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Abstract

In this article, we consider an infinite family of normal surface singularities with an integral
homology sphere link which is related to the family of space monomial curves with a plane
semigroup. These monomial curves appear as the special fibers of equisingular families of
curves whose generic fibers are a complex plane branch, and the related surface singularities
appear in a proof of the monodromy conjecture for these curves. To investigate whether the
link of a normal surface singularity is an integral homology sphere, one can use a character-
ization that depends on the determinant of the intersection matrix of a (partial) resolution.
To study our family, we apply this characterization with a partial toric resolution of our
singularities constructed as a sequence of weighted blow-ups.

Keywords Normal surface singularities - Rational and integral homology sphere link -
(partial) Resolution of singularities
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1 Introduction

For (S, 0) C (C", 0) a germ of a normal surface singularity, the link L(S, 0) is defined as the
intersection of S with a small closed ball centered at the origin in C”. The topology of L(S, 0)
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can provide interesting information about the singularity (S, 0). For example, Mumford [15]
showed that L(S, 0) is simply connected if and only if S is smooth at 0, and Neumann [18]
showed that L(S, 0) determines and is determined by the dual graph of a good resolution
of (S, 0) (it is a graph manifold whose plumbing decorated graph is a dual resolution graph
of (S, 0)). In this article, we are interested in normal surface singularities whose link is a
integral homology sphere or ZHS, that is, whose link has the same integral homology as
a three-dimensional sphere. More generally, we can consider normal surface singularities
having a rational homology sphere or QHS link.

More precisely, we will study the link of an infinite family of normal surface singularities
(5,0) c (C&F!,0) with g > 2 related to the family of space monomial curves with a
plane semigroup. These monomial curves arise as the special fibers of certain equisingular
deformations of irreducible plane curve singularities. Such deformations are classical objects
in singularity theory, and have been studied and generalized by, among others, Teissier,
Goldin, Gonzalez-Pérez, and Tevelev. Recently, they have played an important role in the
solution of Yano’s conjecture [5], and the solution of Dimca-Greuel’s conjecture for branches
by Alberich-Carramifiana et al. [1]. The motivation of the present work is the question
by Némethi whether weighted blow-ups can be used to find examples of normal surface
singularities having a ZHS link. Némethi has intensely studied surfaces singularities and,
more specifically, surface singularities with a QHS link, see for instance [19] or, for a more
modern approach [7, 12], and the references listed there. We will also compare our family with
two important families of surface singularities. First, we will take a look at the Brieskorn—
Pham surface singularities {x{" + x5* + x5° = 0} C (C3,0), whose link is a ZHS if
the exponents a; > 2 fori = 1, 2, 3 are pairwise coprime. Second, we will consider the
singularities of splice type, having a ZHS link, introduced by Neumann and Wahl [21]. We
will see that our surface singularities (S, 0) C (C$ +1.0) with a ZHS link are always of splice
type, but they are never Brieskorn—Pham if g > 3.

To construct a space monomial curve with a plane semigroup, we start with a germ C :=
{f=0}C (C2,0)of a complex plane curve defined by an irreducible series f € C[[xo, x1]]
with f(0) = 0. Let

UCIR::M_’NU{OO}:hr—)dimCM

() (f, h)

be the associated valuation. The semigroup I'(C) := {vc(h) | h € R\{0}} C N is finitely
generated, and we can identify a unique minimal system of generators (B, .. ., Bg) of I'(C).
Define (Y, 0) C (Cstl . 0) as the image of the monomial map M : (C, 0) — (Cs+1,0) given
by M(t) = (tPo, ..., tPs). This is an irreducible curve with the ‘plane’ semigroup I'(C) as
its semigroup, and it is the special fiber of a flat family n : (x, 0) C (C8H x C,0) — (C,0)
whose generic fiber is isomorphic to C. We call Y a space monomial curve, and the explicit
equations defining ¥ in C81! are of the form

| no —
fi=x" —x, =0

. ny by b2
fori=x5" = xg0x) =0

N bgo  bg bgg-1 _
foi=xg" — xp Xt - o1 =0.
where n; > 1 and b;; > 0 are integers that are defined in terms of Bo, - .-, Bg).

The monodromy conjecture for these space monomial curves ¥ C C$t! with g > 2 is
proven in [16] together with [17]; an overview of these two articles can be found in the short
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note [14]. Roughly speaking, the monodromy conjecture for ¥  C2*+! states that the poles
of the motivic, or related, Igusa zeta function of Y induce monodromy eigenvalues of Y. The
computation of the motivic Igusa zeta function and its poles is the main subject of [17]; the
study of the monodromy eigenvalues and proof of the monodromy conjecture can be found
in [16]. A key ingredient in this proof is the consideration of the curve Y as the Cartier divisor
{fi =0} forsome i € {1,..., g} on a generic embedding surface S C C8*! defined by

fii +2f2=0
fo +A3f3=0
. )]

fg—l + )Lgfg =0.

For generic coefficients (A2, ..., ;) € (C\{0}))&~!, the scheme S := S(As, ..., Ag) is a
normal complete intersection surface which is smooth outside the origin. In this article, we
are interested in the link of these normal surface singularities (S, 0) C (C8 +1 0).

For g = 2, one can easily see that (S, 0) C (C3, 0) is a Brieskorn—Pham surface singular-
ity with exponents ng, n1 and ny. For g > 3, we will show that (S, 0) C (C8*L, 0) is never
Brieskorn—Pham by considering the rupture exceptional curves in the minimal good reso-
lution of (S, 0), that is, the exceptional curves that are either non-rational or have valency
at least 3 (i.e., they have at least 3 intersections with other exceptional curves). While a
Brieskorn—Pham surface singularity has at most one rupture exceptional curve in its minimal
good resolution, our surface singularities have at least g — 1 rupture exceptional curves. To
show this, we will make use of a good Q-resolution of (S, 0), see Proposition 3.1. This is a
resolution in which the final ambient space can have abelian quotient singularities, and the
exceptional locus is a simple Q-normal crossing divisor on such a space. A good Q-resolution
can be obtained as a sequence of weighted blow-ups and induces a good resolution by resolv-
ing the singularities of the final ambient space, which are Hirzebruch—Jung singularities.
The good Q-resolution ¢ : S — S that we will consider consists of the first g — 1 steps of
the embedded Q-resolution of ¥ C § constructed in [16, Section 5]. In particular, the dual
graph of ¢ is a tree as in Fig. 1.

Since we already know that (S, 0) for g = 2 has a ZHS link if and only if its exponents 7n;
are pairwise coprime, it remains to investigate when (S, 0) C (C&*!, 0) has a ZHS link for
g > 3. For this purpose, we will make use of a characterization for a general normal surface
singularity (S, 0) C (C", 0) to have a ZHS link depending on the determinant of (S, 0). The
determinant of a partial or good resolution of a normal surface singularity (S, 0) is defined
as the determinant of the intersection matrix of the resolution, that is, it is the determinant of
the matrix (E; - Ej)1<;, j<r, where E1, ..., E, are the exceptional curves of the resolution.
Geometrically, the cokernel of the intersection matrix of a good resolution of (S, 0) is equal
to the torsion part of Hy(L(S, 0), Z). The determinant det(S) of a normal surface singularity
(S, 0) is the absolute value of the determinant of some good resolution of (S, 0). Since the
torsion part of Hj(L(S, 0),Z) is a finite group of order det(S), this is independent of the
chosen good resolution. In practice, det(S) can be computed as the product of the absolute
value of the determinant of a partial resolution of (S, 0) and the determinants of the remaining
singularities of the new ambient space, which are the orders of the corresponding small groups
in the abelian quotient singular case, see (3).

In terms of the determinant det(S) and a good resolution 7 : S — S of a normal surface
singularity (S, 0), the characterization can now be formulated as follows: the link L(S, 0)
is a ZHS if and only if det(S) = 1 and & has only rational exceptional curves and a tree
as dual graph. Because the good Q-resolution ¢ : S — S of our singularities has a tree as
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dual graph, and the singularities of S can be resolved with rational exceptional curves and a
bamboo-shaped dual graph, we only need to check when both det(S) = 1 and the exceptional
curves of ¢ are rational. Furthermore, we can express det(S) in terms of the orders of the
singularities of S and the determinant of ¢. To compute the latter determinant, we will first
prove in Proposition 4.3 a formula for the determinant of a general good Q-resolution with
the same dual graph as in Fig. 1 by rewriting it in terms of a specific kind of tridiagonal
matrices. For our good Q-resolution ¢ : S — S, this immediately implies the expression for
the determinant of ¢ and of the singularity (S, 0) in Corollaries 4.4 and 4.6, respectively.
Together with the properties of ¢, this yields the following theorem. As the same approach
also gives conditions for (S, 0) to have a QHS link, which is true if and only if the dual graph
of a good resolution is a tree with only rational exceptional curves, we can state our main
result as the following generalization of the characterization for Brieskorn—Pham surface
singularities.

Theorem A Let (S,0) C (C8F1,0) be a normal surface singularity defined by the equa-
tions (1) with g > 2. The link of (S, 0) is a QHS if and only if for allk = 1,..., g — 1,

we hcfve ng(ilk, lem(ngyy,...,ng)) =1or gcd(f—,’:, lem(njyy, ..., ng)) =1, where e :=
gcd(Bo, - - -, Br)- The link of (S, 0) is a ZHS if and only if the exponents n; fori =0, ..., g
are pairwise coprime and gcd(f—}f, ex) =1fork=2,...,g—1.

Once we have shown this result, it is easy to check that our surface singularities (S, 0) C
(Cst1,0) with g > 2 having a ZHS link are of splice type. To this end, we will determine
their splice diagram. This is a finite tree in which every vertex has either valency 1, called a
leaf, or valency at least 3, called a node, and in which a weight is assigned to each edge starting
at a node. Every dual graph of a normal surface singularity with a ZHS link corresponds to
a unique splice diagram of special type. Hence, such a splice diagram also determines and
is determined by the link. Furthermore, if a splice diagram of a ZHS link satisfies the so-
called semigroup condition, then Neumann and Wahl constructed in [21] an isolated complete
intersection surface singularity having this link, called a singularity of splice type. In addition,
they conjectured that every normal complete intersection surface singularity with a ZHS link
is of splice type. To compute the splice diagram of our surface singularities having a ZHS
link, we will once more consider the good Q-resolution ¢ : S — S. We will see that the
semigroup condition is fulfilled and that our surface singularities with a ZHS link are always
of splice type. In particular, they support the conjecture of Neumann and Wahl.

