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A B S T R A C T

Mutualistic networks, such as plant–pollinator networks, have attracted increasing attention in the ecological
literature in the last decades, not only because of their fascinating natural history, but also because mutualistic
interactions have been shown to play a key role in the maintenance of biodiversity. Although inter-specific
competition has long been known to be a crucial driver of species coexistence as well, there is a lack
of theory investigating the interplay between the structures of competitive and mutualistic networks when
jointly considered. Here, we develop an analytical framework to study the structural stability — the range
of conditions under which all species coexist stably, i.e. where the community is both feasible and stable
— of ecological communities in which both mutualistic interactions between plants and pollinators and
competitive interactions among plants and among pollinators are present. Using the structure of 50 real
networks for mutualistic interactions, combined with analytical and numerical analyses, we show that the
structure of the competitive network radically alters the necessary conditions for species coexistence in these
communities. Our mathematical framework also allows to accurately characterize the structural stability of
these systems. Moreover, we introduce a new metric that accurately links the network structures of competitive
and mutualistic interactions to species coexistence. Our results highlight the joint role of the structures of
different interaction types to understand the stability of ecological communities and facilitate the analysis of
similar natural and artificial systems in which mutualism and competition coexist.
Species rarely live in isolation, but constantly interact with other
species with different interaction types, such as predation, competition
and mutualism [1]. Mutualism, in which different species interact
for their mutual benefit, is ubiquitous in terrestrial ecosystems [2].
Examples include, but are not limited to, plants receiving effective polli-
nation or seed-dispersion by offering rewards in the form of nutrients to
their visiting animals, plants gaining resistance to insect herbivores by
providing nutrients and shelter to fungi or ants, and leguminous plants
obtaining nitrogen by rewarding nitrogen-fixing bacteria.

Inter-specific competition, where species within the same guild com-
pete for shared mutualistic partners, is one of the identified costs when
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progressing from two species mutualism to species-rich mutualism [3].
This has been reported in field experiments of mutualistic systems
of plant and pollinators by Charles Robertson as early as 1895 and
was then followed by extensive studies on mutualism e.g. between
ants and plants, and between parrots and plants [3–10]. Interspecific
competition can limit the biodiversity of plant–pollinator communi-
ties by, for example, changing foraging behaviors of pollinators to
pollen- or nectar-rich species, while reducing or avoiding the visitation
of less-rewarding plants [11–20], and thereby causing an immediate
rearrangement of mutualistic interactions [3,21,21,22,22–27].
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Decades of studies on ecological networks have shown that they
have a specific architecture, which plays a key role for their dynamics
and stability (e.g. [28–34]). Mutualistic networks — such as plant–
pollinator networks for example — have been shown to be highly
nested, which has been suggested to contribute to the maintenance
of species diversity [30,31]. While competitive interactions have long
been considered an important component of mutualistic networks [35–
38], they have typically been modeled as an all-to-all connectivity
pattern; that is, in a plant–pollinator scenario, all pollinators are con-
sidered to compete equally for plants, and all plants are assumed to
compete for pollinators regardless of the heterogeneous organization
of the mutualistic interactions [36,39]. Competitive interactions in
mutualistic networks have also been analyzed using random matrices
without considering empirical structures [37,40]. So far, we have how-
ever lacked studies explicitly investigating how the joint structure of
competitive and mutualistic interactions affects species coexistence.

Studies on random matrices including mixed mutualistic and com-
petitive interactions [37,40] showed opposite stability patterns as those
reported in a study of the microbiome network of the human gut, which
tunes the proportion of competitive interactions [41]. Furthermore, in
networks including both competition and mutualism, each interaction
type could play a different role in keeping the system feasible or
stable [39,42–45]. These studies suggest that investigating the role of
the structure of competitive interactions within mutualistic networks
could advance our understanding of the factors that drive the number
of species that can stably coexist in communities, one of the oldest
questions in ecology [40].

Here, we theoretically investigate the effect of different structures
of competitive interactions among plants and among pollinators on
the structural stability, i.e. the set of conditions (parameters) under
which all species are feasible (i.e., have a positive abundance) and
are stable to local perturbations, of ecological communities including
competitive and mutualistic interactions. Using 50 real networks for the
structure of the mutualistic interactions, we develop a framework that
accurately predicts the boundary conditions beyond which the commu-
nities lose their structural stability. Furthermore, we find that different
competitive network structures yield significantly different patterns of
structural stability, whose effect can be accurately quantified through a
proposed structure predictor. We show that the structure of competitive
interactions does have strong implications for the species diversity of
ecological communities including both competition and mutualism.

