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Abstract: In this article, we consider an iterated functions system on the non-Euclidean real projective
plane which has a linear structure. Then, we study the fractal dimension of the associated curve as a
subset of the projective space and like a set of the Euclidean space. At the end, we initiate a dual real
projective iterated function system and pose an open problem.
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1. Introduction

Fractals are those geometric objects on abstract spaces that own some kind of self-
similarity. The best-known example of the fractal set is called the Mandelbrot set, named
after the mathematician Benoit Mandelbrot who coined the term fractal [1]. In geometry, one
of the most important methods to construct fractals is based on iterated function systems
(IFSs). Based on some historical precedents, Hutchinson [2] introduced IFSs to generate
self-similar sets. Barnsley [3] used another tool to construct fractals as the graphs of self-
referential functions, known as fractal interpolation functions (FIFs). Most of the authors
studied fractal interpolation on the Euclidean spaces [4–8]. Recently, Barnsley et al. [9],
studied IFSs on the real projective plane. Hossain et al. [10] introduced the real projective
fractal interpolation function ( RPFIF) by considering a real projective iterated function
system (RPIFS) on the projective plane.

In mathematics, given a Euclidean space Rn+1, the real projective space associated
with Rn+1 is the collection of all one-dimensional subspaces or (vector) lines in Rn+1, and
is denoted by RPn. One can identify RPn as the quotient of the set Rn+1 \ {0} of non-zero
vectors by the equivalence relation x ∼ y if and only if x = λy for some λ ∈ R∗ (non-zero
reals). Now, for x = (x1, x2, . . . , xn+1) ∈ Rn+1 \ {0}, we denote (x1 : x2 : . . . : xn+1) as
the equivalence class containing x. Thus, there exists a canonical map ν : Rn+1 \ {0} →
RPn that associates each non-zero vector x = (x1, x2, . . . , xn+1) ∈ Rn+1 \ {0} with the
element (x1 : x2 : . . . : xn+1) ∈ RPn. The points (x1, x2, . . . , xn+1) ∈ Rn+1 \ {0} such that
ν(x1, x2, . . . , xn+1) = p is referred to as homogeneous coordinates of an element p ∈ RPn.
If p, q ∈ RPn have the homogeneous coordinates (p1, p2, . . . , pn+1) and (q1, q2, . . . , qn+1),
respectively, and ∑n+1

k=1 pkqk = 0, then we say that p is orthogonal to q, and write p ⊥ q. A
hyperplane in RPn is a set of the form

Hp =
{

q ∈ RPn : p ⊥ q
}
⊆ RPn

for some p ∈ RPn. A set K ⊆ RPn is said to avoid a hyperplane if there exists a hyper-
plane Hp ⊆ RPn such that Hp ∩K = ∅. A line in the real projective space is the set of
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equivalence classes of points in a two-dimensional subspace of Rn+1. Here, we recall a
few notations and results from one of our earlier works [10]. Consider the hyperplane He3

where e3 = (0 : 0 : 1) and the space RP2 \He3 in particular, defining two operations ⊕ and
� as follows. For all (x : y : z), (x′ : y′ : z′) ∈ RP2 \He3 and for all a ∈ R,

(x : y : z)⊕ (x′ : y′ : z′) := (xz′ + x′z : yz′ + y′z : zz′) (1)

and
a� (x : y : z) := (ax : ay : z). (2)

RP2 \He3 forms a vector space over R with respect to the operations ⊕ and �. Use the
notation 	 to indicate the difference between two elements in RP2 \He3 . That is, if (x1 :
y1 : z1), (x2 : y2 : z2) ∈ RP2 \He3 , then (x1 : y1 : z1)	 (x2 : y2 : z2) = (x1z2 − x2z1 : y1z2 −
y2z1 : z1z2). So, each element (x : y : z) in RP2 \He3 can be expressed as a sum of two of its
elements, namely (x : 0 : z) and (0 : y : z). That is, (x : y : z) = (x : 0 : z)⊕ (0 : y : z). Let
H10 :=

{
(x : 0 : z) ∈ RP2 \He3

}
and H01 :=

{
(0 : y : z) ∈ RP2 \He3

}
. Then, RP2 \He3

can be expressed as
RP2 \He3 = H10 ⊕H01. (3)

Define a norm on RP2 \He3 , called a projective norm, as follows:

