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In the curriculum of a Computer Engineering program, concepts like parallelism, concurrency, consistency, 
or atomicity are usually addressed in separate courses due to their thoroughness and extension. Isolating 
such concepts in courses helps students not only to focus on specific aspects, but also to experience the 
reality of working with modern computer systems, where those concepts are often detached in different 
abstraction levels. However, due to such an isolation, it exists a risk of inducing to the students an 
absence of interactions between these concepts, and, by extension, between the different abstraction 
levels of a system.
This paper proposes a learning experience showcasing the interactions between abstraction levels 
addressed in laboratory sessions of different courses. The driving example is a parallel ray tracer. In the 
different courses, students implement and assemble components of this application from the algorithmic 
level of the tracer to the assembly instructions required to guarantee atomicity. Each lab focuses on a 
single abstraction level, but shows students the interactions with the rest of the levels. Technical results 
and student learning outcomes through the analysis of surveys validate the proposed experience and 
confirm the students learning improvement with a more integrated view of the system.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development of a Computer Engineering (CE) program must 
catch up with the fast evolution of the field. Since the end of the 
2000s decade, technological limitations have led to an increase in 
the number of execution contexts running in parallel on a com-
puter system. This requires the ability to not only implement algo-
rithms that expose as much parallelism as possible, but also make 
an efficient use of hardware mechanisms to guarantee safe parallel 
execution. In this sense, following the recommendations of both 
the NSF/IEEE-TCPP Curriculum Committee [32] and the ACM/IEEE 
Joint Task Force on Computing Curricula [1], numerous approaches 
have made an effort to increase the presence or to reinforce Paral-
lel and Distributed Computing (PDC) in CE programs. Recent work 
distributes PDC topics across different courses through the inte-
gration of modules into existing courses [7,20,38], introducing par-
allel programming in lower-level courses [6,18,42], the proposal 
of research-oriented teaching methodologies [16,22,30], or the cre-
ation of new courses [12,28,35].
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A common approach to design and explain a computer system 
is to split the complexity of the whole system into self-contained 
levels. Since such levels relate to each other, each level provides a 
working interface to the remaining levels. These interfaces model 
a simplified abstraction of the underlying complexity and establish 
clear boundaries across the different parts of a system [21].

In most CE programs, each course typically resorts to abstrac-
tions in order to design and explain computer systems. Abstrac-
tions help to strengthen the learning process, since they make 
students focus on specific aspects. However, in our experience, stu-
dents often lose the overall view of a computer system with such 
an approach. This may lead students to the conclusion that some 
courses are self-contained and do not relate to each other. Partic-
ularly, many of them forget the hardware implications underlying 
high-level abstractions, in terms of performance and power.

Previous work has proposed to teach PDC topics from the per-
spective of either high-level abstractions to ease both algorithm 
and software designs [13,17], or low-level abstractions such as as-
sembly programming to understand what is required to support 
parallel execution [24]. Unlike these approaches, this paper rein-
forces PDC topics from the highest to the lowest level of abstrac-
tion that underlie complex parallel applications in a computer sys-
tem [9]. More precisely, this work exposes to the students how the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Instruction Set Architecture (ISA) and the operating system pro-
vide the required support to high-level synchronization operations, 
which in turn help strengthen the knowledge on how the essential 
concepts of parallelism, concurrency, consistency, and atomicity 
entangle among them and with the hardware [2,23,37].

To better understand the relations among the aforementioned 
concepts, this paper proposes to develop multiple components that 
at the end build a fully parallel ray tracing application. Ray tracing 
has been used in the past as a cross teaching experience to in-
tegrate two upper-level courses referring to high-level abstractions 
such as CUDA programming and advanced rendering concepts [25]. 
On the contrary, we present a learning experience involving mul-
tiple laboratory sessions of lower-level and upper-level courses 
of a CE program. The ray tracer serves as a motivating example 
that uses a concurrent queue to assign tasks to different execu-
tion threads. The queue is accessed in mutual exclusion to pre-
serve data integrity. With this purpose, the access to the queue is 
managed according to each abstraction level, with mutexes imple-
mented with library functions, system calls, or directly in assembly 
language. This way, the proposed learning experience covers four 
abstraction levels: Application, Library, Operating System, and ISA. 
Each abstraction level implicates a different course.

Each proposed lab is mainly tied to the interaction of two spe-
cific levels of abstraction, and purposely endowed with a context 
referring to the rest of the levels, contributing this way to inte-
grate the different abstraction levels. In this work, we introduce 
the main guidelines, objectives, and results of the proposed ex-
perience, which allow to implement other experiences reinforcing 
inter-course learning.

Prior work has proved the suitability of a single-board com-
puter for teaching parallel computing over mobile devices, student 
laptops, virtual machines, or remote multicore servers [26,27,45]. 
We build upon these studies by using a common hardware board 
in all the proposed labs, which contributes to consolidate an inte-
grated view of the system. To this end, we analyze several boards 
and conclude that Raspberry Pi meets the vast majority of the 
hardware and software requirements of an inter-course learning 
experience.

The presented experience is the result of a project carried out 
in a CE program during the current and the past two academic 
years, in which assessment studies of the proposal have been al-
ready carried out thanks to a set of volunteer students. For the 
current 2020/2021 academic year, all the proposed labs are fully 
deployed and all the enrolled students in the involved courses are 
taking part in the proposed experience. This paper discusses ex-
perimental results for all the proposed labs, including both the 
technical details of the lab assignments and the students learn-
ing outcomes using pre/post surveys. These surveys expose that 
students effectively demand a deeper understanding of the in-
teractions between the abstraction levels, and such demands are 
fulfilled after the completion of the labs.

The remainder of this paper is organized as follows. Section 2
introduces the context of the CE program and specific courses in 
which the proposed experience is established. Section 3 describes 
in depth the learning experience. Section 4 discusses the require-
ments to implement inter-course learning and the suitability of the 
selected boards. Section 5 shows the technical results. Section 6
presents a qualitative assessment of the applied learning method 
and students learning outcomes. Finally, Section 7 summarizes the 
paper.

2. Context

This section describes the organization of the CE program, in-
cluding a brief description of the types of courses in each academic 
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year. In addition, the syllabus of the involved courses in the pro-
posed learning experience is described in more detail.

2.1. CE program

The proposed experience is planned to be fully integrated in the 
CE program at the Universidad de Zaragoza (UNIZAR). This program 
consists of four academic years, 240 ECTS1 credits in total.2 The 
first two and a half years are common for all students. The core 
courses in this period mostly focus on the knowledge that any CE 
graduate should learn: algebra, calculus, discrete mathematics, pro-
gramming theory, data structures and algorithms, computer archi-
tecture and organization, operating systems, physics and electron-
ics, computer networks, databases, distributed systems, software 
engineering, artificial intelligence, and human-computer interac-
tion. Afterward, students reinforce their knowledge in the major 
that most interests them within five available options: Computing, 
Computer Engineering, Information Systems, Information Technol-
ogy, and Software Engineering. Each major consists of eight com-
pulsory courses. In addition, students select two optional courses 
from any other major, as well as two core courses that are studied 
regardless of the chosen major. Finally, the students achieve the 
program by undertaking an undergraduate dissertation of 12 ECTS.

The CE program focuses on the application of theoretical knowl-
edge in real-life problems, including the development of labs and 
projects. This approach is ideal to help students with the assimila-
tion of the concepts studied in the different courses. Each course 
offers a well-though out lab sessions tailored to reinforce the the-
oretical contents. At best, they are coordinated with other courses 
that belong to the same area of knowledge. As mentioned above, 
this can lead students to perceive a course, or a group of courses, 
as isolated islands, which makes it difficult for them to apply the 
knowledge acquired in each course in their professional career. In 
fact, these divisions are purely organizational, and all the courses 
have many interactions with each other. According to the Com-
puter Engineering Curricula [2], students should learn the devel-
opment of a whole computer in the lab experiments that include 
exposure to hardware and operating systems in the context of a 
relevant application, which is, in our case, the ray tracing algo-
rithm.

2.2. Involved courses

The proposed experience implicates four different courses 
within the program to jointly face the problem. These courses are 
Computer Graphics, Distributed and Concurrent Systems Program-
ming, Operating Systems, and Multiprocessors, which are related 
to the Application, Library, Operating System, and ISA abstraction 
levels, respectively.

Computer Graphics (CG) is a core course of the Computing ma-
jor, and an optional course in other majors. CG focuses on mathe-
matical models and algorithms that generate synthetic images (or 
videos) in which performance is a must. Students learn the under-
lying mathematical and physical concepts that define appearance 
and, as practical assignments, develop algorithms like ray tracing 
that output images from such concepts. Parallelization is key to 
the performance of such algorithms, and different parallelization 
strategies (static/dynamic, with different high level structures and 
partitions) must be explored.

Distributed and Concurrent Systems Programming (DCSP) is a 
core course that concentrates on the fundamentals of program-

1 ECTS refers to European Credit Transfer and accumulation System: 
http://ec .europa .eu /education /resources -and -tools /european -credit -transfer-and -
accumulation -system -ects _en.

2 https://estudios .unizar.es /estudio /ver ?id =148.

http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
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Table 1
Relations among the abstraction levels, courses, activities, academic years, semesters, and chronological order.

Abstraction 
level

Course Activity Academic 
year

Semester Chronological 
order

Application CG Ray tracing 4th Fall 4th

Library DCSP Concurrent 
task queue

2nd Fall 1st

Operating System OS Futex 
system calls

2nd Fall 2nd

ISA MP Futexes with 
assembly code

3rd Spring 3rd
ming such classes of systems. In the case of concurrency, the lec-
tures focus on the explanation of the problems that arise when 
a set of processes have to share data and resources, and the way 
such a problem has been solved, from the main mutual exclusion 
algorithms based on shared variables to higher level structures 
such as semaphores and monitors. In the case of distributed sys-
tems, students learn how to coordinate processes by means of syn-
chronous and asynchronous message passing as well as by means 
of the use of a shared tuple space. Besides studying the concepts 
from a conceptual point of view, students work in a set of lab-
oratory sessions and a final team project in which they have to 
develop some programs where the studied concepts are a crucial 
part.

Operating Systems (OS) is a core course that presents in a com-
prehensive way the structure and functions of an operating system. 
The operating system is presented as a resource manager and as a 
service provider at the system call and command interpreter lev-
els. At each level, the student acquires concepts and skills related 
to the management and the use of the main system resources such 
as the processor, memory, and input/output devices. In relation to 
the topic presented in this paper, the course presents the synchro-
nization primitives offered in the pthread library and studies the 
keys to their implementation. First, it analyzes the implementation 
of spinning primitives with the support offered by the processor 
in the form of atomic memory access instructions and then it mo-
tivates the need of the operating system support to implement 
sleeping primitives.

