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We herein present a novel methodology to construct very high order well-balanced 
schemes for the computation of the Euler equations with gravitational source term, 
with application to numerical weather prediction (NWP). The proposed method is based 
on augmented Riemann solvers, which allow preserving the exact equilibrium between 
fluxes and source terms at cell interfaces. In particular, the augmented HLL solver (HLLS) 
is considered. Different spatial reconstruction methods can be used to ensure a high 
order of accuracy in space (e.g. WENO, TENO, linear reconstruction), being the TENO 
reconstruction the preferred method in this work. To the knowledge of the authors, the 
TENO method has not been applied to NWP before, although it has been extensively used 
by the computational fluid dynamics community in recent years. Therefore, we offer a 
thorough assessment of the TENO method to evidence its suitability for NWP considering 
some benchmark cases which involve inertia and gravity waves as well as convective 
processes. The TENO method offers an enhanced behavior when dealing with turbulent 
flows and underresolved solutions, where the traditional WENO scheme proves to be more 
diffusive. The proposed methodology, based on the HLLS solver in combination with a 
very high-order discretization, allows carrying out the simulation of meso- and micro-scale 
atmospheric flows in an implicit Large Eddy Simulation manner. Due to the HLLS solver, the 
isothermal, adiabatic and constant Brunt-Väisälä frequency hydrostatic equilibrium states 
are preserved with machine accuracy.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Operational and research Numerical Weather Prediction (NWP) dynamical cores have experimented an important tran-
sition in the last decade towards non-hydrostatic models. At the same time, the use of very high-order numerical schemes 
has become more popular, as they prove very efficient in modern HPC computing facilities and allow achieving a high res-
olution in space and time [32]. This allows adopting Large Eddy Simulation (LES) frameworks and enables the construction 
of Cloud Resolving Models, obtaining unprecedented resolution levels.

To construct a non-hydrostatic atmospheric model, the Navier-Stokes equations or their inviscid counterpart (i.e. the 
compressible Euler equations) are considered. In this work we will focus on the latter, being the Euler equations a suitable 
model for meso- and micro-scale phenomena [19,18,32]. We can find in the literature various formulations of the Euler 
equations for the construction of operational and research NWP dynamical cores. The most common version of the Euler 
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equations for the NWP community is given by the equation for the conservation of mass, momentum and potential tem-
perature [41]. The latter equation is derived from the equation for the conservation of energy when considering that the 
flow is adiabatic. Directly working with the potential temperature avoids additional computation steps when using moist 
sub-grid scale physical parameterizations, thus motivating the use of this version of the Euler equations [19].

Other possibility, which we will herein explore, is to use the original Euler equations, composed by the equations for 
the conservation of mass, momentum and energy. As outlined in [19], this equation set offers several advantages over the 
version of the Euler equations mentioned before. On the one hand, it is physically consistent both in the inviscid and in 
the viscous regimes, therefore it is possible to specify the actual viscous stresses if needed [18,19]. In addition, it directly 
represents the conservation of mass, momentum and energy and therefore such quantities can be conserved with machine 
accuracy provided the use of a suitable discretization [18]. Furthermore, since this equation set has been traditionally used 
by the Computational Fluid Dynamics (CFD) community, many of the numerical advances developed in this field can be 
easily adapted for NWP (e.g. spatial reconstruction schemes, Riemann solvers, etc.) [19,18].

Recently, very high-order spectral element (SE), discontinuous Galerkin (DG) and finite volume (FV) schemes have gained 
attention for NWP due to their high resolution and computational efficiency [33,19,42,23,18,30,31]. Atmospheric meso- and 
micro-scale flows are sometimes characterized by the presence of sharp gradients and turbulence, for which high-order FV 
schemes based on non-oscillatory reconstructions and total variation diminishing (TVD) approaches are very well suited. 
A very common choice is the essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) schemes 
[27], which are based on a selective stencil selection procedure that ensures a high order of accuracy and are able to 
capture discontinuities without Gibbs oscillations. Since their introduction, a collection of improved WENO schemes have 
been designed in an attempt to achieve better spectral properties and avoid sub-optimal behavior at critical points [1,24,16,
64,59,58]. WENO methods have been extensively applied to a large variety of flows by the CFD community [5,56,50,51], as 
well as in the field of NWP [44,18,43,42,30,45,34,61].

A novel family of targeted essentially non-oscillatory (TENO) methods has been recently introduced for the computation 
of compressible flows [14]. The TENO method features an incremental stencil selection in an ENO-like manner, where one 
candidate stencil is either selected for the final reconstruction with the optimal weight, or discarded completely when 
discontinuities are present. According to [14,12], the TENO reconstruction ensures that the spectral properties are recovered 
exactly up to intermediate wavenumber range, delivering a better performance than the WENO method. In particular, this 
method proves very beneficial when considering the combination of sharp gradients of the flow variables and turbulence, 
which may be the case for many atmospheric flows of interest. The reader is referred to [13] for a complete review of TENO 
methods.

Apart from the choice of a suitable high-order reconstruction method, other properties must be accounted for when 
designing a numerical scheme for the resolution of non-hydrostatic atmospheric flows. Most atmospheric phenomena of 
interest can be considered small perturbations over an equilibrium state [18,9]. In particular, the Euler equations with 
gravitational source term admit different hydrostatic equilibrium states (e.g. isothermal equilibrium, adiabatic equilibrium, 
etc.). In order to accurately capture the propagation of such perturbations, the numerical schemes must preserve the relevant 
equilibrium states with machine accuracy, otherwise spurious waves would appear in the solution. Those numerical schemes 
able to preserve the equilibrium states of relevance with machine accuracy are called well-balanced schemes [3,22]. There 
is an extensive work on the design of well-balanced schemes for hyperbolic systems of conservation laws with source 
terms, such as the shallow water equations [3,22,15,63,7,21] and the Euler equations under gravitation [28,8,18,63,9,10]. We 
can find different approaches to construct high-order well-balanced schemes. One alternative is to design Riemann solvers 
so that they allow exactly balancing fluxes and source terms and preserve the Rankine-Hugoniot (RH) condition at cell 
interfaces with machine accuracy. These are called augmented Riemann solvers, and have been extensively used for the 
shallow water equations [29,35,39] and hemodynamic flows [36], but their application to atmospheric flows is scarce.

In this work, we explore the use of augmented Riemann solvers for the design of very high-order well-balanced schemes 
for the Euler equations with gravitational source term. We present a novel approach to construct a family of very high-
order essentially non-oscillatory schemes, which can consider different spatial reconstruction methods (e.g. WENO, TENO 
and linear reconstructions) and different augmented Riemann solvers. The motivation for the use of augmented solvers is 
next outlined. The high-order piecewise reconstruction of variables leads to bi-valued pressures at cell interfaces, which 
produces an imbalance of the solution. To enforce the equilibrium, an artificial source term must be introduced in the 
definition of the Riemann Problem (RP). This artificial source may account for the thrust and energy associated to the 
pressure jump across the interface, which has a numerical origin, and leads to a non-homogeneous RP. To compute the 
solution of non-homogeneous RPs, augmented Riemann solvers are required. In this work, we will focus on the augmented 
HLL solver, referred to as HLLS solver [37], which is derived here for the first time for the Euler equations with gravity. This 
solver is able to preserve the RH condition at cell interfaces by considering an extra term in the definition of the numerical 
fluxes. To satisfy the exact equilibrium in the numerical solution, apart from the use of augmented solvers, a correction of 
the volume integral of the source term inside cells has to be considered. This correction is only computed at the beginning 
of the simulation using the equilibrium data. If we wanted to avoid the use of augmented solvers, another possibility would 
be to work with perturbation variables (i.e. by subtracting the equilibrium state). Nevertheless, our motivation is to show the 
definition and use of the HLLS solver for this set of equations since it cannot be found in previous literature and moreover, 
these ideas can be further extended to other applications (compressible flow in ducts with varying cross sectional area, 
atmospheric flows with source terms of a more complex nature, etc.).
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Another novelty of this work is the application of the TENO method to NWP. We believe the benefits offered by such a re-
construction method make it a suitable candidate for the resolution of atmospheric flows. Therefore, we present a thorough 
assessment of the performance of the TENO scheme, in comparison with the traditional WENO and linear reconstructions, 
for the resolution of different phenomena involving the propagation of waves, discontinuous solutions and turbulent fields. 
Numerical results for 8 different test cases, involving 1D, 2D and 3D flows, are presented.

