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The present paper focuses on the study of the conditions under which the covariance
matrix of a multivariate Gaussian distribution is totally positive, paying particular
attention to multivariate Gaussian distributions that are Gaussian Markov Random Fields.
More specifically, it is proven that, if the graph over which the Gaussian Markov Random
Field is defined consists of path graphs and the covariances between adjacent variables
on the graph are non-negative, then there always exists a reordering of the variables
that renders the resulting covariance matrix totally positive. Moreover, this reordering
is identified and some cases for which the conditions for the covariance matrix of a
multivariate Gaussian distribution to be totally positive are necessary and sufficient are
provided.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A matrix is called totally positive (resp., strictly totally positive) if all its minors are non-negative (resp., positive).
otally positive matrices arise in many fields of application such as Approximation Theory, Economy, Biology and
omputer-Aided Geometric Design (see, e.g., [1–3]). A particularity of non-singular totally positive matrices is that they
dmit a bidiagonal factorization so that many algebraic computations can be performed to attain High Relative Accuracy
HRA) [4], assuming that the bidiagonal factorization can be obtained with HRA. HRA means that the relative errors of
he computations are of the order of machine precision, independently of the size of the matrix condition number. Some
xamples of such algebraic operations are the computation of the inverse matrix, triangular factorization, computation
f eigenvalues and singular values and even the resolution of some linear systems. All of these algebraic operations
ppear routinely in the field of Statistics when dealing with covariance matrices, for instance when performing Principal
omponent Analysis, computing conditional distributions and performing the Cholesky factorization of a covariance
atrix for simulation purposes.
From an apparently different perspective, Gaussian Markov Random Fields (GRMF) over graphs are a popular statistical

ool linking the dependence structure of a multivariate Gaussian distribution to a graph. This type of distribution is widely
sed in several fields of application such as signal analysis [5], disease control [6], image recognition [7], robotics [8] and
eneral data prediction [9].
In this paper, we provide a link between totally positive matrices and GRMF by proving that, given a GRMF over a

raph of paths, there exists a reordering of the variables of the random vector for which the covariance matrix is totally
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positive. Moreover, characterizations of the total positivity of the covariance matrix when the graph is acyclic or the GRMF
has uniform correlation are provided. These results will be of key interest to practitioners from a computational point of
view since they will provide the tools for performing prominent algebraic operations such as inversion and computation
of eigenvalues of a covariance matrix with HRA, even in high-dimensional problems. Prototypical stochastic processes
for which the presented results are applicable include Gauss–Markov chains and Gaussian processes over the real line,
always assuming that the covariance between variables is non-negative.

The remainder of the paper is organized as follows. Section 2 recalls some basic concepts and results on graphs, totally
ositive matrices andM-matrices, random vectors and GRMF. Section 3 includes the aforementioned results relating GRMF
nd totally positive matrices and M-matrices. We end with some conclusions in Section 4.

2. Preliminaries

This section is devoted to recall basic notions and to fix the notation used throughout the paper.

2.1. Graph theory

Firstly, we present some basic concepts and results concerning graphs, taking [10] as main reference.

Definition 2.1. A (simple finite) graph G, denoted as G = (V , E), is formed by a finite set of nodes V and a set of edges
, which is a set of subsets of V of cardinality 2. The number of elements of V is called the order of the graph (typically
enoted by n) and the number of elements of E is called the size of the graph (typically denoted by m).

Henceforward, we will refer to simple finite graphs simply as graphs.

Definition 2.2. Let G = (V , E) be a graph. Given u, v ∈ V , if {u, v} ∈ E, then it is said that u and v are adjacent. The set
f adjacent nodes to u ∈ V is called the neighborhood of u and is denoted by N(u). The cardinality of N(u) is referred to
s the degree of incidence of u. The matrix AG such that AG

i,j = 1 if {i, j} ∈ E and AG
i,j = 0 otherwise is called the adjacency

atrix of G.

The notion of subgraph is of relevance to the present paper.

efinition 2.3. Let G = (V , E) and G′
= (V ′, E ′) be two graphs. The graph G′ is called a subgraph of G if it holds that

′
⊆ V and E ′

⊆ E.

Also, the notions of walk, path and cycle will be used throughout this paper. In particular, given a graph G = (V , E)
nd u0, uk ∈ V , a sequence of nodes (u0, u1, . . . , uk) such that {ui−1, ui} ∈ E for any i ∈ {1, . . . , k} is called a walk between
0 and uk. The number of edges of a walk is referred to as the length of the walk. A walk (u0, u1, . . . , uk) such that ui ̸= uj
or any i ̸= j (except possibly u0 = uk) is called a path. A walk (u0, u1, . . . , uk) such that u0 = uk is called a cycle.