Multiprocessors (MP) is a core course of the Computer Engi-
neering major, and an optional course in other majors. MP focuses 
on the mechanisms that support the parallel execution of tasks 
in a computer system from the point of view of the architecture 
and the organization of a computer. More precisely, this course fo-
cuses on parallel processors with shared memory, which are basic 
elements of current complex digital systems. The covered topics 
include performance analysis, performance modeling, on-chip net-
works, atomicity, consistency, and coherence in the memory hi-
erarchy of a parallel processor. In the laboratory sessions of the 
course, OpenMP is presented and used as a tool for parallel pro-
gramming of computers, as well as tools for performance measure-
ment.

3. Proposed learning experience

This section presents the proposed experience that helps stu-
dents to accomplish an integrated view of a computer system. The 
lab materials and resources for each abstraction level consist of a 
description of the work to be done, code snippets, and a series 
of milestones, where each one builds on top of the previous one. 
The experience involves a total of eight hours, since each lab ses-
sion comprises two hours in the course associated with the level. 
Interested readers may refer to the following repository with the 
source code of every lab: https://github .com /universidad -zaragoza /
learning -experience -ray-tracing.
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3.1. Overview

The proposed learning experience allows students to consol-
idate the concepts of parallelism, concurrency, consistency, and 
atomicity exploitable in current multicore computers. We focus on 
ray tracing, an appealing application which can be efficiently par-
allelized by learning and using the above concepts. Table 1 shows 
the involved four levels of abstraction and the associated courses. 
The table also shows, for each course, the academic year, semester, 
and chronological order in which the activities take place.

According to the chronological order, students start the expe-
rience in the second academic year. The first lab, which belongs 
to the DCSP core course, focuses on the library level. This lab 
deals with the implementation and management of a task queue 
with concurrent access by multiple threads. Synchronization as-
pects must be considered in order to avoid race conditions. To do 
so, students use a semaphore library for handling such synchro-
nization questions.

The subsequent lab takes place shortly, during the same aca-
demic year and semester, and focuses on the Operating System 
level. In this core lab, a mutex is implemented with a futex (fast 
userspace mutex) mechanism through atomic primitives and op-
erating system calls that are only invoked when the mutex is 
contested [14]. This mutex is then used to implement a new 
semaphore library, which replaces the one used in the previous 
lab.

The following academic year covers the third lab, that is, the 
Assembly level, which is developed in the optional MP course. In 
this lab, assembly instructions are used to implement the mutex/-
futex, which have the potential to achieve a greater efficiency in 
energy consumption and performance compared to library func-
tions and system calls.

Finally, in the fourth year, the students focus on the Applica-
tion level by implementing a ray tracer in a lab of the CG optional 
course. In this activity, the rendering of an image is parallelized by 
dividing the image into regions. These regions are assigned to dif-
ferent threads by using the concurrent task queue. At this moment, 
the students fully evaluate and state the differences of protecting 
concurrent accesses to the task queue by using library functions, 
system calls, or assembly instructions.

Note that the development of the presented experience is sub-
ject to certain risks; e.g., students transferring from one institution 
to another, or students failing a course or simply not choosing the 
involved optional courses would not complete the full experience. 
To mitigate such risks, all the labs include two parts. The first 
one, which is self-contained, includes the material for the actual 
lab, and the second part links the lab with the others. Therefore, 
if a student does not complete a preceding or following lab as-
signment, the faculty can provide a solution, so that students can 
accomplish the second part of the lab and establish the links be-
tween the abstraction levels.

https://github.com/universidad-zaragoza/learning-experience-ray-tracing
https://github.com/universidad-zaragoza/learning-experience-ray-tracing
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3.2. Abstraction levels

The application under study is presented in the next sections 
following the chronological order that students will experience.

3.2.1. Concurrent task queue
The aim of this lab is the implementation of one of the most 

common concurrent data structures: a queue. Queues, whose se-
quential approach has already been studied in a previous course 
of Data Structures and Algorithms, are a very suitable mechanism 
for the collaborative work of a set of processes. In the considered 
case, producers and consumers can, in a natural way, use one or 
more queues to share information and to synchronize [44]. As in 
any shared data structure, in order to preserve data integrity, the 
concurrent access to the shared data requires the use of some syn-
chronization mechanisms.

In this context, the main objectives of this lab work are as fol-
lows: i) to implement a concurrent bounded queue for generic 
data types, ii) to get familiarity with semaphores as a mean for 
solving synchronization problems, and iii) to use a general and 
powerful approach to solve general synchronization problems us-
ing semaphores.

Controlling the concurrent access to a queue requires to con-
sider not only mutual exclusion access to some queue components, 
but also condition synchronization (no first element exists in an 
empty queue, or no new element can be inserted when the queue 
is full). According to the focus proposed for the DCSP course, as 
a first assignment, students have to design the concurrent access 
to the queue using the coarse-grain atomic statement <await B 
S>, where B is a boolean guard, usually concerning shared data, 
and S is a block of sequential statements. The semantics of the 
statement ensures that S starts its execution being B true, and the 
whole statement is atomically executed. The high-level point of 
view of such a statement makes easier the task of designing cor-
rect concurrent programs, which is one of the aims of the course. 
This will be done in the generic class ConcurrentBoundedQueue
sketched in Listing 1, which includes a BoundedQueue as one of 
its attributes. Students have to code the complete data structure, 
including both enqueue and dequeue operations using semaphores 
for synchronization.

template < class T>
class ConcurrentBoundedQueue {
public :

void enqueue ( const T d ) ;
/ / <await this −>bq−>length () <N
/ / this −>bq−>enqueue (d)
/ / >

void dequeue ( ) ;
/ / <await this −>bq−>length () >0
/ / this −>bq−>dequeue ( )
/ / >
. . .

private :
int N; / / s ize of the bounded queue
BoundedQueue<T> ∗bq ; / / data storage
. . .

} ;

Listing 1: ConcurrentBoundedQueue generic class.

In previous lectures, students have seen the pass the baton tech-
nique [3] to implement <await ...> statements using (binary) 
semaphores. This technique works as follows. Let us consider all 
the <await Bi Si> and <S j> sections that must be synchronized 
together. A mutex semaphore ensures exclusive access to such code 
areas. For each different Bi , a (binary) semaphore bi with an initial 
count equal to 0 is added to block a process in the <await Bi Si>
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Fig. 1. Implementation of critical sections using (binary) semaphores.

statement when Bi is false. In addition, a counter di with an initial 
value set to 0 is included to store the number of processes blocked 
at Bi . Fig. 1 illustrates an implementation of both <await Bi Si>

and <S j> sections. The pass the baton implementation is sketched 
in Listing 2.

void pass_the_baton ( ) {
switch {

. . .
Bi and di >0:

di− −
s i g n a l ( bi )

. . .
otherwise :

s i g n a l (mutex)
}

}

Listing 2: pass_the_baton function.

In the case of the concurrent bounded queue, there are 
only two conditions: non-empty and non-full. Therefore, three 
semaphores and two counters will be used. The private part of 
the ConcurrentBoundedQueue class can be extended as shown 
in Listing 3.

template < class T>
class ConcurrentBoundedQueue {
public :

. . .
private :

int N; / / s ize of the bounded queue
BoundedQueue<T> ∗bq ; / / data storage
Semaphore ∗mutex ; / / i n i t i a l count w i l l be 1
Semaphore ∗b_not_fu l l ; / / to block u n t i l queue i s not f u l l
Semaphore ∗b_not_empty ; / / to block u n t i l queue i s not empty
int d_not_fu l l ; / / # of b_not_ful l−blocked processes
int d_not_empty ; / /# of b_not_emtpy−blocked processes
void pass_the_baton ( ) ; / / to pass the baton

} ;

Listing 3: ConcurrentBoundedQueue class including a synchro-
nization mechanism.

Since we want students to finally implement general sema-
phores, the presented technique will be developed using general 
semaphores instead of binary semaphores. Anyway, notice that the 
way the technique is implemented, every semaphore count is al-
ways 1 or 0, having a behavior equivalent to binary semaphores. At 
this level, the (binary) semaphores are the lowest abstraction con-
struct to manage synchronization, considered as an abstract data 
type. The students know two possible semantics, equivalent from 
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Fig. 2. Lock and unlock procedures of spin-lock and sleep mutexes. The sleep implementations include operating system calls to change the thread status.
a safeness point of view, but with possible different liveness prop-
erties. However, they still do not know how a semaphore can be 
implemented and how operates internally, whether it makes a pro-
cess spin until the access is granted or the process goes to sleep 
controlled by the operating system. These issues are outlined in 
the lab, and students will find out the answers by implementing 
the semaphore abstract data type in the two following labs.

As a final and optional lab assignment, students are asked to 
implement a second approach of the concurrent queue. In the first 
one, each operation on the queue is executed in mutual exclusion. 
In the second one, students have to adapt the readers-writers ap-
proach so as to allow multiple access to reading operations (oper-
ations with no side effects on the queue) while preserving mutual 
exclusion access for writing operations, giving priority to writers 
in case of conflict. During the lectures, students have already de-
signed a solution based on the <await ...> instruction, whereas 
this assignment deals with the implementation.

After completing this lab, students will have reinforced their 
knowledge about the main concepts related to semaphore-based 
synchronization. In addition, the proposed assignments also deal 
with the use of design techniques focusing on the synthesis of cor-
rect concurrent programs.

3.2.2. Task queue protection with futex system calls
This lab is intended to present the mechanisms required by the 

operating system to provide synchronization in concurrent algo-
rithms. The main objectives of this lab are: i) show the operating 
system as a service provider for the user through system calls, ii) 
learn an efficient use of the futex system calls and the primitives 
of atomic instructions provided by the operating system and the 
C standard library, iii) understand the necessary mechanisms to 
provide execution in mutual exclusion with futexes and atomic in-
structions, and iv) show and use self-implemented lock and unlock 
primitives of a mutex abstraction to manage the access to the con-
current task queue implemented in the previous activity.

The lab material firstly describes the C11 atomic instructions 
from stdatomic.h and solicits the students to implement a mu-
tex with spin-lock based on atomic instructions. Next, the sleep
approach of a mutex is motivated, introducing the mandatory in-
tervention of the operating system to change the thread status, and 
providing a naive approach of the sleep mutex using hypothetical
sleep and wakeup system calls as well as management operations 
on a system queue. The limitations of this approach are used to 
motivate the futex system calls. Then, the syntax and use of the 
parameters of the futex_wait and futex_wake system calls are 
described. By using these calls, the students are guided to imple-
ment an intuitive and straightforward version of the sleep mutex 
referred to as basic implementation. Finally, the pseudo-code algo-
rithm of a more efficient mutex is offered as a guideline to code 
an advanced implementation. This approach is based on the mutex 
implementation proposed by U. Drepper [10], which is integrated 
into the Linux kernel [11].

