property of the intersection product that we will use is that for π : X̃ → X(d; a, b)

a weighted blow-up at the origin with exceptional divisor E , and for D a Q-divisor on
X(d; a, b), we have

π∗ D · E = 0. (5)

This can be shown in the same way as the analogous statement for the classical blow-up.

3 Our family of normal surface singularities

In this section, we introduce the family of normal surface singularities of our interest that
appear in the proof from [16] of the monodromy conjecture for a space monomial curve
introduced in Sect. 2.1. We also introduce a goodQ-resolution, which we immediately use to
show that these singularities for g ≥ 3 are not Brieskorn–Pham and to show the conditions
for their link to be aQHS. In the next section, we will use the same resolution to identify the
singularities in this family with a ZHS link, and to show that these are of splice type.

3.1 Definition of our surface singularities

Consider a space monomial curve Y ⊂ C
g+1 given by the Eq. (2) with g ≥ 2. For

(λ2, . . . , λg) ∈ (C\{0})g−1, we define the affine scheme S(λ2, . . . , λg) in C
g+1 given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1 + λ2 f2 = 0
f2 + λ3 f3 = 0

...

fg−1 + λg fg = 0.

(6)
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For generic (λ2, . . . , λg) ∈ (C\{0})g−1 (i.e., the point (λ2, . . . , λg) is contained in the non-
zero complement of a specific closed subset of (C\{0})g−1), one can show that S(λ2, . . . , λg)

is a normal complete intersection surface which is smooth outside the origin, see [16, Prop.
4.2]. From now on, we will denote such a surface by S := S(λ2, . . . , λg) ⊂ C

g+1, and we
are interested in the link of these normal singularities (S, 0) ⊂ (Cg+1, 0).

3.2 A goodQ-resolution of our surface singularities

In [16, Section 5], the computation of g weighted blow-ups ϕk for k = 1, . . . , g yields an
embedded Q-resolution ϕ = ϕ1 ◦ · · · ◦ ϕg : Ŝ → S of the space monomial curve Y given
by (2) seen as Cartier divisor on S. Because the surface S is alreadyQ-resolved after the first
g − 1 blow-ups, and the last step is needed to desingularize the curve Y , we can consider the
goodQ-resolution ϕ̂ := ϕ1◦· · ·◦ϕg−1 : Ŝ → S of (S, 0). Wewill now explain the properties
of this resolution that are needed to see that (S, 0) is not Brieskorn–Pham for g ≥ 3, and to
prove the characterization for (S, 0) to have a QHS or ZHS link from Theorem 1. For more
details, we refer to [16, Section 5].

First of all, for each blow-up ϕk for k = 1, . . . , g − 1, we denote the exceptional divisor
by Ek . To ease the notation, we also denote their strict transform under later blow-ups by
Ek . Hence, in the end, the exceptional curves of the good Q-resolution ϕ̂ are the irreducible
components of these Ek . If we define

rk := ek

lcm(nk+1, . . . , ng)
, k = 1, . . . , g − 1,

then each Ek is the disjoint union of rk isomorphic irreducible components that we denote by
Ek j for j = 1, . . . , rk . In particular, the last exceptional divisor Eg−1 is always irreducible,
and the pull-back of the Cartier divisor Y under ϕ̂ is given by

ϕ̂∗Y = Ŷ +
∑

1≤k≤g−1
1≤ j≤rk

NkEk j , (7)

where Ŷ is the strict transform of Y under ϕ̂, and Nk for k = 1, . . . , g − 1 is the multiplicity

of Ek , which is equal to lcm(
β̄k
ek

, nk, . . . , ng). Furthermore, for g ≥ 3, each divisor Ek for
k = 2, . . . , g − 2 (if g ≥ 4) only intersects Ek−1 and Ek+1, and Eg−1 only intersects Eg−2.
For every k = 1, . . . , g − 2, the intersections of Ek and Ek+1 are equally distributed, that
is, each of the components E(k+1) j of Ek+1 intersects precisely

rk
rk+1

components of Ek , each
component Ek j of Ek is intersected by only one of the components of Ek+1, and each non-
empty intersection between two components Ek j and E(k+1) j ′ consists of a single point. In
other words, the dual graph of the good Q-resolution ϕ̂ : Ŝ → S is a tree as in Fig. 1.

It is important to note that ϕ̂ is not a good resolution of (S, 0) as Ŝ still contains a
lot of singularities that need to be resolved. To explain these singularities, we put Mk :=
lcm(

β̄k
ek

, nk+1, . . . , ng) for k = 0, . . . , g, and we consider the divisors Hi for i = 0, . . . , g

on S defined by {xi = 0} ∩ S ⊂ C
g+1. Again, to ease the notation, we denote their strict

transforms also by Hi throughout the process. We further consider the curve Y whose strict
transform is always denoted by Ŷ . In the resolution of (S, 0), each Hk for k = 1, . . . , g − 1
is separated from Ŷ at the kth step and intersects the kth exceptional divisor Ek transversely
at some singular point(s). More precisely, if we denote a point in the intersection Ek ∩ Hk by

Qk , then there are
β̄k
Mk

such points which are equally distributed along the rk components of

123



316 J. Martín-Morales, L. Vos

· · ·

· · ·

· · · · · · · · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·· · ·
· · ·

· · ·· · ·

· · ·

E1

E2

E3

Eg−2

Eg−1

Fig. 1 Dual graph of the good Q-resolution of (S, 0)

Ek . Locally around each such point, we have the following situation at [(x0, xk)]:
⎧
⎪⎨

⎪⎩

Ŝ = X

(

gcd

(

ek−1,
nk β̄k

nk+1
, . . . ,

nk β̄k

ng

)

;−1, β̄k

)

Ek : xnk β̄k
0 = 0, Hk : xk = 0.

Because gcd
(
gcd(ek−1,

nk β̄k
nk+1

, . . . ,
nk β̄k
ng

), β̄k
) = gcd

(
ek,

nk β̄k
nk+1

, . . . ,
nk β̄k
ng

)
, these points are

Hirzebruch–Jung singularities of type 1
dk

(1, qk) with

dk :=
gcd

(
ek−1,

nk β̄k
nk+1

, . . . ,
nk β̄k
ng

)

gcd
(

ek,
nk β̄k
nk+1

, . . . ,
nk β̄k
ng

) =
lcm

(
nk β̄k

ek
, nk+1, . . . , ng

)

lcm
(

nk β̄k
ek−1

, nk+1, . . . , ng

) = Nk

Mk
.

Here, the second equality follows from the elementary fact that for m1, . . . , mr a set of
non-zero integers and m a common multiple, we have

gcd

(
m

m1
, . . . ,

m

mr

)

= m

lcm(m1, . . . , mr )
, (8)

and the third equality follows from the definition nk = ek−1
ek

and the fact that gcd( β̄k
ek

, nk) = 1.
For later purposes, we can rewrite dk as

dk =
nk gcd

(
β̄k
ek

, lcm(nk+1, . . . , ng)
)

gcd
(

nk β̄k
ek

, lcm(nk+1, . . . , ng)
) = nk

gcd
(
nk, lcm(nk+1, . . . , ng)

) = nkrk

rk−1
, (9)

where we extend the sequence r1, . . . , rg−1 with r0 := e0
lcm(n1,...,ng)

= β̄0
M0

.

Similarly, in the intersection E1 ∩ H0, there are
β̄0
M0

points denoted by Q0 around which
we have the following local equation at [(x0, x1)]:

⎧
⎪⎨

⎪⎩

Ŝ = X

(

gcd

(
n0β̄0

n1
,

n0β̄0

n2
, . . . ,

n0β̄0

ng

)

; β̄0,−1

)

E1 : xn0β̄0
1 = 0, H0 : x0 = 0.
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Each component of E1 contains the same number of such points, which are of type 1
d0

(q0, 1)
with

d0 :=
gcd

(
n0β̄0

n1
,

n0β̄0
n2

, . . . ,
n0β̄0
ng

)

gcd
(
β̄0,

n0β̄0
n1

, . . . ,
n0β̄0
ng

) = N1

M0
,

where we again used relation (8) and the fact that β̄1
e1

= n0.