1. Population dynamics of competitive-mutualistic networks

To study the impact of inter-specific competition on communities
persistence, we begin by describing a model of the dynamics of plant
and pollinator species. We consider a plant–pollinator system consisting
of a set  of 𝑁𝐴 pollinator species that interact mutualistically with
a set  of 𝑁𝑃 plant species, denoting the total biodiversity by 𝑁 =
𝑁𝑃 + 𝑁𝐴. Mutualistic interactions are fully encoded in a 𝑁𝑃 × 𝑁𝐴

ipartite matrix 𝐾, where 𝐾𝑖𝑗 = 1 if plant species 𝑖 is pollinated by
pollinator species 𝑗, and 0 otherwise. Each plant (resp. animal) species
is characterized by the abundance 𝑠𝑃𝑖 (resp. 𝑠𝐴𝑖 ), whose dynamics
epend on the intrinsic growth rate 𝛼𝑃𝑖 (resp. 𝛼𝐴𝑖 ) and on the influence
f competitive and mutualistic interactions as follows:

⎧

⎪

⎨

⎪

⎩

1
𝑠𝑃𝑖

𝑑𝑠𝑃𝑖
𝑑𝑡 = 𝛼𝑃𝑖 − 𝛽𝑠𝑃𝑖 − 𝛽0

∑𝑁𝑃

𝑘=1 𝑠
𝑃
𝑘 +

𝛾0𝑀𝑃
𝑖

1+ℎ𝛾0𝑀𝑃
𝑖
,

1
𝑠𝐴𝑗

𝑑𝑠𝐴𝑗
𝑑𝑡 = 𝛼𝐴𝑗 − 𝛽𝑠𝐴𝑗 − 𝛽0

∑𝑁𝐴

𝑘=1
𝑊 𝐴

𝑗𝑘
𝑀𝐴

𝑗
𝑠𝐴𝑘 +

𝛾0𝑀𝐴
𝑗

1+ℎ𝛾0𝑀𝐴
𝑗
,

(1)

here plant species 𝑖 = 1,… , 𝑁𝑃 and pollinator species 𝑗 = 1,… , 𝑁𝐴.
he first term at the right-hand side of the above equations corresponds
o the per capita intrinsic growth rate of each species; the second
nd fourth correspond to the intra-species competition and mutualistic
nteractions, respectively with 𝛽 the intensity of intra-specific com-
etition. The intensities of inter-specific competition and mutualism
2

re denoted by 𝛽0 and 𝛾0, respectively. For plant species 𝑖, 𝑀𝑃
𝑖 =

∑

𝑘∈ 𝐾𝑖𝑘𝑠𝐴𝑘 is the total abundance of pollinators interacting with plant
. The parameter ℎ, known as the handling time, imposes a nonlinear
aturation effect on mutualism.

What distinguishes the dynamics of plant and pollinator species is
he definition of the third term, which accounts for the intra-guild
nter-specific competition. For plant species, we assume that a mean
ield competition occurs among all of them with the same strength,
rrespective of the mutualistic links each of them has with pollinators.
or pollinator species, however, competitive links exist only among
ollinator species who share a common plant species, and those in-
eractions are weighted by the relative proportion of the shared plant
pecies [see Fig. 1(c) and Supplementary Fig. S1]. The weight on each
ompetitive link is a collective representation of pollinator individuals
ompeting with each other when they physically land on the exact
ame plant individual that they both pollinate. Specifically, the weight
s set via 𝑊 𝐴

𝑗𝑘∕𝑀
𝐴
𝑗 , where 𝑊 𝐴

𝑗𝑘 =
∑

𝑝∈ 𝐾𝑇
𝑗𝑝𝐾𝑝𝑘𝑠𝑃𝑝 represents the total

plant abundance shared by pollinators 𝑗 and 𝑘, and 𝑀𝐴
𝑗 =

∑

𝑝∈ 𝐾𝑇
𝑗𝑝𝑠

𝑃
𝑝

epresents the total plant abundance interacting with pollinator 𝑗.
Detailed derivation is provided in the Supplementary Section 1. Notice
that inter-specific competition among pollinators in Eq. (1) is asym-
metric, since the biomass of shared plant species is normalized by the
total biomass of plant species. In other words, two pollinator species 𝑖
and 𝑗 perceive each other’s competition differently depending on the
importance of their shared plants relative to the total abundance of
plants with which each pollinator species interact.