Fig. 2(a) shows the lock and unlock procedures of a Spin-Lock 
(SL) mutex protecting a critical section. The value of the userspace
42
val variable represents the two states of the mutex: not taken 
(val=0) and taken (val=1). The test_and_set atomic instruction 
changes the mutex state.3 More precisely, this instruction sets val

to 1 and loads its previous value into c without the overhead of 
a system call. Then, a thread enters into the critical section if the 
lock is uncontested (c=0). Otherwise, the thread keeps spinning 
in the lock. In the unlock procedure, the thread simply sets val

to 0 to release the mutex. Since the SL mutex leaves all the waiter 
threads in the lock awake, it may suffer system performance losses 
when the mutex is contested.

Fig. 2(b) illustrates the naive-sleep approach of a mutex. These 
procedures are similar to other versions offered in textbooks of op-
erating system concepts such as [36,39], and [5]. This code is only 
correct if both procedures are executed atomically. However, as-
suming a non-atomic execution presents several problems that are 
listed in the lab material and should be understood by the stu-
dents, specifically: i) the reading and writing operations of val
are not atomically performed, which can lead to multiple threads 
reading the lock as not taken, ii) the reading of the lock and the 
insertion of the thread in the queue are neither atomic, which can 
lead to an indefinitely suspended thread if the lock is freed be-
tween the reading and insertion operations, and iii) after waking 
up from the sleep call, a thread has no guarantee of obtaining 
the lock in mutual exclusion since another thread can enter into 
the critical section before the former takes the lock.

Fig. 2(c) shows the Basic-Sleep (BS) implementation address-
ing all the incorrect behaviors stated above. In the lock function, 
the atomic operation changes the state of the mutex. If the lock is 
uncontested, the kernel is not invoked and the thread enters into 
the critical section. Otherwise, the futex_wait system call is in-
voked. It suspends the calling thread in a system queue if the lock 
is still taken (val=1), or it returns immediately if the lock has been 
released in the meantime (val=0). In the first case, the thread re-
mains suspended until another thread wakes it up. Notice too that 
every time futex_wait returns, the thread tries to acquire the 
lock again.

The unlock procedure sets val to 0 and calls futex_wake. This 
system call wakes up a number of threads stated in the second 
argument (1 in the example as only a single thread is allowed to 
enter into the critical section) from those suspended in the system 
queue. Notice that such a call is invoked regardless of the lock is 
uncontested or not, which may impact on the system performance.

The Advanced-Sleep (AS) implementation shown in Fig. 2(d) ad-
dresses the performance problem of the basic approach. In this 
case, there are three mutex states: not taken (val=0), taken and no 
waiter threads (val=1), and taken and at least one waiter thread 
(val=2). In the lock procedure, test_and_set is no longer useful 
since val takes three values. Instead, the atomic cmpxchg primi-
tive is used, in which a 1 (desired third argument) is loaded into

3 For the sake of brevity, we have shortened the original stdatomic.h function 
names; e.g., test_and_set corresponds to atomic_flag_test_and_set and 
the assignment operator for val refers to atomic_store.
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val on a successful comparison between val and 0 (expected sec-
ond argument). Regardless of the result of the comparison, the 
original value of val is loaded into c. If c==0, the calling thread 
updates the state of the mutex as taken and no waiters, and then 
enters into the critical section. Otherwise, the thread is suspended 
in the system queue by calling futex_wait. Previously, the sec-
ond cmpxchg sets val to 2 if necessary, updating the state of the 
mutex as taken and at least one waiter. Note that, if the lock is 
freed between the first and second cmpxchg, the latter returns 0 
and the thread is not suspended. The third cmpxchg ensures that a 
thread takes the mutex only if a 0 is returned. In such a case, val
is set to 2 because there is no certainty of the number of waiters.

The unlock method subtracts 1 to val with the atomic fetch_
sub, which returns the previous value of the argument. The fu-
tex_wake call is invoked just in the case of a suspended thread 
in the lock, avoiding such costly system calls when there are no 
waiter threads. The reader is referred to [10] for further details 
about the AS mutex implementation.

Once the different mutexes have been coded and understood, 
the students use them to support a complex abstraction, that is, 
the concurrent task queue implemented in the previous lab. List-
ing 4 shows an implementation alternative of the Semaphore class 
introduced in Listing 1, referred to as Library. This approach uses 
standard library mutexes (std::unique_lock <mutex>) to en-
sure mutual exclusion in Semaphore class methods. On the other 
hand, Listing 5 shows a different implementation of the same class, 
referred to as Thread-suspension, in which the lock and un-
lock methods are replaced by the procedures of each mutex ver-
sion (see Fig. 2).

class Semaphore {
private :

std : : mutex mtx;
std : : condit ion_variable_any cv ;
int count = 0;

public :
. . .

void Semaphore : : s i g n a l ( ) {
std : : unique_lock <mutex> lck (mtx ) ;
count = 1;
cv . n o t i f y _ a l l ( ) ;

}

void Semaphore : : wait ( ) {
std : : unique_lock <mutex> lck (mtx ) ;
while ( count ==0)

cv . wait ( lck ) ;
count = 0;

}
} ;

Listing 4: Library implementation alternative of the Semaphore
class.

For both implementation alternatives, the wait method con-
sists of a loop over a count variable, but, if count equals to 
0, the current thread suspends its execution. On the other hand, 
the signal method wakes up all suspended threads after free-
ing the semaphore. In order to implement such a functional-
ity for Thread-suspension, the suspend and wakeup methods 
are coded by the students using futex system calls. On the con-
trary, the Library approach relies on condition variables to sus-
pend/wake up threads. Using both alternatives, the students assess 
the suitability of not only their coded spin-lock and sleep mu-
texes, but also a library mutex by measuring the execution time 
and the chip temperature under different contention scenarios (see 
Section 5.2).

Overall, the students will be able to use futex system calls and 
atomic instructions to implement spin-lock and sleep versions of 
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class Semaphore {
private :

std : : mutex mtx;
int count = 0;

public :
. . .

/ / suspends thread i f f ve!= count
void Semaphore : : suspend ( int ve ) {

s y s c a l l ( __NR_futex , &(count ) , FUTEX_WAIT , ve , NULL , 0 , 0 ) ;
}

/ / wake up a l l suspended threads
void Semaphore : : wakeup ( ) {

s y s c a l l ( __NR_futex , &(count ) , FUTEX_WAKE, INT_MAX , NULL ,
0 , 0 ) ;

}

void Semaphore : : s i g n a l ( ) {
mtx . lock ( ) ;
count = 1;
wakeup ( ) ;
mtx . unlock ( ) ;

}

void Semaphore : : wait ( ) {
mtx . lock ( ) ;
while ( count ==0) {

int vr = count ;
mtx . unlock ( ) ;
suspend ( vr ) ;
mtx . lock ( ) ;

}
count = 0;
mtx . unlock ( ) ;

}
} ;

Listing 5: Thread-suspension implementation alternative of the
Semaphore class. Mutex lock and unlock procedures refer to the 
different approaches from Fig. 2.

a basic synchronization abstraction such as a mutex, incorporate 
such approaches to protect the concurrent task queue, and experi-
mentally state the performance differences among them.

3.2.3. Futexes with assembly code
The main purpose of this lab is to help students understand 

the support provided by the ISA level to implement fast and re-
liable mutual exclusion, in terms of consistency and atomicity. 
The ARM processors include load-link/store-conditional instruc-
tions and memory barriers, providing the foundation for higher 
level structures such as mutexes and futexes. In addition, these in-
structions do not require any privilege level for being executed, so 
programmers can directly exploit them to improve efficiency and 
reduce the overhead of systems calls.

By the end of this lab, students will have accomplished the fol-
lowing goals: i) understand how atomic instructions operate at the 
ISA level for the ARMv8 processors, ii) know why data memory 
barriers are often required when writing atomic instructions, and 
iii) learn the performance and energy implications of the different 
mutex implementations.

The assignments of this lab are designed to help students to 
engage with complex code enhancing their low-level programming 
skills, especially concerning performance and energy efficiency. In 
addition, they show how important is for an ISA to provide support 
for complex high-level constructors such as the mutexes used by 
operating systems, libraries, and applications. Finally, students gain 
knowledge on the relation between the C/C++11 memory model 
and the corresponding consistency models at the ISA level.

The lab material of this session is organized in two parts. In the 
first part, the students are asked to generate a race condition with 
the writing of a multi-threaded program that reduces an array by 
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Fig. 3. Lock and unlock procedures with ARMv8 assembly code.

adding all the elements without synchronization primitives. Then, 
the students code a fetch and add primitive with ARMv8’s load-link
(ldaxr) and store-conditional (stlxr) instructions [4]. The imple-
mented fetch and add is included in the previous program to verify 
that the code is now free of race conditions.

The second part comprises two assignments. The first one pro-
poses a basic implementation of lock and unlock mutex functions 
based on ldaxr/stlxr instructions as plotted in Fig. 3(a). Threads 
in the lock function spin until they acquire the lock. This mu-
tex approach is referred to as SL-ASM. The spinning can occur 
at the two cbnz instructions. Either if the lock is already taken 
(first cbnz) or the stxr instruction fails the attempt to take the 
lock (second cbnz), the branch instructions return the flow to the 
beginning of the loop. Notice too that, likewise the SL and BS im-
plementations from the OS level, just two mutex states, taken and 
not taken, are considered in the assembly level.

The second assignment proposes an advanced implementa-
tion of the lock function by replacing the power-hungry spin-lock 
with a wfe instruction. This instruction puts the core into a low-
power state without returning the control to the operating system. 
Fig. 3(b) shows such an energy-efficient implementation, referred 
to as LPS-ASM, also with the two mutex states taken and not taken. 
The student will learn how the operating system considers that the 
program is running, while it is actually waiting for the lock to be 
released, and how the thread can regain the lock without a system 
call. In particular, the stlr instruction, located in the unlock func-
tion, performs a store with a release barrier and wakes up any core 
that could be in a low-power state after executing a wfe instruc-
tion. To guarantee progress, the cores also leave the low-power 
state after an interruption occurs (e.g., a context switch).