For g ≥ 3, a next set of singular points of Ŝ are the points in an intersection Ek ∩ Ek+1

for k = 1, . . . , g − 2 that we denote by Qk(k+1). We have already explained that there are rk

such points in total, one on each component of Ek , and that each component of Ek+1 contains
rk

rk+1
such points. Furthermore, the local situation around Qk(k+1) can be described in the

variables [(x0, xk+1)] by:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ŝ = X

⎛

⎝
nk+1β̄k+1−nk β̄k
lcm(nk+1,...,ng)

1 −1

(nk+1β̄k+1 − nk β̄k)ek+1 −β̄k+1
nk β̄k
nk+1

⎞

⎠

Ek : xnk β̄k
0 = 0, Ek+1 : xnk+1β̄k+1

k+1 = 0.

(10)

One can show that these are cyclic quotient singularities with

dk(k+1) := rk Nk Nk+1(nk+1β̄k+1 − nk β̄k)

nknk+1β̄k β̄k+1
(11)

the order of the underlying small group as follows. First, by multiplying conveniently, we
can rewrite Ŝ into the form X( d

d | a1 a2
a3 a4 ), where d = nk+1β̄k+1 − nk β̄k . Second, the group

automorphism (ξ, η) �→ (ξη−1, η) on μd × μd induces an isomorphism X( d
d | a1 a2

a3 a4 ) �
X( d

d | a1 a2
a3−a1 a4−a2 ) given by the identity. Using such an automorphism repeatedly yields an

isomorphism

X

(
d a1 a2
d a3 a4

)

� X

(
d gcd(a1, a3) αa2 + βa4
d 0 a1a4−a2a3

gcd(a1,a3)

)

: [(x1, x2)] �→ [(x1, x2)], (12)

where α, β ∈ Z such that gcd(a1, a3) = αa1 + βa3. Third, every quotient space of the form
X( d

d | a1 a2
0 a4 ) is isomorphic to a cyclic quotient space under the morphism

X

(
d a1 a2
d 0 a4

)

� X

(

d; a1,
da2

gcd(d, a4)

)

: [(x1, x2)] �→
[

(x1, x
d

gcd(d,a4)

2 )

]

.

Finally, we can rewrite the resulting cyclic singularity into a Hirzebruch–Jung singularity
as explained in Sect. 2.5. We do not provide more details as we will not need an explicit
expression for dk(k+1) in general. It is, however, worth mentioning that this approach can be
used to show that any quotient space X(d; A) = C

2/μd is isomorphic to a cyclic quotient
space, and that we will illustrate this approach when the link of (S, 0) is a ZHS, see Sect. 4.3.

The last singular point of Ŝ for g ≥ 2 is the intersection point Pg−1 := Eg−1 ∩ Ŷ =
Eg−1 ∩ Hg around which we have

⎧
⎪⎨

⎪⎩

Ŝ = X

(

ng;−1,
ng−1β̄g−1

ng

)

Eg−1 : x
ng−1β̄g−1
0 = 0, Hg : xg = 0, Ŷ : x

ng
g − x

ng β̄g−ng−1β̄g−1
0 = 0,

(13)
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...
...

...
· · ·

...
...

...
· · ·

· · ·

...

· · · · · ·

Eg−1

Eg−2

E1

E2
E3

Q0Q1

Q2Q3

Qg−2

Qg−1

Pg−1

Fig. 2 The good Q-resolution of (S, 0)

Clearly, this point is a Hirzebruch–Jung singularity of type 1
d (1, q) with

d := ng

gcd(ng−1, ng) gcd
(

β̄g−1
ng

, ng

) .

To recapitulate, we visualize the good Q-resolution ϕ̂ as in Fig. 2, which shows the
exceptional curves and the singular points. For simplicity, the components of each Ek are
represented by lines, but we will see in a moment that they are not rational in general.

Using Corollary 6.5 from [16], we can compute the Euler characteristic of the exceptional
curves of ϕ̂. More precisely, this result gives an expression for the Euler characteristic of the
exceptional divisor Ek for k = 1, . . . , g − 1 without its singularities: it states that

Ěk :=
⎧
⎨

⎩

E1\((E1 ∩ H0) ∪ (E1 ∩ H1) ∪ (E1 ∩ E2)) for k = 1
Ek\((Ek ∩ Hk) ∪ (Ek ∩ Ek−1) ∪ (Ek ∩ Ek+1)) for k = 2, . . . , g − 2
Eg−1\((Eg−1 ∩ Hg−1) ∪ (Eg−1 ∩ Eg−2) ∪ (Eg−1 ∩ Ŷ )) for k = g − 1

has Euler characteristic χ(Ěk) = − nk β̄k
Nk

. Hence, the Euler characteristic of Ek can be easily
computed by adding the cardinality of all its singularities. This yields:

χ(Ek) =

⎧
⎪⎪⎨

⎪⎪⎩

− n1β̄1
N1

+ β̄0
M0

+ β̄1
M1

+ r1 for k = 1

− nk β̄k
Nk

+ β̄k
Mk

+ rk−1 + rk for k = 2, . . . , g − 2

− ng−1β̄g−1
Ng−1

+ β̄g−1
Mg−1

+ rg−2 + 1 for k = g − 1.

Because the components Ek j for j = 1, . . . , rk are disjoint and isomorphic, their Euler

characteristic is equal to χ(Ek j ) = χ(Ek )
rk

. Using that Nk
Mk

= nkrk
rk−1

= nk
gcd(nk ,lcm(nk+1,...,ng))

for

k = 1, . . . , g − 1, see (9), and that β̄k
rk Mk

= gcd
( β̄k

ek
, lcm(nk+1, . . . , ng)

)
, we can rewrite

these Euler characteristics as

χ(Ek j ) = 2 −
(

gcd
(
nk, lcm(nk+1, . . . , ng)

)− 1

)(

gcd

(
β̄k

ek
, lcm(nk+1, . . . , ng)

)

− 1

)

.
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We indeed see that the exceptional curves are not rational in general. Even more, this implies
that the genus of Ek j is zero if and only if

gcd
(
nk, lcm(nk+1, . . . , ng)

) = 1 or

gcd

(
β̄k

ek
, lcm(nk+1, . . . , ng)

)

= 1 for k = 1, . . . , g − 1.

Since the dual graph of the goodQ-resolution ϕ̂ : Ŝ → S is a tree and the quotient singularities
of Ŝ can be resolved with bamboo-shaped dual graphs and rational exceptional curves, these
are already the conditions under which (S, 0) has aQHS link. In other words, we have already
shown the first part of Theorem 1.

3.3 Our surface singularities versus Brieskorn–Pham surface singularities

If g = 2, then (S, 0) ⊂ (C3, 0) is a Brieskorn–Pham surface singularity given by the equation

u(x0, x1)xn0
0 + xn1

1 + λ2xn2
2 = 0,

where u(x0, x1) = −1− λ2xb20−n0
0 xb21

1 ∈ C[[x0, x1]] is a unit as b20 > n0, see [17, Lemma
3.2]. Hence, in this case, the link of (S, 0) is a QHS ( resp. ZHS) under the condition
of Proposition 2.2, which is equivalent to (recall that gcd(n0, n1) = 1) the condition that
gcd(n0, n2) = 1 or gcd(n1, n2) = 1 ( resp. that the exponents ni for i = 0, 1, 2 are pairwise
coprime).