‖(x : y : z)‖P :=

√
x2 + y2

|z| (4)

for all (x : y : z) ∈ RP2 \He3 . The projective norm induces a metric which is denoted by dP.
The space RP2 \He3 is complete with respect to this norm. For (x1 : 0 : z1), (x2 : 0 : z2) ∈
H10, denote that (x1 : 0 : z1) � (x2 : 0 : z2), if and only if x1z2 ≤ x2z1, and (x1 : 0 : z1) ≺
(x2 : 0 : z2), if and only if x1z2 < x2z1. Similarly for (0 : y1 : z1), (0 : y2 : z2) ∈ H01, define
(0 : y1 : z1) � (0 : y2 : z2), if and only if y1z2 ≤ y2z1, and (0 : y1 : z1) ≺ (0 : y2 : z2), if and
only if y1z2 < y2z1.

Definition 1 (Projective intervals on H10 and H01 [10]). Let (a1 : 0 : c1), (a2 : 0 : c2) ∈ H10
be such that (a1 : 0 : c1) ≺ (a2 : 0 : c2). Then, the projective interval on H10 is denoted by PI×{0}
and defined by

PI×{0} :=
{
(x : 0 : z) ∈ H10 : (a1 : 0 : c1) � (x : 0 : z) � (a2 : 0 : c2)

}
.

Similarly, the projective interval on H01, is denoted by P{0}×J and defined by

P{0}×J :=
{
(0 : y : z) ∈ H01 : (0 : b1 : d1) � (0 : y : z) � (0 : b2 : d2)

}
.

Definition 2 (Projective rectangle [10]). Let (a1 : 0 : c1), (a2 : 0 : c2) ∈ H10 and (0 : b1 :
d1), (0 : b2 : d2) ∈ H01 be such that (a1 : 0 : c1) ≺ (a2 : 0 : c2) and (0 : b1 : d1) ≺ (0 : b2 : d2).
Then, the projective rectangle on RP2 \He3 is defined by

PI×J :=
{
(x : y : z) ∈ RP2 \He3 : (a1 : 0 : c1) � (x : 0 : z) � (a2 : 0 : c2)

and (0 : b1 : d1) � (0 : y : z) � (0 : b2 : d2)

}
.

Let C [PI×{0}] =

{
f : PI×{0} → H01 continuous

}
. If f ∈ C [PI×{0}], define

‖ f ‖P∞ := sup{‖ f (x : 0 : z)‖P : (x : 0 : z) ∈ PI×{0}}. Since PI×{0} is compact, ‖ f ‖P∞ is
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well defined. For more details, interested readers may consult [10].

Let N ≥ 2 and
{
(xn : yn : zn) ∈ RP2 \He3 : n = 0, 1, . . . , N

}
be a dataset in RP2 \He3

such that xnzn+1 < xn+1zn for n = 0, 1, . . . , N − 1. Let PI×{0} :=
{
(x : 0 : z) ∈ H10 : (x0 :

0 : z0) � (x : 0 : z) � (xN : 0 : zN)

}
and PIn×{0} :=

{
(x : 0 : z) ∈ H10 : (xn−1 : 0 :

zn−1) � (x : 0 : z) � (xn : 0 : zn)

}
for n = 1, 2, . . . , N. For n = 1, 2, . . . , N, consider the

transformations Ln : PI×{0} → PIn×{0} given by Ln(x : 0 : z) = (anx + bnz : 0 : z) such that

Ln(x0 : 0 : z0) = (xn−1 : 0 : zn−1) and Ln(xN : 0 : zN) = (xn : 0 : zn), (5)

where an, bn ∈ R. Then Ln’s are contraction maps with respect to the metric dP. For
n = 1, 2, . . . , N, consider the continuous maps Fn : RP2 \He3 → H01 given by

Fn(x : y : z) =
(
0 : cnx + dny + fnz : z

)
(6)

such that

Fn(x0 : y0 : z0) = (0 : yn−1 : zn−1) and Fn(xN : yN : zN) = (0 : yn : zn), (7)

where cn, dn, fn ∈ R. If dn < 1, then Fn’s are contractive with respect to the second variable.
Now, for n = 1, 2, . . . , N, define the functions Wn : RP2 \He3 → RP2 \He3 by

Wn(x : y : z) = Ln(x : 0 : z)⊕ Fn(x : y : z). (8)

The transformation Wns are known as projective transformations, (as can be seen in [9,10]).