A graph without any cycle is called acyclic or a forest. If there exists a walk between every pair of nodes, the graph
s called connected. An acyclic and connected graph is called a tree. A connected subset of nodes that is maximal on this
egard is called a connected component. A well-known property of a tree is that there exists a unique path between any
wo nodes.

.2. Totally positive matrices and M-matrices

Let A be a matrix of dimension n × n. Let 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n (with k ∈ {1 . . . , n}) be two
ubsets of indices of the matrix. The k×k submatrix of A containing the rows associated with the indices i1, . . . , ik and the
olumns associated with the indices j1, . . . , jk is denoted as A{i1,...,ik},{j1,...,jk}. The determinant of this matrix is denoted as
A|{i1,...,ik},{j1,...,jk} and is called the minor associated with {i1, . . . , ik} and {j1, . . . , jk}. A minor is called (leading) principal
f {i1, . . . , ik} = {j1, . . . , jk} = {1, . . . , k}.

A popular type of matrix is that of positive-(semi)definite matrices. A matrix A of dimension n × n is called positive-
emidefinite if it is symmetric (or Hermitian) and every (leading) principal minor of A is non-negative. If additionally
very (leading) principal minor of A is strictly positive, then A is called positive-definite.
Another popular type of matrix is that of (strictly) totally positive matrices [1,2], which will be of key importance to

his paper. The reader should be aware that the terms ‘totally non-negative’ and ‘totally positive’ are sporadically used
n the literature (see, e.g., [2,4]) for referring to the concepts that will be here referred to as ‘totally positive’ and ‘strictly
otally positive’.

efinition 2.4. A matrix A of dimension n× n is called totally positive if every minor of A is non-negative. If additionally
ny minor of A is strictly positive, then A is called strictly totally positive.
2
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Totally positive matrices have very interesting properties from a computational point of view. In particular, it is possible
o approximate computations with High Relative Accuracy (HRA). HRA means that the relative errors of the computations
re of the order of the precision of the machine used for the computations, independently of the size of the condition
umber of the matrix. In this context, algorithms for tasks such as finding the eigenvalues or eigenvectors, factorization
nd inverse computation of a totally positive matrix attaining HRA have been developed [4,11].
The next result is consequence of Theorem 3.3(c) in [1].

roposition 2.1 ([1]). Let S be a diagonal matrix such that Si,i = 1 if i is odd and Si,i = −1 if i is even. A matrix M is totally
positive if and only if SM−1S is totally positive.

A Z-matrix is a real matrix whose off-diagonal elements are non-positive. A specific type of Z-matrices, called M-
matrices, are closely related to totally positive matrices. Non-singular M-matrices have many equivalent definitions. In
fact, Berman and Plemmons (see Theorem 2.3 in Chapter 6 of [12]) list fifty equivalent definitions. We shall use the
following equivalent definitions.

Definition 2.5. Let A be a real n × n Z-matrix. The following concepts are equivalent:

(i) A is a non-singular M-matrix.
(ii) A−1 is positive.
(iii) The principal minors of A are strictly positive.

Observe that (iii) of the previous definition may be used to prove that a symmetric positive-definite matrix is an
M-matrix. Non-singular M-matrices have important applications, for instance, in economics, numerical analysis, analysis
of dynamical systems and mathematical programming (see [12]).

2.3. Multivariate Gaussian distributions

In this subsection, basic concepts of multivariate Gaussian distributions are introduced, taking [13,14] as reference.
A multivariate Gaussian distribution is a probability measure over Rn which is unequivocally determined by a mean

vector and a covariance matrix. A random vector is said to have a multivariate Gaussian distribution if any non-null linear
combination of its components has a univariate Gaussian distribution [13]. Obviously, a multivariate Gaussian distribution
may also be characterized by its density function. A random vector X⃗ of dimension n is said to have a multivariate Gaussian
distribution if its density function has the following expression:

f (x⃗) =
1

√
|2πΣ |

exp
(

−
(x⃗ − µ⃗)TΣ−1(x⃗ − µ⃗)

2

)
, ∀x⃗ ∈ Rn,

here µ⃗ is the mean vector and Σ is the covariance matrix of X⃗ . The fact that X⃗ has a multivariate Gaussian distribution
ith mean vector µ⃗ and covariance matrix Σ is denoted as X⃗ ∼ N(µ⃗, Σ). Additionally, if X⃗ ∼ N(µ⃗, Σ), then the random
ector defined as Y⃗ = Ax⃗ + v⃗ satisfies that Y⃗ ∼ N(Aµ⃗ + v⃗, AΣAT ).
Given the covariance matrix of the distribution, we may define Pearson’s correlation coefficient, which measures the

strength of the linear dependence between two components of the random vector.