This article is organized as follows. We start in Sect. 2 by briefly discussing the necessary
background. In Sect. 3, we will introduce our surface singularities (S, 0) C (C# +1.0) in more
detail, list the main properties of the considered good Q-resolution of (S, 0), and use this
resolution to show that (S, 0) is not Brieskorn—Pham for g > 3 and to show the conditions
for its link to be a QHS. In Sect. 4, we will prove the characterization for (S, 0) to have a
ZHS link by computing its determinant, give some concrete examples in Example 4.7, and
show that our surface singularities with a ZHS link are always of splice type.

2 Preliminaries

In this preliminary section, we give a short overview of the background needed in this arti-
cle. We start by fixing some notation and conventions. First, by a (complex) variety, we
mean a reduced separated scheme of finite type over C, which is not necessarily irreducible.
A one-dimensional ( resp. two-dimensional) variety is called a curve (resp. surface). Sec-

@ Springer



Normal surface singularities with an integral homology sphere... 307

ond, for a rational number %, we denote by [%] its integer part. Third, for a set of integers

mi, ..., m, € Z, we denote by gecd(my, ..., m,) and lecm(m, ..., m,) their greatest com-
mon divisor and lowest common multiple, respectively. To shorten the notation, we will
sometimes use (my, ..., m,) for the greatest common divisor.

2.1 Space monomial curves with a plane semigroup

Let C := {f = 0} C (C?,0) be an irreducible plane curve singularity defined by a complex
series f € C[[xp, x1]] with f(0) = 0, and let
b C[[Xo,xll]\{o} N dime Cllxo, x11]
(f) (f.h)

be its associated valuation. The semigroup I"(C) is the image of this valuation and can be
generated by a unique minimal system of generators (B, .. ., Eg) with Bp < -+ < ﬂg and
gcd(Bo, o Eg) = 1. Furthermore, the sequence (,30, R Bg) determines and is determined
by the topological type of C, see for instance [28]. Therefore, it is a natural question how one
can recover the equation of a plane curve singularity from a given topological type.

In [27], Teissier provides a way to describe every plane curve singularity with given

data I'(C) = (Bo, ..., Bg) as an equisingular deformation of the monomial curve ¥ C
(Cs +10) defined as the image of the monomial map M : (C, 0) — (C# +1.0) given by 1 >
(tPo, ..., tPs). This is an irreducible (germ of a) curve which has the ‘plane’ semigroup I'(C)

as semigroup, which is smooth outside the origin, and which can be seen as a deformation of
C in the following way. First, if we define the integers ¢; := gcd(Bo, ..., Bi)fori =0,..., ¢
satisfying Bo =ep > e; > --- > eg =1, and n; := e’e—j' 2_2 fori_= 1,..., g, then n; B;
fori =1,..., giscontained in the semigroup generated by By, ..., Bi—. Hence, there exist
non-negative integers b;; for 0 < j < i such that

niBi = biofo + -+ + bii—1Bi-1,
and these integers are unique under the extra condition that b;; < n for j # 0. For simplicity,
we put ng := by, and we state the following useful properties that we will use later on:

1) fori =0,...,¢g — 1, wehavethate; =n;41---ny,;
@) fori =0 1 h. h. n g
(ii) fori =0,...,g— 1, wehavethatn; | §; forall j > i;

€i—1
€i

(iii) fori =1, ..., g, we have that gcd(%, nj) = gcd(f—;, ) = 1, and, in particular, that

ged(ng, ny) = gcd(f—ll,nl) = 1;and
(iv) fori =1,..., g, we have that n; 8; < Biy1.

Using a minimal generating sequence of the valuation ve, one can construct a family
n: (x,0) C (C8*t! x C,0) — (C,0) of germs of curves in (C8*+! x C, 0), which is
equisingular, for instance, in the sense that I"(C) is the semigroup of all curves in the family.
The generic fiber n~'(v) forv # 0is isomorphic to C, and the special fiber n~1(0) is defined
in (C$11, 0) by the equations Xt — cixg’o .. ~xibi('i_1) =0fori =1,..., g. The coefficients
¢; are needed to see that any irreducible plane curve singularity with semigroup I'(C) is an
equisingular deformation of such a monomial curve. However, for simplicity, we can assume
that every ¢; = 1, which is always possible after a suitable change of coordinates. This yields
the monomial curve Y.

Clearly, we can also consider the global curve in C8T! defined by the above binomial
equations; from now on, we define a (space) monomial curve Y C C8t! as the complete
intersection curve given by
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n n
fr=xp" = x° =0
fri=x — xgzoxfz' =0
(€3
L bgo _bgi be(g-1) _
Sfo = xg" — xp" xy T Xl =0.

This is still an irreducible curve which is smooth outside the origin. In [16], the monodromy
eigenvalues for such a space monomial curve ¥ C C2*! with g > 2 are investigated by
considering Y as a Cartier divisor a generic embedding surface S C C8T!. Together with
the results from [17], this yields a proof of the monodromy conjecture for Y  C&+!. In this
article, we are interested in the topology of these generic embedding surface singularities
(S,0) C (C8t1,0). We will introduce them in detail in Sect. 3.

2.2 Link of a normal surface singularity

Let (S, 0) C (C", 0) be a germ of a normal surface singularity. Its link L(S, 0) is an oriented
three-dimensional manifold which is defined as the intersection of S with a small enough
closed ball centered at the origin in C”. In this article, we are interested in normal surface
singularities whose link is a rational ( resp. integral) homology sphere, that is, whose link
has the same rational ( resp. integral) homology as a three-dimensional sphere. In this case,
we will say that the link is a QHS ( resp. a ZHS). To study when the link L (S, 0) is a QHS
or a ZHS, we can make use of a practical criterion in terms of the determinant and a good
resolution of (S, 0).

By a good resolution of (S, 0), we mean a proper birational morphism 7 : S — S from
a smooth surface S to S which is an isomorphism over S\{0} and whose exceptional locus
7~ 1(0) is a simple normal crossing divisor (i.e., its irreducible components, called the excep-
tional curves, are smooth and intersect normally). It is well known that such a resolution
always exists as a sequence of blow-ups at well-chosen points. A good resolution 7 : S—S
is called minimal if every other good resolution of (S, 0) factors through 7. Equivalently,
7 is minimal if there is no exceptional curve that can be contracted (by blowing down) so
that the resulting morphism is still a good resolution of (S, 0). It is worth mentioning that,
by Castelnuovo’s Contractibility Theorem, the only possible exceptional curves that can be
contracted in such a way are rational and have self-intersection number —1. Furthermore, a
minimal good resolution of a normal surface singularity (S, 0) always exists and is unique
up to isomorphism. Therefore, we call it the minimal good resolution of (S, 0).

With a good resolution of (S, 0), we can associate a dual graph T" whose vertices corre-
spond to the exceptional curves Ey, ..., E,, and two vertices E; and E; are connected by an
edgeifand only if E; N E; # (. Often, each vertex E; is labeled with two numbers (g;, —&«;),
where g; is the genus of E; and —«; its self-intersection number. It is a classical result that the
free part of H{(L(S, 0), Z) has rank 2 Z?:l gi + b, where b is the first Betti number of the
dual graph, and that its torsion part is equal to coker(A), where A = (E; - E)<;, j<, is the
intersection matrix of the good resolution, see for example [8, Ch. 2, Prop. 3.4]. In particular,
as A is negative definite, which was originally noted by DuVal but also shown by Mumford
in [15], the torsion part of H{(L(S, 0), Z) is a finite group of order | det(A)| = det(—A).

This result has two immediate consequences. First, it implies that det(—A) is independent
of the chosen good resolution of (S, 0). Hence, we can define the determinant of (S, 0) as
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det(S) := det(—A) with A the intersection matrix of any good resolution of (S, 0). Second,
we find the following easy conditions for (S, 0) to have a QHS or ZHS link.

Theorem 2.1 Let (S,0) € (C",0) be a normal surface singularity, and consider a good
resolution w: § — S. The link of (S, 0) is a QHS if and only if all exceptional curves of w
are rational and the dual graph T of 7 is a tree. The link of (S, 0) is a ZHS if and only if it
is a QHS and det(S) = 1.

To compute t[le determinant of (S, 0) in practice, we do not really need a goqd resolution
of (5,0):if w: § — S is a proper birational morphism from a normal surface S to S which
is an isomorphism over S\{0}, then

det(S) =det(—A) ] det(S, p). 3)
perx—1(0)

see for instance [2, Lemma 4.7]. Here, A = (E; - Ej)1<;, j<r is the intersection matrix of 7,
where E|, ..., E, are the exceptional curves of 77, and det(S’ , p) is the absolute value of the
determinant of the intersection matrix of some good resolution at p. Note thatif p € a1 0)
is written as a Hirzebruch—Jung singularity of type %(1, g) with d and g coprime, then
det(S‘, p) =d, see Sect. 2.5.

2.3 Brieskorn-Pham surface singularities

An important family of normal surface singularities whose link is a QHS or ZHS are
Brieskorn—Pham surface singularities

S(ar, a2, a3) := {Fay,ar,a3) = X} + 157 + x5 = 0} C (C*,0)

satisfying some conditions in terms of the exponents @; > 2. The most classical characteri-
zation uses a graph G (ay, az, a3) associated with these exponents, see for example [6, Satz
1] or [8, Ch. 3, Thm. 4.10]. In [2, Prop. 5.1], an equivalent characterization is obtained by
considering Brieskorn—Pham surface singularities as a special case of weighted Lé—Yomdin
singularities. More precisely, put e := gcd(ay, az,a3) and o := é gcd(a;, aj) for every
{i, j, 1} ={1,2,3}). Then, F(4; a5,a3) is @-weighted homogeneous with

w = ————(a2a3, a1a3, a1az),
e‘o a3
and S(ay, az, a3) can be seen as an (w, k)-weighted Lé—Yomdin singularity for any k > 1.
Following the approach in [2, 4.3] for weighted Lé—Yomdin singularities, we can consider
the curve C := {x{*** + x3*1% + x{*'%2 = 0} in the weighted projective plane ]P)%a] )
(see Sect. 2.5), which has genus

ajaras — el +ar +a3) +2

2

Furthermore, the determinant of S(ay, az, a3) is given by

ea1—1 jear—1 jeaz—1
ed™ g age !,

where d; = wfj"al for {i, j,1} = {1,2,3}. Now, S(ai, a2, a3) has a QHS ( resp. ZHS) link
if and only if the above genus is equal to O ( resp. and the determinant is equal to 1). This

yields the following result.
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Proposition 2.2 Using the above notations, the link of a Brieskorn—Pham surface singularity
S(ay, az,az) C (C3,0) is a QHS if and only if either ay = oy = a3 = land e = 2, or
a; =aj =e=1forsomei # j. Itis a ZHS if and only if the exponents ay, ay and a3 are
pairwise coprime.