Theorem 1 ([10]). The RPIFS
{
RP2 \He3 ; Wn : n = 1, 2, . . . , N

}
has a unique attractor, which

is the graph of a continuous function from PI×{0} to H01.

This function is known as RPFIF on a real projective plane.
The fractal dimension, which is in the heart of the fractal geometry, is usually consid-

ered in connection with real world data. It measures the complexity of a geometric shape in
the space and it also provides an objective procedure in order to numerically compare the
fractal sets. It may also be seen as a measure of the space-filling capacity of a pattern. The
fractal dimension may not be an integer. In the literature, the concept of several dimensions
of the fractal sets with respect to the Euclidean distance on the plane was largely treated
(as can be seen, for instance, in [5,6,11–18]).

In this article, on the basis of these concepts, we estimate the fractal dimension of
the graph of an RPFIF. As the graph of an RPFIF can be viewed as a subset of the real
projective plane RP2 as well as a subset of R3, the dimensions are estimated in both cases.
The topological dimension of the projective plane RP2 is two and the dimension of R3 is
three. In this article, we prove that, if D is the dimension of the graph of RPFIF in RP2, then
D + 1 is the dimension of it in R3.

One of the interesting features of the projective geometry is that of duality. In projec-
tive geometry, the dual of a point is a line and the dual of a line is a point. Dual space is the
collection of all the hyperplanes of a projective space. It is used in many branches of mathe-
matics, such as tensor analysis with the finite dimensional spaces, measure distribution,
and Hilbert spaces [19]. At the end of this article, an open problem concerning the dual
RPFIF is posed.
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2. Fractal Dimension of the Graph of a RPFIF

In this section, we estimate the fractal dimension of the graph G of an RPFIF when the
interpolation points are equispaced. The following definition is used for the estimation of
the dimensions.

Definition 3 (see [6,11]). Let r > 0 and N (r) denote the minimum number of balls of radius
r needed to cover a set F. Then, the fractal dimension of the set F, is denoted by dimB F, and
defined by

lim
r→0

logN (r)
log r

, if it exists.

2.1. Fractal Dimension of the Graph of an RPFIF as a Subset of RP2 \He3

Let PI×{0} =

{
(x : 0 : z) ∈ H10 : (0 : 0 : 1) � (x : 0 : z) � (1 : 0 : 1)

}
and

X = PI×{0} ⊕H01 and let N ≥ 2, and {(xi : yi : zi) : i = 0, 1, 2, . . . , N} be the N + 1
interpolation points in X such that (xi : 0 : zi)	 (xi−1 : 0 : zi−1) = (1 : 0 : N). That is, the
points (xi : 0 : zi) are equally spaced. Define a hyperbolic RPIFS {(X; Wi) : i = 1, 2, . . . , N}
such that

Wi

x
y
z

 =

 1 0 i− 1
Nci Ndi Nki
0 0 N

x
y
z

, (9)

where

x
y
z

 represents the element (x : y : z) in RP2 \He3 . Now, each Wi can be written as

Wi(x : y : z) = (x + (i− 1)z : N(cix + diy + kiz) : Nz)

= (x + (i− 1)z : 0 : Nz)⊕
(
0 : N(cix + diy + kiz) : Nz

)
= (x + (i− 1)z : 0 : Nz)⊕

(
0 : cix + diy + kiz : z

)
= Li(x : 0 : z)⊕ Fi(x : y : z),

where Li(x : 0 : z) = (x + (i − 1)z : 0 : Nz), Fi(x : y : z) =
(
0 : cix + diy + kiz : z

)
, the

values of ci, ki are given by (5), and (7) and di are the free parameters for i = 1, 2, . . . , N.
If the free parameters di are such that |di| < 1, then the maps Wi, i ∈ {1, 2, . . . , N} are
contractive. Hence, the above RPIFS possesses a unique attractor which is the graph of
a continuous function f : PI×{0} → H01 passing through the data points (xi : 0 : zi),
i ∈ {0, 1, 2, . . . , N}. Let G be the graph of f. That is

G =
{
(x : 0 : z)⊕ f(x : 0 : z) : (x : 0 : z) ∈ PI×{0}

}
.