With both SL-ASM and LPS-ASM implementations, students will 
carry out a quick comparison between them in terms of perfor-
mance and energy consumption. Since Raspberry does not provide 
energy hardware counters, as an indirect measurement, we period-
ically measure the temperature provided by the chip itself, which 
is mapped by the OS in the filesystem.4

3.2.4. Parallel ray tracing
The CG course proposes a practical assignment involving the 

implementation of a ray tracing algorithm [43], which is paral-
lelized by assigning different tasks (partitions or regions of the 

4 Temperature can be found in the path /sys/devices/virtual/ther-
mal/thermal_zone0/temp.
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Fig. 4. Diagrams of a 2D image split into render tasks with different kinds of image 
regions and sizes.

expected synthesized image) to different threads. The main ob-
jectives of this lab are: i) find and understand the computational 
bottlenecks of the algorithm, ii) devise parallelization strategies 
that affect performance without any accuracy loss, and iii) test, ex-
plore, and analyze the impact (and overhead) of the combination 
of different parallelization strategies, including partitioning struc-
tures and thread assignment methodologies, on performance.

The contents of this lab include a description of the ray tracer, 
and an introduction on how to parallelize it. In particular, this as-
signment makes use of the minimalist C++ smallpt ray tracer by K. 
Beason.5 This algorithm generates a 2D image from a 3D represen-
tation of a virtual scene, including geometry and optical properties 
of the objects and physical characterizations of sensors (cameras) 
and light sources. In practice, the algorithm simulates light trans-
port paths across the virtual scene in order to obtain the final color 
that reaches each of the pixels of the image. Paths are generated 
from the camera and traverse each pixel independently. Since the 
computation associated to each pixel is independent, the algorithm 
is highly parallelizable. Moreover, such a parallelization is worth-
while because the algorithm is computational intensive and takes 
quite a long time to converge (about 1 or 2 hours for a good qual-
ity result for a simple virtual scene, and even days in the case of 
more complex scenes).

A common ray tracing parallelization strategy is to subdivide 
the image into different regions, converting the computation of 
each of the regions into a render task to be assigned to an exe-
cution thread. The students are required to explore different paral-
lelization strategies in different dimensions as illustrated in Fig. 4:

• Different kinds of image regions: pixels, lines, columns, or 
rectangles.

• Different region sizes: smaller or larger rectangles and line or 
column batches.

Depending on the geometry and other properties of the virtual 
scene, and the different implementation details of the algorithm, 
the computational load can vary greatly from one region to an-
other [31]. For this reason, we need a safe mechanism to distribute 
tasks among threads. This assignment can be static (pre-assigned 
per thread) or dynamic (using a concurrent task queue).

Listing 6 shows the implementation of a static parallelization 
assignment, distinguishing between the generation of the regions 
and the rendering process. In this strategy, prefixed indices are 
computed as a vector of regions and threads access to such in-
dices during the rendering process.

Since it is impossible to estimate the computational load of 
each task beforehand, a dynamic assignment is likely to be more 
efficient. Listing 7 shows this implementation, where the vector of 
regions is replaced by the ConcurrentBoundedQueue class from 
the former lab, including the enqueue and dequeue operations in 
the generation and rendering processes, respectively. Fig. 5 depicts 
a diagram of such a concurrent task queue where a main thread 
generates and enqueues tasks, whereas multiple worker threads 
dequeue tasks and perform the rendering process in parallel. Fi-

5 http://www.kevinbeason .com /smallpt/.

http://www.kevinbeason.com/smallpt/
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struct Region {
int row0 , col0 , row1 , col1 , spp ;

} ;

/ / Producer
void generate ( ) {

Image image ( width , height ) ;
std : : vector <Region > regions ;
for ( region in <regions according to strategy >)

regions . push_back ( region ) ;
std : : vector <std : : thread > threads ;
for ( int i =0; i <n_th ; ++ i )

threads . push_back ( std : : thread ( render , i , n_th , regions ,
image ) ) ;

for ( auto &t : threads )
t . jo in ( ) ;

}

/ / Consumer
void render ( unsigned int thread , unsigned int nthreads ,
std : : vector <Region>& parts , Image& image ) {

for ( int p=thread ; p< parts . s ize ( ) ; p+=nthreads )
for ( int row= parts [p ] . row0; row< parts [p ] . row1; ++row)

for ( int col = parts [p ] . col0 ; row< parts [p ] . col1 ; ++ col )
for ( int s =0; s <spp ; ++s ) / / rays per pixel

image (row , col ) += c a l c u l a t e p i x e l (row , col ) ;
}

Listing 6: Static parallelization strategy for computer graphics al-
gorithms.

/ / Producer (main thread )
void generate ( ) {

Image image ( width , height ) ;
std : : vector <std : : thread > threads ;
ConcurrentBoundedQueue<Region > regions ;
for ( int i =0; i <n_th ; ++ i )

threads . push_back ( std : : thread ( render , i , n_th , regions ,
image ) ) ;

for ( region in <regions according to strategy >)
regions . enqueue ( region ) ;

for ( auto &t : threads )
t . jo in ( ) ;

}

/ / Consumer ( worker threads )
void render ( unsigned int thread , unsigned int nthreads ,
ConcurrentBoundedQueue<Region>& parts , Image& image ) {

while ( ! parts . done ( ) ) {
Region part = parts . dequeue ( ) ;
for ( int row= part . row0; row< part . row1; ++row)

for ( int col = part . col0 ; row< part . col1 ; ++ col )
for ( int s =0; s <spp ; ++s ) / / rays per pixel

image (row , col ) += c a l c u l a t e p i x e l (row , col ) ;
}

}

Listing 7: Dynamic parallelization strategy for computer graphics 
algorithms.

Fig. 5. Concurrent thread-safe task queue to assign tasks to different worker threads.

nally, notice too that both static and dynamic strategies are or-
thogonal to the region distributions depicted in Fig. 4.

The students should identify the different pros and cons of each 
of the approaches, analyzing and justifying their impact on perfor-
mance. For instance, the students should answer questions such as 
which is the optimal region size? Which of the mutex approaches of the 
task queue work best and under which circumstances?
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The final part of the lab notes that the proposed approach relies 
on low-level programming constructs that are helpful to showcase 
the interactions with the rest of the abstraction levels. However, 
to boost productivity and get the most of heterogeneous systems, 
which are standard nowadays, students should be advised to opt 
for higher level approaches [15,19,34].

Overall, the implementation and parallelization of the path-
tracing algorithm together with the performance evaluation of 
each mutex will help students understand and analyze the effect of 
low-level mechanisms, decisions, and implementation details with 
high-level applications and algorithms, which will reinforce the in-
tegrated view of a computer system.

4. Experimental environment

To consolidate the overall view of the presented computer sys-
tem, we propose to use the same single-board computer in all the 
labs. To this end, we have analyzed a subset of commonly used 
boards that fulfilled two key restrictions: low-cost (price below 50 
$) and multiprocessing (parallelism experiments cannot be run in 
single-core boards).

The selected boards are Raspberry Pi 3 Model B [40], Clock-
workPi,6 Rock64,7 AML-S905X-CC (Le Potato),8 Orange Pi Zero 
Plus [29], NanoPi M1 Plus,9 and Pine A64-LTS.10

Table 2 summarizes the most relevant hardware and software 
requirements for the development of this experience, and which 
of them are met by the selected boards. Of course, there are other 
boards offering better performance or more functionality but at a 
higher cost such as DragonBoard 410C [33], HiKey 960,11 or Bea-
gleBoard X-15 [8]. Such highly-priced boards are not considered in 
this study.

The list of requirements is mainly focused on the subset of 
courses taking part in the presented experience. Nevertheless, it 
is desirable to choose a base board that allows future expansions 
by adding more courses to the experience. Therefore, we consider 
a broader range of requirements that would facilitate the use of 
the selected board for additional courses, such as Computer Archi-
tecture and Organization, Systems Administration, Computer Net-
works, Security, Artificial Intelligence, Machine Learning, Embed-
ded Systems, Robotics, Video-games, or Computer Vision, among 
others.

Considering the results from our study of boards, requirements, 
and potential courses that could use them, Raspberry Pi, Orange 
Pi, and NanoPi turn out good choices to be used in our experience, 
since they meet all the requirements but the JTAG support. How-
ever, we finally chose Raspberry Pi primarily due to its broader 
usage and large amounts of open source and available materi-
als [41].

5. Technical results

This section presents the main technical results and conclusions 
that should be obtained by students from the proposed lab assign-
ments. More precisely, the impact on the system performance and 
chip temperature obtained for every mutex implementation is an-
alyzed under different contention scenarios.

All the experiments are run in a Raspberry Pi 3 Model B, which 
includes a quad-core processor where each core is single-thread. 

6 https://wiki .clockworkpi .com /index .php /Main _Page.
7 https://wiki .pine64 .org /index .php ?title =ROCK64.
8 https://libre .computer /products /boards /aml -s905x -cc/.
9 http://wiki .friendlyarm .com /wiki /index .php /NanoPi _M1 _Plus.

10 https://wiki .pine64 .org /index .php ?title =Main _Page.
11 https://www.96boards .org /documentation /consumer /hikey960 /hardware -docs /

hardware -user-manual .md .html.

https://wiki.clockworkpi.com/index.php/Main_Page
https://wiki.pine64.org/index.php?title=ROCK64
https://libre.computer/products/boards/aml-s905x-cc/
http://wiki.friendlyarm.com/wiki/index.php/NanoPi_M1_Plus
https://wiki.pine64.org/index.php?title=Main_Page
https://www.96boards.org/documentation/consumer/hikey960/hardware-docs/hardware-user-manual.md.html
https://www.96boards.org/documentation/consumer/hikey960/hardware-docs/hardware-user-manual.md.html
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Table 2
Hardware (H) and Software (S) requirements evaluated for the following boards: Raspberry Pi 3 Model B (RP), ClockworkPi (CP), Rock64 (RC), Le Potato (LP), Orange Pi zero 
plus (OP), NanoPi M1 Plus (NP), and Pine A64-LTS (PA).

Type Description RP CP RC LP OP NP PA

H JTAG ✗ ✗ ✗ ✗ ✗ ✗ ✗

H Ethernet � � � � � � �
H WiFi � � ✗ ✗ � � ✗

H Camera � ✗ ✗ ✗ � � ✗

H Virtualization support � � � � � � �
H I/O Extensions (screen, buttons...) � � � � � � �
H GPU � � � � � � �
S Development Framework options � ✗ � ✗ � � �
S SDK and runtime GPU support � ✗ � ✗ � � �
S High-level/Standard OS support � ✗ � � � � �
H&S Bare metal (no OS) support � � � � � � �

Fig. 6. Performance and temperature of the OS mutex implementations varying the number of threads.
We assumed a fixed CPU frequency of 1.4 GHz (performance gov-
ernor) for all the experiments to guarantee reproducibility. The OS 
is an Ubuntu 18.04.3 LTS release with a gcc 7.5.0 compiler. Before 
running each experiment, we wait until the chip temperature de-
creases to a defined threshold of 60 ºC (the reported experiments 
were carried out during summer and the board does not include 
any heat dissipator nor fans). Once an experiment finishes, we cal-
culate the execution time and the chip temperature increase and 
wait for the CPU to cool down before running the next experiment.