Definition 2.6. Let X⃗ be a random vector of dimension n with covariance matrix Σ . Pearson’s correlation coefficient ρi,j
between Xi and Xj is defined as:

ρi,j =
Σi,j√
Σi,iΣj,j

=
σi,j

σi σj
.

Given three continuous random vectors X⃗ , Y⃗ and Z⃗ of dimensions nX , nY and nZ , respectively, with (joint) density
unction f (x⃗, y⃗, z⃗), X⃗ and Y⃗ are said to be conditionally independent given Z⃗ if there exists a decomposition f (x⃗, y⃗, z⃗) =

(x⃗, z⃗)g(y⃗, z⃗).
The fact that X⃗A and X⃗B are conditionally independent given X⃗C is denoted by X⃗A ⊥ X⃗B | X⃗C . The following property

concerning conditional independence will be of key importance for multivariate Gaussian distributions that are GRMF
(see the upcoming subsection): Two components Xi and Xj of a random vector with multivariate Gaussian distribution X⃗
are conditionally independent given the value of all other components of X⃗ if and only if

(
Σ−1

)
i,j = 0 (see [13]).

2.4. Gaussian Markov random fields

The concept of Markov Random Field (MRF) links the conditional (in)dependence structure of a random vector to
the adjacency matrix of a graph. In particular, given a random vector X⃗ = (X1, . . . , Xn) and a graph G = (V , E) with
V = {1, . . . , n}, the following three properties are of interest:
3
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• The pairwise Markov property: Xi ⊥ Xj | X⃗−{i,j} for any i, j ∈ V such that (i, j) /∈ E and i ̸= j , where X⃗−{i,j} denotes
all components of X⃗ but Xi and Xj.

• The local Markov property: Xi ⊥ X⃗−{i}∪N(i) | X⃗N(i) for any i ∈ V .
• The global Markov property: X⃗A ⊥ X⃗B | X⃗C , for any pairwisely disjoint A, B, C ⊂ V with A, B ̸= ∅ and such that C

separates A and B.

If the random vector has a multivariate Gaussian distribution, the three properties above are equivalent [15].
Additionally, if any of the three properties above holds, the multivariate Gaussian random vector is called a GRMF over G.
From a matrix perspective, the following characterization comes up handy.

Theorem 2.1 ([16]). Let G = (V , E) be a graph with V = {1, 2, . . . , n} and X⃗V be a random vector with multivariate Gaussian
distribution and covariance matrix Σ . It holds that X⃗V is a GMRF over G if and only if:

{i, j} /∈ E H⇒
(
Σ−1)

i,j = 0.

This result above is key to the theory of GMRFs and firstly appeared in a covariance selection problem introduced by
Dempster [17]. It is important to highlight that the theorem above does not apply in general for other distributions, thus
justifying why, even today, theoretical properties [18–20] and computational aspects [21,22] of GMRFs are still attracting
the interest of the research community.

Let us also introduce a particular type of GMRF that is useful in particular topics, see [23–25], in which Pearson’s
correlation coefficient between adjacent variables in the graph is always the same fixed value.

Definition 2.7. Let G = (V , E) be a graph with V = {1, 2, . . . , n} and ρ0 ∈ (−1, 1). A random vector X⃗V is called a GMRF
with uniform correlation ρ0 over G if its covariance matrix is positive-definite and there exist σ1, . . . , σn > 0 such that:

• Σi,i = σ 2
i ,

• Σi,j = σi σjρ0 , if {i, j} ∈ E,
• (Σ−1)i,j = 0 if {i, j} /∈ E , if i ̸= j.

We end this section by providing a couple of basic results regarding the correlation structure of GMRFs over acyclic
graphs.

Corollary 2.1 ([26]). Let X⃗ be a GMRF over a tree G = (V , E). Pearson’s correlation coefficient between two components Xi and
Xj of X⃗ is the product of Pearson’s correlation coefficients between adjacent variables of the unique walk that connects Xi and
Xj.

The latter result may be extended to acyclic graphs. It is only necessary to note that Pearson’s correlation coefficient
between variables of different connected components is zero. Thus, considering the correct order of the variables, the
covariance matrix is block-diagonal, where each block is associated with a connected component of the graph.

In general, a GMRF over a graph G does not need to be a GMRF over a subgraph of G. However, if G is a tree, we still
have a GMRF when removing edges {i, j} associated with components of the GMRF that are uncorrelated.