If g ≥ 3, then we claim that (S, 0) ⊂ (Cg+1, 0) is never a Brieskorn–Pham singularity.
To prove this, we will show that the minimal good resolution of (S, 0) contains at least g − 1
rupture exceptional curves. An irreducible exceptional curve is called rupture if either its
genus is positive, or its genus is zero and it has valency at least 3 (i.e., it intersects at least
three times other components of the exceptional locus). This implies that (S, 0) is indeed not
Brieskorn–Pham for g ≥ 3 as a Brieskorn–Pham surface singularity has at most one rupture
exceptional curve in its minimal good resolution. The latter can be seen by considering
a good Q-resolution of a Brieskorn–Pham surface singularity consisting of one weighted
blow-up at the origin which yields one irreducible exceptional curve E containing three sets
of Hirzebruch–Jung singularities. We refer for more details to [13, Example 3.6]; see also
Remark 2.3. As each of these singularities can be minimally resolved with a bamboo-shaped
dual graph and rational exceptional curves, the only possible rupture exceptional curve in
the obtained good resolution is the strict transform of E . This implies that the minimal good
resolution of a Brieskorn–Pham singularity indeed contains at most one rupture exceptional
curve. Even more, the minimal good resolution of a Brieskorn–Pham surface singularity
has no rupture exceptional curve if and only if it has only rational exceptional curves and
a bamboo-shaped dual graph or, thus, if and only if the singularity is a cyclic quotient
singularity.

To show that the minimal good resolution of (S, 0) has at least g − 1 rupture exceptional
curves, wemake use of the goodQ-resolution ϕ̂ : Ŝ → S of (S, 0), fromwhich we can obtain
a (not necessarily minimal) good resolution π : S̃ → S of (S, 0) by minimally resolving the
singularities of Ŝ. Since these singularities are all Hirzebruch–Jung, the only possible rupture
exceptional curves of π are the strict transforms of the exceptional curves of the good Q-
resolution. The next result immediately implies that the good resolution π has at least g − 1
exceptional curves that are rupture.
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Proposition 3.1 Let (S, 0) ⊂ (Cg+1, 0) be a normal surface singularity defined by the Eq. (6)
with g ≥ 3. Consider the good Q-resolution ϕ̂ : Ŝ → S of (S, 0) introduced in Sect. 3.2.
Then,

(i) each exceptional curve Ek j for k = 1, . . . , g − 2 and j = 1, . . . , rk yields a rupture
exceptional curve in the good resolution π : S̃ → S of (S, 0) coming from ϕ̂; and

(ii) if rg−2 = 1 (i.e., the exceptional divisor Eg−2 is irreducible), then Eg−1 yields a rupture
exceptional curve in the good resolution π : S̃ → S of (S, 0) coming from ϕ̂.

Proof Note that we can determine whether the strict transform of an exceptional curve of ϕ̂ is
rupture on S̃ by considering the original exceptional curve on Ŝ and counting each singularity
as an intersection. However, we need to take into account that, under certain conditions, it
is possible that some of the quotient singularities are in fact smooth. In this case, the latter
points can not be counted as an intersection in the good resolution.

Let us first consider a component E1 j for some j ∈ {1, . . . , r1}. If its genus is positive,
then it will trivially induce a rupture exceptional curve. So suppose that its genus is zero, that

is, gcd(n1, lcm(n2, . . . , ng)) = 1 or gcd( β̄1
e1

, lcm(n2, . . . , ng)) = 1. Since E1 j intersects E2
in a single point, we need to show that it contains at least two actual singular points outside

E2. Recall that E1 j contains β̄0
r1M0

= gcd(n1, lcm(n2, . . . , ng)) points Q0 whose order as

Hirzebruch–Jung singularity is d0 = N1
M0

, and β̄1
r1M1

= gcd( β̄1
e1

, lcm(n2, . . . , ng)) points Q1

with order d1 = N1
M1

= n1
gcd(n1,lcm(n2,...ng))

. If gcd(n1, lcm(n2, . . . , ng)) = 1, then d1 = n1; if

gcd( β̄1
e1

, lcm(n2, . . . , ng)) = 1, then d0 = β̄1
e1

= n0. Hence, we can distinguish three cases:

(i) if gcd(n1, lcm(n2, . . . , ng)) = 1 and gcd( β̄1
e1

, lcm(n2, . . . , ng)) ≥ 2, then E1 j contains
at least two singular points Q1 with order d1 = n1 > 1;

(ii) if gcd(n1, lcm(n2, . . . , ng)) ≥ 2 and gcd( β̄1
e1

, lcm(n2, . . . , ng)) = 1, then E1 j contains
at least two singular points Q0 with order d0 = n0 > 1;

(iii) if gcd(n1, lcm(n2, . . . , ng)) = gcd( β̄1
e1

, lcm(n2, . . . , ng)) = 1, then E1 j contains one
singular point Q0 with order d0 = n0 > 1 and one singular point Q1 with order d1 =
n1 > 1.

In other words, E1 j will indeed always yield a rupture exceptional curve.
For Ek j with k ∈ {2, . . . , g − 2} (if g ≥ 4) and j ∈ {1, . . . , rk}, we can work

in a similar way. Assume again that its genus is zero, which is now the case if and

only if gcd(nk, lcm(nk+1, . . . , ng)) = 1 or gcd( β̄k
ek

, lcm(nk+1, . . . , ng)) = 1. We know

that Ek j has rk−1
rk

= gcd(nk, lcm(nk+1, . . . , ng)) intersection points with Ek−1, a single

intersection point with Ek+1 and β̄k
rk Mk

= gcd( β̄k
ek

, lcm(nk+1, . . . , ng)) points Qk whose

order as Hirzebruch–Jung singularity is dk = Nk
Mk

= nk
gcd(nk ,lcm(nk+1,...,ng))

. Hence, if

gcd(nk, lcm(nk+1, . . . , ng)) ≥ 2 (and gcd( β̄k
ek

, lcm(nk+1, . . . , ng)) = 1), then Ek has
at least three intersections with other exceptional curves of ϕ̂, and we are done. If
gcd(nk, lcm(nk+1, . . . , ng)) = 1, then dk = nk > 1. Therefore, in this case, Ek j will also be
rupture as it intersects both Ek−1 and Ek+1 in a single point and contains at least one singular
point Qk with order dk > 1.

It remains to show the second part. If rg−2 = 1, then gcd(ng−1, ng) = 1, which implies
that Eg−1 has zero genus. Furthermore, it has one intersection point with Eg−2, one point
Pg−1 with order
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d = ng

gcd
(

β̄g−1
ng

, ng

) ,

and β̄g−1
Mg−1

= gcd( β̄g−1
ng

, ng) points Qg−1 with order dg−1 = ng−1 > 1. We can again

conclude: if gcd(
β̄g−1

ng
, ng) ≥ 2, then Eg−1 contains at least two singular points Qg−1 with

order dg−1 > 1; if gcd( β̄g−1
ng

, ng) = 1, then Eg−1 contains exactly two singular points, namely
one Qg−1 with order dg−1 > 1, and Pg−1 with order d = ng > 1.

We still need to show that the minimal good resolution of (S, 0) contains at least g − 1
rupture exceptional curves. From Proposition 3.1, it follows that each exceptional curve
Ek j for k = 1, . . . , g − 2 and j = 1, . . . , rk can not be contracted in the good resolution
π : S̃ → S; either its genus is positive so that Castelnuovo’s Contractibility Theorem does not
apply, or it has at least three intersections with other exceptional curves so that the exceptional
locus would not be a simple normal crossing divisor after contracting Ek j . The same applies
to Eg−1 if rg−2 = 1 or rg−2 ≥ 3. In other words, in these cases, the good resolution π is
minimal. If rg−2 = 2, it is possible that Eg−1 is superfluous as the next example shows.
However, the obtained minimal good resolution of (S, 0) coming from contracting Eg−1 (and
possibly executing subsequent contractions) will still have at least g − 1 rupture exceptional
curves: all the exceptional curves Ek j for k = 1, . . . , g − 2 and j = 1, . . . , rk are rupture,
where rk ≥ 1 for k = 1, . . . , g − 3 (if g ≥ 4) and rg−2 = 2.