All the presented experiments are run from 1 to 64 threads. 
Taking into account the quad-core processor and the fact that 
the studied applications are CPU-bound, the thread oversubscrip-
tion (i.e., a number of threads higher than the number of physical 
cores) penalizes performance, which is a key insight for students. 
In addition, another important key insight from thread oversub-
scription is that the implementation of each mutex affects perfor-
mance differently.

5.1. OS level

The first lab assignment deals with the implementation of the 
concurrent bounded queues and the experiments are limited to en-
sure the correctness of such queues (Section 3.2.1). In the second 
lab, the first assignment refers to the implementation of the SL, 
BS, and AS mutexes using futexes (Section 3.2.2). This section eval-
uates such implementations.

Bars and lines in Fig. 6 show respectively the execution time in 
seconds (s) and the chip temperature increase in Celsius degrees 
(ºC). Threads access a shared variable protected with a mutex. In 
particular, each thread acquiring the lock increments by one the 
value of this variable and then releases the lock. The execution 
finishes when the shared variable reaches a value of a million.
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Two different contention scenarios are considered, referred to 
as real and synthetic. In the real scenario, a thread releasing the 
lock computes some private work consisting of a series of trigono-
metric functions with the shared variable as input. On the other 
hand, in the synthetic scenario, after releasing the lock, a thread 
immediately competes for the lock without performing any private 
work. The latter scenario covers an extreme case where students 
observe how a change in the amount of private work leads to un-
expected conclusions.

In the real scenario, all the mutexes obtain a very similar per-
formance for a given number of threads greater or equal than 4. 
For a low number of threads between 1 and 12, the overhead of 
always invoking a futex system call in the unlock method and the 
subsequent context switch in BS leads to a slight increase of the 
execution time compared to SL and AS. However, as the number 
of threads increases, SL progressively enlarges a bit the execution, 
since threads spin in a more disputed lock. On the other hand, the 
sleep mutexes maintain the same execution time as the number of 
threads increases. With this experiment students realize that, for 
this kind of application, the thread oversubscription does not im-
prove performance but, on the contrary, depending on the mutex 
implementation, performance can be hurt.

The increase in the chip temperature is quite steady for a num-
ber of threads greater than one, and both the private work and the 
chip temperature limit (around 80 ºC) prevents from obtaining sig-
nificant CPU temperature differences among the different mutexes. 
However, SL reaches a lower temperature in most cases, which 
suggests that invoking futex systems calls has a greater thermal 
signature.

There is no parallelism to be exploited in the synthetic scenario, 
meaning that single-threaded executions should exhibit the best 
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Fig. 7. Performance and temperature of the OS mutex implementations protecting a concurrent bounded queue. A library mutex is included for comparison purposes.
performance for a given mutex implementation. This is the case 
for both SL and AS mutexes. For the studied mutexes, SL obtains 
the lowest execution time both in the single-threaded execution 
and when the number of threads coincides with the number of 
physical cores. This confirms the overhead of the futex system calls 
in both BS and AS approaches. On the other hand, similarly to 
the previous scenario, under the thread oversubscription, spinning 
largely increases the execution time over the sleep approaches, 
whereas such mutexes maintain roughly the same performance.

An interesting observation is that, for a single thread, BS has 
a much larger execution time not only compared to the other 
mutexes but also compared to itself when multiple threads are 
considered. This confirms the overhead of always invoking costly
futex_wake system calls in the unlock function even when there 
are no waiter threads in the lock. Regarding the chip temperature, 
the execution time is not sufficiently large to observe significant 
temperature differences before and after the execution.

5.2. Library level

This section refers to the evaluation of the OS second lab as-
signment, where the previous mutexes are used to support the 
concurrent task queue. Fig. 7 shows the results. A library mutex 
from the DCSP lab is included for comparison purposes. The length 
of the queue is a million of elements and its initial state is full. 
Threads within the critical section dequeue values from the queue 
until it is empty. The private work of each thread is the same as 
described in the previous section.

The real scenario confirms that the best performing number of 
threads is 4, where both SL and the library mutex obtain the best 
performance. This suggests that the library mutex implements a 
spin-lock mechanism for such a number of threads. The thread 
oversubscription leads to larger execution times, especially for SL, 
BS, and AS. The library mutex clearly outperforms all the other 
mutexes for any number of threads greater than 4, suggesting 
that, differently from the spin-lock and OS-based solutions, the 
library implementation possibly throttles unnecessary threads ac-
cording to the number of processor cores and/or exploits an in-
ternal userspace sleep-queue to minimize thread context switches. 
Contrary to the previous experiments, SL always performs better 
than AS and BS mutexes. This is mainly due to the additional over-
head of the futex system calls from the new suspend and wakeup 
methods in the Semaphore class. As expected, AS largely reduces 
the execution time with respect to BS due to the additional cost of 
always invoking futex_wake system calls. Similarly to the previ-
ous study, SL shows a slightly lower increase in the CPU tempera-
ture compared to the other mutexes, including the library mutex.
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Surprisingly, the synthetic scenario greatly affects the library 
mutex with the number of threads, which points out that such 
an extreme contention scenario has not been considered in the li-
brary mutex development. The higher contention also affects SL, 
although in a lesser way. In this scenario, with a sufficient num-
ber of threads, the overhead of the system calls and subsequent 
context switches compensates the distribution of CPU time among 
all the active threads spinning in the lock. Removing the private 
work allows to see significant temperature differences. The results 
confirm the lower thermal signature of SL, even in those cases 
where SL enlarges the execution time with respect to the other ap-
proaches. On the other hand, the library mutex shows the highest 
temperature increase, most likely due to the extended execution 
times.

Overall, the library mutex is a convenient choice in scenarios 
where there is a relatively high amount of private work to be 
done. In this case, the library likely exploits a hybrid management 
by combining spin-lock, thread throttling, and/or a sleep-queue to 
provide an adaptive mechanism to the most frequent case. How-
ever, in the synthetic scenario, the library heuristics fail to adapt 
to such an atypical case, making the OS-based mutexes the prefer-
able choice.

5.3. Assembly level

This study evaluates the SL-ASM and LPS-ASM mutexes protect-
ing the concurrent task queue (see Section 3.2.3). The initial state 
of the queue and the amount of private work is the same as in 
the previous study. Fig. 8 depicts the results. For illustrative pur-
poses, just the best performing mutexes with 4 threads from the 
previous study (library and SL for real and synthetic contention, 
respectively) are shown.

Similarly to the previous studies, the spin-lock solution in-
creases the execution time with the thread oversubscription in 
the real contention scenario. Compared to SL-ASM, LPS-ASM has a 
lower execution time since putting cores in a low-power state until 
a context switch is triggered reduces the lock contention. However, 
this does not prevent the library mutex to obtain better perfor-
mance thanks to an enhanced management of the lock. Differently 
from previous approaches, the LPS-ASM alternative shows a tem-
perature reduction with the thread oversubscription. This is mainly 
due to, with a higher number of threads, the chance to put cores in 
a low-power state increases. On the contrary, the steady temper-
ature of the library mutex suggests that such an implementation 
does not change the state of the cores.

In the synthetic scenario, both spin-lock alternatives progres-
sively increase the execution time with the number of threads. 
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Fig. 8. Performance and temperature of assembly mutexes protecting a concurrent bounded queue. The best performing solutions from the previous study are also shown.
Fig. 9. Performance of all the mutex implementations at the path-tracing application 
level assuming a dynamic parallelization strategy.

However, implementing the spin-lock in a higher abstraction level 
with respect to the ISA level introduces a performance overhead 
according to the timing differences between SL and SL-ASM. Fi-
nally, the LPS-ASM solution clearly reduces the temperature with 
respect to both spin-lock approaches, which show very similar 
temperature numbers.

5.4. Application level

This section evaluates all the mutexes in the ray tracing applica-
tion using the dynamic parallelization strategy with the concurrent 
task queue (see Section 3.2.4). Fig. 9 plots the results, which are 
restricted to performance for illustrative purposes. The rendered 
scene in all the experiments is forest.12 For simplification purposes, 
the image is partitioned in fixed-size rectangular regions.

As expected from the real scenarios of the previous studies, the 
best performing number of threads is 4 according to the number 
of physical cores, where all the analyzed mutexes exhibit a very 
similar performance. In addition, the performance of the ray tracer 
scales with the number of threads, since the execution time with 
4 threads reduces by 4× with respect to the single-threaded per-
formance. Results under the thread oversubscription corroborate 
the previous findings from lower abstraction levels: the OS over-
head largely penalizes the AS mutex and especially the BS mutex, 
whereas the OS-free solutions like SL and the assembly mutexes 

12 http://www.kevinbeason .com /smallpt /extraScenes .txt.
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show similar results. Finally, the library mutex is scarcely affected 
by the thread oversubscription.

6. Experience assessment

This section provides a qualitative assessment of all the pro-
posed labs. The attendance to such labs was voluntary (37 stu-
dents participated in each lab of the DCSP and OS courses, and 
12 students participated in each lab of the MP and CG courses). 
All labs were scheduled after the completion of the courses, giv-
ing the students the opportunity to compare between the current 
lab assignments (i.e., no direct interactions with any other lab) and 
the proposed lab assignments. Notice too that this experience has 
been carried out for three consecutive academic years, meaning 
that those students that have participated in the latest CG lab have 
also participated in the remaining ones. Assessment results col-
lected for the DCSP and OS labs correspond to two years: current 
and previous, whereas results for the MP and CG labs correspond 
to the previous and current year, respectively. In the first year, the 
first two labs were run without collecting assessment results.

Two different surveys were designed for each lab, referred to as 
pre-survey and post-survey. Students filled out the surveys before 
and after completing the proposed lab sessions. Every pre-survey 
consists of two types of questions: a series of questions for mea-
suring the perception of students about the interactions among the 
courses of the CE program in general and particularly among the 
involved courses in the experience, and 22 theoretical and prac-
tical questions for assessing the knowledge of students about the 
covered PDC topics.

Every post-survey is structured in four parts: a set of ques-
tions for stressing in the interactions among the courses, a series 
of questions for valuing the proposed lab experiences, other ques-
tions referring to the obtained technical results, and the same 22 
theoretical and practical questions from the pre-surveys. The main 
conclusions extracted from these surveys are summarized next.