Remark 2.3 In fact, we do not really need the theory of weighted Lé—Yomdin singularities
and the results from [2, 4.3] to obtain this result. Alternatively, one could directly consider
Theorem 2.1 with the partial resolution of S(ay, a2, az) consisting of one weighted blow-up
at the origin with weight vector w. This resolution has one exceptional curve & C P2 which

is isomorphic to the curve C C IF’%% w.az)» A0d which contains three sets of singular points,

corresponding to the coordinate axes in ]P’LZU. This gives the same genus and determinant as
above. For more details, see [13, Example 3.6].

2.4 Singularities of splice type

Since we know how to recover all plane curve singularities of a given topological type, it
is natural to ask whether this is also possible for surface singularities with a given link.
Unfortunately, this question is still open, even if the link is a QHS or ZHS. Here, we restrict
to briefly explaining some results and conjectures in the ZHS case. For more details, see [21,
22].

With a ZHS link, we can associate a unique splice diagram, originally introduced by
Siebenmann [25]. This is a finite tree in which every vertex has either valency 1, called a
leaf, or valency at least 3, called a node, and in which a weight is assigned to each edge
starting at a node. In [9], Eisenbud and Neumann showed that the links of normal surface
singularities that are a ZHS are in one-one correspondence with splice diagrams satisfying
the following conditions:

(i) the weights around a node are positive and pairwise coprime;
(ii) the weight on an edge connecting a node with a leaf is greater than 1; and
(iii) all edge determinants are positive.

Here, the edge determinant for an edge connecting two nodes is the product of the two
weights on the edge minus the product of the weights adjacent to the edge (i.e., the other
weights around the two nodes).

The dual graph I' of a normal surface singularity with a ZHS link yields a unique splice
diagram A as follows. First, we suppress all vertices with valency 2. Then, for each edge
e starting at some node v, its weight d,, is the absolute value of the determinant of the
intersection matrix of the subgraph I';, of I" obtained from cutting at v in the direction of e.
The other way around, one can obtain the dual graph I, and, hence, the link, from the splice
diagram A by splicing or plumbing. For the details of this construction, we refer to [9] or,
for an easier method, to [22].

In [21], Neumann and Wahl constructed for a ZHS link whose splice diagram satisfies the
so-called semigroup condition an isolated complete intersection surface singularity (S, 0)
with this link, called a complete intersection singularity of splice type. Up to date, there are
no known examples of normal complete intersection surface singularities with a ZHS link
whose splice diagram does not satisfy the semigroup condition, or that are not of splice type.
Therefore, Neumann and Wahl conjectured that every normal complete intersection surface
singularity with a ZHS link is of splice type (in particular, its splice diagram satisfies the
semigroup condition). Earlier, in [20], Neumann and Wahl already conjectured the same for
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every Gorenstein normal surface singularity with a ZHS link, but Luengo-Velasco, Melle-
Herndndez and Némethi [11] found counterexamples to this conjecture. Furthermore, even
when the splice diagram satisfies the semigroup condition, there always exist plenty of other
analytic types (probably not complete intersections) with the same link.

Let us take a brief look at this semigroup condition and how to write the equations of the
associated singularity of splice type. Consider a splice diagram A. For any vertices v and w
of A, we define the linking number [, of v and w as the product of all weights adjacent
to, but not on, the shortest path from v to w, and the number /], as the same product in
which we omit the weights around v and w. Using this notation, A is said to satisfy the
semigroup condition if and only if for every node v and edge e starting at v, the weight dy, is
contained in the semigroup (I, | w is a leaf of A in A,,) C N, where A, is the subgraph
of A cut off from v by e. If A satisfies this semigroup condition, we can associate admissible
monomials with each node v and an edge e starting at v as follows. Relate to each leaf w of
A a variable z,, and give it v-weight /,,,,. Because A satisfies the semigroup condition, we
can find (possibly non-unique) integers oy, € N such that

’
dye = E avzulvw~
w leaf in Ay,
Then, an admissible monomial associated with v and e is any monomial
Ay
1_[ Zw
w leaf in Ay,

Note that its v-weight is equal to the product of all weights around v, also denoted by d,,. If
the node v has valency 4, then we choose for every edge e at v one admissible monomial
M, and we make a system of §,, — 2 linear equations of the form

3 @My =0, i=1,....8,~2,

e edge at v

where the coefficients g;, are chosen such that all maximal minors of the matrix (a;.); . have
full rank. Finally, in each equation, we can add higher order terms with respect to the weights
lyw. The total number of equations is equal to n — 2, where 7 is the number of leaves in A,
and these equations define an isolated complete intersection singularity in C" of splice type.
If one does not allow higher order terms, it is said to be of strict splice type.

Example 2.4 Consider a splice diagram with a single node v of valency n. In this case, the
semigroup condition is trivially fulfilled: I}, = 1 for any leaf w of A. Hence, each edge e;

for j = 1,...,n with weight d; corresponds to a unique admissible monomial M; = z
and the equations of strict splice type are of the form

‘i
i

n

d; .
Za,‘jz/ =0, i=1,....,n—2,
—

where all maximal minors of the matrix (a;;); ; have full rank. Equations of this type define
isolated Brieskorn—Pham complete intersections in C", which are generalizations of the
Brieskorn—Pham surface singularities.

For other examples of this construction, we refer to [21, 22]. In Sect. 4.3, we will check
the semigroup condition and write the equations of strict splice type for our normal surface
singularities having a ZHS link. In particular, we will see that they are of splice type. Hence,
they support the conjecture of Neumann and Wahl.
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2.5 Quotient singularities and Q-resolutions

To determine the conditions under which our surface singularities (S, 0) have a QHS or
ZHS link, we will make use of a good Q-resolution of (S, 0). Roughly speaking, this a
resolution in which the final ambient space can have abelian quotient singularities, and the
exceptional divisor must have normal crossings on such a variety. In this section, we give
a short introduction to quotient singularities and Q-resolutions. We also touch briefly on an
intersection theory on surfaces with abelian quotient singularities. More details can be found
in [3] and [4].

Consider an abelian quotient space C"/G for G C GL(n, C) a finite abelian group. If
we write G = [tq; X -+ X g, as a product of finite cyclic groups, where g4, is the group
of the d;th roots of unity, then there exists a matrix A = (a;;); ; € Z"*" such that C" /G is
isomorphic to the quotient of C" under the action (ug, X -+ X pg,) x C* — C”" defined
by ((€1,...,&), (x1, ..., X)) — (Sgl” .. fgr” Xls oens 5]‘” . -S;r’” Xp). This is called the
quotient space of type (d, A), where d := (d1, ..., d,), and denoted by

dilaiy -+ am
Xd; A) =X :
dr arl * Ay

Note that we can always consider the ith row of A modulo d;. The class of an element
X := (x1,...,x,) € C" under such an action (d; A) is denoted by [X](q; ), Where we omit
the subindex if there is no possible confusion. Every quotient space X(d; A) is a normal
irreducible n-dimensional variety whose singular locus is of codimension at least two and is
situated on the coordinate hyperplanes {x; = 0} fori = 1, ..., n, which are the images of
the coordinate hyperplanes {x; = 0} in C" under the natural projection C* — X(d; A).

If n = 2, then one can show that each quotient space X (d; A) = C?/G is cyclic, that
is, it is isomorphic to a quotient space of type (d; a, b). A cyclic type (d; a, b) is said to
be normalized, and the corresponding quotient space X (d; a, b) is said to be written in a
normalized form, if and only if gcd(d, a) = ged(d, b) = 1. If this is not the case, we can
normalize X (d; a, b) as follows. First, we can assume that gcd(d, a,b) = 1 as X(d; a, b)
is isomorphic under the identity morphism to X (%; & %) for any k dividing d, a and b.
Second, for k dividing d and b, the morphism defined by [(x1, x2)] > [(x{‘ , X2)] induces an
isomorphism X (d; a, b) =~ X(%; a, %), and similarly for some k dividing d and a. Hence,
X (d; a, b) can be normalized with the isomorphism

d o a b
(d,a)d,b)’ (d,a) (d,b)

For general n > 1, we call a (not necessarily cyclic) type (d; A) normalized if puq is a
small subgroup of GL(n, C) (i.e., it does not contain rotations around hyperplanes other
than the identity) acting freely on (C*)" or, equivalently, if for all x € C" with exactly n — 1
coordinates different from 0, the stabilizer subgroup is trivial. It is possible to convert any
type into a normalized form.

For n = 2, we can simplify a normalized type (d; a, b) even further. More precisely, as
gcd(d, a) = 1, there exists an integer a’ € Z with ged(d, a’) = 1 such thataa’ =1 mod d.
Then, the space X (d; a, b) is isomorphic to X (d; a’a, a’b) = X (d; 1, a’b) under the identity
morphism. In other words, every two-dimensional quotient space singularity (X (d; A), [0])
is a Hirzebruch-Jung singularity (C*/ug4, 0) where the action of 14y on C? is given by
(&, (x1,x2)) — (Ex1, &9xp) for some integer g € {1, ...,d — 1} with gcd(d, ¢) = 1. This is

X(@d;a,b) — X ( ) R e (e |
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called a Hirzebruch—Jung singularity of type % (1, g). Similarly, we could start with an integer
b’ € 7 such that gcd(d, b’) = 1 and bb’ = 1 mod d. In this case, we find that X (d; a, b)
is isomorphic to X (d; ¢’, 1), where g'¢ = 1 mod d. In other words, a Hirzebruch-Jung
singularity of some type é(l, q) is always equal to the Hirzebruch—Jung singularity of type
%(q’, 1) forq’ € {1,...,d— 1} the unique solution of g¢’ = 1 mod d. It is well known that
the minimal good resolution of a Hirzebruch—Jung singularity has only rational exceptional
curves and a bamboo-shaped (i.e., linear) dual graph.

E, Ey E.., E,

*—0— 0 —O- °

Furthermore, the self-intersection number —k; of E; fori = 1,...r with x; € N>j can
be computed from the continued fraction expansion
d 1

— =y —
q Kr—1 —

Kp_p—=

and the positive integers d, ¢ and ¢’ are the absolute value of the determinant of the intersection
matrix of all exceptional curves, of Ey, ..., E,_1, and of E», ..., E,, respectively.

Before we can give the precise definition of a good QQ-resolution, we still need to intro-
duce two notions: V-manifolds and @Q-normal crossing divisors. In [24], a V-manifold of
dimension n was introduced as a complex analytic space admitting an open covering {U;}
in which each U; is analytically isomorphic to some quotient B; /G; for B; € C" an open
ball and G; a finite subgroup of GL(n, C). We consider V-manifolds in which every G; is a
finite abelian subgroup of G L(n, C), which are normal varieties that can locally be written
like X (d; A). An important example of a V-manifold is the weighted projective space P}
of type w for some weight vector = (po, ..., p,) of positive integers which is defined
as the quotient of C**t1\{0} under the action C* x (C"t1\{0}) — C"*1\{0} given by
(t, (x0, ..., xp)) > (tPxq, ..., tP"x,). A two-dimensional V-manifold with abelian quo-
tient singularities is also called a V-surface. A Q-normal crossing divisor on a V-manifold
X is a hypersurface D that is locally isomorphic to the quotient of a normal crossing divisor
under an action (d; A). More precisely, for every point p € X, there exists an isomorphism
of germs (X, p) >~ (X(d; A), [0]) such that (D, p) C (X, p) is identified with a germ of the
form

({[x] € X(d; A) | x}"" -+ x* =0}, [0]).
This notion was introduced in [26].