Example 3.2 If rg−2 = 2, then it is possible that the good resolution π : S̃ → S is not
minimal. For example, consider the surface S ⊂ C

4 defined by
{

x21 − x30 + x22 − x50 x1 = 0

x22 − x50 x1 + x23 − x100 x2 = 0.
(14)

The semigroup of the corresponding space monomial curve Y ⊂ C
4 is minimally generated

by (8, 12, 26, 53). From the properties of the good Q-resolution ϕ̂ explained above, one can
easily check the following:

(i) the first exceptional divisor E1 has r1 = 2 components E11 and E12 that each contain
two singular points Q0 of type 1

3 (1, 1), while every point Q1 is smooth;
(ii) the genus of E2 is zero, and the points P2 and Q2 are smooth; and
(iii) the intersection of E1 and E2 consists of two singular points Q12, one on each component

of E1, that are Hirzebruch–Jung of type 1
7 (1, 3).

It follows that the dual graph of π : S̃ → S is as in Fig. 3, where we denote the strict
transforms of E1 j and E2 still by E1 j and E2, respectively, and where the exceptional curves
E0

j and E12
j come from resolving the singularities Q0 and Q12, respectively. Furthermore,

one can show that the pull-back of Y is given

π∗Y = Ŷ + 6
2∑

j=1

E1 j + 26E2 + 2
4∑

j=1

E0
j + 8

2∑

j=1

E12
j + 10

4∑

j=3

E12
j + 12

6∑

j=5

E12
j ,

where Ŷ is the strict transform of Y . Because π∗Y · E2 = 0 by (5) and Ŷ · E2 = 2, which can
be seen from the local equation (13), we find that the self-intersection number of E2 is −1.
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Fig. 3 Dual graph of the good
resolution of (S, 0) ⊂ (C4, 0)
defined by (14)

E2

E11

E12

E0
1

E0
2

E0
3

E0
4

E12
1

E12
2

E12
3

E12
4

E12
5

E12
6

Hence, by Castelnuovo’s Contractibility Theorem, the exceptional curve E2 can be contracted
in order to find the minimal good resolution of (S, 0). However, this minimal good resolution
has still g − 1 = 2 rupture exceptional curves, namely E11 and E12.

4 Conditions for integral homology sphere link

In this section, we will prove the second part of Theorem 1 for g ≥ 3 using the good Q-
resolution ϕ̂ : Ŝ → S of (S, 0) introduced in Sect. 3.2. To this end, following Theorem 2.1,
we will investigate the determinant of (S, 0) with formula (3) in terms of ϕ̂.

Remark 4.1 (i) Note that Theorem 1 generalizes the g = 2 case or, thus, the classification
for Brieskorn–Pham surface singularities in Proposition 2.2. Even more, for g = 2, one
could also obtain this result by using the goodQ-resolution ϕ̂ := ϕ0 : Ŝ → S of (S, 0).

(ii) When the link of (S, 0) is a ZHS, we see that rk = 1 and Nk = nk β̄k for every
k = 1, . . . , g − 1. Hence, all exceptional divisors Ek for k = 1, . . . , g − 1 are irre-
ducible with multiplicity nk β̄k , and the dual graph of the good Q-resolution ϕ̂ : Ŝ → S
is bamboo-shaped with quotient singularities as described in Sect. 3.2. In particular,
by Proposition 3.1, the good resolution of (S, 0) obtained from ϕ̂ by resolving the
singularities of Ŝ is minimal.

4.1 The determinant of the intersectionmatrix of the goodQ-resolution '̂

Because we already know the singularities of Ŝ, we will be able to compute the determinant
of (S, 0) once we know the determinant of the intersection matrix A of ϕ̂. To compute the
latter, we first need to calculate the (self-)intersection numbers of the exceptional curves Ek j

for k = 1, . . . , g−1 and j = 1, . . . , rk . Clearly, from the local situation (10) around Qk(k+1)
for every k = 1, . . . , g−2, we immediately have Ek j ·E(k+1) j ′ = 1

dk(k+1)
if Ek j ∩E(k+1) j ′ �= ∅.

To find the self-intersection numbers −ak := E2
k j , we can use the fact that ϕ̂∗Y · Ek j = 0,

see (5), where ϕ̂∗Y is given by (7). Since Ŷ only intersects Eg−1 in the single point Pg−1

with local situation (13), we know that Ŷ · Eg−1 = ng
d and Ŷ · Ek j = 0 for k = 1, . . . , g − 2

and j = 1, . . . , rk . We obtain

ak =

⎧
⎪⎪⎨

⎪⎪⎩

N2
d12N1

for k = 1
1

Nk

(
rk−1Nk−1
rk d(k−1)k

+ Nk+1
dk(k+1)

)
for k = 2, . . . , g − 2

1
Ng−1

(
rg−2Ng−2
d(g−2)(g−1)

+ ng
d

)
for k = g − 1.

(15)
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We can now write the intersection matrix A as follows:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1 A1,2 0 0 · · · 0
A2,1 A2 A2,3 0 · · · 0
0 A3,2 A3 A3,4 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · Ag−2,g−3 Ag−2 Ag−2,g−1

0 0 · · · 0 Ag−1,g−2 Ag−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

Here, we denote by Ak for k = 1, . . . , g − 1 the (rk × rk)-diagonal matrix with −ak on the
diagonal, by Ak,k+1 for k = 1, . . . , g − 2 the (rk × rk+1)-matrix

Ak,k+1 =

⎛

⎜
⎜
⎜
⎝

Dk,k+1 0 · · · 0
0 Dk,k+1 · · · 0
...

...
. . .

...

0 0 · · · Dk,k+1

⎞

⎟
⎟
⎟
⎠

, (17)

where Dk,k+1 is the
rk

rk+1
-column vector ( 1

dk(k+1)
, . . . , 1

dk(k+1)
)t , and by Ak+1,k = At

k,k+1 for
k = 1, . . . , g−2 the transpose of Ak,k+1. Note that Ag−1 = −ag and Ag−2,g−1 = Dg−2,g−1.

We will now show a formula for the determinant det(A) of a general matrix A defined
as in (16). Hence, this formula can be used to compute the determinant of the intersection
matrix for any good Q-resolution with a dual graph as in Fig. 1, in which the horizontally
aligned exceptional curves are isomorphic, have the same self-intersection number, and have
the same intersection behavior with the other exceptional curves.

We start by fixing some notation. First, for k = 1, . . . , g − 2, put pk := rk
rk+1

. Second, for
l = 2, . . . , g−1, let s(l) be the set of non-empty subsets K of {(k, k + 1) | k = 1, . . . , l − 1}
such that for all (k, k + 1) �= (k′, k′ + 1) ∈ K , we have k �= k′ + 1 and k′ �= k + 1. For
such a set K ∈ s(l), we call c(K ) := {k ∈ {1, . . . , l} | (k, k + 1) /∈ K , (k − 1, k) /∈ K } its
complement. Finally, we introduce R0 := 1, R1 := a1, and, for l = 2, . . . , g − 1,

Rl :=
l∏

k=1

ak +
[ l
2 ]
∑

i=1

(−1)i
∑

K∈s(l),|K |=i

⎛

⎝
∏

(k,k+1)∈K

pk

d2
k(k+1)

⎞

⎠

⎛

⎝
∏

k∈c(K )

ak

⎞

⎠ ,

where we put
∏

k∈c(K ) ak = 1 if c(K ) = ∅. For example, if l = 2, then s(l) only contains
the set {(1, 2)} with c({(1, 2)}) = ∅, so R2 = a1a2 − p1

d2
12

. If l = 3, then s(3) consists of

two sets, {(1, 2)} and {(2, 3)}, with complements {3} and {1}, respectively. Hence, R3 =
a1a2a3 − p1a3

d2
12

− p2a1
d2
23

.