Before the lab sessions, the students considered that all the 
courses of the program are somehow related (8.0 points out of 
10, where the edge scores 0 and 10 indicate no relation at all and 
totally related, respectively), but that the faculty should make an 
effort to make this relation more explicit (the effort was rated 
7.9 out of 10). Regarding the courses involved in this learning 
experience, the students were very conclusive. All of them consid-
ered that the four courses are strongly related to other courses of 
the program, including between themselves. The responses of the 
post-surveys strengthened the previous results, since the students 
conveyed that the courses are more related to each other (8.7 out 
of 10).

http://www.kevinbeason.com/smallpt/extraScenes.txt
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Table 3
Correct answer rates of the common questions for pre and post surveys.

DCSP

Q1 Q2 Q3 Q4

Pre 100 72.9 27.1 56.7
Post 100 97.3 43.2 59.5

OS

Q5 Q6 Q7 Q8 Q9 Q10

97.3 81.1 48.7 67.6 81.1 10.8
97.3 97.3 91.9 100 100 100

MP

Q11 Q12 Q13 Q14 Q15

75 41.7 41.7 41.7 33.3
100 91.7 83.3 100 75

CG

Q16 Q17 Q18 Q19 Q20 Q21 Q22

75.0 83.3 33.3 41.7 33.3 50.0 58.8
91.7 100 66.7 83.3 100 83.3 83.3

Table 3 compares the correct answer rates of the 22 theoretical 
and practical questions that were included in both kind of surveys. 
Questions Q1-Q4 were proposed by the faculty of the DCSP course 
and mainly focus on the concept of mutual exclusion, the seman-
tics of semaphores, and the use of semaphores to solve certain 
critical section problems. Questions Q5-Q10 refer to the OS session 
and are about the low-level requirements to implement different 
types of semaphores. Questions Q11-Q15 refer to the MP course 
and are about the role of atomicity and consistency in thread syn-
chronization. Questions Q16-Q22 correspond to the CG course and 
deal with the impact of the different abstraction levels in the par-
allel ray tracing application. The reader is referred to Appendix A
for further details about these questions, including the possible 
and the correct/desired answers, highlighted in boldface.

In general, the post-survey rates improve the correct answer 
rates obtained in the pre-surveys. Overall, the results support the 
interest of the experience and the usefulness from the students 
point of view. On average, the correct answer rate of the post-
surveys is 88.0% versus 57.3% obtained before the beginning of 
the sessions. One remarkable aspect to be noticed is the rather 
low rate of correct answers to questions Q3 and Q4. In our opin-
ion, the main reason is that the conceptual study of the different 
semantics of the semaphore abstract data type has been presented 
and discussed two months before the experience has been carried 
out. For a set of reasons, we are currently thinking about the pos-
sibility of changing the order in which concepts are introduced at 
the OS course, so as to be able to study the semaphore abstraction 
and implementation closer in time. Maybe this fact will help us to 
get more information to understand the reason for such a low rate.

When comparing year-on-year results of the surveys, we have 
shown some striking facts. This is the case of questions Q16 and 
Q17 of the CG lab, which are the same as questions Q8 and Q9 
of the OS lab. In the survey after the OS lab, 100% of the students 
answered them correctly. However, two years later in the previous 
survey of the CG lab, these same questions were answered cor-
rectly by only 75% and 83.3% of the students, respectively. These 
results demonstrate the effect of time on students’ memory. For-
tunately, the CG lab session helps to refresh students’ memory by 
reaching 91.7% and 100% on the post-survey.

The post-surveys revealed that all the lab sessions were well 
received. All the students completed the lab assignments, and they 
gave an overall score of 8.8 out of 10 to the quality of the lab 
designs, the materials and resources, and the faculty assistance. 
When asked about their opinion in the CG lab, one student men-
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tioned that he/she “liked a lot the idea of unifying several courses in a 
single learning experience, and this should be done more often to consol-
idate the learning”. Another student pointed out that “this is a very 
positive initiative to put together everything we have seen in multiple 
courses”.

In general, after completing the labs, the students have reached 
a broader view of the interactions among operating systems, com-
puter architecture, and parallel and distributed computing. As 
learning outcomes, students discerned among the different mutex 
implementation alternatives and clearly identified the programma-
bility, execution time, and efficiency trade-offs at each abstraction 
level.

7. Conclusions

The current structure of the Computer Engineering (CE) pro-
gram, arranged in isolated courses, causes students to lose sight of 
the overall view of a typical computer system organized in abstrac-
tion levels. This paper has presented a learning experience that 
aims to reinforce this vision as a whole.

The presented experience covers the abstraction levels of Appli-
cation, Library, Operating System, and Instruction Set Architecture, 
and consists in the implementation of a parallel ray tracing al-
gorithm that uses a concurrent queue to assign tasks to different 
execution threads. The accesses in mutual exclusion to this queue 
are managed by mutexes implemented with either library func-
tions, system calls, or assembly instructions.

The aforementioned abstraction levels have been introduced 
and related to each other in a subset of laboratories from different 
courses of a CE program, allowing students to consolidate the con-
cepts of parallelism, concurrency, atomicity, and consistency. This 
paper has presented the structure and contents of each proposed 
lab, as well as the interactions with the remaining labs. In addi-
tion, a detailed study of the hardware and software requirements 
and the consequent choice of Raspberry Pi as the common hard-
ware development platform is also discussed.

Experimental results consisted of a technical evaluation and an 
assessment study of the proposed learning experience. The techni-
cal results referred to an evaluation and discussion of the perfor-
mance and temperature differences of the implemented mutexes 
in each lab. The experience assessment consisted of a series of 
pre/post surveys. Most students pointed out an enhancement in 
the design of the labs and a greater exposure to the relations be-
tween courses. In addition, the students showed an enhancement 
in the integrated perception of the addressed concepts and the 
acquisition of the knowledge, since the correct responses to the 
technical questions from the surveys improved by 30.7% after the 
experience.
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Appendix A. Surveys

A.1. DCSP survey

Q1 Do you understand the importance of mutual exclusion?
• Yes
• No
• I have a rough idea

Q2 When a P process is said to use an S semaphore with busy-
wait semantics, which of the following operations refers to
wait(S)?:
• Option 1:

< i f S . V>0
S . V := S . V−1

else
S . L := S . L ∪ {P}
P . s t a t e := blocked

end
>

• Option 2:

< await S . V>0
S . V := S . V−1

>

• To anyone, both are equivalent
Q3 If the semantics for semaphores in the first two answers from 

the previous question are taken into account, which of the fol-
lowing statements can be considered as true?
• Since they are equivalent, there are no differences in terms 

of liveliness and safety properties
• There are no differences in terms of safety properties, but 

there are differences in terms of liveliness
• There are no differences in terms of liveliness properties, but 

there are differences in terms of safety
• Although they are not equivalent, there are no differences in 

terms of liveliness and safety properties
Q4 Consider the following scheme to solve the problem of the 

critical section, S being a semaphore with busy-wait seman-
tics. Which of the following statements is correct?

Semaphore S:=1
Process P Process Q

loop forever loop forever
SNC SNC
wait ( S ) wait ( S )
SC SC
s i g n a l ( S ) s i g n a l ( S )

end end
end end

• The solution can generate fairness problems
• There are no fairness issues
• There will be fairness issues depending on the first process 

that gets access to the semaphore

A.2. OS survey

Q5 Do you know the advantages and shortcomings of a mutex 
with/without active waiting?
• Yes
• No
• There are no differences

Q6 Would you be able to implement a mutex with busy waiting?
• Yes
• No
• I am not sure

Q7 Would you be able to implement a mutex without busy wait-
ing?
• Yes
50
• No
• I am not sure

Q8 What do you consider essential to implement a mutex with 
busy waiting (multiple choices can be selected)?
• Atomic memory reading and writing instructions
• OS support
• A shared memory space
• Nothing, any system supports it by default

Q9 What do you consider essential to implement a mutex without 
busy waiting (multiple choices can be selected)?
• Atomic memory reading and writing instructions
• OS support
• A shared memory space
• Nothing, any system supports it by default

Q10 Do you know what a futex is?
• Yes
• No
• I have a rough idea

A.3. MP survey

Q11 The consistency model defined by ARMv8 is...
• Sequential
• Relaxed
• None of them

Q12 Which of the following instructions puts the processor on a 
low power state?
• sevl
• dbm
• wfe
• All of the above
• None of the above

Q13 For a fetch and add, would you use any of the following ARMv8 
instructions?
• wfe, sevl
• DMB, DSB, ISB
• ldaxr, stlr
• None of the above

Q14 What of the following synchronization alternatives would you 
use in a low-contention scenario for the next program?

/ / run concurrently by several threads
long long my_add = 0;
while ( work_index<n_elements ) {

/ / how do you protect the next code l i n e s ?
int my_work_index_ini = work_index ;
work_index = work_index + chunk ;
int my_work_index_end = work_index ;

for ( int i =my_work_index_ini ; i <my_work_index_end ; i ++)
my_add = my_add + v_elems [ i ] ;

}

• Fetch and add
• Mutex
• Energy-efficient mutex

Q15 What of the following synchronization alternatives would you 
use in a high-contention scenario for the same program as in 
the previous question?
• Fetch and add
• Mutex
• Energy-efficient mutex

A.4. CG survey

Q16 What are the minimal requirements to implement a non 
busy-wait mutex (several choices can be valid)?
• Atomic instructions
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• OS support
• A shared memory space
• Nothing, all systems support non busy-wait mutexes

Q17 What are the minimal requirements to implement a busy-
wait mutex (several choices can be valid)?
• Atomic instructions
• OS support
• A shared memory space
• Nothing, all systems support non busy-wait mutexes

Q18 For a parallel application such as a ray tracer, which imple-
mentation would be faster in a scenario where the number of 
logical threads is lower than the number of physical execution 
contexts of the processor?
• OS mutex
• Library mutex
• Assembly mutex
• All three should have a similar behavior

Q19 For a parallel application such as a ray tracer, which imple-
mentation would be faster in a scenario where the number of 
logical threads is equal to the number of physical execution 
contexts of the processor?
• OS mutex
• Library mutex
• Assembly mutex
• All three should have a similar behavior

Q20 For a parallel application such as a ray tracer, which imple-
mentation would be faster in a scenario where the number of 
logical threads is higher than the number of physical execution 
contexts of the processor?
• OS mutex
• Library mutex
• Assembly mutex
• All three should have a similar behavior

Q21 Many algorithms, such as ray tracing, whose output is a ma-
trix of pixels (or an image), are easily parallelizable. Which is 
the best parallelization strategy for such algorithms?
• Static: pixels are pre-assigned to a worker thread by rows, 

columns, or regions. In this approach, workers perform their 
tasks without synchronizing with other workers

• Dynamic-per-pixel: each worker continuously fetches single-
pixel tasks until completion. It requires synchronization 
among workers

• Dynamic-per-region: each worker continuously fetches re-
gion tasks until completion. It requires synchronization 
among workers

• Hard to guess: the best strategy depends on the variability 
of the execution time of each task

Q22 In a parallel ray tracing algorithm, where each pixel can be in-
dependently generated, assuming a dynamic-per-region strat-
egy, under which circumstance reducing the region size can 
improve performance?
• When there is variability in the pixel-generation time
• When there are image areas where is known beforehand 

that the pixel-generation time is smaller than that of other 
areas

• When the region task delay is significantly larger than the 
synchronization delay produced by the region

• When the resulting image has many color disturbances

References

[1] ACM/IEEE, Computer Science Curricula 2013: Curriculum Guidelines for Under-
graduate Degree Programs in Computer Science, 2013.