2. The mathematical model

We are interested in meso- and micro-scale atmospheric flows, which can be represented by the Euler equations with a 
gravitational source term and neglecting Coriolis forces [18]. We consider the original Euler equation set, written in terms 
of mass, momentum and total energy as follows

∂U

∂t
+ ∂F(U)

∂x
+ ∂G(U)

∂ y
+ ∂H(U)

∂z
= S , (1)

with

U =

⎛⎜⎜⎜⎝
ρ
ρu
ρv
ρw

E

⎞⎟⎟⎟⎠ , F =

⎛⎜⎜⎜⎜⎝
ρu

ρu2 + p
ρuv
ρuw

u(E + p)

⎞⎟⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎝
ρv
ρvu

ρv2 + p
ρv w

v(E + p)

⎞⎟⎟⎟⎟⎠ , H =

⎛⎜⎜⎜⎜⎝
ρw
ρwu
ρw v

ρw2 + p
w(E + p)

⎞⎟⎟⎟⎟⎠ , S =

⎛⎜⎜⎜⎝
0
0
0

−ρg
−ρwg

⎞⎟⎟⎟⎠ , (2)

where ρ is the density, ρu, ρv , ρw are the unit discharges in the x, y and z directions, p is the pressure and E is the total 
energy, which is expressed as

E = ρ

(
1

2
v2 + e

)
, (3)

with v2 = u2 + v2 + w2 the squared velocity and e the internal energy. The ideal gas relation is used as closure equation

p = ρRT , (4)

where R is the universal gas constant and T is the temperature. Using the relations e = cv T and R = cp − cv , one can write:

p = (γ − 1)

(
E − 1

2
ρv2

)
, (5)

with γ = cp/cv , where cp and cv are the specific heats at constant pressure and volume, respectively. Two additional 
variables of interest in atmospheric flows are the Exner pressure π and the potential temperature θ , defined as

π =
(

p

p0

) γ −1
γ

, θ = T

π
, (6)

where p0 is the reference pressure at z = 0, modelled as p = ρ0 RT0.
The Euler equations in (1) admit a hydrostatic equilibrium state with zero velocity in the z direction, which is given by 

[18]

w = 0 ,
∂ p

∂z
= −ρg ⇔ γ R

γ − 1
θ

∂π

∂z
= −g. (7)

The equilibrium states satisfying (7) will be denoted by p = pe(z) and ρ = ρe(z) and will be considered only functions 
of z in this work. Different hydrostatic equilibrium conditions are encountered in practical atmospheric applications [18,31]:

• Isothermal equilibrium: When the temperature of the atmosphere is considered constant in the whole domain, we 
obtain the following equilibrium state

ρe = ρ0 exp

(
− z

RT0

)
, pe = ρe RT0 = p0 exp

(
− z

RT0

)
, we = 0 . (8)

The velocity components ue and ve can take any arbitrary constant value.
• Adiabatic equilibrium: In the case of an adiabatic atmosphere, the equilibrium state reads

pe = p0

(
1 − (γ − 1)g

γ Rθ0
z

) γ
γ −1

, ρe = p

Rπθ
= p0

Rθ0

(
1 − (γ − 1)g

γ Rθ0
z

) 1
γ −1

, we = 0 , (9)

where θ is assumed constant and equal to the temperature at z = 0, i.e. θ0 = T0 ≡ T (z = 0). The velocity components 
ue and ve can take any arbitrary constant value.
3
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• Equilibrium specified by a constant Brunt-Väisälä frequency, N : In this case, the equilibrium state reads

pe = p0(π
e)

γ
γ −1 , ρe = p0

Rθe
(π e)

1
γ −1 , we = 0 , (10)

where the equilibrium Exner pressure is given by

π e = 1 + (γ − 1)g2

γ RT0N 2

(
exp

(
−N 2

g
z

)
− 1

)
(11)

and the potential temperature is given by

θe = T0 exp

(
N 2

g
z

)
. (12)

The velocity components ue and ve can take any arbitrary constant value.

A Jacobian matrix can be defined for each of the flux functions to construct

J (U,n) = ∂F

∂U
nx + ∂G

∂U
ny + ∂H

∂U
nz , (13)

where n = (nx, ny, nz). The system in Equation (1) is said to be hyperbolic since J (U, n) in Equation (13) is diagonalizable 
with real eigenvalues for all n ∈R3 and for all U ∈ C with C ⊆R5 the subset of physically relevant values of U [20].

The Euler system in Equation (1) satisfies the rotational invariance property, i.e. the projection of the flux in any arbitrary 
direction given by n = (nx, ny, nz) can be expressed as

Fnx + Gny + Hnz = R−1F(RU) , (14)

where R is a rotation matrix [55]

R =

⎛⎜⎜⎝
1 0 0 0 0
0 cosα(y) cosα(z) cosα(y) sinα(z) sinα(y) 0
0 − sinα(z) cosα(z) 0 0
0 − sinα(y) cosα(z) − sinα(y) sinα(z) cosα(y) 0

⎞⎟⎟⎠ (15)

and

nx = cosα(y) cosα(z) ny = cosα(y) sinα(z) nz = sinα(y), (16)

with α(y) and α(z) the angles of rotation around the y and z axis, respectively.
The knowledge of the eigenstructure of the Jacobian matrices of the Euler system in Equation (1) is required for the 

design of numerical schemes based on Riemann solvers. Thanks to the rotational invariance property, we will only need 
to examine the Jacobian matrix of the flux in one spatial direction. We choose the flux in the x direction for the sake of 
simplicity. The following Jacobian matrix is obtained [55]

J = ∂F

∂U
=

⎛⎜⎜⎜⎜⎝
0 1 0 0 0

H γ̂ − a2 − u2 u (3 − γ ) −γ̂ v −γ̂ w γ̂
−uv v u 0 0
−uw w 0 u 0

1
2 u

(
γ̂ v2 − H

)
H − γ̂ u2 −γ̂ uv −γ̂ uw γ u

⎞⎟⎟⎟⎟⎠ , (17)

where H = E+p
ρ is the total specific enthalpy, a = √

γ p/ρ is the wave celerity and γ̂ = γ −1. The corresponding eigenvalues 
are

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a (18)

and the matrix of corresponding right eigenvectors (in columns) is [55]

P =

⎛⎜⎜⎜⎜⎝
1 1 0 0 1

−a + u u 0 0 a + u
v v 1 0 v
w w 0 1 w

H − au 1
2 v2 v w H + au

⎞⎟⎟⎟⎟⎠ . (19)

Such matrix allows to diagonalize the Jacobian as � = P−1JP, where � = diag(λ1, ..., λ5) is a diagonal matrix.
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3. Numerical model: well-balanced high-order FV scheme in Cartesian grid

Let us consider the Euler equations in (1)–(2) to compose the following Initial Boundary Value Problem (IBVP):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PDEs:

∂U

∂t
+ ∂F

∂x
+ ∂G

∂ y
+ ∂H

∂z
= S

IC: U(x,0) = ◦
U(x) ∀x ∈ 	

BC: U(x, t) = U∂	(x, t) ∀x ∈ ∂	

(20)

defined in the domain 	 ×[0, T ], where 	 = [x1, x2] ×[y1, y2] ×[z1, z2] is the spatial domain. The initial condition is given 
by 

◦
U(x) and the boundary condition by U∂	(x, t). The spatial domain is discretized in Nx × N y × Nz volume cells, defined 

as

	i jk =
[

xi− 1
2
, xi+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
×

[
z j− 1

2
, z j+ 1

2

]
, i = 1, ..., Nx, j = 1, ..., N y, k = 1, ..., Nz . (21)

We consider a Cartesian grid, therefore the grid spacing will be denoted by 
x, 
y and 
z in each of the Cartesian 
directions. Inside each cell, at time tn , the conserved quantities are generally defined as cell averages as:

Un
i jk = 1


x
y
z

∫
	i jk

U(x, tn)dV , (22)

where dV = dxdydz. Using the finite volume approach, the semi-discrete form of Equation (1) is written as

∂Ui jk

∂t
= L(Ui jk), (23)

where L(Ui jk) is the discrete operator representing the convective flux terms

L(Ui jk) = −F−
i+1/2, j,k − F+

i−1/2, j,k


x
− G−

i, j+1/2,k − G+
i, j−1/2,k


y
− H−

i, j,k+1/2 − H+
i, j,k−1/2


z
+ S̄i jk , (24)

where F±
i∓1/2, j , G

±
i, j∓1/2 and H±

i, j∓1/2 are the numerical fluxes at cell interfaces and

S̄i jk ≈ 1


x
y
z

∫
	i jk

S(U) dzdydx (25)

is the approximation of the spatial integral of the source terms.
The Strong Stability Preserving Runge–Kutta 3 (SSPRK3) scheme [18,48] is used to compute the numerical approximation 

at time level n + 1 as follows

U(1)

i jk = Un
i jk + 
tL(Un

i jk),

U(2)

i jk = 3
4 Un

i jk + 1
4 U(1)

i jk + 1
4 
tL(U(1)

i jk ),

Un+1
i jk = 1

3 Un
i jk + 2

3 U(2)

i jk + 2
3 
tL(U(2)

i jk ).