Before explaining how det(A) can be expressed in terms of these Rl for l = 1, . . . , g − 1,
we prove the following recurrence relation.

Lemma 4.2 For all l = 1, . . . , g − 2, we have

−Rl+1 = −al+1Rl + pl Rl−1

d2
l(l+1)

.
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Proof For l = 1 and l = 2, this follows immediately from the simple expressions for R0,
R1, R2 and R3. For l ≥ 3, the right-hand side is by definition given by

−
( l+1∏

k=1

ak +
[ l
2 ]
∑

i=1

(−1)i
∑

K∈s(l),|K |=i

( ∏

(k,k+1)∈K

pk

d2
k(k+1)

)(

al+1

∏

k∈c(K )

ak

)

︸ ︷︷ ︸
(a)

− pl

d2
l(l+1)

l−1∏

k=1

ak

︸ ︷︷ ︸
(b)

+
[ l−1

2 ]
∑

i=1

(−1)i+1
∑

K∈s(l−1),|K |=i

(
pl

d2
l(l+1)

∏

(k,k+1)∈K

pk

d2
k(k+1)

)( ∏

k∈c(K )

ak

)

︸ ︷︷ ︸
(c)

)

.

We need to show that (a) + (b) + (c) = (d) with

(d) =
[ l+1

2 ]
∑

i=1

(−1)i
∑

K∈s(l+1),|K |=i

⎛

⎝
∏

(k,k+1)∈K

pk

d2
k(k+1)

⎞

⎠

⎛

⎝
∏

k∈c(K )

ak

⎞

⎠ .

It is trivial that (b) corresponds to K = {(l, l + 1)} in (d). Using that [ l+1
2 ] = [ l−1

2 ] + 1,
one can also see that (c) yields the part in (d) where (l, l + 1) ∈ K and |K | ≥ 2. Hence, it
remains to show that (a) corresponds to the part in (d) where (l, l + 1) /∈ K . Clearly, we only
need to check that the boundaries for |K | agree; in (a), the upper bound is [ l

2 ], while in (d),
the upper bound is [ l+1

2 ]. However, in (d), we need to take into account that (l, l + 1) /∈ K .
We remark the following two facts:

(i) if l + 1 is even, then a set K ∈ s(l + 1) attains the upper bound |K | = [ l+1
2 ] = l+1

2 if
and only if K = {(1, 2), (3, 4), . . . , (l, l + 1)}; and

(ii) if l +1 is odd, then there are multiple sets in s(l +1) attaining the upper bound [ l+1
2 ] = l

2 ,
for example {(1, 2), (3, 4), . . . , (l − 1, l)} and {(2, 3), (4, 5), . . . , (l, l + 1)}.

Hence, if l + 1 is even, then |K | for K in (d) with (l, l + 1) /∈ K varies between 1 and
[ l+1

2 ] − 1 = [ l
2 ]. In other words, the boundaries for |K | agree. Likewise, if l + 1 is odd, then

K in (d) with (l, l + 1) /∈ K can still attain the upper bound [ l+1
2 ] = [ l

2 ].
This recurrence relation will be very useful for showing the next formula for det(A).

Proposition 4.3 Let A be a matrix defined as in (16) for some g ≥ 3, rk ≥ 1 for k =
1, . . . , g − 1 with rg−1 = 1, and dk(k+1) ≥ 1 for k = 1, . . . , g − 2. We have

det(A) = (−1)

g−1∑

k=1
rk

Rg−1

g−2∏

l=1

Rrl−rl+1
l .

Using the recurrence relation from Lemma 4.2 and the expressions in (15) for ak for
k = 1, . . . , g − 1 in which rk−1

rk
= pk−1, it is not hard to see that, in our case, the expression

for Rl simplifies to

Rl =
⎧
⎨

⎩

Nl+1

N1
∏l

k=1 dk(k+1)
for l = 1, . . . , g − 2

ng

N1d
∏g−2

k=1 dk(k+1)
for l = g − 1.

This immediately yields the following expression for the determinant of the intersection
matrix of the good Q-resolution of our surface singularities.
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Corollary 4.4 Let (S, 0) ⊂ (Cg+1, 0) be a normal surface singularity defined by the equa-
tions (6) with g ≥ 3. Consider the good Q-resolution ϕ̂ : Ŝ → S of (S, 0) introduced in
Sect. 3.2. The determinant of the intersection matrix A of ϕ̂ is given by

det(A) = (−1)
∑g−1

k=1 rk
ng
∏g−1

k=2 Nrk−1−rk
k

Nr1
1 d

∏g−2
k=1 drk

k(k+1)

.

In order to better understand the idea of the proof of Proposition 4.3, we first consider the
simple case where rk = 1 for all k = 1, . . . , g − 1, and A is the tridiagonal matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−a1
1

d12
0 · · · 0

1
d12

−a2
1

d23
· · · 0

...
. . .

. . .
. . .

...

0 · · · 1
d(g−3)(g−2)

−ag−2
1

d(g−2)(g−1)

0 · · · 0 1
d(g−2)(g−1)

−ag−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

If we denote this matrix for a moment by A(g) for g ≥ 3, then the general three-term
recurrence relation for the determinant of tridiagonal matrices tells us that

det(A(g)) = −ag−1 det(A(g − 1)) − 1

d2
(g−2)(g−1)

det(A(g − 2)), (18)

where, by convention, we put A(1) = 1 and A(2) = (−a1). This recurrence relation can be
shown by first expanding the determinant of A(g) along the last column (resp. row) and then
expanding the minor corresponding to 1

d(g−2)(g−1)
along the last row (resp. column). Note the

similarity between this relation and the relation from Lemma 4.2. Even more, by induction
on g and with exactly the same argument as in the proof of Lemma 4.2, one can show that
det(A(g)) = (−1)g−1Rg−1 for g ≥ 3, in which pk = 1 for all k = 1, . . . , g − 2. In other
words, the recurrence relation satisfied by the Rl for l = 1, . . . , g − 2 in Lemma 4.2 is a
generalization of (18) by allowing general pk ≥ 1 for k = 1, . . . , g − 2.

To show Proposition 4.3 for general rk ≥ 1 for k = 1, . . . , g − 2, we will work towards
tridiagonal matrices of the following type:

Bs :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−as
1

ds(s+1)
· · · 0

1
ds(s+1)

. . .
. . .

...

...
. . .

. . . 1
d(g−2)(g−1)

0 · · · 1
d(g−2)(g−1)

−ag−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (19)

where s ∈ {1, . . . , g − 1}. Note that A(g) = B1 and, thus, that det(B1) = (−1)g−1Rg−1.
For general s, we can write the determinant of Bs as (−1)g−s Rg−s in which we start with as

instead of a1. We will write det(A) (for g ≥ 4) in terms of these tridiagonal matrices using
the formula in the next result.