Proposition 2.2. Let X⃗ be a GMRF over a tree G = (V , E). If there exists an edge {i, j} such that ρi,j = 0, then X⃗ is a GMRF
over the graph G = (V , E\{i, j}).

Proof. Consider an edge {i, j} such that ρi,j = 0. For any v ∈ V , we introduce the notation cv = (v, . . . , i) to represent the
unique path from v to i. We separate the set of nodes (that are all connected since G is a tree) in those that are connected
to i by a walk that does not pass through j, resulting in the set Ci = {v ∈ V | j /∈ cv}, and those that are connected to i by
a walk that passes through j, resulting in the set Cj = {v ∈ V | j ∈ cv}. It trivially holds that Ci ∪ Cj = V and Ci ∩ Cj = ∅.
Since there exists a unique path between any two nodes of a tree, it follows that any walk between vi ∈ Ci and vj ∈ Cj

contains the edge {i, j}, therefore, as a consequence of Corollary 2.1, it holds that X⃗Ci ⊥ X⃗Cj . This implies that X⃗ is a GMRF
over a graph in which Ci and Cj are not connected, and in particular over G = (V , E\{i, j}). □

3. Gaussian Markov random fields and totally positive matrices

As introduced in Section 2.2, totally positive matrices are matrices where all minors are non-negative. In this section,
we will study the conditions under which a covariance matrix is totally positive and its relation with GMRFs. Let us start
with a very simple example that shows that it is easy to find positive-definite matrices (even with positive elements) that
are not totally positive:

Example 3.1. Consider the following positive-definite matrices M and T :

M =

( 1 0.5 0.6
0.5 1 0.4

)
, T =

( 1 0.5 0.2
0.5 1 0.4

)
.

0.6 0.4 1 0.2 0.4 1
4
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On the one hand, M is not totally positive since
⏐⏐⏐⏐0.5 0.6
1 0.4

⏐⏐⏐⏐ < 0. On the other hand, it is easy to check that T is totally

positive.

Before starting the study of GMRFs with a totally positive covariance matrix, it is important to clarify the difference
with another similar concept with the term totally positive appearing in its name. A multivariate distribution is said to
be multivariate totally positive of order 2 (MTP2) if its density function f (x⃗) is such that f (x⃗)f (y⃗) ≤ f (x⃗ ∧ y⃗)f (x⃗ ∨ y⃗)
or any x⃗, y⃗ ∈ R, where ∧ and ∨ denote, respectively, the component-wise maximum and minimum [27]. Interestingly, a
ultivariate Gaussian distribution is MTP2 if and only if the inverse of the covariance matrix is a symmetric M-matrix [27].
s a counterexample for the equivalence of both the covariance matrix being totally positive and the inverse of the
ovariance matrix being an M-matrix, we introduce an example of a matrix that is not totally positive but such that
ts inverse is an M-matrix:

Σ =

( 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

)
, Σ−1

=

( 1.5 −0.5 −0.5
−0.5 1.5 −0.5
−0.5 −0.5 1.5

)
.

.1. Properties of totally positive covariance matrices

In this subsection, we will assume that we are dealing with a positive-definite matrix that is also totally positive and
ind the transformations that do not alter these properties. Moreover, we will link these transformations to covariance
atrices of multivariate Gaussian distributions.
For instance, if a random vector X⃗ has a multivariate Gaussian distribution with a totally positive covariance matrix,

hen any random vector obtained from X⃗ as a result of a translation and/or a (non-negative) rescaling of each of the
omponents also has a multivariate Gaussian distribution with a totally positive covariance matrix.

roposition 3.1. Let X⃗ ∼ N(µ⃗, Σ) be a random vector with multivariate Gaussian distribution with Σ being totally positive
nd D be a diagonal matrix with non-negative elements. It follows that the covariance matrix of Y⃗ = DX⃗ + v⃗ is totally positive.

roof. From the properties of the multivariate Gaussian distribution, it follows that Y⃗ ∼ N(Dµ⃗ + v⃗,DΣDT ). Since D
nd DT are diagonal matrices with non-negative elements, they are totally positive. In addition, as Σ is totally positive,
t finally follows that DΣDT is totally positive since the product of totally positive matrices is also totally positive (see
heorem 3.1 in [1]). □

However, a reordering of the variables of the random vectors does not necessarily maintain the total positivity of the
ovariance matrix, as can be seen in the following example. Interestingly, this same type of transformation does not alter
he positive-definiteness of a matrix [28].

xample 3.2. Let T ′ be the matrix obtained from permuting the first and second rows and columns of the matrix T from
xample 3.1:

T ′
=

( 1 0.5 0.4
0.5 1 0.2
0.4 0.2 1

)
.

his matrix is no longer totally positive since
⏐⏐⏐⏐0.5 1
0.4 0.2

⏐⏐⏐⏐ = −0.3 is negative. Note that both T and T ′ are positive-definite.