(26)

The time step, 
t , is computed dynamically according to the CFL condition to preserve the stability of the numerical solution 
[11].

The numerical scheme in Equations (24)-(26) requires some additional considerations for the preservation of the well-
balanced property. To maintain equilibrium at the discrete level, we need

L(Un
i jk) = 0 , (27)

which is achieved by ensuring the two following requirements:

• R1: Under equilibrium, the numerical fluxes at cell interfaces must be equal to the physical fluxes. This will be achieved 
using augmented Riemann solvers, which will include within the numerical fluxes a compensation of the pressure 
discontinuity in the edges in the form of an artificial source term, S̄i+1/2, that accounts for the thrust and power 
associated to this pressure jump.

• R2: Under equilibrium, the volume integral of the source term inside cells must exactly balance the physical flux differ-
ences along the cell interfaces. This will be achieved by means of a correction term for the integral of the source term 
inside the cell, S̄i jk .
5
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Fig. 1. Example of a 1D grid.

3.1. Spatial reconstructions of arbitrary order

The numerical fluxes at cell interfaces in Equation (24) are a function of a high-order reconstruction of the vari-
ables at each side of the interface. For example, the numerical flux in the x direction can be expressed as F±

i+1/2 =
F±

i+1/2(UiR , U(i+1)L ), where UiR and U(i+1)L are the vectors of reconstructed conserved variables on the left and right hand 
sides of the interface. Note that the subscripts L, R refer to the cell and not to the interface. Vectors UiR and U(i+1)L are 
reconstructed in a component-wise manner, where a reconstruction procedure is applied to each component of the vector 
independently [48,18].

For the sake of simplicity, we will describe the reconstruction procedure for a scalar function u(x), with cell averages ui , 
which is defined along the x direction. The extension to 2 and 3 spatial dimensions is carried out by applying the procedure 
along each of the Cartesian directions [48,18]. In Fig. 1 we show the cell-averaged values and piecewise reconstructions of 
u(x) inside two consecutive cells i and i + 1. The reconstruction of u(x) on the left and right hand side of the interface 
xi+1/2 is denoted by uiR and u(i+1)L , respectively.

In this section, we describe two commonly used reconstruction methods: the traditional WENO reconstruction (also 
referred to as WENO-JS, after Jiang and Shu) and the TENO reconstruction. Both methods are used to build piecewise 
reconstructions inside each computational cell (Fig. 1), using information from neighboring cells. They can be defined for 
an arbitrary order of accuracy and are designed to recover the ENO property to capture discontinuities and to restore their 
linear counterparts when the solution is smooth. This feature is required for the meso-scale atmospheric problems herein 
considered, where sharp gradients (or even discontinuities) in the flow variables may be present, specially in the under-
resolved cases.

The WENO method uses a variable set of stencils where lower order polynomials are first constructed. Then, these lower 
order polynomials are combined either to create a higher order polynomial in smooth regions or an off-center reconstruc-
tion able to capture discontinuities in non-smooth regions. The definition of a smoothness indicator permits to distinguish 
between those two cases. On the other hand, the TENO method features an incremental stencil selection in an ENO-like 
manner, where one candidate stencil is either selected for the final reconstruction with the optimal weight, or discarded 
completely when crossed by discontinuities. According to [14], the TENO reconstruction ensures that the spectral properties 
and the accuracy order of the underlying linear scheme can be recovered up to intermediate wavenumber range.

3.1.1. The WENO reconstruction
To carry out a reconstruction of degree (2k − 1) on the cell 	i = [xi− 1

2
, xi+ 1

2
] for the function u(x), k different stencils 

of k cells are needed. These stencils are given by Sr(i) = {
	i−r, ...,	i+k−r−1

}
(r = 0, ..., k − 1), where r represents the 

number of cells on the left hand side of 	i . These stencils can be combined to generate a bigger stencil T (i) = ∪k−1
r=0 Sr(i) ={

	i−k+1, ...,	i+k−1
}

.
The (2k − 1)-th order WENO reconstructions of u(x) on the left and right interfaces of an arbitrary i-th cell, i.e. at xi− 1

2
and xi+ 1

2
, are given by

uiR =
k−1∑
r=0

ωru(r)
iR

, uiL =
k−1∑
r=0

ωru(r)
iL

(28)

where k is the number of candidate stencils, ωr are the WENO nonlinear weights, yet to be defined, and u(r)
iR

and u(r)
iL

are 
the k-th order linear reconstructions in the candidate stencils, computed as a linear combination of cell averages as follows

u(r)
iR

=
k−1∑
j=0

c(k)
r j ui−r+ j , u(r)

iL
=

k−1∑
j=0

c̃(k)
r j ui−r+ j, r = 0, ...,k − 1 (29)

with c(k) and c̃(k) c(k) coefficients derived from a Lagrange interpolation [27].
r j r j r j

6
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The nonlinear weights, ωr , are computed as follows

ωr = αr∑k−1
l=0 αl

, αr = dr

(βr + ε)2
, r = 0, ...,k − 1 (30)

with ε = 10−6 a small constant to avoid division by zero, dr the optimal weights and βr the smoothness indicators proposed 
by Jiang and Shu in [27]. This method is also referred to as WENO-JS.

3.1.2. The TENO reconstruction
The (2k − 1)-th order TENO reconstructions of u(x) on the left and right interfaces of an arbitrary i-th cell, i.e. at xi− 1

2
and xi+ 1

2
, can be constructed using Equation (28) as done for the WENO scheme, considering a different definition of ωr . 

The nonlinear weights are now computed as follows [14]

ωr = αr∑k−1
l=0 αl

, αr = drδr, r = 0, ...,k − 1 (31)

where αr are computed using a ENO-like stencil selection methodology, with δr being the result of applying the following 
sharp cutoff function [12,14]

δr =
{

0 if χr < CT

1 otherwise
, r = 0, ...,k − 1 (32)

with χr a normalized smoothness measure and CT = 10−6 the threshold for the smoothness indicator that controls the 
participation of the candidate stencils [25,14]. This cutoff function ensures that a candidate stencil is fully suppressed for 
the final reconstruction if the measured smoothness is below a certain threshold, otherwise it is adopted with its original 
weight [14]. Note that an adaptive dissipation control (i.e. adaptive CT ) can be performed following the strategy in [12], but 
it is not considered here.

The coefficient χr is defined as the normalization of the smoothness measure, σr ,

χr = σr∑k−1
l=0 σl

, σr = 1

(βr + ε)6
, r = 0, ...,k − 1. (33)

Note that in this case, the smoothness measure is computed using the modified scale-separation formula proposed by Fu in 
[12], which is simpler than the original definition of σr [14] and leads to more efficient computations when increasing the 
order of accuracy. In Equation (33), we consider ε = 10−40 as indicated in [14,12].

3.2. Augmented solvers: the HLLS solver

The numerical fluxes are computed solving the Riemann problems at cell interfaces. Due to the piecewise nature of the 
spatial reconstruction (e.g. TENO), there will be a jump in the conserved variables and their fluxes across cell interfaces. To 
balance flux differences across cell interfaces and preserve the well-balanced property (i.e. the equilibrium of the discrete 
solution), we also consider the source term in the definition of the RP according to [40].