Remark 2.5 In modern language, one usually calls a V-manifold an orbifold. We keep saying
V-manifold in this article to emphasize that we follow Steenbrink’s approach.

We can now define a good Q-resolution for a germ (X, 0) of an isolated singularity as a
proper birational morphism 77 : X — X such that the following properties hold:

(i) X isa V-manifold with abelian quotient singularities;
(ii) 7 is an isomorphism over X \{0}; and ;
(iii) the exceptional divisor 7 10)isa @-normal crossing divisor on X.

For (Y, 0) C (X, 0) a subvariety of codimension one, an embedded Q-resolution is a proper
birational morphism 77 : X — X with the above three properties in which X\ {0} is replaced
by X\Sing(Y), and 7~ 10) by 7~ 1(Y). As for a classical good or embedded resolution, we
can use the construction of blowing up to compute a good or embedded Q-resolution, but
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in this case, we use weighted blow-ups. Although weighted blow-ups can be placed in the
realm of toric resolutions, we follow the approach in [3, 4].

We end this section by briefly discussing an intersection theory on surfaces with abelian
quotient singularities. On normal surfaces, an intersection theory was first defined by Mum-
ford [15] and further developed by Sakai [23]; a general intersection theory can be found
in [10]. For V-manifolds of dimension 2, which are normal surfaces, an equivalent definition
was given in [4]. Here, we focus on explaining the definitions and properties presented in the
latter article that are needed in the present article. First of all, on a V -surface S, the notions
of Weil and Cartier divisor coincide after tensoring with Q. More precisely, for every Weil
divisor D on S, there exists an integer k € Z such that kD is locally principal. Therefore,
we call the class of divisors on S with rational coefficients modulo linear equivalence the
Q-divisors on S, and we can develop a rational intersection theory. In this article, we will
only need to compute the local intersection number (D1 - D), of two Q-divisors D; and
D; at a point p € S. For this purpose, we assume that p is the origin [0] in a normalized
cyclic quotient space X (d; a, b), that D; = {f; = 0} for i = 1,2 is given by a reduced
polynomial in C[x, y], that the support of D is not contained in the support of D;, and that
D; is irreducible. In this case, the local intersection number at p is well-defined and given

by
1. (C[[x,y]]>
Dy-D = —d —_— . 4
(Dy - D2)p dlmc(<fl’f2> €eQ 4

Another property of the intersection product that we will use is that for 7 : X — X (d; a, b)
a weighted blow-up at the origin with exceptional divisor E, and for D a Q-divisor on
X(d; a, b), we have

7*D-E =0. 5)

This can be shown in the same way as the analogous statement for the classical blow-up.

3 Our family of normal surface singularities

In this section, we introduce the family of normal surface singularities of our interest that
appear in the proof from [16] of the monodromy conjecture for a space monomial curve
introduced in Sect. 2.1. We also introduce a good Q-resolution, which we immediately use to
show that these singularities for g > 3 are not Brieskorn—Pham and to show the conditions
for their link to be a QHS. In the next section, we will use the same resolution to identify the
singularities in this family with a ZHS link, and to show that these are of splice type.

3.1 Definition of our surface singularities

Consider a space monomial curve ¥ < C$*! given by the Eq. (2) with g > 2. For
(A2, ..., hg) € (C\{0}E~!, we define the affine scheme S(A2, ..., A,) in C8*! given by

fi +rafa=0
2 +2f3=0
) ©)

fg—l + )Lgfg =0.
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For generic (A2, ..., Ag) € (€\{0nH&~! (i.e., the point (A2, ..., Ag) is contained in the non-
zero complement of a specific closed subset of (C\{0})$ ~1), one can show that S(As, ..., A g)
is a normal complete intersection surface which is smooth outside the origin, see [16, Prop.
4.2]. From now on, we will denote such a surface by § := S(A2,...,4g) C C&*! and we
are interested in the link of these normal singularities (S, 0) C (st o).

3.2 A good Q-resolution of our surface singularities

In [16, Section 5], the computation of g weighted blow-ups ¢ for k = 1, ..., g yields an
embedded Q-resolution ¢ = ¢j 0 --- 0 g : S — S of the space monomial curve Y given
by (2) seen as Cartier divisor on S. Because the surface S is already Q-resolved after the first
g — 1 blow-ups, and the last step is needed to desingularize the curve Y, we can consider the
good Q-resolution ¢ 1= @jo---0@e_1 : S — Sof (S, 0). We will now explain the properties
of this resolution that are needed to see that (S, 0) is not Brieskorn—Pham for g > 3, and to
prove the characterization for (S, 0) to have a QHS or ZHS link from Theorem 1. For more
details, we refer to [16, Section 5].

First of all, for each blow-up ¢ fork =1, ..., g — 1, we denote the exceptional divisor
by &. To ease the notation, we also denote their strict transform under later blow-ups by
Ek. Hence, in the end, the exceptional curves of the good Q-resolution ¢ are the irreducible
components of these &. If we define

€k
lcm(nkH, ey ng)

Tr - , k=1,...,g—1,

then each & is the disjoint union of r isomorphic irreducible components that we denote by
&j for j = 1,..., ry. In particular, the last exceptional divisor £, is always irreducible,
and the pull-back of the Cartier divisor Y under ¢ is given by

PY=V+ > N&j, )

I<k<g—1

1<j=<rk
where Y is the strict transform of Y under ¢, and Ny fork =1, ..., g — 1 is the multiplicity
of &, which is equal to lcm(’z—:, ng, ..., ng). Furthermore, for g > 3, each divisor & for
k=2,...,g—2(f g > 4) only intersects &1 and &1, and £ only intersects £,_».
For every k = 1,..., g — 2, the intersections of & and & are equally distributed, that

is, each of the components £y 1) of &1 intersects precisely % components of &, each
component &; of & is intersected by only one of the components of &£, and each non-
empty intersection between two components &; and 41y consists of a single point. In
other words, the dual graph of the good Q-resolution ¢ : S — Sisatree as in Fig. 1.

It is important to note that ¢ is not a good resolution of (S, 0) as S still contains a
lot of singularities that need to be resolved. To explain these singularities, we put My =
lcm(f—l’:, nky1,...,ng) fork =0, ..., g, and we consider the divisors H; fori =0,..., g
on S defined by {x; = 0}N S C Ccstl, Again, to ease the notation, we denote their strict
transforms also by H; throughout the process. We further consider the curve Y whose strict
transform is always denoted by Y. In the resolution of (S,0),each Hy fork=1,...,g—1
is separated from Y at the kth step and intersects the kth exceptional divisor & transversely

at some singular point(s). More precisely, if we denote a point in the intersection & N Hy by

Ok, then there are ﬁ—’; such points which are equally distributed along the ry components of

@ Springer



316 J. Martin-Morales, L. Vos

&

\/ -
g

g—1

Fig. 1 Dual graph of the good Q-resolution of (S, 0)

Ek. Locally around each such point, we have the following situation at [(xg, x)]:

S' =X (gcd (ekfl, nkﬂk ey ”kﬁk) N —I,Bk)

Ni+1 ng

Er: x(r)lkﬁk =0, Hp: xx=0.

B ni Br 2\ nip ng B .
Because ged (ged(ex—1, ﬁ . #), Bx) = ged (ex, n’;+’]‘, o flg"), these points are
Hirzebruch—Jung singularities of type i(l, qi) with
B Br B
I R o
o niB AN i M
gcd (ek, uh ka) lem (e:j,nkﬂ, o ng) k
Here, the second equality follows from the elementary fact that for mi, ..., m, a set of
non-zero integers and m a common multiple, we have
m m m
gcd(—,...,—)z—, ®)
mi my Iem(my, ..., m;)

and the third equality follows from the definition n; = e’;—;' and the fact that gcd(’z_—f ,ng) = 1.
For later purposes, we can rewrite dy as

Br
p ny ged (a, lem(ng4t, - ., ng)) ni nerk ©
k= = = = ,
ng(m;fk,lcm(nk+l,-~-7ng)) ged (ng, lem(ngqr, ... ng))  Tk—1
3 P €Q — BO
where we extend the sequence ry, ..., rg—1 with rg = Temtnr,ong) = Mo

Similarly, in the intersection £ N Hy, there are 1\% points denoted by Q¢ around which
we have the following local equation at [(xo, x1)]:

Sy (gcd (nogo’ noﬁ_o’m, noﬁo);ﬁo’ _1)

ni ny ng

E: X =0, Hy:xo=0.
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Each component of £ contains the same number of such points, which are of type dio (g0, 1)
with

ged (noﬁo M’ o noﬁo) Ny

ny ' np > ng

do = 7 R T Mo
R 1opPo nopo

ng(ﬁo, AR ng) 0

where we again used relation (8) and the fact that f—ll = nyp.

For g > 3, a next set of singular points of S are the points in an intersection & N 41
fork =1,..., g — 2 that we denote by Qy+1). We have already explained that there are r¢
such points in total, one on each component of &, and that each component of £, contains
rkri ; such points. Furthermore, the local situation around Q1) can be described in the
variables [(xq, x¢+1)] by:

i1 Brr1 —niBr 1 -1
Sv - X lem(ngq1,....ng) B
(1Bt — niBersn | =B (10)

& x(’)lkﬂk =0, Spgr xkk;llﬁkﬂ —0.
One can show that these are cyclic quotient singularities with

digern) = 7k Nk N1 (1 Bt — nicBr) (an
+ -— e —
k41 P Br+1

the order of the underlying small group as follows. First, by multiplying conveniently, we
can rewrite S into the form X (4 d | a; Zi) where d = ngy ﬂk+ 1 — ng ﬂk Second, the group
automorphlsm (E,m) — (En~',n) on pg x pg induces an isomorphism X(d|a; ) x~
X4 al ﬂ?—al ag— az) given by the identity. Using such an automorphism repeatedly yields an
isomorphism

dlay ay\ _ d

X(da3 a4)_X(d

where «, 8 € Z such that ged(ay, a3) = aa; + Bas. Third, every quotient space of the form
X (g |4 92 is isomorphic to a cyclic quotient space under the morphism

0 ay
ara) .~ x d;al,AAAfQZ%AAf e, x2)] | xgamraa) .
0 a4 ged(d, aq)

d(ar.
godiar. a3) “ﬁ%ﬁfﬁ“) Gl [l (12)

ged(ai,az)

d
x (4

Finally, we can rewrite the resulting cyclic singularity into a Hirzebruch—Jung singularity
as explained in Sect. 2.5. We do not provide more details as we will not need an explicit
expression for dj k1) in general. It is, however, worth mentioning that this approach can be
used to show that any quotient space X (d; A) = C?/puq is isomorphic to a cyclic quotient
space, and that we will illustrate this approach when the link of (S, 0) is a ZHS, see Sect. 4.3.