For k, r ∈ N and α = (0 : α1 : α2) ∈ RP2 \He3 , consider the projective intervals

PIk×{0} =

{
(x : 0 : z) ∈ PI×{0} : (k− 1 : 0 : Nr) � (x : 0 : z) � (k : 0 : Nr)

}
and

P{0}×Jα
=

{
(0 : y : z) ∈ RP2 \He3 : (0 : α1 : α2) � (0 : y : z) � (0 : Nrα1 + α2 : Nrα2)

}
on H10 and H01, respectively. Let

CP =
{
PIk×{0} ⊕ P{0}×Jα

: k, r ∈ N and α = (0 : α1 : α2) ∈ RP2 \He3

}
.
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Now, it can be seen that PIk×{0} ⊕P{0}×Jα
= PIk×Jα , and ‖(k : 0 : Nr)	 (k− 1 : 0 : Nr)‖P =

‖(1 : 0 : Nr)‖P = 1
Nr and ‖(0 : Nrα1 + α2 : Nrα2)	 (0 : α1 : α2)‖P = ‖(0 : 1 : Nr)‖P = 1

Nr .
Thus, the length of the projective intervals are |PIk×{0}|= |P{0}×Jα

|= 1
Nr . Therefore, CP is

the collection of projective squares of side length 1
Nr on RP2 \He3 .

Let N ∗
P (r) be the minimum number of 1

Nr × 1
Nr projective squares in CP entailed to

cover G and let NP(r) be the smallest number of 1
Nr × 1

Nr projective squares in X which
covers G. Then, it is clear that NP(r) ≤ N ∗

P (r). Now, any 1
Nr × 1

Nr projective squares in
X can be covered by two 1

Nr × 1
Nr projective squares in CP. Therefore, 2NP(r) ≥ N ∗

P (r).
Thus, for dimension calculation, it is sufficient to focus on

lim
r→∞

log N ∗
P (r)

log Nr .

Before proving the main result in this section, we prove the following lemma.

Lemma 1. If all the interpolation points are not collinear in RP2 \He3 and µ = ∑N
i=1|di| > 1, then

lim
r→∞

N ∗
P (r)
Nr = ∞.

Proof. For any (x : y : z) ∈ RP2 \He3 , we can write (x : y : z) = ( x
z : y

z : 1). Then, the line
equation joining the points (x0 : y0 : z0) = ( x0

z0
: y0

z0
: 1) and (xN : yN : zN) = ( xN

zN
: yN

zN
: 1)

on the plane z = 1 is given by

y
z −

y0
z0

x
z −

x0
z0

=

yN
zN
− y0

z0
xN
zN
− x0

z0

y
z
=

y0

z0
+

(
x
z
− x0

z0

)( yN
zN
− y0

z0
xN
zN
− x0

z0

)
.

Now, (x0 : 0 : z0) = (0 : 0 : 1) and (xN : 0 : zN) = (1 : 0 : 1), so, x0
z0

= 0, xN
zN

= 1. Therefore,

y
z
=

y0

z0
+

x
z

(
yN
zN
− y0

z0

)
. (10)

Hence, from (10), the line equation on RP2 \He3 can be written as

p(x : 0 : z) = (0 :
y0

z0
: 1)⊕

(
0 :

x
z

(
yN
zN
− y0

z0

)
: 1
)

= (0 : y0 : z0)⊕
x
z
�
(
(0 : yN : zN)	 (0 : y0 : z0)

)
.

As the interpolation points are not collinear in RP2 \He3 , there exists a j ∈ {1, 2, . . . , N}
such that

M = ‖f(xj : 0 : zj)	 p(xj : 0 : zj)‖P > 0.

This gives

M = ‖
(
(0 : yj : zj)	 (0 : y0 : z0)

)
	
(

xj

zj
�
(
(0 : yN : zN)	 (0 : y0 : z0)

))
‖P > 0.

(see Figure 1). Clearly,

M ≤ max
{
‖(0 : yj : zj)	 (0 : y0 : z0)‖P, ‖(0 : yj : zj)	 (0 : yN : zN)‖P

}
.
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Since G is the graph of a continuous function, therefore,

N ∗
P (r)
Nr ≥ [M],

where [M] denotes the greatest integer not greater than M. If we apply Wi on G, then the
length M switches to the length |di|M, i ∈ {1, 2, . . . , N} (see Figure 2). Thus, we obtain

Figure 1. Non-collinear interpolation points in RP2 \He3 .

Figure 2. Effect of Wi on the data points.

N ∗
P (r)
Nr ≥

N

∑
i=1

[|di|M] for r ≥ 1.