Lemma 4.5 Consider g ≥ 4. Let t be the smallest k ∈ {1, . . . , g − 1} such that rk = 1.
Assume that 2 ≤ t ≤ g − 2. Then,

Rt−1 det(Bt ) + pt−1Rt−2

d2
(t−1)t

det(Bt+1) = (−1)g−t Rg−1.
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Proof First, note that such t ∈ {1, . . . , g − 1} always exists as rg−1 = 1. Furthermore, note
that rk = 1 for all k ≥ t so that pk = 1 for all k ≥ t . With the expression for det(Bt ) ( resp.
det(Bt+1)) in terms of Rg−t ( resp. Rg−t−1) in which we start with at ( resp. at+1) instead
of a1 and all pk = 1, we can show this formula with similar arguments as in the proof of
Lemma 4.2. However, we will prove the stronger result that

Rs−1 det(Bs) + ps−1Rs−2

d2
(s−1)s

det(Bs+1) = (−1)g−s Rg−1

for all s = t, . . . , g − 2 by using backward induction and the statement of Lemma 4.2. For
s = g − 2, we need to consider

Rg−3 det

( −ag−2
1

d(g−2)(g−1)
1

d(g−2)(g−1)
−ag−1

)

+ pg−3Rg−4

d2
(g−3)(g−2)

det(−ag−1)

= −ag−1

(

−ag−2Rg−3 + pg−3Rg−4

d2
(g−3)(g−2)

)

− Rg−3

d2
(g−2)(g−1)

,

and show that this is equal to (−1)g−s Rg−1 = Rg−1. This follows from first applying
Lemma 4.2 for l = g − 3 and then for l = g − 2 with pg−2 = 1. If t = g − 2, we are done.
Otherwise, suppose it is true for s + 1 ≤ g − 2. For s, we first expand det(Bs) along the first
column and then expand the second minor along the first row to get

Rs−1 det(Bs) + ps−1Rs−2

d2
(s−1)s

det(Bs+1) =
(

−as Rs−1 + ps−1Rs−2

d2
(s−1)s

)

det(Bs+1) − Rs−1

d2
s(s+1)

det(Bs+2).

This way of rewriting det(Bs) is the same as the one we can use to show the three-term
recurrence relation (18) for the tridiagonal matrices A(g), but with expansion along the first
column instead of along the last column. Because of the similarity between the relations
in (18) and Lemma 4.2, it is no surprise that we can apply Lemma 4.2 for l = s − 1 so that

Rs−1 det(Bs) + ps−1Rs−2

d2
(s−1)s

det(Bs+1) = −Rs det(Bs+1) − Rs−1

d2
s(s+1)

det(Bs+2).

Since ps = 1 as s ≥ t , we can conclude with the induction hypothesis.

We are now ready to prove Proposition 4.3 by using these matrices Bs .

Proof of Proposition 4.3 As in the previous lemma, let t be the smallest k ∈ {1, . . . , g − 1}
such that rk = 1. If t = 1, we already know that det(A) = (−1)g−1Rg−1. For t ≥ 2, we will
show that

det(A) = (−1)
g−t+

t−1∑

k=1
rk

Rg−1

t−1∏

l=1

Rrl−rl+1
l .

Because rk = 1 for k ≥ t , this yields the formula given in the proposition. Throughout the
proof, we will denote by A(r1, . . . , rg−1) a matrix defined as in (16) corresponding to some
r1, . . . , rg−1 ≥ 1 with g ≥ 3 in which we also allow rg−1 > 1. To get an idea on how to
show the above formula for general t , we first consider t = 2, t = 3 and t = 4.
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If t = 2, then A = A(r1, 1, . . . , 1) with r1 ≥ 2. If g ≥ 4, we can, similarly as in the
proof of Lemma 4.5, first expand det(A) along the first column and then expand the minor
corresponding to 1

d12
along the first row to find that

det(A) = −a1 det(A(r1 − 1, 1, . . . , 1)) − 1

d2
12

det

(
Ar1−1
1 0
0 B3

)

= −a1 det(A(r1 − 1, 1, . . . , 1)) + (−1)r1ar1−1
1

d2
12

det(B3),

where Ar1−1
1 denotes the diagonal matrix of dimension r1 − 1 with −a1 on its diagonal. We

can now repeat this on det(A(r1 − 1, 1, . . . , 1)): we expand the determinant along the first
column and simplify the minor corresponding to 1

d12
. This yields

det(A) = a2
1 det(A(r1 − 2, 1, . . . , 1)) + 2(−1)r1ar1−1

1

d2
12

det(B3).

Note that the first determinant for r1 = 2 is just det(B2). If we do this procedure r1 = p1
times in total, we get

det(A) = (−1)r1ar1
1 det(B2) + r1(−1)r1ar1−1

1

d2
12

det(B3)

= (−1)r1 Rr1−1
1

(

R1 det(B2) + p1R0

d2
12

det(B3)

)

= (−1)r1+g−2Rr1−1
1 Rg−1,

where we applied Lemma 4.5 in the last equality. If g = 3, then along the same lines, we
obtain that

det(A) = (−1)r1 Rr1−1
1

(

−a2R1 + p1R0

d2
12

)

,

from which the required formula follows by Lemma 4.2.
If t = 3 and g ≥ 5, we start by executing two steps. In the first step, wework as in the t = 2

case: p1 times in total,wefirst expand along thefirst columnand then expand the secondminor
once more along the first row. This way, we can rewrite det(A) = det(A(r1, r2, 1, . . . , 1))
as

(−1)p1 R p1−1
1

(
R1 det( Ã(r1 − p1, r2, 1, . . . , 1)

+ p1R0

d2
12

det(A(r1 − p1, r2 − 1, 1, . . . , 1)

)

,
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where Ã(r1 − p1, r2, 1, . . . , 1) is the matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ar1−p1
1 [0 | Ar1−p1,r2−1

1,2 ] 0 0 · · · 0

[0 | Ar1−p1,r2−1
1,2 ]t A2 A2,3 0 · · · 0
0 A3,2 −a3

1
d34

· · · 0

0 0 1
d34

. . .
. . .

...

...
...

...
. . .

. . . 1
d(g−2)(g−1)

0 0 0 · · · 1
d(g−2)(g−1)

−ag−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

in which Ar1−p1
1 denotes the diagonal matrix of dimension r1 − p1 with −a1 on its diagonal,

Ar1−p1,r2−1
1,2 denotes the (r1 − p1) × (r2 − 1)-matrix defined in terms of the column vector

D1,2 = ( 1
d12

, . . . , 1
d12

)t of length p1 as in (17), and [0 | Ar1−p1,r2−1
1,2 ] is the (r1 − p1) × r2-

matrix coming from Ar1−p1,r2−1
1,2 by adding a zero column. In the second step, we expand

det( Ã(r1− p1, r2, 1, . . . , 1)) along the (r1− p1+1)th column (i.e. the column corresponding
to the first entry of A2, which also contains the zero column of [0 | Ar1−p1,r2−1

1,2 ]) and simplify

the minor corresponding to 1
d23

. We find that det(A) is given by

(−1)p1 R p1−1
1

[(

− a2R1 + p1R0

d2
12

)

det(A(r1 − p1, r2 − 1, 1, . . . , 1))

− R1

d2
23

det(A(r1 − p1, r2 − 1)) det(B4)

]

.

By Lemma 4.2, this is equal to

(−1)p1+1R p1−1
1 [R2 det(A(r1 − p1, r2 − 1, 1, . . . , 1))

+ R1

d2
23

det(A(r1 − p1, r2 − 1)) det(B4)

]

.

Repeating both steps on det(A(r1 − p1, r2 −1, 1, . . . , 1)) and det((A(r1 − p1, r2 −1)) gives

det(A) = (−1)2(p1+1) R2(p1−1)
1 R2

[

R2 det(A(r1 − 2p1, r2 − 2, 1, . . . , 1)

+ 2R1

d2
23

det(A(r1 − 2p1, r2 − 2)) det(B4)

]

.

Note that for det(A(r1 − p1, r2 − 1)), we do not have a minor corresponding to 1
d23

in the
second step. Hence, if we do these two steps r2 = p2 times in total, we find that

det(A) = (−1)(p1+1)r2 R(p1−1)r2
1 Rr2−1

2

(

R2 det(B3) + p2R1

d2
23

det(B4)

)

.

We can conclude using Lemma 4.5 and the fact that r1 = p1r2. The result for t = 3 and
g = 4 again follows along the same lines with Lemma 4.2.