The RP in the x direction at the interface i + 1/2, defined for the so-called x-split Euler equations, reads as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂W

∂t
+ ∂F(W)

∂x
= S̄i+1/2

W(x,0) =
{

WiR x < 0
W(i+1)L x > 0

(34)

where WiR and W(i+1)L are the spatial reconstruction of the conserved variables on the left and right side of the cell in-
terface, respectively, computed by means of the reconstruction method selected (e.g. WENO, TENO or linear reconstruction). 
Note that W = RU is the vector of conserved variables rotated to the x-axis. From an implementation point of view, rota-
tion operations can be simplified when considering Cartesian meshes, but we retain this notation for the sake of brevity. 
The term S̄i+1/2 represents the approximation of the integral of the source term at cell interfaces. To preserve the discrete 
equilibrium, such term must balance the difference of fluxes at cell interfaces, according to the Rankine-Hugoniot (RH) 
condition

F(i+1) − Fi = S̄i+1/2 . (35)
L R

7
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The term S̄i+1/2 is expressed as follows

S̄i+1/2 =

⎛⎜⎜⎜⎜⎜⎝
0

s̄(ρu)

i+1/2
0
0

s̄(E)
i+1/2

⎞⎟⎟⎟⎟⎟⎠ , (36)

where s̄(ρu)

i+1/2 and s̄(E)
i+1/2 are the approximation of the integral of the source terms in the momentum and energy equations, 

respectively, which must be designed to satisfy Eq. (35). Note that this is an artificial source term that must balance the 
thrust and power produced by the pressure jump across cell interfaces, which has a numerical origin (i.e. piecewise spatial 
reconstruction). The well-balanced property could also be satisfied if ommiting s̄(E)

i+1/2, but we have considered it for the 
sake of consistency in the derivation of the HLLS numerical fluxes.

For a RP for the Euler equations in (1), we can define an approximate Jacobian matrix of F that depends upon the left 
and right states, ̃Ji+ 1

2
= J̃i+ 1

2
(WiR , W(i+1)L ), using Roe averages as follows [55]

J̃i+ 1
2

=

⎛⎜⎜⎜⎜⎝
0 1 0 0 0

H̃ γ̂ − ã2 − ũ2 ũ (3 − γ ) −γ̂ ṽ −γ̂ w̃ γ̂
−ũ ṽ ṽ ũ 0 0
−ũ w̃ w̃ 0 ũ 0

1
2 ũ

(
γ̂ ṽ2 − H

)
H̃ − γ̂ ũ2 −γ̂ ũ ṽ −γ̂ ũ w̃ γ ũ

⎞⎟⎟⎟⎟⎠
i+ 1

2

(37)

with the Roe averages denoted by (·̃) and defined in [55].
As mentioned above, a particular discretization of the source term is required to preserve the discrete equilibrium (i.e. 

the RH condition in Equation (35)). According to [31], we propose to use the following approximation of the integral of the 
source term for the momentum and energy equations

s̄(ρu)

i+1/2 = ρ(i+1)L + ρiR

ρe
(i+1)L

+ ρe
iR

(
pe

(i+1)L
− pe

iR

)
, (38)

s̄(E)
i+1/2 = ũs̄(ρu)

i+1/2, (39)

where ρe
(i+1)L

, ρe
iR

, pe
(i+1)L

and pe
iR

are the left and right interface values of the equilibrium density and pressure, computed 
at the beginning of the simulation. The spatial reconstruction is carried out for the conserved variables (ρ , ρu, ρv , ρw , E), 
therefore the equilibrium pressure must be computed from (5). For instance, the reconstruction of the pressure on the right 
side of cell i is computed as follows

pe
iR

= (γ − 1)Ee
iR

− 1

2
ρe

iR

(
(ue

iR
)2 + (ve

iR
)2 + (we

iR
)2

)
, (40)

with ue
iR

= (ρu)e
iR

/ρe
iR

, and so on for the other components of the velocity.
Under equilibrium, ρ = ρe , p = pe and ũ = 0, thus the RH condition in Equation (35) is satisfied, leading to⎛⎜⎜⎜⎜⎝

0
pe

(i+1)L
− pe

iR

0
0
0

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0

s̄(ρu)

i+1/2
0
0
0

⎞⎟⎟⎟⎟⎠ (41)

evidencing that the approximation of the integral of the source term at cell interfaces exactly balances the jump in the 
pressure across the cell interface. Note that only jumps across the interface are accounted, as we consider the x-split Euler 
equations.

Augmented Riemann solvers include the contribution of the source term as an extra wave of zero velocity at the interface 
(x = 0), which originates a jump of the fluxes and conserved variables across the interface. The approximate solution, 
hereafter referred to as Ŵ(x, t), is therefore composed by at least (depending on the number of waves) two different internal 
states in the so-called star region, separated by a contact discontinuity at x = 0 produced by the source term [37,35]. In the 
vicinity of x = 0, left and right states of the approximate solution will be hereafter denoted by W−

iR
and W+

(i+1)L
respectively, 

expressed as:

W−
iR

= lim− Ŵ(x, t) W+
(i+1)L

= lim+ Ŵ(x, t) . (42)

x→0 x→0

8
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Analogously, an approximate flux function F̂(x, t) can be also defined with a similar structure than Ŵ(x, t). In this case, 
also intercell values for the fluxes can be defined at both sides of the t axis as:

F−
i+1/2 = lim

x→0− F̂(x, t) F+
i+1/2 = lim

x→0+ F̂(x, t) . (43)

Augmented Riemann solvers are designed to satisfy the following relation

F+
i+1/2 − F−

i+1/2 = J̃i+ 1
2

(
W+

(i+1)L
− W−

iR

)
, (44)

which can also be expressed as

S̄i+ 1
2

= J̃i+ 1
2

(
W+

(i+1)L
− W−

iR

)
, (45)

noticing that, under steady state conditions (i.e. F−
i+1/2 = F(i+1)L and F+

i+1/2 = FiR ), Equation (35) is recovered.
The RP in (34) will be computed by means of the HLLS solver [37,40]. This is an incomplete non-linear solver that 

approaches the wave structure of the system by a 2-wave structure. When using the HLLS solver, the numerical fluxes at 
cell interfaces are computed as follows:

F−
i+1/2 =

⎧⎪⎨⎪⎩
FiR if S1 ≥ 0
F−,H LL S

iR
if S1 ≤ 0 ≤ S2

F(i+1)L − S̄i+ 1
2

if S2 ≤ 0
, F+

i+1/2 =

⎧⎪⎨⎪⎩
FiR + S̄i+ 1

2
if S1 ≥ 0

F+,H LL S
(i+1)L

if S1 ≤ 0 ≤ S2

Fi(i+1)L
if S2 ≤ 0

(46)

where the HLLS fluxes are given by

F−,H LL S
iR

=
(

S2FiR − S1F(i+1)L

) + S1 S2(W(i+1)L − WiR ) + S1

(
S̄i+ 1

2
− S2B̄i+ 1

2

)
S2 − S1

, (47)

F+,H LL S
(i+1)L

=
(

S2FiR − S1F(i+1)L

) + S1 S2(W(i+1)L − WiR ) + S2

(
S̄i+ 1

2
− S1B̄i+ 1

2

)
S2 − S1

, (48)

where B̄i+ 1
2

is a matrix related to the source term, originally defined in [37] as follows

B̄i+ 1
2

≡ W+
(i+1)L

− W−
iR

= J̃−1
i+ 1

2
S̄i+ 1

2
(49)

and the wave celerities, S1 and S2, still to be defined. We can compute B̄i+ 1
2

from Equation (49), leading to

B̄i+ 1
2

= − 1

λ̃1λ̃5

⎛⎜⎜⎜⎜⎝
1
0
ṽ
w̃

H̃ − ũ2;

⎞⎟⎟⎟⎟⎠ s̄i+1/2. (50)

From Equation (49) we notice that, under equilibrium, we must have

W(i+1)L − WiR = B̄i+ 1
2

(51)

however, B̄i+ 1
2

in Equation (50) does not ensure the equality in Equation (51) at the discrete level, being only valid for the 
continuous case (i.e. when dρ = dp/a2). To satisfy (51), vector B̄i+ 1

2
is redefined as follows

B̄i+ 1
2

= − 1

λ̃1λ̃5

⎛⎜⎜⎜⎜⎝
ϕ�

0
ϕ� ṽ
ϕ� w̃

H̃ − ũ2 + 1
2 (ϕ� − 1)(ṽ2 + w̃2)

⎞⎟⎟⎟⎟⎠ s̄i+1/2 , (52)

where ϕ� is a correction term defined as

ϕ� = ã2

⎛⎝ δρe
i+ 1

2

δpe
i+ 1 + ε

⎞⎠ , (53)
2

9
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with ε = 10−14 a sufficiently small constant to avoid division by zero when the pressure jump across the interface is nil. In 
the limit to the continuous case, this correction term ϕ� would approach to 1.