By induction
N ∗

P (r)
Nr ≥

N

∑
i1=1

N

∑
i2=1
· · ·

N

∑
ik=1

[
|di1 di2 · · · dik |M

]
for r ≥ k.
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Hence
N ∗

P (r)
Nr ≥ M

(
N

∑
i=1
|di|
)r

− 1 = Mµr − 1. (11)

As µ > 1, taking the limit as r → ∞, we obtain

lim
r→∞

N ∗
P (r)
Nr = ∞.

Theorem 2. If G = graph(f), µ = ∑N
i=1|di| > 1 and the interpolation points are not collinear,

then dimB(G) = 1 + logN µ; otherwise, dimB(G) = 1.

Proof. Let CP(r) ∈ CP be a “finest" cover of G consisting of N ∗
P (r) 1

Nr × 1
Nr projective

squares of CP and let CP(r, k) denote the collection of all projective squares in CP which
lie between (k− 1 : 0 : Nr) and (k : 0 : Nr). Let NP(r, k) denote the number of projective
squares in CP(r, k) and

ΛP(r, k) =
⋃

Ai∈CP(r,k)

Ai.

As CP(r) is the finest cover of G, every projective square in CP(r) must intersect with G and
since G is the graph of a continuous function, ΛP(r, k) must be a projective rectangle of
width 1

Nr and height NP(r,k)
Nr . Furthermore, note that

N ∗
P (r) =

Nr

∑
k=1

NP(r, k). (12)

Now, we estimate that N ∗
P (r + 1) in terms of N ∗

P (r). Since

Li(k : 0 : Nr) =
(
k + (i− 1)Nr : 0 : Nr+1) = (l(k, i) : 0 : Nr+1),

where l(k, i) = k + (i− 1)Nr. It follows that

‖Li(k : 0 : Nr)	 Li(k− 1 : 0 : Nr)‖P (13)

= ‖(l(k, i) : 0 : Nr+1)	 (l(k, i)− 1 : 0 : Nr+1)‖P

=
1

Nr+1 .

Also, for (x : y : z), (x′ : y′ : z′) ∈ ΛP(r, k),

‖Fi(x : y : z)	 Fi(x′ : y′ : z′)‖P
= (0 : ci(xz′ − x′z) + di(yz′ − y′z) : zz′)‖P

≤ |ci|
|xz′ − x′z|
|zz′| + |di|

|yz′ − y′z|
|zz′|

= |ci|‖(x : 0 : z)	 (x′ : 0 : z′)‖P + |di|‖(0 : y : z)	 (0 : y′ : z′)‖P

≤ |ci|
Nr +

|di|NP(r, k)
Nr .
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This shows that Wi
(
ΛP(r, k)

)
is contained in a projective rectangle of width 1

Nr+1 and height
|ci |
Nr +

|di |NP(r,k)
Nr . Therefore,

NP(r + 1, l(k, i)) ≤
|ci |
Nr +

|di |NP(r,k)
Nr

1
Nr+1

+ 1

= N(|ci|+ |di|NP(r, k)) + 1.

This yields,

N ∗
P (r + 1) =

N

∑
i=1

Nr

∑
k=1

NP(r + 1, l(k, i))

≤ Nr+1(1 + N

∑
i=1
|ci|
)
+ N

N

∑
i=1
|di|N ∗

P (r)

= Nr+1δ + NµN ∗
P (r), (14)

where δ = 1 + ∑N
i=1|ci|. From (14), we obtain

N ∗
P (r) ≤ Nrδ + NµN ∗

P (r− 1) ≤ Nrδ + Nµ
(

Nr−1δ + NµN ∗
P (r− 2)

)
= Nrδ

(
1 + µ) + (Nµ)2N ∗

P (r− 2)

Therefore, the induction over r gives

N ∗
P (r) ≤ Nrδ

(
1 + µ + µ2 + · · ·+ µr−1)+ (Nµ)rN ∗

P (1). (15)

Case 1. If µ ≤ 1, then µr ≤ 1 for all r ∈ N. This implies that 1+µ+µ2 + · · ·+µr−1 ≤ r.
Furthermore, µr ≤ 1 ≤ r. Therefore, from (15), we obtain

N ∗
P (r) ≤ rNrδ + rNrN ∗

P (1) = rNrC2,

where C2 = δ +N ∗
P (1). Hence,

dimB(G)= lim
r→0

logN ∗(r)
log r

≤ lim
r→∞

log(rNrC2)

log Nr = 1.