From the example above, it is concluded that the ordering of the indices of the rows and columns is important when
sking a covariance matrix to be totally positive. In particular, we may have a covariance matrix that is not totally positive,
et it admits a reordering of the indices with a covariance matrix that is totally positive. When dealing with a multivariate
aussian distribution, this type of transformations is just a reordering of the components of the random vector [13]. In
his direction, it is interesting to change the main question of the present study from identifying the conditions under which
covariance matrix is totally positive to identifying the conditions under which a covariance matrix admits a reordering of the

ndices that renders the covariance matrix totally positive.

.2. Characterization of totally positive covariance matrices

From now on, we will focus on the study of necessary and sufficient conditions that a covariance matrix must fulfill
n order to be totally positive (or to admit a reordering of the indices that renders the covariance matrix totally positive).
n particular, we will prove that, given a multivariate Gaussian distribution X⃗ ∼ N(µ⃗, Σ), its covariance matrix is totally
ositive if the random vector is a GMRF over a particular type of graph in which any connected component is a path and
earson’s correlation coefficient between adjacent variables in the graph is non-negative.
As illustrated previously, the ordering of the variables is important when studying the total positivity of a covariance

atrix. In this direction, let us define a type of graph with a particular ordering of its nodes.
5



J. Baz, P. Alonso, J.M. Peña et al. Journal of Computational and Applied Mathematics 430 (2023) 115098

D

s
s
e
a

R

w

c

P

Fig. 1. All natural orderings for a graph consisting of a path of order 5 and a graph of order 3.

efinition 3.1. Let G = (V , E) with V = {1, . . . , n} be a graph such that any connected component is a path graph. If for
any i, j ∈ V with i < j and {i, j} ∈ E it holds that j − i = 1, then G is called a graph of paths with natural ordering.

The term ‘natural ordering’ has been chosen because it is the most intuitive way to index the vertices of a graph con-
isting of different path graphs. In particular, we index consecutively all vertices within the same connected component,
tarting from one end of the path to the other one. This process is repeated for all connected components. As an illustrative
xample, in Fig. 1 we provide all the possible natural orderings of a graph of paths consisting of a path of order 5 and
nother one of order 3.

emark 3.1. A graph of paths with natural ordering satisfies the following properties:

(i) Given two connected components Ci and Cj, it either holds that ℓi < ℓj for any ℓi ∈ Ci and ℓj ∈ Cj or ℓi > ℓj for any
ℓi ∈ Ci and ℓj ∈ Cj.

(ii) The adjacency matrix is tridiagonal.
(iii) The graph is acyclic.

Considering the previous remark, it follows that the inverse of the covariance matrix of a GMRF over a graph of paths
ith natural ordering is tridiagonal.
In the next result, we will prove that any GMRF over a graph of paths with natural orderings has a totally positive

ovariance matrix in case all covariances between adjacent variables in the graph are non-negative.

roposition 3.2. Let X⃗V = (X1, . . . , Xn) be a GMRF over a graph of paths with natural ordering G = (V , E) with
V = {1, . . . , n}. If the covariance between adjacent variables in the graph is non-negative, then its covariance matrix is totally
positive.

Proof. On the one hand, since we are dealing with a GMRF over an acyclic graph and the covariance between adjacent
variables in the graph is non-negative, all elements of the covariance matrix are non-negative, see Corollary 2.1 and the
subsequent comments. From Proposition 5.3 in [27], it follows that we are dealing with a distribution that is MTP2 and,
in particular, that Σ−1 is a non-singular and symmetric M-matrix. On the other hand, Σ−1 is a tridiagonal matrix since
we are dealing with a GMRF over a graph of paths with natural ordering. Since Σ−1 simultaneously is a non-singular
M-matrix and a tridiagonal matrix, it finally follows from Theorem 2.2 in [29] that Σ is a totally positive matrix. □

Due to Proposition 2.1, the latter result may be reformulated in terms of the inverse of the covariance matrix.
6
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Corollary 3.1. Let X⃗V = (X1, . . . , Xn) be a GMRF over a graph of paths with natural ordering G = (V , E) with V = {1, . . . , n}.
f the covariance between adjacent variables in the graph is non-positive, then the inverse of its covariance matrix is totally
ositive.

roof. Consider the transformation SX⃗ with S the matrix of Proposition 2.1. The covariance matrix of SX⃗ is SΣS. Since S
is diagonal, the resulting random vector still is a GMRF over G. In addition STΣS is totally positive (see Proposition 3.2).
Consider i, j ∈ V with i < j and {i, j} ∈ E. This implies that j − i = 1 and therefore (SΣS)i,j = −Σi,j ≥ 0, i.e., the
transformation changes the sign of the covariance between adjacent variables. Finally, noticing that S−1

= ST = S, it
follows from Proposition 2.1 that S(STΣS)−1S = SSΣ−1SS = Σ−1 is totally positive. □

The latter results provide sufficient conditions for (the inverse of) a positive-definite matrix to be totally positive.
However, these conditions are not necessary, as can be seen in the following example.