The use of the expressions in Equations (38) and (52), in combination with the following choice for the wave celerities

S1 = λ̃1 , S2 = λ̃5 (54)

allows to satisfy the discrete RH conditions for the HLLS solver, making Equations (47) and (48) become

F−,H LL S
iR

= FiR , F+,H LL S
(i+1)L

= F(i+1)L (55)

under equilibrium, thus satisfying the requirement R1 for the well-balancing of the scheme.

3.3. Correction of the integral of the source term

To ensure the well-balanced property, the integral of the source term in Equation (23) must exactly balance the physical 
flux differences at cell interfaces under equilibrium (requirement R2). However, an imbalance may appear because the 
spatial reconstruction method is not able to reconstruct with machine accuracy some equilibrium states (i.e. those cases 
where pe and ρe are not given by smooth polynomial functions). Requirement R2 can be achieved by means of a correction 
term for the integral of the source term inside the cell. We propose to compute S̄i jk as follows

S̄
n
i jk =

⎛⎜⎜⎜⎜⎝
0
0
0

−gρn
i jk + ϕk

−g(ρw)n
i jk

⎞⎟⎟⎟⎟⎠ , (56)

where ϕk is a correction term defined as

ϕk = 1


z

(
pe

kR
− pe

kL

)
+ gρe

k , (57)

which only depends on the z direction and can be computed at the beginning of the simulation. Note that the dependence 
of ϕk upon i and j has been omitted for the sake of simplicity.

The correction term ϕk represents the imbalance in the discrete equilibrium solution. As pointed out by Botta [4], this 
imbalance can be regarded as the truncation error of the spatial discretization, that is ϕk =O(
zp), with p the order of the 
spatial reconstruction.

Note that the numerical scheme presented above is reduced to the 1-st order Godunov’s method when no spatial recon-
struction is considered (i.e. UiR = UiL = Ui )) and the explicit Euler integration in time is used. This is beneficial in terms of 
the implementation of the scheme, as we can run the 1-st order version of the scheme without additional modifications.

4. Numerical results

In this section, we assess the performance of the proposed scheme using 8 different test cases involving 1D, 2D and 3D 
flows. For the TENO reconstruction, a threshold of CT = 10−6 is used following the recommendations from the literature, 
unless other value is specified.

4.1. Case 1. Well-balancing

This test case allows assessing the well-balancing of the schemes and has been used in previous studies [18,31,62]. We 
consider as initial condition the hydrostatic isothermal equilibrium in Equation (8) with

ρ0 = 1 , p0 = 1 , R = 1 , γ = 1.4 , g = 1 , u = v = w = 0 , (58)

inside the domain [0, 1]. The numerical schemes must preserve this hydrostatic equilibrium with machine precision. We 
compute the solution at t = 0.8 using the TENO-3, TENO-5 and TENO-7 reconstruction using 80, 160 and 320 cells.

Table 1 shows the deviation in the computed pressure and vertical velocity from the equilibrium state, for the case of 
160 cells, measured with the L1 norm, which is defined as

L1(p) =
∑

k=1,...,Nz

∣∣pk − pe
k

∣∣
z , L1(w) =
∑

k=1,...,Nz

∣∣wk − we
k

∣∣
z. (59)

As observed in Table 1, the computed solutions preserve the initial equilibrium with machine accuracy (double precision). 
Numerical errors are of the order of 10−14.
10
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Table 1
Numerical errors for p and w measured 
using the L1 norm.

Scheme L1(p) L1(w)

TENO-3 1.02e-14 8.75e-14
TENO-5 1.02e-14 8.72e-14
TENO-7 1.02e-14 7.22e-14

Table 2
Magnitude of the correction of the integral of the 
source term.

Nz L1(ϕ)

TENO-3 TENO-5 TENO-7

80 8.54e-04 6.67e-07 5.58e-10
320 5.80e-05 2.83e-09 3.96e-13

Table 3
Convergence rates for ρ at t = 0.8 setting η = 0.01, computed with the L1 error norms.

Meshes (N j/N j+1) TENO-3 TENO-5 TENO-7

L1(ρ) OL1 L1(ρ) OL1 L1(ρ) OL1

40/80 1.34e-04 - 1.16e-04 - 1.29e-04 -
80/160 8.72e-05 0.62 5.01e-05 1.21 3.67e-05 1.82
160/320 3.52e-05 1.31 7.97e-06 2.65 2.13e-06 4.11
320/640 9.18e-06 1.94 3.85e-07 4.37 3.01e-08 6.14
640/1280 1.57e-06 2.54 1.29e-08 4.90 2.79e-10 6.75
1280/2560 2.66e-07 2.57 4.12e-10 4.97 7.70e-12 5.18

To evidence the role of the correction of the integral of the source term in Equation (57), ϕk , we show in Table 2 the 
magnitude of this term for the TENO reconstruction, measured with the following L1 norm

L1(ϕ) =
∑

k=1+nb,...,Nz−nb

|ϕk|
z , (60)

where nb represents the number of boundary cells which are not considered, since the polynomial order decreases in those 
cells.

The magnitude of the correction term decreases with the number of cells and the order of the numerical scheme, as 
the accuracy of the reconstruction of ρe and pe increases. When using the 7-th order TENO scheme with 320 cells, L1(ϕ)

is close to machine precision, evidencing that the correction term would not be necessary when using very high order 
schemes in fine grids [6]. However, the combination of a fine grid and a very high order of accuracy may be unpractical in 
terms of computational cost, motivating the need of well-balancing [4].

4.2. Case 2. Perturbation over the one-dimensional isothermal steady state

We consider the hydrostatic isothermal equilibrium in Equation (8), setting as initial condition [18,31,62]

p(z,0) = pe(ẑ) + η exp
(
−100(ẑ − 0.5)2

)
, ρ(z,0) = ρe(ẑ) , v(z,0) = 0 (61)

with η the amplitude of the perturbation, ẑ = z − 2 and

ρ0 = 1 , p0 = 1 , R = 1 , γ = 1.4 , g = 1 , u = v = w = 0 , (62)

inside the spatial domain z = [0, 5]. We consider two different cases setting η = 0.01 and η = 10−8 and compute the 
solution at t = 0.8 setting the CFL number to 0.05.

Table 3 shows a convergence rate test for the schemes using the TENO-3, TENO-5 and TENO-7 reconstruction, setting η =
0.01. The order of convergence of the schemes is estimated using the double-mesh principle. The following set of meshes 
are considered: Nl = {20,40,80,160,320,640}. For two arbitrary meshes M1 and M2, the L1 norm of the difference of 
the computed ρ in such meshes is calculated as:

L1(ρ) =
NM1∑ ∣∣∣0.5

({
ρn

2k

}
M2 + {

ρn
2k−1

}
M2

)
− {

ρn
k

}
M1

∣∣∣
z , (63)

k=1

11
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Fig. 2. Case 2. Numerical solution for the pressure perturbation (
p = p − pe ) at t = 0.8 setting η = 0.01 (left) and η = 10−8 (right).

Fig. 3. Case 2. Numerical solution for the pressure perturbation (
p = p − pe ) at t = 0.8 setting η = 0.01. Full domain (left) and detail of the left-moving 
gravity wave (right).

Table 4
Location and amplitude of the left and right moving waves (denoted by 1 and 2, respectively). The values marked with 
(∗) have been extracted from the corresponding papers using a digitizer tool, therefore only two significant digits after the 
comma are displayed.

Scheme N η t x1 x2 
p1 
p2

TENO-7 1280 10−8 0.8 1.5488 3.4434 7.47e-9 3.29e-9
Li and Gao, 2021 [31] 28350 10−8 0.8 1.55(∗) 3.44(∗) 7.5e-9(∗) 3.3e-9(∗)

TENO-7 1280 10−2 0.25 2.1972 2.7949 5.44e-3 4.58e-3
Ghosh and Constantinescu, 2016 [18] 2000 10−2 0.25 2.20(∗) 2.79(∗) 5.4e-3(∗) 4.6e-3(∗)

with 
{
ρn

l

}
Ml

stands for the cell-averaged density at time tn computed in the grid Ml . Table 3 shows that the TENO-5 and 
TENO-7 schemes achieve the theoretical convergence rates, whereas the TENO-3 scheme is slightly suboptimal for the grids 
herein considered.