The last singular point of S for g > 2 is the intersection point Pg_1 1= &g 1 N Y =
Eg—1 N Hg around which we have

S—x (ng; 1 M)

ng

(13)

ng

No—1Bo1 N . NoBoe—ng—1Pal
Eor: g 20, Hyixg =0, Pt —xpefeePet g
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reebee @9
T . . e
0 Q>
&
&

7“ng2

e,

76;71

Py
€yt

Fig.2 The good Q-resolution of (S, 0)

Clearly, this point is a Hirzebruch—Jung singularity of type %(1, q) with

To recapitulate, we visualize the good Q-resolution ¢ as in Fig. 2, which shows the
exceptional curves and the singular points. For simplicity, the components of each & are
represented by lines, but we will see in a moment that they are not rational in general.

Using Corollary 6.5 from [16], we can compute the Euler characteristic of the exceptional
curves of ¢. More precisely, this result gives an expression for the Euler characteristic of the

d:= g

ged(ng—_1, ng) ged (

exceptional divisor & fork = 1, ..., g — 1 without its singularities: it states that
EN(EINH)UE NHDU(E NE)) fork =1
E =1 EN(E N H) U (E N E—1) U (Ek N Et1)) fork=2,...,g—-2

Eg1\((Eg—1 M Hg_1) U (Eg—1 N Eg2) U (g1 NY)) fork =g — 1

has Euler characteristic x (Svk) =— ";‘\,j Hence, the Euler characteristic of £ can be easily

computed by adding the cardinality of all its singularities. This yields:

"”31~|— +f411+r1 fork = 1
x(E) = ”kﬁk+ﬂk+rk Ve fork=2,...,g-2
—7"’51\,;% L+ ﬁg — trgo+1fork=¢g—1
Because the components &; for j = 1,...,r; are disjoint and isomorphic, their Euler
characteristic is equal to x (&;) = X(rf"_). Using that_ %’]‘( = flfj’; = gcd(nk,lcm?£k+1 ’’’’’ ) for
k=1,...,g — 1, see (9), and that rkﬂil]}k = gcd (f—:‘ lem(ngyq, ..., ng)), we can rewrite

these Euler characteristics as
B B
X (&) =2 — | ged (ng, lem(nggr, ....ng)) — 1) (ged | =, lem(ngqr, ..., ng) ) — 1.
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We indeed see that the exceptional curves are not rational in general. Even more, this implies
that the genus of &; is zero if and only if

ged (ng, lem(ngq, ..., ng)) = lor
Br

ged | —,lem(ngyq,...,ng) | =1fork=1,...,¢g - L
€k

Since the dual graph of the good Q-resolution ¢ : § — Sisatreeand the quotient singularities
of § can be resolved with bamboo-shaped dual graphs and rational exceptional curves, these
are already the conditions under which (S, 0) has a QHS link. In other words, we have already
shown the first part of Theorem 1.

3.3 Our surface singularities versus Brieskorn-Pham surface singularities

If g = 2,then (S, 0) C (C3, 0) is a Brieskorn—Pham surface singularity given by the equation
u(xo, xl)x(')l“ +x" + axy? =0,

where u(xg, x1) = —1 — )Lgxg”*"oxlb” € Cl[xo, x1]1] is a unit as byg > ng, see [17, Lemma

3.2]. Hence, in this case, the link of (S, 0) is a QHS ( resp. ZHS) under the condition

of Proposition 2.2, which is equivalent to (recall that gcd(np, n1) = 1) the condition that

gcd(ng, n2) = 1 or ged(ny, np) = 1 (resp. that the exponents n; fori = 0, 1, 2 are pairwise

coprime).

If ¢ > 3, then we claim that (S, 0) C (C8 *1.0) is never a Brieskorn—Pham singularity.
To prove this, we will show that the minimal good resolution of (S, 0) contains at least g — 1
rupture exceptional curves. An irreducible exceptional curve is called rupture if either its
genus is positive, or its genus is zero and it has valency at least 3 (i.e., it intersects at least
three times other components of the exceptional locus). This implies that (S, 0) is indeed not
Brieskorn—Pham for g > 3 as a Brieskorn—Pham surface singularity has at most one rupture
exceptional curve in its minimal good resolution. The latter can be seen by considering
a good QQ-resolution of a Brieskorn—Pham surface singularity consisting of one weighted
blow-up at the origin which yields one irreducible exceptional curve £ containing three sets
of Hirzebruch—Jung singularities. We refer for more details to [13, Example 3.6]; see also
Remark 2.3. As each of these singularities can be minimally resolved with a bamboo-shaped
dual graph and rational exceptional curves, the only possible rupture exceptional curve in
the obtained good resolution is the strict transform of £. This implies that the minimal good
resolution of a Brieskorn—Pham singularity indeed contains at most one rupture exceptional
curve. Even more, the minimal good resolution of a Brieskorn—Pham surface singularity
has no rupture exceptional curve if and only if it has only rational exceptional curves and
a bamboo-shaped dual graph or, thus, if and only if the singularity is a cyclic quotient
singularity.

To show that the minimal good resolution of (S, 0) has at least g — 1 rupture exceptional
curves, we make use of the good Q-resolution ¢ : S — Sof (S, 0), from which we can obtain
a (not necessarily minimal) good resolution 77 : § — S of (S, 0) by minimally resolving the
singularities of S. Since these singularities are all Hirzebruch—Jung, the only possible rupture
exceptional curves of 7 are the strict transforms of the exceptional curves of the good Q-
resolution. The next result immediately implies that the good resolution 7 has at least g — 1
exceptional curves that are rupture.
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Proposition 3.1 Lez(S,0) C (C8*!, 0) bea norma! surface singularity defined by the Eq. (6)
with g > 3. Consider the good Q-resolution ¢: S — S of (S, 0) introduced in Sect. 3.2.
Then,

(1) each exceptional curve Ej fork = 1,...,g —2and j =1, ...,y yields a rupture
exceptional curve in the good resolution 7 S—S of (S, 0) coming from ¢; and

(ii) ifrg—2 = 1(i.e., the exceptional divisor E,_; is irreducible), then ;1 yields a rupture
exceptional curve in the good resolution 7 : S—S of (S, 0) coming from .

Proof Note that we can determine whether the strict transform of an exceptional curve of ¢ is
rupture on § by considering the original exceptional curve on Sand counting each singularity
as an intersection. However, we need to take into account that, under certain conditions, it
is possible that some of the quotient singularities are in fact smooth. In this case, the latter
points can not be counted as an intersection in the good resolution.

Let us first consider a component & for some j € {1, ..., r}. If its genus is positive,
then it will trivially induce a rupture exceptional curve. So suppose that its genus is zero, that

is, ged(ny, lem(na, ..., ng)) = 1 or gcd(f—l‘, lem(ny, ..., ng)) = 1. Since &} intersects &
in a single point, we need to show that it contains at least two actual singular points outside
&. Recall that £; contains ﬁ = gcd(nl,chn(nz, o, rfg)) points Qo whose order as
Hirzebruch—Jung singularity is dyp = % and rlﬂnl,ll = gcd(f—:, lem(ny, ..., ng)) points Q4
with (_)rderdl = 1% = Wm Ifgcd(nl, lem(ny, ..., ng)) = 1, thend; = ny;if
gcd(f—l‘, lem(ny, ..., ng)) =1, thendy = f—ll = ng. Hence, we can distinguish three cases:
(1) if ged(ny, lem(ny, ..., ng)) = 1 and gcd(f—l‘, lem(ny, ..., ng)) > 2, then &;; contains
at least two singular points Q0 with order dy = n; > 1;
(ii) if ged(ng,lem(ny, ..., ng)) > 2 and gcd(f—:, lem(ny, ..., ng)) = 1, then £;; contains
at least two singular points Q¢ with order do = ng > 1;
(iii) if ged(ny, lem(na, ..., ng)) = gcd(f—:, lem(ny, ..., ng)) = 1, then &;; contains one
singular point Qg with order dy = no > 1 and one singular point Q| with order d; =
nyp > 1.

In other words, &1 ; will indeed always yield a rupture exceptional curve.
For &; with k € {2,...,g =2} (if g = 4) and j € {1,...,r}, we can work
in a similar way. Assume again that its genus is zero, which is now the case if and

only if ged(ng, lem(ng1,...,ng)) = 1 or gcd(f—f, lem(ngyy,...,ng)) = 1. We know
that &; has r’;;‘ = gcd(ny, lcm(n{(+1, e, ng)2 intersection points with &_1, a single
intersection point with &4 and rk%k = gcd(f—:,lcm(nkH, ..., ng)) points QO whose
order as Hirzebruch—Jung singularity is dj = 1\% = nk’lcm’g}’;ﬂl ,,,,, Tk Hence, if
ged(ng, lem(ng41, ..., ng)) > 2 (and gcd(f—:,lcm(nkﬂ,...,ng)) = 1), then & has
at least three intersections with other exceptional curves of @, and we are done. If
ged(ng, lem(ng1, ..., ng)) = 1, then dy = ny > 1. Therefore, in this case, &; will also be

rupture as it intersects both £_1 and £ in a single point and contains at least one singular
point Qy with order di > 1.

It remains to show the second part. If r,_» = 1, then gcd(ng_1, ng) = 1, which implies
that £ has zero genus. Furthermore, it has one intersection point with £_», one point
Pg_ 1 with order
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Be—1 ’
ng( f’g ,ng)
and % = ged( f;:,ng) points Qg1 with order dg_1 = ng_; > 1. We can again

conclude: if gcd(%, ng) > 2, then &1 contains at least two singular points Qg1 with
g -

orderd, 1 > 1;if gcd(ﬂi—;, ng) = 1,then & | contains exactly two singular points, namely
one Qg1 with orderdg_| > 1, and P,_| with orderd = ng > 1.

We still need to show that the minimal good resolution of (S, 0) contains at least g — 1
rupture exceptional curves. From Proposition 3.1, it follows that each exceptional curve
Ejfork =1,...,g —2and j = 1,...,r; can not be contracted in the good resolution
7: § — S;eitherits genus is positive so that Castelnuovo’s Contractibility Theorem does not
apply, or it has at least three intersections with other exceptional curves so that the exceptional
locus would not be a simple normal crossing divisor after contracting & ;. The same applies
to & 1 ifrg2 = 1 orrg o > 3. In other words, in these cases, the good resolution 7 is
minimal. If rg_» = 2, it is possible that £, is superfluous as the next example shows.
However, the obtained minimal good resolution of (S, 0) coming from contracting £, (and
possibly executing subsequent contractions) will still have at least g — 1 rupture exceptional
curves: all the exceptional curves &; fork = 1,..., g —2and j = 1, ..., ry are rupture,
where ry > 1fork=1,...,g =3 (ifg>4)andrg_» = 2.