[2] ACM/IEEE, Computer Engineering Curricula 2016: Curriculum Guidelines for 
Undergraduate Degree Programs in Computer Engineering, 2016.

[3] G.R. Andrews, Concurrent Programming. Principles and Practice, 1st edition, 
The Benjamin/Cummings Publishing Company, Inc., 1991.
51
[4] ARM, ARM DS-5 Development Studio Examples, 2018.
[5] R.H. Arpaci-Dusseau, A.C. Arpaci-Dusseau, Operating Systems: Three Easy 

Pieces, 1st edition, Arpaci-Dusseau Books, LLC, 2018.
[6] S.A. Bogaerts, One step at a time: parallelism in an introductory programming 

course, J. Parallel Distrib. Comput. 105 (2017) 4–17.
[7] M. Burtscher, W. Peng, A. Qasem, H. Shi, D. Tamir, H. Thiry, A module-based 

approach to adopting the 2013 ACM curricular recommendations on parallel 
computing, in: Proceedings of the 46th ACM Technical Symposium on Com-
puter Science Education, 2015, pp. 36–41.

[8] G. Coley, BeagleBoard X15 system reference manual, BeagleBoard .org, 2016.
[9] J. Cuenca, D. Giménez, A parallel programming course based on an execution 

time-energy consumption optimization problem, in: Proceedings of the IEEE 
International Parallel and Distributed Processing Symposium Workshops, 2016, 
pp. 996–1003.

[10] U. Drepper, Futexes are tricky, http://people .redhat .com /drepper /futex .pdf, 
2011.

[11] U. Drepper, I. Molnar, The native POSIX thread library for Linux, https://akkadia .
org /drepper /nptl -design .pdf, 2005.

[12] J. Eckroth, A course on big data analytics, J. Parallel Distrib. Comput. 118 (P1) 
(2018) 166–176.

[13] C. Ferner, B. Wilkinson, B. Heath, Toward using higher-level abstractions to 
teach parallel computing, in: Proceedings of the IEEE International Parallel and 
Distributed Processing Symposium Workshops, 2013, pp. 1291–1296.

[14] H. Franke, R. Russell, M. Kirkwood, Fuss, futexes and furwocks: fast user-
level locking in Linux, in: Proceedings of the Ottawa Linux Symposium, 2002, 
pp. 479–495.

[15] B. Gaster, L. Howes, D.R. Kaeli, P. Mistry, D. Schaa, Heterogeneous Computing 
with OpenCL, 1st edition, Morgan Kaufmann Publishers Inc., 2011.

[16] N. Giacaman, O. Sinnen EA, Research-infused teaching of parallel program-
ming concepts for undergraduate software engineering students, in: IEEE 
International Parallel Distributed Processing Symposium Workshops, 2014, 
pp. 1099–1105.

[17] D. Ginat, Y. Blau, Multiple levels of abstraction in algorithmic problem solving, 
in: Proceedings of the ACM SIGCSE Technical Symposium on Computer Science 
Education, 2017, pp. 237–242.

[18] M. Grossman, M. Aziz, H. Chi, A. Tibrewal, S. Imam, V. Sarkar, Pedagogy and 
tools for teaching parallel computing at the sophomore undergraduate level, J. 
Parallel Distrib. Comput. 105 (2017) 18–30.

[19] M. Haidl, S. Gorlatch, PACXX: towards a unified programming model for pro-
gramming accelerators using C++14, in: Proceedings of the LLVM Compiler 
Infrastructure in HPC, 2014, pp. 1–11.

[20] D.J. John, S.J. Thomas, Parallel and distributed computing across the computer 
science curriculum, in: Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium Workshops, 2014, pp. 1085–1090.

[21] J. Kramer, Is abstraction the key to computing?, Commun. ACM 50 (4) (2007) 
36–42.

[22] S. Kumar, Research-oriented teaching of PDC topics in integration with other 
undergraduate courses at multiple levels: a multi-year report, J. Parallel Distrib. 
Comput. 105 (2017) 92–104.

[23] V. Kumar, Introduction to Parallel Computing, 2nd edition, Addison-Wesley 
Longman Publishing Co., Inc., 2002.

[24] B. Levandowski, D. Perouli, D. Brylow, Using embedded Xinu and the raspberry 
Pi 3 to teach parallel computing in assembly programming, in: Proceedings of 
the IEEE International Parallel and Distributed Processing Symposium Work-
shops, 2019, pp. 334–341.

[25] C. Lupo, Z.J. Wood, C. Victorino, Cross teaching parallelism and ray tracing: a 
project-based approach to teaching applied parallel computing, in: Proceedings 
of the 43rd ACM Technical Symposium on Computer Science Education, 2012, 
pp. 523–528.

[26] S.J. Matthews, Teaching with parallella: a first look in an undergraduate parallel 
computing course, J. Comput. Sci. Coll. 31 (3) (2016) 18–27.

[27] S.J. Matthews, J.C. Adams, R.A. Brown, E. Shoop, Portable parallel computing 
with the raspberry Pi, in: Proceedings of the ACM SIGCSE Technical Symposium 
on Computer Science Education, 2018, pp. 92–97.

[28] T. Newhall, A. Danner, K.C. Webb, Pervasive parallel and distributed comput-
ing in a liberal arts college curriculum, J. Parallel Distrib. Comput. 105 (2017) 
53–62.

[29] Orange Pi Zero H2 User Manual, version 0.9.1, Shenzhen Xunlong Software Co., 
Ltd..

[30] S. Petit, J. Sahuquillo, M.E. Gómez, V. Selfa, A research-oriented course on ad-
vanced multicore architecture: contents and active learning methodologies, J. 
Parallel Distrib. Comput. 105 (2017) 63–72.

[31] M. Pharr, W. Jakob, G. Humphreys, Physically Based Rendering: From Theory to 
Implementation, 3rd edition, Morgan Kaufmann Publishers Inc., 2017.

[32] S.K. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta, J. Jaja, K. Kant, A. 
La Salle, R. LeBlanc, A. Lumsdaine, D. Padua, M. Parashar, V. Prasanna, Y. Robert, 
A. Rosenberg, S. Sahni, B. Shirazi, A. Sussman, C. Weems, J. Wu, NSF/IEEE-TCPP 
curriculum initiative on parallel and distributed computing - core topics for 
undergraduates, version I, http://tcpp .cs .gsu .edu /curriculum/, 2012.

http://refhub.elsevier.com/S0743-7315(21)00113-1/bib053AE2A0B72E43C7A2C7572CECF37EF4s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib053AE2A0B72E43C7A2C7572CECF37EF4s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7642F187BDE051EFD1D83A118BDCC546s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7642F187BDE051EFD1D83A118BDCC546s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibBB19817018153E26E35C9A12ADC6FC65s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibBB19817018153E26E35C9A12ADC6FC65s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4D09FAD9EF330FE1F173FADA26129A39s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib69C549F49F6B4211693390ABF1595F5As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib69C549F49F6B4211693390ABF1595F5As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4CD9216D7FFA85C3EFC286B1FDF7F9B6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4CD9216D7FFA85C3EFC286B1FDF7F9B6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibDC415158798D1265D0F4E903C7A7E364s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibDC415158798D1265D0F4E903C7A7E364s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibDC415158798D1265D0F4E903C7A7E364s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibDC415158798D1265D0F4E903C7A7E364s1
http://BeagleBoard.org
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD9D67737A74F3A815B837136B17E3217s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD9D67737A74F3A815B837136B17E3217s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD9D67737A74F3A815B837136B17E3217s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD9D67737A74F3A815B837136B17E3217s1
http://people.redhat.com/drepper/futex.pdf
https://akkadia.org/drepper/nptl-design.pdf
https://akkadia.org/drepper/nptl-design.pdf
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibEB4106C498CEB74B07D4502A3B48DEB1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibEB4106C498CEB74B07D4502A3B48DEB1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD4FB78A25BD10385797022A6DE16042Es1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD4FB78A25BD10385797022A6DE16042Es1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD4FB78A25BD10385797022A6DE16042Es1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib299BC2D0C0B1BB2E1123890C0BB0B133s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib299BC2D0C0B1BB2E1123890C0BB0B133s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib299BC2D0C0B1BB2E1123890C0BB0B133s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA284AED09999D94CDBFDFB8356D0E728s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA284AED09999D94CDBFDFB8356D0E728s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7412DF2B1DB8CD2A5D4AAFDB6C2090D3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7412DF2B1DB8CD2A5D4AAFDB6C2090D3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7412DF2B1DB8CD2A5D4AAFDB6C2090D3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7412DF2B1DB8CD2A5D4AAFDB6C2090D3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib38DFBE39EB926ECB2F4AC75805977DECs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib38DFBE39EB926ECB2F4AC75805977DECs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib38DFBE39EB926ECB2F4AC75805977DECs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0B4B633F3B914E8A7C656928816D01FBs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0B4B633F3B914E8A7C656928816D01FBs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0B4B633F3B914E8A7C656928816D01FBs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib9E9B999B3040FE514DD5EA7B3FADFAAAs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib9E9B999B3040FE514DD5EA7B3FADFAAAs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib9E9B999B3040FE514DD5EA7B3FADFAAAs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA314F4A559EEAE1A1668EAF74E248746s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA314F4A559EEAE1A1668EAF74E248746s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA314F4A559EEAE1A1668EAF74E248746s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0E6EEE16975896D5191D8FE7F372CED9s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0E6EEE16975896D5191D8FE7F372CED9s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB4C217AEAFFD2E7A376B6C7207D3745As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB4C217AEAFFD2E7A376B6C7207D3745As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB4C217AEAFFD2E7A376B6C7207D3745As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib6BFEF5D5DB4A5344FB9C4EECDA34DD0Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib6BFEF5D5DB4A5344FB9C4EECDA34DD0Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib08D5F9E9048E2000531C3170F4B833B1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib08D5F9E9048E2000531C3170F4B833B1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib08D5F9E9048E2000531C3170F4B833B1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib08D5F9E9048E2000531C3170F4B833B1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4B272863588574688F039BDBFADF6833s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4B272863588574688F039BDBFADF6833s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4B272863588574688F039BDBFADF6833s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4B272863588574688F039BDBFADF6833s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib483C130EBAEDC01A43EE5EC888E0CB94s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib483C130EBAEDC01A43EE5EC888E0CB94s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib64052A600CA02ADA0A38F07CDC4EC304s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib64052A600CA02ADA0A38F07CDC4EC304s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib64052A600CA02ADA0A38F07CDC4EC304s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib935480B5153338F7B4E34DC5653B41E3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib935480B5153338F7B4E34DC5653B41E3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib935480B5153338F7B4E34DC5653B41E3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib629B0B5BDED7CBA81BB61B9292597696s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib629B0B5BDED7CBA81BB61B9292597696s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib629B0B5BDED7CBA81BB61B9292597696s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA19B3FB142EDC1D69ABAF3EB43EA8214s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA19B3FB142EDC1D69ABAF3EB43EA8214s1
http://tcpp.cs.gsu.edu/curriculum/


A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
[33] Qualcomm, DragonBoard™410C based on Qualcomm®Snapdragon™410E pro-
cessor. Peripherals Programming Guide Linux Android, Qualcomm Technolo-
gies, Inc., 2016.