The numerical solution for the pressure perturbation setting η = 0.01 and η = 10−8 is depicted in Fig. 2. The solution 
is computed using the 1-st order scheme, as well as the TENO-3, TENO-5 and TENO-7 reconstruction with N = 160 cells. 
The reference solution is computed using the TENO-7 scheme with N = 1280 cells. The proposed scheme is able to capture 
the propagation of the gravity waves produced by the initial perturbation with high accuracy. Some numerical diffusion 
smearing the solution is observed for the 3-rd order scheme, specially when choosing η = 0.01. Fig. 3 shows the numerical 
solution for the pressure perturbation with amplitude η = 0.01, provided by the 5-th order WENO-JS and TENO reconstruc-
tions. Both methods render similar results, being the TENO-5 scheme slightly less diffusive. The results in Figs. 2 and 3
are in good agreement with those reported in previous literature [18,31]. In Table 4, the location and amplitude of the left 
and right moving waves, provided by the TENO-7 scheme in a very fine grid, are compared with previous results from the 
literature. Our results are in very good agreement with those by Ghosh and Constantinescu [18] and by Li and Gao [31].
12



A. Navas-Montilla and I. Echeverribar Journal of Computational Physics 489 (2023) 112273
Fig. 4. Case 3. Computed density (top-left), pressure (top-right), vertical velocity (bottom left) and total energy (bottom right) at t = 0.2 using 160 cells.

Fig. 5. Case 3. Computed density at t = 0.2 using 160 cells with a WENO-5 and TENO-5 scheme.

4.3. Case 3. Sod’s shock tube with gravitational forcing

Here we consider a modification of the traditional Sod problem by means of a gravitational force with g = 1, setting as 
background equilibrium state the isothermal equilibrium in Equation (8) with

ρ0 = 1 , p0 = 1 , R = 1 , γ = 1.4 . (64)

Following [18,31,62], the initial condition is given by the following piecewise constant data

(ρ, u, p) =
{

(1,0,1) if z ≤ 0.5
(0.125,0,0.1) if z > 0.5

(65)

inside the domain [0, 1]. The solution is computed at t = 0.2 using the schemes based on the TENO-3, TENO-5 and TENO-7 
reconstruction inside a mesh with 160 cells and a CFL number of 0.4. We also compute a reference solution in a fine mesh 
(1280 cells) using the TENO-7 scheme. The solutions are presented in Fig. 4, showing that all the schemes accurately capture 
the waves arising from the discontinuous initial condition. The numerical results evidence that the proposed schemes are 
able to handle discontinuous solutions such as shocks and contact waves, providing essentially non-oscillatory solutions. 
Only the TENO-7 reconstruction shows small oscillations at the tail of the rarefaction wave (x ≈ 0.45), which could be 
reduced by adjusting the value of CT .

Fig. 5 shows a comparison of the numerical solution provided by the WENO-5 and TENO-5 schemes. The accuracy of 
both methods near discontinuities is similar, being the TENO-5 scheme slightly less diffusive.
13
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Fig. 6. Case 4. Potential temperature perturbation at t = 200 s, setting as initial condition the hydrostatic equilibrium state, computed by the 5-th order 
TENO scheme using the HLLS solver (top) and the original HLL solver (bottom). (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

4.4. Case 4. Inertia-gravity waves

This test case was introduced by Skamarock and Klemp [52] and involves the propagation of inertia-gravity waves in a 
horizontal channel defined in the domain 	 = [0, 300] × [0, 10] km2, with solid walls along the bottom and top boundaries 
and cyclic boundary conditions on the left and right boundaries. The flow is triggered by an initial perturbation over an 
stratified atmosphere in hydrostatic equilibrium with a constant Brunt-Väisälä frequency of N = 0.01 s−1. The equilibrium 
state is given in Equations (10)-(12), where

p0 = 105 Pa , T0 = 300 K , R = 287.058 kJ/kg K , γ = 1.4 , g = 9.8 m/s2 (66)

and a constant horizontal wind of u = 20 m/s. To generate the inertia-gravity waves, we introduce the following perturbation 
for the potential temperature


θ = θc

sin
(

πc z
hc

)
(

1 +
(

x−xc
ac

)2
) (67)

with θc = 0.01 K the amplitude of the perturbation, hc = 10000 m the height of the domain, ac = 5000 m the perturbation 
half-width, xc = 100000 m the center of the perturbation and πc the trigonometric constant [52]. As in [18], we consider a 
resolution of 
x = 250 m and 
z = 200 m. The CFL number is set to 0.49.

To assess the performance of the proposed scheme to preserve this particular equilibrium state involving velocity in 
the horizontal direction, we have computed the solution at t = 200 s setting as initial condition the equilibrium state. 
Fig. 6 shows the perturbation of potential temperature at t = 200 s computed by the 5-th order TENO scheme using the 
HLLS solver and the original HLL solver, which is not well-balanced. We observe that the proposed solver ensures the 
well-balanced property when dealing with non-zero horizontal velocities.

Now, the evolution of the perturbation is computed at t = 3000 s using the WENO, TENO and linear schemes of 3-rd, 
5-th and 7-th order. Fig. 7 shows the solution for the potential temperature perturbation provided by the 7-th order TENO 
scheme. The cross sectional potential temperature perturbation at z = 5000 m is displayed in Fig. 8, showing that all the 
schemes provide similar results with independence of the order of accuracy. The solutions are compared with a reference 
solution of the NUMA code used in [18], showing a good agreement. Small differences are observed at the local extrema, 
due to the numerical viscosity of the HLLS solver. On the other hand, Fig. 9 shows the cross sectional potential temperature 
14
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Fig. 7. Case 4. Potential temperature perturbation at t = 3000 s computed by the 3-rd (top) and 7-th order TENO scheme.

Fig. 8. Case 4. Potential temperature perturbation at t = 3000 s computed by the 3-rd, 5-th and 7-th order TENO scheme, and compared with a reference 
solution from [18].

Fig. 9. Case 4. Potential temperature perturbation at t = 3000 s computed by the 7-th order WENO, TENO and linear schemes, and compared with a 
reference solution from [18].

perturbation computed by the 7-th order WENO, TENO and linear schemes. In this case, the 3 different spatial reconstruction 
methods provide similar results since the solution is very smooth.

4.5. Case 5. 2D rising thermal bubble

Here we consider the 2D rising thermal bubble proposed by Robert [47] with the configuration by Giraldo and Restelli 
[19]. This test case and its derivatives are a standard benchmark for the NWP community [19,23,57,33,38,46,30,60]. It 
involves the ascent of a warm bubble in the form of a perturbation of potential temperature, which produces a vertical 
acceleration. In the beginning of the simulation, the bubble smoothly rises vertically. At later stages, the velocity gradients 
produced by the differences of potential temperature deform the bubble to a mushroom-like cloud with two counter-
15
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Fig. 10. Case 5. Computed potential temperature at t = 700 s using 
x = 5 m cells with a TENO-3 (left), TENO-5 (middle) and TENO-7 scheme (right).

Fig. 11. Case 5. Potential temperature vertical profile at t = 700 s using 
x = 5 m cells computed with the TENO reconstruction.

rotating trailing vortices [18]. The background temperature is 300 K whereas the maximum perturbation inside the bubble 
is 0.5 K. The evolution of such a subtle perturbation for a long simulation time makes the solution be very sensitive to 
the numerical scheme, being strongly affected by numerical diffusion. Therefore, we will use this test case to assess the 
performance of the proposed scheme based on the TENO reconstruction.