Example 3.3. The following matrix M is positive-definite and totally positive. However, since the inverse matrix M−1 of
M does not contain any zeros, therefore M cannot be the covariance matrix of any graph of paths with natural ordering.

M =

( 1 0.7 0
0.7 1 0.7
0 0.7 1

)
, M−1

=

(25.5 −35 24.5
−35 50 −35
24.5 −35 25.5

)
.

In general, we cannot find necessary and sufficient conditions for (the inverse of) a positive-definite matrix to be totally
positive, and, in particular, we cannot find necessary and sufficient conditions for (the inverse of) the covariance matrix
of a GMRF to be totally positive. However, when restricting our search to GMRFs over acyclic graphs, the conditions that
were proven above to be sufficient are now also necessary.

Theorem 3.1. Let X⃗V = (X1, . . . , Xn) be a GMRF over an acyclic graph G = (V , E) with V = {1, . . . , n}.

(i) The covariance matrix Σ of X⃗ is totally positive if and only if X⃗ is a GMRF over a graph of paths with natural ordering
and the covariance between adjacent variables in the graph is non-negative.

(ii) The inverse Σ−1 of the covariance matrix Σ of X⃗ is totally positive if and only if X⃗ is a GMRF over a graph of paths with
natural ordering and the covariance between adjacent variables in the graph is non-positive.

Proof. (i) The right-to-left implication has already been proven in Proposition 3.2. We now prove the left-to-right
implication. Notice that any element of the covariance matrix must be non-negative, since a negative element will result in
a negative minor. Thus, the covariance between adjacent variables in the graph is non-negative. Without loss of generality
(see Proposition 3.1), we can work with the correlation matrix S instead of working directly with the covariance matrix.

If all nodes have degree of incidence smaller than or equal to two, the graph consists of connected components that are
path graphs. Otherwise, let i0 ∈ V be a node with degree of incidence greater than or equal to three and let i1, i2, i3 be three
nodes that are adjacent to i0 such that i1 < i2 < i3. Since G is acyclic, from Corollary 2.1, it follows that ρi1,i2 = ρi0,i1 ρi0,i2 ,
ρi1,i3 = ρi0,i1 ρi0,i3 and ρi2,i3 = ρi0,i2 ρi0,i3 .

Therefore, S{i1,i2,i3} has the following structure:

S{i1,i2,i3} =

( 1 ρi0,i1 ρi0,i2 ρi0,i1 ρi0,i3
ρi0,i1 ρi0,i2 1 ρi0,i2 ρi0,i3
ρi0,i1 ρi0,i3 ρi0,i2 ρi0,i3 1

)
.

Computing one of the minors, we obtain:

|S|{i1,i2},{i2,i3} =

⏐⏐⏐⏐ρi0,i1 ρi0,i2 ρi0,i1 ρi0,i3
1 ρi0,i2 ρi0,i3

⏐⏐⏐⏐ = ρi0,i1 ρi0,i3

(
ρ2
i0,i2 − 1

)
.

Since ρi0,i1 , ρi0,i3 ≥ 0 and
(
ρ2
i0,i2

− 1
)

< 0 and the latter minor must be non-negative, it either holds that ρi0,i1 = 0 or

ρi0,i3 = 0 (or both). Thus, the edge {i0, i1} or the edge {i0, i3} can be deleted and X⃗V will still be a GMRF over G, as a direct
consequence of Proposition 2.2.

We may repeat this process until the node i0 has degree of incidence equal to two. Analogously, we may repeat this
process for all nodes with degree of incidence greater than two until we obtain an acyclic graph in which all nodes have
at most incidence 2. This graph consists of connected components that are path graphs.

Now, let us prove that the ordering of the nodes must be the natural ordering. Consider i, j ∈ V with i < j such that
{i, j} ∈ E but j − i > 1. There exists k ∈ V such that i < k < j. The node k must be contained in the same connected
component as i and j, as mentioned in Remark 3.1. Without loss of generality, suppose that the distance between i and k
is smaller than the distance between j and k. Thus, the unique path between k and i passes through j and, as a result of
Corollary 2.1, it holds that ρi,k = ρi,jρj,k. The structure of S{i,k,j} is the following:

S{i,k,j} =

( 1 ρi,j ρj,k ρi,j
ρi,j ρj,k 1 ρj,k

)
.