[34] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, X. Tian, Data 
Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems Us-
ing C++ and SYCL, Springer Nature, 2021.

[35] E. Saule, Experiences on teaching parallel and distributed computing for un-
dergraduates, in: IEEE International Parallel and Distributed Processing Sympo-
sium Workshops, 2018, pp. 361–368.

[36] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts, 9th edition, 
Wiley Publishing, 2012.

[37] D.J. Sorin, M.D. Hill, D.A. Wood, A Primer on Memory Consistency and Cache 
Coherence, 1st edition, Morgan & Claypool Publishers, 2011.

[38] S. Srivastava, M. Smith, A. Ghimire, S. Gao, Assessing the integration of par-
allel and distributed computing in early undergraduate computer science cur-
riculum using unplugged activities, in: IEEE/ACM Workshop on Education for 
High-Performance Computing, 2019, pp. 17–24.

[39] W. Stallings, Operating Systems: Internals and Design Principles, 6th edition, 
Prentice Hall Press, 2008.

[40] E. Upton, G. Halfacree, Raspberry Pi User Guide, John Wiley & Sons Ltd., 2014.
[41] E. Upton, J. Duntemann, R. Roberts, T. Mamtora, B. Everard, Learning Computer 

Architecture with Raspberry Pi, 1st edition, Wiley Publishing, 2016.
[42] L.B.A. Vasconcelos, F.A.L. Soares, P.H.M.M. Penna, M.V. Machado, L.F.W. Góes, 

C.A.P.S. Martins, H.C. Freitas, Teaching parallel programming to freshmen in an 
undergraduate computer science program, in: IEEE Frontiers in Education Con-
ference, 2019, pp. 1–8.

[43] E. Veach, Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. 
thesis, Stanford University, 1998.

[44] A. Williams, C++ Concurrency in Action, Manning Publications, 2012.
[45] A.A. Younis, R. Sunderraman, M. Metzler, A.G. Bourgeois, Case study: using 

project based learning to develop parallel programing and soft skills, in: IEEE 
International Parallel and Distributed Processing Symposium Workshops, 2019, 
pp. 304–311.

Alejandro Valero received the Ph.D. degree in 
Computer Engineering from the Universitat Politèc-
nica de València, Spain, in 2013. From 2013 to 2015, 
he was a visiting researcher with Northeastern Uni-
versity, Boston, MA, USA, and the University of Cam-
bridge, UK. Since 2016, he has been a professor with 
the Department of Computer Science and Systems En-
gineering, Universidad de Zaragoza, Spain, where he 
teaches several courses on computer organization and 

has been involved in multiple teaching innovation projects. His research 
interests include GPU architectures, memory hierarchy design, energy ef-
ficiency, fault tolerance, and computer architecture education. Prof. Valero 
is a member of the Aragon Institute of Engineering Research (I3A) and the 
HiPEAC European NoE.

Rubén Gran-Tejero has been teaching for the last 
fourteen years at the Department of Computer Sci-
ence and Systems Engineering of the University of 
Zaragoza. He has conducted lectures on operating 
systems, systems architecture, computer architecture, 
parallel multiprocessors, and high performance com-
puting. He has been involved in several teaching in-
novation projects as collaborator and principal inves-
tigator. His research interests include hard real-time 

systems, hardware for reducing worst-case execution time and energy 
consumption, efficient processor microarchitecture, and effective program-
ming for parallel and heterogeneous systems.

Darío Suárez-Gracia received the Ph.D. degree 
in Computer Engineering from the Universidad de 
Zaragoza, Spain, in 2011. From 2012 to 2015, he was 
with Qualcomm Research Silicon Valley. He is cur-
rently an Associate Professor with the Universidad de 
Zaragoza. His research interests include parallel pro-
gramming, heterogeneous computing, fault-tolerance 
and computer architecture education. He is a recip-
ient of the best paper award at the Workshop on 

Computer Architecture Education. He is a member of the Aragon Insti-
tute of Engineering Research (I3A), the IEEE Computer Society, ACM, and 
the HiPEAC European NoE.

Emanuel A. Georgescu is an Undergraduate Stu-
dent of the Telecommunications Engineering Program 
at the Universidad de Zaragoza. His undergraduate
thesis explores how different mutex implementations 
impact on the performance of a ray tracer application.

Joaquín Ezpeleta received the M.S. degree in 
Mathematics and the Ph.D. degree in Computer Sci-
ence from the University of Zaragoza, Spain. He is a 
Full Professor of the Dept. of Computer Science and 
Systems Engineering of the University of Zaragoza, 
where he conducts lectures on formal methods for 
sequential and concurrent programming as well as 
service-oriented architectures. His research focuses on 
the problem of modeling, analysis, and control syn-

thesis for concurrent systems and the application of formal techniques to 
help in the development of correct distributed systems based on Internet 
and cloud technologies, as well as on the parallel processing of data and 
intensive computing problems.

Pedro Álvarez received the Ph.D. degree in Com-
puter Science Engineering from the University of 
Zaragoza, Zaragoza, Spain, in 2004. He works as Senior 
Lecturer Professor at this University since 2000. His 
current research interests focus on the development 
and application of novel techniques for the analysis of 
large-scale data repositories. The proposed solutions 
have been applied in different fields, such as cyber-
security, e-commerce and e-business, or e-health and 

sports. During the last years these research results have been transferred 
to the academic context in order to understand students’ behavior and to 
improve the learning-teaching methods.

Adolfo Muñoz is an Associate Professor at the De-
partment of Computer Science and Systems Engineer-
ing of the University of Zaragoza. For the last fifteen 
years, he has been teaching in diverse courses related 
to programming, software engineering and computer 
graphics in varied undergrad and master level engi-
neering and computer science studies. He has partici-
pated in several teaching innovation projects, and has 
applied innovative methodologies throughout the dif-

ferent courses he has participated in. He is recently involved in a new 
master in Robotics, Graphics, and Computer Vision.

Luis M. Ramos is an Associate Professor at the 
Department of Computer Science and Systems Engi-
neering of the University of Zaragoza. He received the 
Ph.D. degree in Computer Engineering from the Uni-
versity of Zaragoza in 2009. For the last 25 years 
he has been teaching in diverse courses related to 
logic design, computer architecture, high performance 
computing, and operating systems. He has partici-
pated in several teaching innovation projects. His re-

search interests include hardware data prefetching and computer architec-
ture education. He received the Best Paper Award at the First JILP Data 
Prefetching Championship.

Pablo Ibáñez received the M.S. degree in Com-
puter Science from the Universitat Politècnica de 
Catalunya, Spain, in 1989, and the Ph.D. degree in 
Computer Science from the Universidad de Zaragoza, 
Spain, in 1998. He is an Associate Professor with the 
Computer Science and Systems Engineering Depart-
ment, University of Zaragoza. His research interests 
include processor microarchitecture, memory hierar-
chy, parallel computer architecture, and high perfor-

mance computing applications.
52

http://refhub.elsevier.com/S0743-7315(21)00113-1/bib8621FFDBC5698829397D97767AC13DB3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib8621FFDBC5698829397D97767AC13DB3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib8621FFDBC5698829397D97767AC13DB3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibC177FE2314F955662359E9EDA833C13Cs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibC177FE2314F955662359E9EDA833C13Cs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibC177FE2314F955662359E9EDA833C13Cs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib800B412A66EB35EF7DA1524D3A33FD98s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib800B412A66EB35EF7DA1524D3A33FD98s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib800B412A66EB35EF7DA1524D3A33FD98s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib3AC15AE38512CFD2908B8A6140B21678s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib3AC15AE38512CFD2908B8A6140B21678s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB9CB8600343670F6ED8BDD68EDB7C123s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB9CB8600343670F6ED8BDD68EDB7C123s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD6C71ED47DDE3EC13501F3A3566617D6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD6C71ED47DDE3EC13501F3A3566617D6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD6C71ED47DDE3EC13501F3A3566617D6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD6C71ED47DDE3EC13501F3A3566617D6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB8BA2352250B843548465E51537E05E7s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB8BA2352250B843548465E51537E05E7s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib2CFE1A659338E52FCD4FC00040EF09A9s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib80EC56EC7B1B2D406A96BE667E996A07s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib80EC56EC7B1B2D406A96BE667E996A07s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib885F7590CBD847454474D85E3A568F20s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib885F7590CBD847454474D85E3A568F20s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib5BE4F588B56AE69A3B3045959457CE49s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib66ACFC3A4A258B57BF6C927C856BE73Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib66ACFC3A4A258B57BF6C927C856BE73Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib66ACFC3A4A258B57BF6C927C856BE73Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib66ACFC3A4A258B57BF6C927C856BE73Ds1

	A learning experience toward the understanding of abstraction-level interactions in parallel applications
	1 Introduction
	2 Context
	2.1 CE program
	2.2 Involved courses

	3 Proposed learning experience
	3.1 Overview
	3.2 Abstraction levels
	3.2.1 Concurrent task queue
	3.2.2 Task queue protection with futex system calls
	3.2.3 Futexes with assembly code
	3.2.4 Parallel ray tracing


	4 Experimental environment
	5 Technical results
	5.1 OS level
	5.2 Library level
	5.3 Assembly level
	5.4 Application level

	6 Experience assessment
	7 Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A Surveys
	A.1 DCSP survey
	A.2 OS survey
	A.3 MP survey
	A.4 CG survey

	References