For this case, the background equilibrium state is the adiabatic equilibrium in Equation (9) with

p0 = 105 Pa , θ0 = 300 K , R = 287.058 kJ/kg K , γ = 1.4 , g = 9.8 m/s2 (68)

The problem is defined inside the domain [0, 1000] × [0, 1500] m2. To drive the motion, we add a perturbation in the 
potential temperature [19]


θ =
{

0 if r > rc
θc
2

(
1 + cos

(
πr
rc

))
if r ≤ rc

(69)

with θc = 0.5 K, rc = 250 m and

r =
√

(x − xc)2 + (z − zc)2 (70)

where (xc, yc) = (500, 260) m.
The perturbation in (69) is introduced as θ = θ0 +
θ . The initial condition for the pressure and density can be computed 

as follows

p = p0

(
1 − (γ − 1)gz

γ Rθ0

) γ
γ −1

, ρ = p0

Rθ

(
1 − (γ − 1)gz

γ Rθ0

) 1
γ −1

, (71)

with p0, R , g and γ defined in Equation (68).
The solution is computed using the proposed scheme inside a mesh with 
x = 
z = 5 m and a CFL number of 0.49. 

Fig. 10 shows the computed potential temperature at t = 700 s with the 3-rd, 5-th and 7-th order TENO reconstructions. 
Additionally, a vertical profile of the computed potential temperature is presented in Fig. 11 and compared with a reference 
16
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Fig. 12. Case 5. Computed potential temperature at t = 700 s using 
x = 5 m cells with a 7-th order WENO-JS (left), TENO (middle) and linear scheme 
(right).

solution from [19]. From these figures, we observe that the solution is very sensitive to the order of accuracy. The 3-rd 
order scheme is too diffusive and hence not adequate for this problem, whereas the 5-th and 7-th order schemes adequately 
reproduce the mushroom-shaped ascending cloud. Fig. 11 shows that the solution provided by the 7-th order TENO scheme 
is in very good agreement with the reference solution in [19]. It is worth noting that small spurious oscillations appear 
on the upper front of the bubble, although the reconstruction method is essentially non-oscillatory. This evidences the 
complexity of this test case and motivates its use for a deep assessment of the methods. This issue will be further discussed 
later.

To investigate the sensitivity of the solution to the reconstruction scheme, the solution is computed with different meth-
ods, i.e. WENO-JS, TENO and linear reconstructions. Fig. 12 shows the computed potential temperature at t = 700 s provided 
by the WENO-JS, TENO and linear reconstruction. The results evidence that the solution is very sensitive to the reconstruc-
tion scheme. The traditional WENO-JS reconstruction produces a distortion of the bubble, whereas the TENO and linear 
reconstruction provide smoother solutions. We believe that such a distortion is produced by the weighted stencil selection 
featured by the WENO-JS method (original Jiang-Shu weights).

The evolution in time of the solution provided by the TENO-7 reconstruction is presented in Fig. 13, showing the com-
puted potential temperature at different times from t = 0 s to t = 900 s. As reported by other authors [18], the spectral 
properties of the reconstruction method play a key role in the features of the trailing edges of the bubble. To investigate this 
aspect, we have computed the solution at t = 900 with the TENO scheme using different values of CT in Equation (32). This 
parameter represents the threshold for the ENO-based stencil selection and determines the robustness and spectral resolu-
tion of the scheme [14]. Fig. 14 shows the computed potential temperature at t = 900 s using 
x = 5 m cells with a TENO-7 
scheme using CT = 10−5, CT = 10−6, CT = 10−7, CT = 10−8. For CT = 10−5, the shape of the bubble is perturbed, both on 
the top and on the trail edges, and multiple vortical structures are shed around the trailing edges. In relation to this, Savre 
et al. [49] reported that in presence of anisotropic numerical diffusion, the shape of the rising thermal may be deteriorated. 
Decreasing CT , the spectral resolution is increased and the solution converges to that of the linear reconstruction (optimal 
polynomial reconstruction). For CT = 10−7 and CT = 10−8, the solution is virtually equal. A compromise between spectral 
resolution and robustness must be sought when choosing the value of CT .

As pointed out by Andres-Carcasona et al. [2], the perturbation should not go over the initial maximum (i.e. 300.5 K) 
or below the initial minimum (i.e. 300 K) since there is no physical source or sink of energy. However, overshooting of the 
potential temperature has been reported in the literature by multiple authors. Savre et al. [49] pointed out that even when 
using slope limiters and/or artificial viscosity, potential temperature overshoots can appear. Fig. 15 shows the evolution in 
time of the maximum potential temperature in the domain for the TENO reconstruction of order 3, 5 and 7 using CT = 10−6

as well as for the TENO-7 reconstruction using different values of CT . As mentioned before, the TENO-3 reconstruction shows 
an excessive numerical diffusion, damping the solution from the beginning. The TENO-5 reconstruction is less diffusive but 
it still damps the solution after t = 450 s. On the other hand, the TENO-7 reconstruction does not show any attenuation of 
the solution but a slight overshooting above 300.5 K. It is worth noting that a higher value of CT (i.e. a more restrictive 
limitation for the stencil selection in the spatial reconstruction) does not produce a significant reduction of the overshooting 
in this case.

4.6. Case 6. 2D colliding thermals

The colliding thermals test case, recently proposed by Norman [42], involves the collision of two thermal bubbles moving 
in opposite directions, which produce strong gradients of potential temperature. It was designed to evidence the perfor-
mance of the schemes when handling strong winds, strong turbulence and sharp gradients.
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Fig. 13. Case 5. Computed potential temperature at t = {0,500,600,700,800,900} s using 
x = 5 m cells with a TENO-7 reconstruction.

For this case, the background equilibrium state is the adiabatic equilibrium in Equation (9) with

p0 = 105 Pa , θ0 = 300 K , R = 287.058 kJ/kg K , γ = 1.4 , g = 9.8 m/s2 (72)

and with no winds, u = v = w = 0.
The problem is defined inside the domain [0, 20000] × [0, 10000] m2. To drive the motion, we add a perturbation in the 

potential temperature


θ = 20(max(1 − d1,0) + min(d2 − 1,0)); (73)

with

d1 =
√

(x − x1)2 + (z − z1)2

r
, d2 =

√
(x − x2)2 + (z − z2)2

r
, (74)

where r = 2000 m is the radius of the bubbles, (x1, z1) = (10000, 2000) m is the center of the warm bubble and (x2, z2) =
(10000, 8000) m is the center of the cold bubble. The solution is computed with the proposed scheme using a resolution of 

x = 
z = 50 m. Fig. 16 shows the potential temperature computed by the 7-th order TENO scheme at t = 200 s, t = 300 s, 
t = 400 s and t = 700 s. Note that CT = 10−6 is used again. These results are qualitatively similar to those in [42]. A profile 
of the computed potential temperature by the 7-th order WENO-JS, TENO and linear scheme at t = 300 s along the z
direction at x = 10000 m is also displayed in Fig. 17. Note that the TENO scheme and its linear counterpart provide similar 
results, while the WENO-JS scheme is more diffusive. In [42], Norman observed that the linear scheme produces spurious 
oscillations across the discontinuity at z = 5000 m, whereas our results in Fig. 17 do not show such features. The reason 
may be that the HLLS solver introduces higher numerical viscosity than the flux formulation in [42], thus smearing out the 
discontinuity even when no limiter is used (i.e. linear reconstruction). To evidence the eddy-resolving capabilities of the 
proposed scheme, we show in Fig. 18 the computed potential temperature at t = 400 s using the 7-th order TENO scheme 
in a finer mesh (
x = 
z = 10 m). The vortical structures due to the Kelvin-Helmholtz shear instability are reproduced.
18



Fig. 14. Case 5. Computed potential temperature at t = 900 s using 
x = 5 m cells with a TENO-7 scheme using CT = 10−5 (top left), CT = 10−6 (top right), 
CT = 10−7 (bottom left), CT = 10−8 (bottom right).

Fig. 15. Case 5. Maximum potential temperature for the TENO schemes using CT = 10−6 (left) and for the TENO-7 scheme using different values of CT

(right).

4.7. Case 7. 2D strong colliding thermals

This test case is designed to evidence the advantages of non-linear limiting (i.e. WENO and TENO methods) versus a 
linear reconstruction when performing high-order spatial reconstructions. It is similar to Case 6, with the equilibrium given 
by (9) and (72), but stronger gradients of potential temperature are sought by defining the following potential temperature 
perturbation
A. Navas-Montilla and I. Echeverribar Journal of Computational Physics 489 (2023) 112273
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Fig. 16. Case 6. Computed potential temperature by the 7-th order TENO scheme (CT = 10−6) at t = 200 s, t = 300 s, t = 400 s and t = 700 s.

Fig. 17. Case 6. Computed potential temperature along the z direction at t = 300 s and x = 10000 m.