For t = 4 and g ≥ 6, we can compute det(A) = det(A(r1, r2, r3, 1, . . . , 1)) as follows.
We first follow the procedure that we used for t = 3. More precisely, we execute p2 times
two steps: first, we expand p1 times along the first column, and then, we expand along the
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column corresponding to the first entry of A2, and in both steps, we simplify the second
minor corresponding to 1

d12
and 1

d23
, respectively. In other words, we rewrite det(A) as

(−1)(p1+1)p2 R(p1−1)p2
1 R p2−1

2

(

R2 det( Ã(r1 − p1 p2, r2 − p2, r3, 1, . . . , 1))

+ p2R1

d2
23

det(A(r1 − p1 p2, r2 − p2, r3 − 1, 1, . . . , 1))

)

,

where Ã(r1 − p1 p2, r2 − p2, r3, 1, . . . , 1) is the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ar1−p1 p2
1 Ar1−p1 p2,r2−p2

1,2 0 0 · · · 0

(Ar1−p1 p2,r2−p2
1,2 )t Ar2−p2

2 [0 | Ar2−p2,r3−1
2,3 ] 0 · · · 0

0 [0 | Ar2−p2,r3−1
2,3 ]t A3 A3,4 · · · 0

0 0 A4,3
. . .

. . .
...

...
...

...
. . .

. . . 1
d(g−2)(g−1)

0 0 0 · · · 1
d(g−2)(g−1)

−ag−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

in which we use the same notation as before. Now, by expanding along the column containing
the first entry of A3, simplifying theminor of 1

d34
and using Lemma 4.2, we can further rewrite

det(A) as

(−1)(p1+1)p2+1R(p1−1)p2
1 R p2−1

2

[

R3 det(A(r1 − p1 p2, r2 − p2, r3 − 1, 1, . . . , 1))

+ R2

d2
34

det(A(r1 − p1 p2, r2 − p2, r3 − 1)) det(B5)

]

.

Wecan repeat these two steps (i.e., the procedure for t = 3 followed by an expansion along the
column corresponding to the first entry of A3) on det(A(r1− p1 p2, r2− p2, r3−1, 1, . . . , 1))
and det(A(r1 − p1 p2, r2 − p2, r3 − 1)). In total, we can do this r3 = p3 times to find that

det(A) = (−1)((p1+1)p2+1)r3 R(p1−1)p2r3
1 R(p2−1)r3

2 Rr3−1
3

(

R3 det(B4) + p3R2

d2
34

det(B5)

)

,

which equals the required formula byLemma4.5. The case g = 5 can oncemore be concluded
along the same lines.

For general t ≥ 3 and g ≥ t + 2, we can obtain the above formula for det(A) in a
similar way as for t = 3 and t = 4. More precisely, we first repeat the procedure used for
t − 1 to obtain an expression involving a matrix similar to Ã(r1 − p1, r2 − 1, 1, . . . , 1) and
Ã(r1− p1 p2, r2− p2, r3, 1, . . . , 1). Then, we can further expand along the column containing
the first entry of At−1, simplify the minor of 1

d(t−1)t
and use Lemma 4.2. Again, executing

these two steps pt times in total, yields

det(A) = (−1)
∑t

k=1 rk

t−1∏

l=1

Rrl−rl+1
l

(

Rt−1 det(Bt ) + pt−1Rt−2

d2
(t−1)t

det(Bt+1)

)

,

from which the formula follows with Lemma 4.5. If g = t + 1, then the formula follows
along the same lines with Lemma 4.2.
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4.2 The determinant of (S, 0)

With the information on the singularities of Ŝ that we listed in Sect. 3.2 and the expression
for det(A) from Corollary 4.4, we immediately find the determinant of (S, 0); it is given by

det(S) = | det(A)| d

(
N1

M0

) β̄0
M0

g−1∏

k=1

(
Nk

Mk

) β̄k
Mk

g−2∏

k=1

drk
k(k+1)

=
(

N1

M0

) β̄0
M0

−r1 g−1∏

k=1

(
Nk

Mk

) β̄k
Mk

−rk g−1∏

k=2

Nrk−1−rk
k ng

(
1

M0

)r1 g−1∏

k=1

(
Nk

Mk

)rk

.

From the expression (9) for dk = Nk
Mk

for k = 1, . . . , g − 1, we know that

Nk

Mk
= lcm(nk, . . . , ng)

lcm(nk+1, . . . , ng)
.

Note that for k = 1, this gives that N1
M1

= M0
lcm(n2,...,ng)

. Hence, using the notation r0 = β̄0
M0

,
we can further rewrite det(S) into the following expression.

Corollary 4.6 The determinant of a normal surface singularity (S, 0) ⊂ (Cg+1, 0) defined
by the equations (6) with g ≥ 3 is given by

det(S) =
g−1∏

k=1

(
Nk

Mk

) β̄k
Mk

−rk
(

Nk

lcm(nk, . . . , ng)

)rk−1−rk

.

According to Theorem 2.1, we need to investigate when this determinant is equal
to 1, under the condition that the link of (S, 0) is already a QHS or, in other words,

that gcd(nk, lcm(nk+1, . . . , ng)) = 1 or gcd( β̄k
ek

, lcm(nk+1, . . . , ng)) = 1 for all
k = 1, . . . , g − 1. Recall that the condition gcd(nk, lcm(nk+1, . . . , ng)) = 1 is equiv-
alent to rk−1 = rk . Furthermore, it is equivalent to Nk

Mk
= nk . In other words, if

gcd(nk, lcm(nk+1, . . . , ng)) = 1, then the part for k in det(S) is given by

(
Nk

Mk

) β̄k
Mk

−rk
(

Nk

lcm(nk, . . . , ng)

)rk−1−rk

= n
β̄k
Mk

−rk

k .

Similarly, the condition gcd( β̄k
ek

, lcm(nk+1, . . . , ng)) = 1 is equivalent to both β̄k
Mk

= rk and
Nk

lcm(nk ,...,ng)
= β̄k

ek
so that in this case, the part for k is given by

β̄k

ek

rk−1−rk

.

This implies that, in both cases, the part for k in det(S) is equal to 1 if and only if

gcd(nk, lcm(nk+1, . . . , ng)) = gcd( β̄k
ek

, lcm(nk+1, . . . , ng)) = 1. It follows that det(S) is

equal to 1 if and only if gcd(nk, lcm(nk+1, . . . , ng)) = gcd( β̄k
ek

, lcm(nk+1, . . . , ng)) = 1 for
all k = 1, . . . , g−1. Finally, one can see that the condition that gcd(nk, lcm(nk+1, . . . , ng)) =
1 for all k = 1, . . . , g − 1 is equivalent to the condition that ni for i = 1, . . . , g

are pairwise coprime. Hence, the condition gcd( β̄1
e1

, lcm(n2, . . . , ng)) = 1 becomes
gcd(n0, n2, . . . , ng) = 1, which is equivalent to gcd(n0, ni ) = 1 for all i = 2, . . . , g.
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Because n0 and n1 are coprime by assumption, we indeed find that (S, 0) has a ZHS link if

andonly if the exponentsni for i = 0, . . . , g are pairwise coprimeandgcd( β̄k
ek

, nk+1 · · · ng) =
gcd( β̄k

ek
, ek) = 1 for k = 2, . . . , g − 1. This ends our proof of Theorem 1.

Example 4.7 Consider the surface S1 ⊂ C
4 (g = 3) defined by the equations

{
x21 − x30 + x72 − x200 x1 = 0

x72 − x200 x1 + x53 − x880 x1x62 = 0.