Due to the varied competition patterns of pollinator species, we
refer to the species dynamics described in Eq. (1) as the hybrid compe-
tition model. The full mean field competition model refers to the scenario
in which both plant and pollinator species have a mean field intra-
guild competition. The hybrid model is further mapped onto a weighted
model numerically explored by Gracia-Lázaro et al. [46], where the
plant species also have a weighted competition. In the next section, we
present an analytical framework for fixed point solutions of Eq. (1) and
analyze the impact of intra-guild competition on species coexistence for
networks where the mutualistic structure is based on 50 observed real
networks.

2. Structural stability conditions

Our goal here is to present an analytical framework for the struc-
tural stability of the nonlinear population dynamics described by
Eq. (1). Because of the strong dependence of species coexistence on the
specific parameterization, we investigate a range of parameter values
in the space spanned by 𝛽0 and 𝛾0. To investigate the coexistence
of structured competition and mutualism, we focus on the parameter
space 𝛽0 and 𝛾0 relevant to species interactions, that is different from
revious methods focusing on species intrinsic grow rate [39,47].
ereafter, we define the ‘‘feasible area’’ as the range of conditions in

he (𝛽0, 𝛾0)-plane under which the community is structurally stable, that
s, an equilibrium point exists that is both feasible and stable. We first
erive conditions for a positive equilibrium point, and then further
estrict the conditions with local stability.

.1. Feasibility analysis for the hybrid competition model

The population dynamics of Eq. (1) can be formulated in matrix
orm to consider all plant and pollinator species: if linear approxima-
ions of the nonlinear mutualistic and competitive terms can be derived
see (2), where 𝐴𝑃 ,𝐴 encodes the linearly approximated intra-guild
nter-specific competitions, while 𝑀𝑃 ,𝐴 encodes the approximated mu-
ualistic interactions. The vectors 𝑠𝑃 ,𝐴 contain the abundances of plant
nd pollinator species, respectively.)
[

𝑑𝑠𝐴

𝑑𝑡
𝑑𝑠𝐴

]

= diag
([

𝑠𝑃

𝑠𝐴

])

(

[

𝛼𝑃eff
𝛼𝐴

]

−

[

𝛽𝐼 + 𝛽0𝐴𝑃 −𝛾0𝑀𝑃

−𝛾 𝑀𝐴 𝛽𝐼 + 𝛽 𝐴𝐴

]

[

𝑠𝑃

𝑠𝐴

]

)

, (2)

𝑑𝑡 eff 0 0
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Fig. 1. Inter-specific competition among plant species and among pollinator species. Panel (a) shows a minimal mutualistic network that distinguishes the (b) full mean-field
competition, and the (d) hybrid competition scenarios. For the full mean-field competition scenario, competitive interactions are represented by a complete, unweighted graph
implying an all to all competition with the same magnitude. For the hybrid competition scenario, intra-guild competition for plant species is represented by a complete, unweighted
graph, while for pollinator species the competition is shown by a weighted, structured graph with weights 𝑤𝑖𝑗 representing the strength of inter-specific competition. The weight
is derived from an individual level mechanism in panel (c), that considers the probability of two pollinator species landing on the same plant species, see also the Supplementary
ection 1.
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We start with deriving the intra-guild inter-specific competition
atrices 𝐴𝑃 ,𝐴. For the hybrid competition model, plant species compete

n a mean field fashion and the competition matrix follows 𝐴𝑃 = 𝑢𝑢𝑇−𝐼 ,
here 𝑢 is a column vector with all elements 1 and 𝐼 is the identity
atrix. So all entries of 𝐴𝑃 are 1, except for the diagonal which is zero.

or pollinator species, the inter-specific competition is weighted, and
as a nonlinear dependence on the number of species from the other
uild. To tackle the nonlinearity and derive the competition matrix
𝐴, we harness the microscopic perspective of competition among
ollinators induced by each plant–pollinator mutualistic interaction.
hen animal 𝑖 pollinates plant 𝑘 (i.e., 𝐾𝑇