Since G⊂ RP2 \He3 is the graph of a continuous function. Therefore, dimB(G) ≥ 1 and
hence dimB(G) = 1.

Case 2. If µ > 1, then µr > 1− µr. Therefore, from (15), we obtain

N ∗
P (r) ≤ Nrδ

(
1− µr

1− µ

)
+ (Nµ)rN ∗

P (1) ≤ (Nµ)rC3,

where C3 = δ
1−µ +N ∗

P (1). Hence,

dimB(G)= lim
r→0

logN ∗(r)
log r

≤ lim
r→∞

log
(
(Nµ)rC3

)
log Nr = 1 + logN µ.

If all the interpolation points lie on a line in RP2 \He3 , then G becomes a line segment in
RP2 \He3 . So, dimB(G) = 1.

Now, we estimate the lower bound of the fractal dimension of G.
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For all di 6= 0, the inverse of Wi is given by

W−1
i

x
y
z

 =

 Ndi 0 −di(i− 1)
−Nci 1 ci(i− 1)− ki

0 0 di

x
y
z


=
(
di(Nx− (i− 1)z) : 0 : diz

)
⊕
(
0 : −ci Nx + y +

(
ci(i− 1)− ki

)
z : diz

)
=
(

Nx− (i− 1)z : 0 : z
)
⊕
(
0 : y− ci Nx +

(
ci(i− 1)− ki

)
z : diz

)
=
(

L−1
i (x : 0 : z)⊕ Ki(x : y : z)

)
,

where L−1
i (x : 0 : z) =

(
Nx− (i− 1)z : 0 : z

)
and Ki(x : y : z) =

(
0 : y− ci Nx +

(
ci(i−

1)− ki
)
z : diz

)
. Now, l(k, i) = k + (i− 1)Nr, then,

L−1
i
(
l(k, i) : 0 : Nr+1) = (N

(
k + (i− 1)Nr)− (i− 1)Nr+1 : 0 : Nr+1

)
=
(
kN : 0 : Nr+1)

=
(
k : 0 : Nr).

Similarly, we have L−1
i
(
l(k, i)− 1 : 0 : Nr+1) = (k− 1 : 0 : Nr). Thus,

‖L−1
i
(
l(k, i) : 0 : Nr+1)	 L−1

i
(
l(k, i)− 1 : 0 : Nr+1)‖P =

1
Nr .

For (x : y : z), (x′ : y′ : z′) ∈ ΛP(r + 1, l(k, i)),

‖Ki(x : y : z)	 Ki(x′ : y′ : z′)‖P

=
1
|di|

(
N|ci|

|xz′ − x′z|
|zz′| +

|yz′ − y′z|
|zz′|

)
=

1
|di|
(

N|ci|‖(x : 0 : z)	 (x′ : 0 : z′)‖P + ‖(0 : y : z)	 (0 : y′ : z′)‖P
)

≤ 1
|di|

(
N|ci|

1
Nr+1 +

NP(r + 1, l(k, i))
Nr+1

)
.

This shows that W−1
i (ΛP(r + 1, l(k, i))) is contained in a projective rectangle of width 1

Nr

and height

1
|di|

(
|ci|

1
Nr +

NP(r + 1, l(k, i))
Nr+1

)
.

Therefore, we have

NP(r, k) ≤
1
|di |

(
|ci| 1

Nr +
NP(r+1,l(k,i))

Nr+1

)
1

Nr

+ 2.

Hence

NP(r + 1, l(k, i)) ≥ N(|di|(NP(r, k)− 2)− |ci|).

This yields,

N ∗
P (r + 1) =

N

∑
i=1

Nr

∑
k=1

NP(r + 1, l(k, i))

≥ NµN ∗
P (r)− C3Nr+1.
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where C3 = 2 ∑N
i=1|di|+ ∑N

i=1|ci|. Using induction over r as above, we obtain

N ∗
P (r) ≥ (Nµ)r−sN ∗

P (s)− C3Nr
(

1 + µ + µ2 + · · ·+ µr−(s+1)
)

= (Nµ)r−sN ∗
P (s)− C3Nr

(
1− µr−s

1− µ

)
.

Since µ > 1, it is implied that µr−s > 1− µr−s. Thus,

N ∗
P (r) ≥ (Nµ)r−s

(
N ∗

P (s)− C3Ns

1− µ

)
.