The semigroup of the corresponding space monomial curve has (70, 105, 215, 1511) as
minimal generating set. By Theorem 1, the link of (S1, 0) is a ZHS as the exponents 3, 2, 7

and 5 are pairwise coprime and gcd( β̄2
e2

, e2) = gcd( 2155 , 5) = 1. However, if we modify these

equations slightly, then the surface S2 ⊂ C
4 given by

{
x21 − x30 + x72 − x210 x1 = 0

x72 − x210 x1 + x53 − x920 x1x62 = 0

does not have aZHS link. Indeed, the corresponding set of generators is (70, 105, 225, 1579)

with gcd( β̄2
e2

, e2) = gcd( 2255 , 5) �= 1. Note that the link of (S2, 0) is a QHS as the exponents
3, 2, 7 and 5 are still pairwise coprime. The surface singularity from Example 3.2 is an
example of a surface singularity in our family with no pairwise coprime exponents, but whose

link is aQHS as gcd( β̄1
e1

, lcm(n2, n3)) = gcd( 124 , 2) = 1 and gcd( β̄2
e2

, n3) = gcd( 262 , 2) = 1.
Finally, the equations

{
x21 − x30 + x42 − x110 x1 = 0

x42 − x110 x1 + x33 − x280 x1x32 = 0

define a surface S3 ⊂ C
4 with neither a QHS nor a ZHS link: the corresponding

generating set is (24, 36, 75, 311) with gcd(n1, lcm(n2, n3)) = gcd(2, 12) �= 1 and

gcd( β̄1
e1

, lcm(n2, n3)) = gcd( 3612 , 12) �= 1.

4.3 Our surface singularities withZHS link versus singularities of splice type

We finish this article by showing that if (S, 0) has a ZHS link, then it is of splice type. In
other words, they belong to the family of complete intersection singularities of splice type
defined by Neumann andWahl and support their conjecture on the possible normal complete
intersection surface singularities with a ZHS link.

Since (S, 0) for g = 2 is trivially of splice type, we assume that g ≥ 3. We first deter-
mine the splice diagram of (S, 0). We can again use the good Q-resolution ϕ̂ : Ŝ → S. In
Remark 4.1, we already mentioned that each exceptional divisor Ek for k = 1, . . . , g − 1
is irreducible with multiplicity Nk = nk β̄k , and that the dual graph is bamboo-shaped with
quotient singularities as described in Sect. 3.2. Taking a closer look at these singularities,
one can check that the resolution ϕ̂ is as in Fig. 4, where the numbers in brackets represent
the orders of the small groups acting on the singular points.

It immediately follows that the splice diagram is of the form as in Fig. 5, in which the
nodes from left to right correspond to Ek for k = 1, . . . , g − 1, and the edge weights nk for
k = 0, . . . , g come from the singular points Qk for k = 0, . . . , g − 1 and Pg−1. It remains
to show that the other weights are given as in the figure.
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Fig. 4 The good Q-resolution of
(S, 0) when the link is a ZHS

E2

E3

· · ·

E1

Eg−2

Eg−1

E4

(n0) (n1)

(n2)

(n3)

(n4)

(ng−2)

(ng−1) (ng)

n0

n1

n2 n3 ng−2
ng

ng−1

e1 e2 e3 eg−2
β̄2
e2

β̄3
e3

β̄g−1
eg−1

β̄g−2
eg−2

Fig. 5 The splice diagram of (S, 0) with a ZHS link

We start by showing that the order dk(k+1) corresponding to Qk(k+1) = Ek ∩ Ek+1 for
k = 1, . . . , g −2 becomes very easy. Following the approach explained in Sect. 3.2, we need
to consider the quotient space

X

(
nk+1β̄k+1 − nk β̄k ek −ek

nk+1β̄k+1 − nk β̄k − β̄k+1
ek+1

nk β̄k
ek

)

.

Because gcd( β̄k+1
ek+1

, ek+1) = 1 by assumption on the link, and gcd( β̄k+1
ek+1

, nk+1) = 1 by the

properties of the semigroup, we see that gcd( β̄k+1
ek+1

, ek) = gcd( β̄k+1
ek+1

, nk+1ek+1) = 1. Hence,
the isomorphism in (12) says that this quotient space is isomorphic to

X

(
nk+1β̄k+1 − nk β̄k 1 −αek + β

nk β̄k
ek

nk+1β̄k+1 − nk β̄k 0 nk β̄k − nk+1β̄k+1

)

= X

(

nk+1β̄k+1 − nk β̄k; 1,−αek + β
nk β̄k

ek

)

,

where αek − β
β̄k+1
ek+1

= 1. It follows that dk(k+1) = nk+1β̄k+1 − nk β̄k = Nk+1 − Nk . Note
that this is consistent with (11). Using this, one can also easily see that the expressions (15)
for the self-intersection numbers −ak := E2

k j become

ak =

⎧
⎪⎪⎨

⎪⎪⎩

N2
d12N1

for k = 1,
Nk+1−Nk−1

d(k−1)k dk(k+1)
for k = 2, . . . , g − 2,

1
d(g−2)(g−1)

for k = g − 1.

Let us now take a look at the edge to the right of E1. To show that its weight is e1, we
need to compute the determinant of the intersection matrix corresponding to the dual graph
coming from removing E1 in Fig. 4 and resolving the singular points on E2, . . . , Eg−1. By (3),
this is equal to
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| det(B2)|
g∏

l=2

nl

g−2∏

l=1

dl(l+1) = | det(B2)| e1

g−2∏

l=1

dl(l+1),

where B2 is defined as in (19). Hence, we need to check that

| det(B2)| = 1
∏g−2

l=1 dl(l+1)

.

Similarly, for k = 2, . . . , g − 2 (if g ≥ 4), we want that

ek = | det(Bk+1)|
g∏

l=k+1

nl

g−2∏

l=k

dl(l+1) = | det(Bk+1)| ek

g−2∏

l=k

dl(l+1).

Using the expression for det(Bs) for s = 2, . . . , g − 1 in terms of the Rl from Sect. 4.1, or
using an induction argument, one can see that this is indeed true.

Analogously, to show that the weight on the edge to the left of Ek for k = 2, . . . , g − 1 is

equal to β̄k
ek
, we need to check that

β̄k

ek
= | det(B ′

k−1)|
k−1∏

l=0

nl

k−1∏

l=1

dl(l+1),

where

B ′
s :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−a1
1

d12
· · · 0

1
d12

. . .
. . .

...

...
. . .

. . . 1
d(s−1)s

0 · · · 1
d(s−1)s

−as

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, s = 1, . . . , g − 2.

By, for example, an easy induction argument, one can compute that

det(B ′
s) = (−1)s Ns+1

N1
∏s

l=1 dl(l+1)
.

Since Ns+1 = ns+1β̄s+1 and N1 = ∏g
l=0 nl , we can conclude.

Checking the semigroup condition and finding the splice type equations are now very easy.
Denote by w for k = 0, . . . , g the leaf corresponding to nw , and relate to w the variable zw.
For the edge to the right of Ek for k = 1, . . . , g − 2, the numbers l ′kw for w = k + 1, . . . , g

are given by ew

∏w−1
l=k+1 nl . Hence, ek = nwl ′kw for every w = k + 1, . . . , g or, thus, the

edge weight ek is indeed contained in the semigroup 〈l ′kw | w = k + 1, . . . , g〉. For the edge
to the left of Ek for k = 2, . . . , g − 1, the numbers l ′kw for w = 0, . . . , k − 1 are given by
β̄w

ew

∏k−1
l=w+1 nl = β̄w

ek−1
so that β̄k

ek
= nk β̄k

ek−1
= bk0

β̄0
ek−1

+ · · · + bk(k−1)
β̄k−1
ek−1

is contained in the

semigroup 〈l ′kw | w = 0, . . . , k − 1〉. It follows that the semigroup condition is fulfilled.
Furthermore, along the same lines, we have shown that the following equations are of strict
splice type:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zn0
0 + zn1

1 + zn2
2 = 0

zn2
2 + zn3

3 + zb20
0 zb21

1 = 0

...

z
ng−1
g−1 + z

ng
g + z

b(g−1)0
0 z

b(g−1)1
1 · · · z

b(g−1)(g−2)
g−2 = 0.
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These are the equations of (S, 0) up to higher order terms and coefficients. In other words,
the singularity (S, 0) is indeed of splice type.
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