Example3.2 1f r,_» = 2, then it is possible that the good resolution 7 : § — S is not
minimal. For example, consider the surface S ¢ C* defined by

3
xlz—xo +x%—x8x1 =0

2 2 1
x5 — xgxl + x5 — x00x2 =0.

(14)
The semigroup of the corresponding space monomial curve ¥ < C* is minimally generated
by (8, 12, 26, 53). From the properties of the good Q-resolution ¢ explained above, one can
easily check the following:

(i) the first exceptional divisor £; has r; = 2 components £1; and £, that each contain
two singular points Qg of type %(l, 1), while every point Q1 is smooth;
(ii) the genus of & is zero, and the points P> and Q5 are smooth; and
(iii) the intersection of &1 and & consists of two singular points Q 12, one on each component
of &1, that are Hirzebruch—Jung of type %(1, 3).

It follows that the dual graph of m: S — Sisasin Fig. 3, where we denote the strict
transforms of £ ; and & still by £ and &, respectively, and where the exceptional curves
5;) and 5}2 come from resolving the singularities Q¢ and Q12, respectively. Furthermore,
one can show that the pull-back of Y is given

2 4 2 4 6
o 0 12 12 12
Y =V 46 £,+2665+2) 948 £PF+10) £ +12) £,
j=1 j=1 j=1 j=3 =5
where Y is the strict transform of Y. Because 7*Y - & = 0by (5) and Y. &> = 2, which can

be seen from the local equation (13), we find that the self-intersection number of & is —1.
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Fig.3 Dual graph of the good
resolution of (S, 0) C (C*, 0)
defined by (14)

Hence, by Castelnuovo’s Contractibility Theorem, the exceptional curve & can be contracted
in order to find the minimal good resolution of (S, 0). However, this minimal good resolution
has still g — 1 = 2 rupture exceptional curves, namely £11 and &13.

4 Conditions for integral homology sphere link

In this section, we will prove the second part of Theorem 1 for g > 3 using the good Q-
resolution ¢: § — S of (S5, 0) introduced in Sect. 3.2. To this end, following Theorem 2.1,
we will investigate the determinant of (S, 0) with formula (3) in terms of ¢.

Remark 4.1 (i) Note that Theorem 1 generalizes the g = 2 case or, thus, the classification
for Brieskorn—Pham surface singularities in Proposition 2.2. Even more, for g = 2, one
could also obtain this result by using the good Q-resolution ¢ := ¢y : S — Sof (S, 0).

(ii) When the link of (S, 0) is a ZHS, we see that r;, = 1 and Ny = nk,B_k for every
k =1,...,g — 1. Hence, all exceptional divisors & for k = 1,..., g — 1 are irre-
ducible with multiplicity 7 B, and the dual graph of the good Q-resolution ¢ : S-S
is bamboo-shaped with quotient singularities as described in Sect. 3.2. In particular,
by Proposition 3.1, the good resolution of (S, 0) obtained from ¢ by resolving the
singularities of S is minimal.

4.1 The determinant of the intersection matrix of the good Q-resolution (f)

Because we already know the singularities of S, we will be able to compute the determinant
of (S, 0) once we know the determinant of the intersection matrix A of ¢. To compute the
latter, we first need to calculate the (self-)intersection numbers of the exceptional curves &
fork=1,...,g—1landj =1, ..., rg.Clearly, from the local situa}ion (10) around Qg (k+1)

foreveryk = 1, ..., g =2, weimmediately have &; - Et1)jr = g i € N Eryjr # 0.

To find the self-intersection numbers —ay = Sfj, we can use the fact that p*Y - &j =0,

see (5), where ¢*Y is given by (7). Since Y only intersects £ in the single point Py

with local situation (13), we know that ¥ - &,y = " and ¥ - &; = 0fork = 1,...,g —2
and j =1, ..., ry. We obtain
N
dlzlz\’ fork =1
1 Fr—1Ng— N,
ar =1 w; (Vidl(k—kl)kl + dk(’;:‘”) fork=2,...,8—2 (15)

1 rg—2Ng—2 + ”g) f _
- or k = — 1.
Ng-1 (d(g—2)<g—1) d §
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We can now write the intersection matrix A as follows:

A Aip O 0 0
A1 Ay Azj 0 0
0 Asp A3 Asy e 0
A= . . . . ) (16)
0 o - Ag—2,g—3 Ag—2 Ag—2,g—1
o 0 --- 0 Ag_1,0—2 Agq
Here, we denote by Ay fork =1,..., g — 1 the (rx X ri)-diagonal matrix with —a; on the
diagonal, by Ay y4+1 fork =1, ..., g — 2 the (ry X rg41)-matrix
Dig+r O - 0
0 Dikt1--- 0
An=| . ] )
0 0 -+ Dri+1
where Dy jy1 is the rkr«kh -column vector (m, o m)’, and by Agy1x = A} ., for
k=1,..., g—2thetranspose of Ay y+1.Notethat A | = —agand Ag 3 4| = Dg_2 4 1.

We will now show a formula for the determinant det(A) of a general matrix A defined
as in (16). Hence, this formula can be used to compute the determinant of the intersection
matrix for any good Q-resolution with a dual graph as in Fig. 1, in which the horizontally
aligned exceptional curves are isomorphic, have the same self-intersection number, and have
the same intersection behavior with the other exceptional curves.

We start by fixing some notation. First, fork = 1,..., g —2, put py := % Second, for
I =2,...,g—1,lets(l) be the set of non-empty subsets K of {(k,k+ 1) |[k=1,...,1 — 1}
such that for all (k,k + 1) # (K, k' +1) € K, we have k # k' + 1 and k¥’ # k + 1. For
suchaset K € s(l), wecall c(K) :={kef{l,..., I} | (k,k+1)¢ K, (k—1,k) ¢ K}its
complement. Finally, we introduce Ry := 1, R :=ay, and, forl =2,...,¢g — 1,

I (41
Re=[lacty 0 3 | T || I «.
k=1 i=1

Kes(),|K|=i \(k.k+1)eK dik+1) kec(K)

where we put [[;c.x)ax = 1if c(K) = . For example, if [ = 2, then 5(/) only contains
the set {(1,2)} with c({(1,2)}) = @, so Ry = aja, — &-. If I = 3, then s(3) consists of

di
two sets, {(1,2)} and {(2, 3)}, with complements {3} and {1}, respectively. Hence, R3 =
a _ piaz _ paai
1O, s
Before explaining how det(A) can be expressed in terms of these R; for/ =1, ..., g —1,

we prove the following recurrence relation.

Lemma4.2 Foralll =1,...,g —2, we have

PIRI—1
—Rip1 = —a iR+ — .

1(I+1)
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Proof For ! = 1 and I = 2, this follows immediately from the simple expressions for R,
Rj, Ry and R3. For [ > 3, the right-hand side is by definition given by

I+1 141 -1
(Ma+Xer > (I 72 )(an T a)-2" I«
1 kec(K)

k=1 i= Kes(l),|K|=i *(kk+1)ek “kk+1) I(+1) k=1

@ (b)

w))

(54

+§(_1),~+1 ) ( pi 1 Pk >< il

2 2
dias1y gxsnex s

Kes(l—1),|K |=i kec(K)
()
We need to show that (a) + (b) + (c) = (d) with
(41
i Pk
TEDSEIND SR B ) s N
i=1 Kes(+1),|K|=i \(k.k+1)eK ~k(k+1) kec(K)

It is trivial that (b) corresponds to K = {(/,/ + D)} in (d). Using that [1] = [51] + 1,

one can also see that (c) yields the part in (d) where (/,/ + 1) € K and |K| > 2. Hence, it

remains to show that (a) corresponds to the part in (d) where (I, [+ 1) ¢ K. Clearly, we only

need to check that the boundaries for | K| agree; in (a), the upper bound is [%], while in (d),

the upper bound is [%]. However, in (d), we need to take into account that (/,/ + 1) ¢ K.

We remark the following two facts:

(i) if / + 1 is even, then a set K € s(/ + 1) attains the upper bound |K | = [5'] = &L if
and only if K = {(1,2), (3,4),...,(, [+ 1)};and

(ii) if/+11is odd, then there are multiple sets in s (/ 4 1) attaining the upper bound [%] = %,
for example {(1,2), (3,4),...,( —1,0)}and {(2,3), 4,5),..., I, + D}.

Hence, if [ + 1 is even, then |K| for K in (d) with (I, 4+ 1) ¢ K varies between 1 and

[%] —-1= [%]. In other words, the boundaries for | K| agree. Likewise, if [ 4 1 is odd, then

K in (d) with (I,1 + 1) ¢ K can still attain the upper bound [%] = [%].

This recurrence relation will be very useful for showing the next formula for det(A).

Proposition 4.3 Let A be a matrix defined as in (16) for some g > 3, ry > 1 for k =
L,...,g—=1withrg_y =1, and dygy1) = 1 fork =1, ..., g — 2. We have
g—1

a8
det(A) = (=)=t Rey [T R
=1

Using the recurrence relation from Lemma 4.2 and the expressions in (15) for a; for
k=1,...,g—1in which ”‘r;‘ = pr—1, itis not hard to see that, in our case, the expression
for R; simplifies to

Niti

1
Ni [Tizt drr+1)
ng

=
N1d T§_7 diges)

This immediately yields the following expression for the determinant of the intersection
matrix of the good Q-resolution of our surface singularities.

forl=1,...,g—2

R, =
forl=g—1.
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Corollary 4.4 Let (S,0) C (C&+!,0) be a normal surface singularity defined by the equa-
tions (6) with g > 3. Consider the good Q-resolution ¢: S — S of (S, 0) introduced in
Sect. 3.2. The determinant of the intersection matrix A of ¢ is given by
g—1 ArTk—1—7k
-1 N N,
det(A) = (~DXiair =2k
Ny [Tz dik+1)

In order to better understand the idea of the proof of Proposition 4.3, we first consider the

simple case where ry = 1 forallk = 1,..., g — 1, and A is the tridiagonal matrix
—a . 0 S 0
;e 1
W TR 3 e 0
1 1
Lt g, 1
d(g-3)(s-2) 1g 2 g
0 —  —d,_
d(g-2)(g-1) g1

If we denote this matrix for a moment by A(g) for g > 3, then the general three-term
recurrence relation for the determinant of tridiagonal matrices tells us that

det(A(g)) = —ag—1det(A(g — 1)) — det(A(g —2)), (18)

2

(§—2)(g—-1)
where, by convention, we put A(1) = 1 and A(2) = (—ay). This recurrence relation can be
shown by first expanding the determinant of A(g) along the last column (resp. row) and then

expanding the minor corresponding to ﬁ along the last row (resp. column). Note the
8

-2)(g—1
similarity between this relation and the relation from Lemma 4.2. Even more, by induction
on g and with exactly the same argument as in the proof of Lemma 4.2, one can show that

det(A(g)) = (—1)g‘1Rg_1 for g > 3, in which py = 1 forallk =1, ..., g — 2. In other

words, the recurrence relation satisfied by the R; for/ = 1,..., ¢ — 2 in Lemma 4.2 is a
generalization of (18) by allowing general py > 1 fork=1,...,g —2.
To show Proposition 4.3 for general ry > 1 fork =1, ..., g — 2, we will work towards
tridiagonal matrices of the following type:
1
—das ds(s+]) T 0
1 . . :
By = | o0 : (19)
. . . 1
) dig-2)(g-1)
0 dg o gl

where s € {1,..., g — 1}. Note that A(g) = B and, thus, that det(B;) = (—l)g_le,l.
For general s, we can write the determinant of By as (—1)87° R,_; in which we start with a;
instead of a;. We will write det(A) (for g > 4) in terms of these tridiagonal matrices using
the formula in the next result.