Fig. 18. Case 6. Computed potential temperature at t = 400 s using the 7-th order TENO scheme (CT = 10−6) in a fine mesh.
20
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Fig. 19. Case 7. Computed potential temperature at t = 100 s (left) and t = 280 s (right) using the WENO (top), TENO (CT = 10−6) (middle) and linear 
scheme (bottom).


θ =
⎧⎨⎩ 60 if 1 − d1 > 0

−60 if d2 − 1 < 0
0 otherwise

(75)

with d1 and d2 computed as in (74). Note that the bubbles are defined as discontinuous circular regions with a potential 
temperature perturbation of 60 K.

The solution is computed with the proposed scheme using a resolution of 
x = 
z = 50 m. Fig. 19 shows the potential 
temperature field computed using the 5-th order WENO-JS, TENO and linear reconstructions at t = 100 s and t = 280 s. 
Due to the sharp edges of the bubbles, Kelvin-Helmholtz instabilities are formed along them. The WENO-JS method shows 
a higher numerical diffusion, smearing out the gradients along the boundaries and only capturing the largest eddies. On 
the contrary, TENO and linear reconstructions are able to resolve smaller eddies. At t = 280 s, the solution evolves into a 
fully turbulent field. The numerical results evidence that the TENO and linear reconstructions can capture smaller vortical 
structures than the WENO-JS reconstruction, resolving a larger extent of the energy spectrum.

To motivate the actual importance of the reconstruction scheme in the solution, a cross-sectional representation of the 
potential temperature in the z direction at x = 8925 m and t = 100 s is provided in Fig. 20. We only show the region 
where the fronts collide. Different values of CT have been considered for the TENO reconstruction to assess the robustness 
of the method. The WENO-JS and TENO reconstruction using higher values of CT (i.e. CT = 10−7 and higher) are able to 
capture the sharp interface without spurious oscillations, however, the linear reconstruction and the TENO reconstruction 
with lower values of CT (i.e. CT = 10−8 and lower) exhibit strong spurious oscillations (Gibbs phenomenon). To better 
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Fig. 20. Case 7. Computed potential temperature along the z direction at x = 8925 m.

Table 5
Maximum and minimum potential temperature in the solu-
tion at t = 100 s.

Scheme max (θ) (K) min (θ) (K)

WENO-JS 360.87 239.60
TENO (CT = 10−3) 361.97 237.82
TENO (CT = 10−4) 365.18 237.38
TENO (CT = 10−5) 370.68 233.26
TENO (CT = 10−6) 372.72 233.10
TENO (CT = 10−7) 375.99 232.75
TENO (CT = 10−8) 375.14 231.80
Linear reconstruction 379.83 230.50

examine the overshooting of the potential temperature in the solution, a more suitable indicator is the measure of the 
absolute maximum and minimum potential temperature in the domain [2]. In Table 5 we display the absolute extrema 
of the computed potential temperature at t = 100 s. As expected, only the WENO and TENO reconstruction with a high 
value of CT (i.e. CT = 10−3) virtually damp the spurious oscillations in the whole domain. On the other hand, the linear 
reconstruction exhibits large overshooting. It is clearly evidenced how the choice of CT for the TENO reconstruction allows 
controlling the robustness of the method. Fig. 21 shows the detail of one of the vortices produced by the Kelvin-Helmholtz 
instability, computed at t = 100 s with different values of CT . It is observed that solution provided by the TENO method 
resembles that of the WENO method for a high value of CT and that of the linear reconstruction for a low value of CT . The 
TENO reconstruction is the best choice in this case among the methods examined. It provides the best compromise between 
accuracy and robustness.

4.8. Case 8. 3D colliding thermals

This test case represents the 3D version of Case 6, as proposed by Norman [42]. It is used to show that the proposed 
methods can be extended to 3D problems. The problem is defined inside the domain [0, 20000] × [0, 20000] × [0, 10000]
m3. To drive the motion, we add a perturbation in the potential temperature


θ = 20(max(1 − d1,0) + min(d2 − 1,0)); (76)

with

d1 =
√

(x − x1)2 + (y − y1)2 + (z − z1)2

r
, d2 =

√
(x − x2)2 + (y − y2)2 + (z − z2)2

r
, (77)

where r = 2000 m is the radius of the bubbles, (x1, y1, z1) = (10000, 10000, 2000) m is the center of the warm bubble 
and (x2, y2, z2) = (10000, 10000, 8000) m is the center of the cold bubble. Fig. 22 shows the iso-surfaces of potential 
temperature and the velocity field in half-domain at t = 200 s, computed by the TENO scheme. The numerical model is able 
to adequately capture the dynamics of the bubbles.

5. Conclusions

In this work, we present the methodology to construct a family of very high order well-balanced schemes for the 
computation of the Euler equations with gravitational source term, with application to meso- and micro-scale atmospheric 
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Fig. 21. Case 7. Detail of one of the vortices produced by the Kelvin-Helmholtz instability, computed by the WENO-JS (left-top), TENO (CT = 10−3) (middle-
top), TENO (CT = 10−4) (right-top), TENO (CT = 10−6) (left-bottom), TENO (CT = 10−8) (middle-bottom) and linear reconstruction (right-bottom).

Fig. 22. Case 8. Iso-surfaces of computed potential temperature and velocity field at t = 200 s with the TENO scheme.

flows. The proposed method can be combined with essentially non-oscillatory reconstruction schemes (e.g. WENO and 
TENO), which retain a high order of accuracy in smooth regions and allow computing sharp gradients of the solution 
without spurious oscillations. The keystone of the method is the use of augmented Riemann solvers to preserve the exact 
equilibrium between fluxes and source terms at cell interfaces. In particular, we use the HLLS solver, which is applied 
here for the first time to the Euler equations under gravitation. The numerical results evidence that the proposed approach 
satisfies the well-balanced property with and without horizontal winds, in 1D, 2D and 3D.
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The TENO method has been used as the preferred reconstruction scheme; the WENO and linear reconstructions have also 
been considered for comparison. To the knowledge of the authors, the TENO method has not been applied to NWP before. 
Therefore, a thorough assessment of this method is carried out in this work. As expected, the TENO method provides more 
accurate results at the cost of a higher computational expense. When considering the scenarios involving the propagation 
of inertia and gravity waves (Cases 2, 3 and 4), the improvement in accuracy is subtle and the WENO reconstruction may 
be sufficient. On the other hand, when considering slow convective processes with strong shear, numerical dissipation is 
more visible. In such cases, the TENO reconstruction outperforms the WENO reconstruction, providing a similar accuracy 
than the linear reconstruction in smooth regions with an enhanced robustness (Cases 5, 6, 7 and 8). This improvement is 
clearly observed in presence of turbulence (Case 7), where the WENO reconstruction adds an excessive numerical diffusion, 
damping the small-scale eddies and the linear reconstruction is highly oscillatory. It is worth noting that although the 
WENO and TENO methods are essentially non-oscillatory, there are some situations where an unphysical overshooting of the 
potential temperature has been observed. We have shown that a suitable choice of CT for the TENO reconstruction normally 
allows damping the spurious oscillations. This issue was already reported in previous works for different numerical schemes, 
including the WENO scheme [49], and should be further investigated in the future.

The proposed approach can be combined with other augmented Riemann solvers and reconstruction methods. In the 
future, contact wave-restoring solvers should be considered. Furthermore, the integration in time can be improved using 
higher order or semi-implicit integration methods [17]. Also note that, for the system considered here, it would be possible 
to rewrite the proposed scheme in terms of perturbation variables (i.e. by substracting the hydrostatic state). In this case, 
traditional Riemann solvers could be used and the WENO and TENO reconstructions would be applied similarly.

It must be noted that the proposed schemes enable the simulation of meso- and micro-scale atmospheric flows in 
an implicit LES (iLES) manner, since the numerical diffusion introduced by the spatial reconstruction and the Riemann 
solver may play the role of a sub-grid model accounting for the physical dissipation in the unresolved motion [48,65]. The 
evaluation of the spectral properties of the methods (i.e. combination of Riemann solver and reconstruction scheme) for the 
resolution of under-resolved turbulent flows should be examined in the future to determine the capabilities of the methods 
for iLES and cloud resolving purposes. There are previous studies assessing the spectral properties of WENO and TENO 
methods in combination with different Riemann solvers which can serve as a guideline [26,53,54].
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