ρi,j ρj,k 1
7
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The minor associated with {i, k} and {k, j} has the following expression:

|S|{i,k},{k,j} =

⏐⏐⏐⏐ρi,jρj,k ρi,j
1 ρj,k

⏐⏐⏐⏐ = ρi,j
(
ρ2
j,k − 1

)
.

Since ρi,j ≥ 0, the only option that renders the latter minor non-negative is ρi,j = 0.
Analogously to the previous cases, the edge {i, j} can be eliminated, as a result of Proposition 2.2. Repeating the process,

the resulting graph is such that, for any i, j ∈ V with i < j and with {i, j} ∈ E, the equality j − i = 1 holds.
(ii) The result follows as a consequence of (i) and Proposition 2.1. □

As a consequence, it is concluded that a GMRF over an acyclic graph admits a reordering of its variables that renders
its covariance matrix totally positive if and only if any component of the graph is a path and the covariance between all
variables is non-negative.

An immediate consequence is that the covariance matrix of a GMRF over a graph of paths with natural ordering is
totally positive if and only the inverse matrix of the covariance matrix is a tridiagonal M-matrix. The result can be further
generalized to acyclic graphs as follows.

Proposition 3.3. Let X⃗ be a GMRF over an acyclic graph G with covariance matrix Σ . It holds that G is a graph of paths with
natural ordering and Σ is totally positive if and only if Σ−1 is a tridiagonal M-matrix.

Proof. For the left-to-right implication, notice that if Σ is totally positive, from Proposition 2.1, it follows that SΣ−1S
is totally positive. In addition, since G is a graph of paths with natural ordering, it holds that Σ−1 is tridiagonal (see
Remark 3.1). Thus, since Σ−1 is tridiagonal and the off-diagonal elements of SΣ−1S are non-negative, it is concluded that
Σ−1 is a Z-matrix. Finally, since Σ−1 is also positive-definite, it follows by Definition 2.5 that Σ−1 is an M-matrix.

For the right-to-left implication, assume that Σ−1 is a tridiagonal M-matrix. It follows from Theorem 2.2 in [29]
concerning M-matrices whose inverses are totally positive that Σ is totally positive. From Theorem 3.1, it follows that G
is a graph of paths with natural ordering. □

As a direct consequence of Theorem 3.1 and Proposition 3.3, any GMRF over an acyclic graph with a totally positive
matrix is always MTP2. The converse implication is not true in general, since we also need the inverse of the covariance
matrix to be tridiagonal.

Corollary 3.2. Let X⃗ be a GMRF over an acyclic graph G with a totally positive covariance matrix Σ . It holds that X⃗ is MTP2.

3.3. Characterization with uniform correlation

In the previous section, a characterization of the total positivity of covariance matrices of GMRFs over acyclic graphs
was provided. This subsection provides general results (not restricted to acyclic graph) for a specific type of GMRF: GMRFs
with uniform correlation.

Proposition 3.4. Let X⃗V be a GMRF with uniform correlation ρ0 over G = (V , E). If the covariance matrix Σ of X⃗V is totally
positive, then G must be acyclic.

Proof. If the covariance matrix Σ of X⃗V is totally positive, then all elements are non-negative and, therefore, ρ0 ≥ 0. If
ρ0 = 0, the covariance matrix is diagonal (see Theorem 1 in [16]), thus the distribution is a GMRF over the graph with
no edges, which is acyclic. We now prove that ρ0 ∈ (0, 1), assuming that G is cyclic and reaching a contradiction.

Without loss of generality (see Proposition 3.1), we can work with the correlation matrix S instead of working directly
with the covariance matrix. Let (i1, i2, . . . , ik−1, i1) be a cycle in G of length k − 1 ≥ 3. Since {i1, i2}, {i2, i3} ∈ E, it holds
that ρi1,i2 = ρi2,i3 = ρ0 and, therefore, the minor associated with {i1, i2} and {i2, i3} is the following:

|S|{i1,i2},{i2,i3} =

⏐⏐⏐⏐ρ0 ρi1,i3
1 ρ0

⏐⏐⏐⏐ = ρ2
0 − ρi1,i3 .