Lemma 4.5 Consider g > 4. Let t be the smallest k € {1,...,g — 1} such that ry = 1.
Assume that2 <t < g — 2. Then,

1R
Re—ydet(By) + P22 det(Byy1) = (~ ¥Ry 1.
(1=t
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Proof First, note that such # € {1, ..., g — 1} always exists as r,_1 = 1. Furthermore, note
that ry = 1 for all k > ¢ so that py = 1 for all k > r. With the expression for det(B;) ( resp.
det(By41)) in terms of Ry, (resp. R,—; 1) in which we start with a, ( resp. a,1) instead
of a; and all p; = 1, we can show this formula with similar arguments as in the proof of
Lemma 4.2. However, we will prove the stronger result that

1R .
Ry-1 det(By) + 22222 det(Bya) = (=18 Ry
(s—1)s

forall s =t,..., g — 2 by using backward induction and the statement of Lemma 4.2. For
s = g — 2, we need to consider

T2 g —21)< -1 Pg—3Rg—4
Re_sdet| 1 e ) Pe3 et g g, )

L _ 2
T -l dig—3)5-2)
Pg—3Rg—4 Rg_3
= —dg-1 <_ag2Rg3 + J g > - gy g s
(-3 (g-2) (g-2)(g—1)

and show that this is equal to (=1)87*R,_| = Rg_;. This follows from first applying
Lemma 4.2 for/ = g — 3 and thenfor/ = g — 2 with p,_» = 1. If t = g — 2, we are done.
Otherwise, suppose it is true for s + 1 < g — 2. For s, we first expand det(B;) along the first
column and then expand the second minor along the first row to get

R 1Ry
Rg_1det(B;) + % det(By+1) = (_aSRS—l + 17;21?2>
(s—1)s

(s—1)s
Ry

det(By+y1) — o det(By+2).
s(s+1)

This way of rewriting det(By) is the same as the one we can use to show the three-term
recurrence relation (18) for the tridiagonal matrices A(g), but with expansion along the first
column instead of along the last column. Because of the similarity between the relations
in (18) and Lemma 4.2, it is no surprise that we can apply Lemma 4.2 for / = s — 1 so that

Ry_ydet(By) + 222 et 1) = — Ry det(Byy1) — !
(s—1)s s(s+1)

det(By42).

Since p; = 1 as s > ¢, we can conclude with the induction hypothesis.
We are now ready to prove Proposition 4.3 by using these matrices Bj.

Proof of Proposition 4.3 As in the previous lemma, let ¢ be the smallest k € {1,..., g — 1}
such thatry = 1. If r = 1, we already know that det(A) = (=181 Rg 1. Fort > 2, we will
show that

t—1
g—1+ > rk —1 .
det(A) = (=1) =1 Ry R
=1

Because ry = 1 for k > ¢, this yields the formula given in the proposition. Throughout the
proof, we will denote by A(ry, ..., r,_1) amatrix defined as in (16) corresponding to some
ri,...,rg—1 = 1 with g > 3 in which we also allow r,_; > 1. To get an idea on how to
show the above formula for general 7, we first consider r =2, =3 and t = 4.
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Ifr =2,then A = A(rq, 1,...,1) with r; > 2. If g > 4, we can, similarly as in the
proof of Lemma 4.5, first expand det(A) along the first column and then expand the minor
corresponding to ﬁ along the first row to find that

d d L ge (4170
et(A) = —aydet(A(r; — 1,1,...,1)) — — det
(A) 1 det(A(r ) e (OB3>
-1
(_1)r|a’l’l
df,

= —ajdet(A(ry — 1,1,..., 1) + det(B3),

where Aq‘_l denotes the diagonal matrix of dimension r; — 1 with —aj on its diagonal. We

can now repeat this on det(A(r; — 1,1, ..., 1)): we expand the determinant along the first
column and simplify the minor corresponding to dilz' This yields

-1
2(=D"a)’
dt,

det(A) = a} det(A(r — 2. 1,.... 1) + det(B3).

Note that the first determinant for 1 = 2 is just det(B>). If we do this procedure r; = p;
times in total, we get

ri(=)nap”!
2

det(A) = (=1)"a}" det(B>) + det(B3)
12
=1 P1Ro
=(=1) lRl Ry det(By) + py det(B3)
2

— (_1)r1+g—2qu_1Rg_l’

where we applied Lemma 4.5 in the last equality. If g = 3, then along the same lines, we
obtain that

- R
det(A) = (=)' R} (—a2R1 - péz °> :
12

from which the required formula follows by Lemma 4.2.

Ift+ = 3and g > 5, we start by executing two steps. In the first step, we work asinthet = 2
case: p1 times in total, we first expand along the first column and then expand the second minor
once more along the first row. This way, we can rewrite det(A) = det(A(ry, 72, 1,...,1))
as

(PRI (Rl det(A(r — proras 1., 1)

R
+p;20det(A(r1 — 1, — 1,1,.‘.,1)),

12
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where A(rl — p1,1r2, 1, ..., 1) is the matrix
A’il*[’l [0 | A’l p1.r2— l] 0 0 0
[0 A7,y A Az 0 - 0
0 A3z —as dlz 0
1. - : )

0 0 i . :
1

) ) d(g-2)(g-1)

0 0 O - Ty

in which A}'7”" denotes the diagonal matrix of dimension r; — p; with —a; on its diagonal,
AV 1271 denotes the (11 — p1) x (r» — 1)-matrix defined in terms of the column vector
Dy, = (ﬁ ey dl ) of length p; as in (17), and [O | A?J—m,rz—l] is the (r] — p1) X ra-

VT ! by adding a zero column. In the second step, we expand

matrix coming from A}
det(A(n —p1,12, 1,. 1)) along the (r; — p1 +1)th column (i.e. the column corresponding
to the firstentry of A, wh1ch also contains the zero column of [0 | Ar1 prra= ]) and simplify
the minor corresponding to d . We find that det(A) is given by

(—l)p'Rfl_] [( aR + L )det(A(m pi,—1,1,...,1)

]2
- det(A(r = p1,r2 = 1) det(&)}.
23

By Lemma 4.2, this is equal to

(=PRI Ry det(A(ry — prora— 1,1,..., 1))

+5- det(A(r1 = pr,r2 = 1) det(&)} :
23

Repeating both steps on det(A(r; — p1,r2— 1,1, ..., 1)) and det((A(r; — p1, 2 — 1)) gives

det(A) = (~=1)XP1TDRIPI=D R, [Rz det(A(ri —2p1,r2—2,1,..., 1)

2R
+ 721 det(A(r1 —2p1,r2 —2)) det(&)]-
23

Note that for det(A(r; — p1,r2 — 1)), we do not have a minor corresponding to é in the
second step. Hence, if we do these two steps rp = p; times in total, we find that

det(A) = (=1)P1+Drz2 gP1=Dr2 gra= I(deet(Bg)-l- det(B4))

23

We can conclude using Lemma 4.5 and the fact that r{ = pjry. The result for t+ = 3 and
g = 4 again follows along the same lines with Lemma 4.2.

Fort = 4 and g > 6, we can compute det(A) = det(A(ry, 2,73, 1, ..., 1)) as follows.
We first follow the procedure that we used for + = 3. More precisely, we execute p, times
two steps: first, we expand p; times along the first column, and then, we expand along the
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column corresponding to the first entry of Ay, and in both steps, we simplify the second
minor corresponding to d]? and dlz, respectively. In other words, we rewrite det(A) as

—1 —1 -
(—1)<P1+1)P2R§’” ”’2R§2 <R2 det(A(ry — pipa.ra— pa,r3, 1,..., 1)

P2R)
+ —5—det(A(ri — pip2,r2—p2,r3— L 1,.... 1)) ),
dy;
where /i(l’] — p1p2, 2 — p2,1r3, 1, ..., 1) is the matrix
Arl‘l—Plpz AE{;ple,rz—pz 0 0 . 0
(A PPy AP 0| Agz’;l’z,rrl] 0 0
0 [0 | Ag;pwrﬁr Az Az o 0
0 0 A4z ’
1
dg-2)(g-1)
0 0 0 dgoen e

in which we use the same notation as before. Now, by expanding along the column containing
the first entry of A3, simplifying the minor of TL‘ and using Lemma 4.2, we can further rewrite
det(A) as ‘

(—PrtDptl ipI=Dr2 ppo=] [R3 det(A(ry — p1pa.ra —p2.r3—1,1,..., 1)

R
+ de det(A(r1 — p1p2,r2 — p2, 73 — 1))det(35)].
34

We can repeat these two steps (i.e., the procedure for t = 3 followed by an expansion along the
column corresponding to the first entry of A3)ondet(A(ri —pip2,ra—p2,r3—1,1,...,1))
and det(A(ry — p1p2,r2 — p2,r3 — 1)). In total, we can do this r3 = p3 times to find that
_ _ _ R
det(A) _ (_1)((171+1)P2+1)r3 Ripl 1)P2r3RéP2 Dr3 Rg3 1(R3 det(B4) + Pd32 2 det(35)>,
34

which equals the required formula by Lemma4.5. The case g = 5 can once more be concluded
along the same lines.