Using Lemma 1, we can choose a large enough s so that

N ∗
P (s)− C3Ns

1− µ
> 0. (16)

For such s and r > s, we can write

N ∗
P (r) ≥ (Nµ)rC4,

where C4 = (Nµ)−s
(
N ∗

P (s)− C3 Ns

1−µ

)
> 0. This ensures that

dimB(G)= lim
r→0

logN ∗(r)
log r

≥ lim
r→∞

log
(
(Nµ)rC4

)
log Nr = 1 + logN µ. (17)

Hence
dimB(G) = 1 + logN µ. (18)

2.2. Fractal Dimension of the Graph of a RPFIF as a Subset of R3

For notational simplicity, to estimate the fractal dimension of G, we restrict the graph
G in between z = −1 and z = 1.

Theorem 3. If µ > 1 and the interpolation points are not co-planar, then dimB(G) = 2 + logN µ;
otherwise, dimB(G) = 2.

Proof. Let

Q :=
{[

k− 1
Nr ,

k
Nr

]
×
[

α, α +
1

Nr

]
×
[

l − 1
Nr ,

l
Nr

]
: k, l, r ∈ N, α ∈ R

}
be the collection of the cubes of side-length 1

Nr in R3. First, we consider the graph G in
between z = 0 and z = 1. Let Qr ∈ Q be the best cover of G and Q∗(r) be the minimum
number of 1

Nr × 1
Nr × 1

Nr cubes in Qr that intersect with G. Since we restrict the z-values to
be between z = 0 to z = 1, it is clear that l varies from 1 to Nr. LetQ∗(r, 1) be the minimum
number of 1

Nr × 1
Nr × 1

Nr cubes in Qr that intersect G in between z = Nr−1
Nr to z = 1. Let

D :=
{[

k− 1
Nr ,

k
Nr

]
×
[

α, α +
1

Nr

]
× {1} : k, r ∈ N, α ∈ R

}
be the collection of squares on the plane z = 1, that is, on R2 × {1} and Dr ∈ D is the
best cover of G at level z = 1 and N∗1 (r) is the minimum number of 1

Nr × 1
Nr squares in Dr

that intersects with G at level z = 1. Then, it is clear that Q∗(r, 1) = N∗1 (r). In particular,
the squares at level z = 1 are nothing but the upper faces of the cubes between z = Nr−1

Nr

to z = 1. Now, it is observed that, if Q∗(r, l) is the minimum number of 1
Nr × 1

Nr × 1
Nr
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cubes in Qr that intersect G between z = l−1
Nr to l

Nr , then Q∗(r, l) = l
NrQ∗(r, 1) = l

Nr N∗1 (r),
l ∈ {1, 2, . . . , Nr}. Hence,

Q∗(r) =
Nr

∑
l=1
Q∗(r, l)

=
Nr

∑
l=1

l
Nr N∗1 (r)

=
N∗1 (r)

(
Nr + 1

)
2

.

Now, if we consider the graph of G between z = −1 and z = 1 and if Rr ∈ Q is the best
cover of G andR∗(r), then this is the minimum number of 1

Nr × 1
Nr × 1

Nr cubes inRr that
intersect with G; then, from the symmetry of G, we obtain

R∗(r) = N∗1 (r)
(

Nr + 1
)
. (19)

Hence

dimB(G) = lim
r→∞

log
(

N∗1 (r)
(

Nr + 1
))

log Nr = lim
r→∞

log N∗1 (r)
log Nr + 1. (20)

Now, if µ > 1 and the interpolation points are not co-planar, then similarly to the proof
of Theorem 2 (as at any level, the upper face of a projective square is a square), we obtain

lim
r→∞

log N∗1 (r)
log Nr = 1 + logN µ and hence

dimB(G) = 2 + logN µ.

Otherwise lim
r→∞

log N∗1 (r)
log Nr = 1 and hence dimB(G) = 2.

3. Dual of the RPFIF

Recall the real projective metric dP on RP2 \He3 defined in Section 1. The hyperplane
orthogonal to p ∈ RP2 \He3 is expressed as

p⊥ =
{

q ∈ RP2 \He3 : q ⊥ p
}

.