Since S is totally positive, ρi1,i3 ≥ 0 and, therefore, it is necessary that ρi1,i3 ≤ ρ2
0 . If i1 = i4, then we reach a

contradiction since {i1, i3} ∈ E implies ρi1,i3 = ρ0 (and ρ0 > ρ2
0 since ρ0 ∈ (0, 1)). If i1 ̸= i4, consider the minor associated

with {i1, i3} and {i3, i4}:

|S|{i1,i3},{i3,i4} =

⏐⏐⏐⏐ρi1,i3 ρi1,i4
1 ρ0

⏐⏐⏐⏐ = ρ0 ρi1,i3 − ρi1,i4 .

Since ρi1,i3 ≤ ρ2
0 for the minor S{i1,i2},{i2,i3} to be non-negative, it is necessary that ρi1,i4 ≤ ρ0 ρi1,i3 ≤ ρ3

0 . If i1 = i5, then
we reach a contradiction since {i1, i4} ∈ E implies ρi1,i4 = ρ0 (and ρ0 > ρ3

0 since ρ0 ∈ (0, 1)). If i1 ̸= i5, we may proceed
iteratively and prove that ρi1,ij ≤ ρ

j−1
0 with j ∈ {1, . . . , k − 1}. However, since {i1, ik−1} ∈ E, ρi1,ik−1 = ρ0, we reach a

k−2
contradiction since ρi1,ik−1 ≤ ρ0 < ρ0. □
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T

Finally, a characterization of the total positivity of the covariance matrix of GMRFs with uniform correlation is obtained.

heorem 3.2. Let X⃗V = (X1, . . . , Xn) be a GMRF with uniform correlation ρ0 over a graph G = (V , E) with V = {1, . . . , n}.

(i) The covariance matrix Σ of X⃗ is totally positive if and only if G is a graph of paths with natural ordering and ρ0 ≥ 0.
(ii) The inverse Σ−1 of the covariance matrix Σ of X⃗ is totally positive if and only if G is a graph of paths with natural

ordering and ρ0 ≤ 0.

Proof. (i) The left-to-right implication is a direct result of Proposition 3.2. The right-to-left implication is a result of the
fact that G is acyclic due to Proposition 3.4 and, therefore, Σ is totally positive due to Theorem 3.1.

(ii) The result follows as a consequence of (i) and Proposition 2.1. □

It is concluded that a GMRF with uniform correlation ρ0 admits a reordering of the variables that renders its covariance
matrix totally positive if and only if the connected components of the graph are paths and ρ0 ≥ 0.

We end this section by concluding that there does not exist a GMRF with uniform correlation of dimension greater
than or equal to two with a covariance matrix that is strictly totally positive.

Corollary 3.3. Let X⃗V = (X1, . . . , Xn) be a GMRF with uniform correlation ρ0 over a graph G = (V , E) with V = {1, . . . , n}
and n ≥ 3. None of Σ and Σ−1 can be strictly totally positive.

Proof. If Σ is strictly totally positive, then it is totally positive. From Theorem 3.2, it follows that X⃗ is a GMRF over a
graph of paths with natural ordering. If this graph of paths with natural ordering is not connected, then there exist i, j ∈ V
belonging to two different connected components, thus Σi,j = 0 and Σ cannot be strictly totally positive. If this graph of
paths with natural ordering is connected, we assume without loss of generality that the variances of the variables are 1
(see Proposition 3.1). Let |Σ |{1,2},{2,3} be the minor associated with the indices {1, 2} and {2, 3}:

|Σ |{1,2},{2,3} =

⏐⏐⏐⏐ρ0 ρ2
0

1 ρ0

⏐⏐⏐⏐ = ρ2
0 − ρ2

0 = 0.

It is concluded that Σ cannot be strictly totally positive. For Σ−1, it suffices to note that the inverse of the covariance
matrix of a GMRF over a graph of paths with natural ordering is tridiagonal . □

4. Conclusions and future research

A sufficient condition for a multivariate Gaussian distribution to have a totally positive covariance matrix has been
given. In particular, in such case the multivariate Gaussian distribution needs to be a GMRF over a graph of paths with
natural ordering and the covariance between adjacent variables needs to be non-negative. Moreover, when restricting
the study to GMRFs over acyclic graphs or to GMRFs with uniform correlation, the latter condition is also proven to be
necessary. Similar results have been obtained for the inverse of the covariance matrix, but requiring instead that the
covariance between adjacent variables needs to be non-positive.

A potential consequence of these results is that recurrent operations such as eigenvalue computation, matrix inversion
or Cholesky factorization of covariance matrices that are totally positive may be performed with HRA methods. In this
direction, the design of numerical algorithms to take advantage of the definite-positivity, total positivity and sparseness
of the inverse of this type of matrices is left for a future study.

Another interesting open problem concerns the study of necessary and sufficient conditions for the total positivity of
the covariance matrices of GMRFs that are not acyclic and do not have uniform correlation.
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