For general + > 3 and g > t + 2, we can obtain the above formula for det(A) in a
similar way as for t+ = 3 and r = 4. More precisely, we first repeat the procedure used for
t — 1 to obtain an expression involving a matrix similar to A(rl —p1,r2—1,1,...,1)and
A (ri—pi1p2,r2—p2, 13, 1, ..., 1). Then, we can further expand along the column containing
the first entry of A,_1, simplify the minor of d(il)[ and use Lemma 4.2. Again, executing
these two steps p; times in total, yields

t—1
- 1R -
det(A) = (-1 TR (R,l det(B,) + P12 det(Bm)) ,
=1 (t—1t

from which the formula follows with Lemma 4.5. If g = ¢ + 1, then the formula follows
along the same lines with Lemma 4.2.
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4.2 The determinant of (S, 0)

With the information on the singularities of § that we listed in Sect. 3.2 and the expression
for det(A) from Corollary 4.4, we immediately find the determinant of (S, 0); it is given by

N w &l N, w &2
1 0 k k 7
det(S) = | det(A)| d <—> <—> d,*
MO ]!:[1 Mk ]!:[l k(k+1)
A _ B _ _
_<N1>M(())rl gl—Il(Nk>MI;rk i_[lNrkfl—rkn ( 1 >r1 gl_II(Nk>rk
=\ 'Ya k g\ /- YA .
Mo izt \ Mk k=2 Mo izt \ Mk
From the expression (9) for dy = Z—’; fork=1,..., g — 1, we know that
Ne lem(ng, ..., ng)
M lem(ngy1, ...,ng)'
Note that for k = 1, this gives that 1\% = lcm(n};/lioné) Hence, using the notation ryp = 5—%

we can further rewrite det(S) into the following expression.

Corollary 4.6 The determinant of a normal surface singularity (S,0) C (C8T1,0) defined
by the equations (6) with g > 3 is given by

g—1 Bk

Nk Mfk*”k Nk Tk—1—"Tk
det(S) = — _ .
et(S) H(Mk> lem(ng, ..., ng)

k=1

According to Theorem 2.1, we need to investigate when this determinant is equal
to 1, under the condition that the link of (S, 0) i_s already a QHS or, in other words,

that ged(ng,lem(ngyy,...,ng)) = 1 or gcd(’j—’;, lem(ngyy,...,ng)) = 1 for all
k=1,...,g— 1. Recall that the condition gcd(ng,lem(ngyq,...,ng)) = 1 is equiv-
alent to rx,—; = r. Furthermore, it is equivalent to Z—’,‘( = ng. In other words, if
ged(ng, lem(ng1, ..., ng)) = 1, then the part for k in det(S) is given by
- =n .
M; lem(ng, ..., ng) k
Similarly, the condition gcd(f%’(‘, lem(ngy1, ..., ng)) = 1is equivalent to both 1\% = rr and
lcm(ni\,7kng) = f—: so that in this case, the part for k is given by
Bk Fk—1—"Tk
g .
This implies that, in both cases, the part for k in det(S) is equal to 1 if and only if
ged(ng, lem(ng41, ..., ng)) = gcd(f—l’:, lem(ngy1, ..., ng)) = L. It follows that det(S) is
equal to 1 if and only if ged (ng, Iem(ngy, ..., ng)) = gcd(’j—f, lem(ngyy, ..., ng)) = 1for
allk =1, ..., g—1.Finally, one can see that the condition that gcd (ng, lem(ng 41, ..., ng)) =
1 forall k = 1,...,g — 1 is equivalent to the 90nditi0n that n; fori = 1,...,¢
are pairwise coprime. Hence, the condition gcd(f—l',lcm(nz,...,ng)) = 1 becomes
ged(ng, na, ..., ng) = 1, which is equivalent to ged(ng,n;) = 1foralli = 2,...,g.
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Because ng and n are coprime by assumption, we indeed find that (S, 0) has a ZHS link if
and only if the exponents n; fori = 0, ..., g are pairwise coprime and gcd(f—’k‘, Nyl - Ng) =

gcd(f—,f, ex) = 1fork=2,..., g — 1. This ends our proof of Theorem 1.

Example 4.7 Consider the surface S| C C* (g = 3) defined by the equations
xlz—xg +x;—x30x1 =0
x; — xgoxl + x35 — xggxlxg =0.

The semigroup of the corresponding space monomial curve has (70, 105, 215, 1511) as
minimal generating set. By Theorem 1, the link of (51, 0) is a ZHS as the exponents 3, 2,7

and 5 are pairwise coprime and gcd(f—;, ) = gcd(%, 5) = 1. However, if we modify these
equations slightly, then the surface S»  C* given by

2 21
xl—xg +x;—x0x1 =0
x; — xglxl + xg — x82x1x§’ =0

does not have a ZHS link. Indeed, the corresponding set of generators is (70, 105, 225, 1579)
with gcd(f—i, e) = gcd(zsﬂ, 5) # 1. Note that the link of (53, 0) is a QHS as the exponents
3,2,7 and 5 are still pairwise coprime. The surface singularity from Example 3.2 is an
example of a surface singularity in our family with no pairwise coprime exponents, but whose
link is a QHS as ged (L, lem (5, n3)) = ged(12,2) = 1and ged(£2, n3) = ged(¥,2) = 1.
Finally, the equations

xlz—xg +x§—x61x1 =0

xé — x(%lxl + xg — x(%gxlx; =0
define a surface §3 C C* with neither a QHS nor a ZHS link: the corresponding
genergting set is (24, 36,75,311) with gcd(ny, lem(nz, n3)) = ged(2,12) # 1 and
gcd(‘z—ll, lem(na, n3)) = ged (38, 12) # 1.

4.3 Our surface singularities with ZHS link versus singularities of splice type

We finish this article by showing that if (S, 0) has a ZHS link, then it is of splice type. In
other words, they belong to the family of complete intersection singularities of splice type
defined by Neumann and Wahl and support their conjecture on the possible normal complete
intersection surface singularities with a ZHS link.

Since (S, 0) for g = 2 is trivially of splice type, we assume that g > 3. We first deter-
mine the splice diagram of (S, 0). We can again use the good Q-resolution ¢ : S— S.In
Remark 4.1, we already mentioned that each exceptional divisor & fork = 1,...,g — 1
is irreducible with multiplicity Ny = ny B, and that the dual graph is bamboo-shaped with
quotient singularities as described in Sect. 3.2. Taking a closer look at these singularities,
one can check that the resolution ¢ is as in Fig. 4, where the numbers in brackets represent
the orders of the small groups acting on the singular points.

It immediately follows that the splice diagram is of the form as in Fig. 5, in which the
nodes from left to right correspond to & fork =1, ..., g — 1, and the edge weights ny for
k=0,..., g come from the singular points Qy fork =0, ..., g — 1 and P,_;. It remains
to show that the other weights are given as in the figure.
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Fig.4 The good Q-resolution of
(S, 0) when the link is a ZHS

Fig.5 The splice diagram of (S, 0) with a ZHS link

We start by showing that the order di41) corresponding t0 Qik+1) = & N Ekqq for
k=1,..., g—2becomes very easy. Following the approach explained in Sect. 3.2, we need
to consider the quotient space

X (nk+1ﬂk+1 —meBi| ex —€k>

_ Br+1 mBr
ekl ek

nk+1,3k+1 - nkBk‘

Br+1
€k+1

Bi+1
eky1’

Because ged( ex+1) = 1 by assumption on the link, and ged( ,Nk+1) = 1 by the

properties of the semigroup, we see that gcd(f;j]‘ ,er) = ged( 511:11 ,ngt1ek+1) = 1. Hence,

the isomorphism in (12) says that this quotient space is isomorphic to

¥ (nk+ll§k+l - nklék‘l —aey + ﬂnﬁfk

n . niBr
_ _ _ 2 ) =X <”k+1,3k+1 —nkPr; 1, —aer +/37> ;
i1 Bt — miBi |0 nicBr — niy1 Bt €k
where ae; — ,Bf"—il = 1. It follows that di 1) = nk+15k+1 — ”kBk = Ni4+1 — Ni. Note
that this is consistent with (11). Using this, one can also easily see that the expressions (15)
for the self-intersection numbers —ay := 5,?1. become

N> _
TN fork =1,
_ Ni+1—=Ni—1 _ _
Ak =\ Toenidiarn fork=2,...,g—2,
1 fi
— ork=g—1.
dig-2)(g-1) g

Let us now take a look at the edge to the right of £;. To show that its weight is e, we
need to compute the determinant of the intersection matrix corresponding to the dual graph
coming from removing & in Fig. 4 and resolving the singular pointson &, ..., £,_1. By (3),
this is equal to
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g g2

| det(B>)| 1_["1 l_[d1<1+1) = |det(B2)] e Hdz(1+1),

=2 =1 =1
where B> is defined as in (19). Hence, we need to check that

1
|det(B2)| =

72 -
1=1 dia+1)
Similarly, fork =2, ..., g — 2 (if g > 4), we want that

g g2 g2
=|detBirn)l [ m []diasr) = IdetBipn)l e []diar)-
I1=k+1 1=k =k
Using the expression for det(Bs) for s = 2, ..., g — | in terms of the R; from Sect. 4.1, or

using an induction argument, one can see that this is indeed true.
Analogously, to show that the weight on the edge to the leftof & fork =2,..., g —1is

equal to , we need to check that

ﬂ k-1 k-1
= |det(B;_pI [ [ []dar.
=0 I=I
where
1
—ar 7= - 0
1
B, = di2 , s=1,...,g-2
: 1
: dis—1)s
0 - 1 —q

ds—1)s
By, for example, an easy induction argument, one can compute that
(=1 Nyt
Ni [Tz diaeny
Since Nyy1 = ns+1/§s+1 and N| = Hf:o n;, we can conclude.
Checking the semigroup condition and finding the splice type equations are now very easy.

Denote by w for k = 0, ..., g the leaf corresponding to n,,, and relate to w the variable z,,.
For the edge to the right of & fork =1, ..., g — 2, the numbers l,’m forw=k+1,...,¢

det(B)) =

are given by ¢, ]_[;“:_,(ﬁrl n;. Hence, e = nyl;, forevery w = k4 1,..., ¢ or, thus, the
edge weight ey is indeed contained in the semigroup (/;, | w =k +1,..., g). For the edge
to the left of & fork =2, ..., g — 1, the numbers l,’cw forw =0,. k — 1 are given by
ﬁw l_[l = ﬂw ﬂk — 2[1:/311( — kaEkﬂO1 +. ﬁk

semlgroup (I w | w=0,. ,k — 1). It follows that the semlgroup condltlon is fulfilled.

Furthermore, along the same lines, we have shown that the following equations are of strict
splice type:

" + 7'+ 27 =0
n by _b
52+ 25+ P =
'1 1 10 _b—1)1 b(g—1)(g—2

e +Zg —I—z(g 0 b g(fzxg ) — 0.
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These are the equations of (S, 0) up to higher order terms and coefficients. In other words,
the singularity (S, 0) is indeed of splice type.
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