Definition 4. Let ̂RP2 \He3 denote the set of all hyperplanes of RP2 \ He3 , or equivalently,
̂RP2 \He3 =

{
p⊥ : p ∈ RP2 \He3

}
. Then, the space ̂RP2 \He3 is said to be the dual space

of RP2 \He3 . The addition on ̂RP2 \He3 is induced from the addition on RP2 \He3 . That is
p⊥ ⊕ q⊥ = (p⊕ q)⊥. The dual space is endowed with a metric d̂P defined by

d̂P(p⊥, q⊥) := dP(p, q) for all p⊥, q⊥ ∈ ̂RP2 \He3 . (21)

The map Q : RP2 \He3 →
̂RP2 \He3 defined by Q(p) = p⊥ is called the duality map.

Remark 1. The duality map Q is an isometry between the metric spaces
(
RP2 \He3 , dP

)
and( ̂RP2 \He3 , d̂P

)
. Hence,

( ̂RP2 \He3 , d̂P
)

is a complete metric space.

Since Q is continuous, it can be extended to a map Q from H
(
RP2 \He3

)
to

H

(
̂RP2 \He3

)
in the usual way. That is, for A ∈H

(
RP2 \He3

)
,

Q(A) = {Q(a) : a ∈ A}.
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Let Ĥ10 = Q(H10) and Ĥ01 = Q(H01). Now, for x ∈ RP2 \ He3 , x can be written as
x = x1 ⊕ x2, where x1 ∈ H10 and x2 ∈ H01. Then, from the definition of the addition on
̂RP2 \He3 , x⊥ = (x1 ⊕ x2)

⊥ = x⊥1 ⊕ x⊥2 . Thus, ̂RP2 \He3 can be expressed as

̂RP2 \He3 = Ĥ10 ⊕ Ĥ01. (22)

Here, we use the same notion ⊕ for the addition. Now, for a given dataset
{(xn : yn : zn) : n = 0, 1, . . . , N} on RP2 \ He3 , we can extend Ln and Fn, which are
defined in (5) and (6), respectively, as follows

L̂n : P̂I×{0} → P̂In×{0}, F̂n : ̂RP2 \He3 → Ĥ01 (23)

such that L̂n
(
(x : 0 : z)⊥

)
=
(

Ln(x : 0 : z)
)⊥ and F̂n

(
(x : y : z)⊥

)
=
(

Fn(x : y : z)
)⊥, where

P̂I×{0} = Q
(
PI×{0}

)
and P̂In×{0} = Q

(
PIn×{0}

)
. Define Ŵn : ̂RP2 \He3 →

̂RP2 \He3

such that

Ŵn
(
(x : y : z)⊥

)
= L̂n

(
(x : 0 : z)⊥

)
⊕ F̂n

(
(x : y : z)⊥

)
. (24)

Definition 5. The collection
{

̂RP2 \He3 ; Ŵn : n = 1, 2, . . . , N
}

is said to be a dual RPIFS.

Figure 3 represents the attractor of a dual RPIFS corresponding to the RPIFS given in [10]
(Section 4, Example 4.0.1, with scaling factor d = 0.3).

Figure 3. Attractor of a dual RPIFS ( the figure was obtained using ’Mathematica’).

Conjecture 1. If G is the graph of the RPFIF corresponding to the RPIFS W =
{
RP2 \

He3 ; Wn : n = 1, 2, . . . , N
}

given by (8), then there exists an attractor Ĝ corresponding to

the dual RPIFS Ŵ =

{
̂RP2 \He3 ; Ŵn : n = 1, 2, . . . , N

}
such that Ĝ is also the graph of a

self-referential function. Moreover, Ĝ =
{

p⊥ : p ∈ G
}

.

4. Conclusions

In this article, we estimated the fractal dimension of the graph of a RPFIF on the real
projective plane which has a linear structure. Since the graph of the RPFIF can be viewed as
a subset of RP2 as well as a subset of R3, we calculated the dimensions for both the cases.
Finally, we designed an IFS on the dual of the real projective plane RP2 \He3 and posed an
open problem.

The perspective view is the two-dimensional replica of a three-dimensional object
in the real world, where the apparent size of an object decreases as its distance from the
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viewer point increases. The lenses of the camera and the human eye work in the same
way, and therefore, the perspective view looks most realistic [20]. In the future direction,
one may look into the graph of an RPFIF in a different perspective view and estimated the
fractal dimensions of the corresponding images which are made by intersecting the graph
of the RPFIF with the object planes/image planes.
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