𝑖𝑘 = 1), the inter-specific
ompetition between pollinator 𝑖 and the other pollinators 𝑗 that also
isit plant 𝑘 reads ∑

𝑗∈ 𝐾𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘𝑠

𝐴
𝑗 . Summing over plants 𝑘 that are

ollinated by animal 𝑖 and multiplying by the abundance 𝑠𝑃𝑘 yields
he total amount of inter-specific competition ∑

𝑘

(

∑

𝑗∈ 𝐾𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘𝑠

𝐴
𝑗

)

𝑠𝑃𝑘 .
rmed with the perspective of a single mutualistic interaction, the
onlinear competition term in Eq. (1) can be rewritten as

∑

𝑗∈,𝑗≠𝑖

𝑊 𝐴
𝑖𝑗

𝑀𝐴
𝑖
𝑠𝐴𝑗 =

∑

𝑘

(

∑

𝑗∈,𝑗≠𝑖 𝐾
𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘𝑠

𝐴
𝑗

)

𝑠𝑃𝑘
∑

𝑘 𝐾
𝑇
𝑖𝑘𝑠

𝑃
𝑘

. (3)

he weighted competition term can be upper and lower bounded by
pplying the mediant inequality (see Appendix A):

min
𝑘∈

∑

𝑗∈
𝑗≠𝑖

𝐾𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘𝑠

𝐴
𝑗 ≤

∑

𝑗∈
𝑗≠𝑖

𝑊 𝐴
𝑖𝑗 𝑠

𝐴
𝑗

𝑀𝐴
𝑖

≤ max
𝑘∈

∑

𝑗∈
𝑗≠𝑖

𝐾𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘𝑠

𝐴
𝑗 . (4)

Eq. (4) means that the total amount of competition for pollinator 𝑖
s bounded by the minimum and maximum competition induced by
haring a single plant species 𝑘. Most importantly, Eq. (4) allows
isentangling the dependence of pollinator 𝑖 on plants species and thus

enables the embedding of competitive relationships into a competition
𝐴

3

matrix 𝐴 . The total competitive relations in Eq. (4) can be upper and
lower bounded, for pollinator species 𝑖, by

min
𝑘

𝐾𝑇
𝑖𝑘
(

𝑑𝑃𝑘 − 1
)

≤
∑

𝑗
𝐴𝐴
𝑖𝑗 ≤ max

𝑘
𝐾𝑇

𝑖𝑘
(

𝑑𝑃𝑘 − 1
)

, (5)

where 𝑑𝑃𝑘 =
∑

𝑗∈ 𝐾𝑇
𝑗𝑘. Finally, due to the fact that max𝑘 𝐾𝑇

𝑖𝑘
(

𝑑𝑃𝑘 − 1
)

≤
𝑃 −1, (5) indicates that the competition strength of the hybrid model

s no stronger than that of the full mean field competition model.
After establishing the bounds for the competition matrix, we now

ove to derive each element 𝐴𝐴
𝑖𝑗 for the competition between polli-

ators 𝑖 and 𝑗. Here, because the weighted competition for pollinator
pecies involves plant species, we need to estimate first the abundance
f plants, which in turn depends on pollinators. Through the matrix
ransformation derived in Eq. (A.4) in Appendix A, we disentangle
lant and pollinator species, which allows us to estimate the abundance
f plant species. Based on the estimated abundance 𝑠𝑘𝑃

(

𝛽0, 𝛾0
)

(see
q. (A.5), the weighted competition for pollinator species 𝑖 and 𝑗 is
herefore estimated by

𝐴
𝑖𝑗 =

∑

𝑘∈𝑃 𝐾𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘𝑠𝑘

𝑃 (

𝛽0, 𝛾0
)

∑

𝑘∈𝑃 𝐾𝑇
𝑖𝑘𝑠𝑘

𝑃 (

𝛽0, 𝛾0
) . (6)

Eq. (6) can be simplified as 𝐴𝐴
𝑖𝑗 =

∑

𝑘 𝐾
𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘

𝑑𝐴𝑖
if assuming homo-

geneous abundance for plant species. Note that summing up all the
competitive pollinators, i.e., ∑𝑗 𝐴

𝐴
𝑖𝑗 =

∑

𝑘 𝐾
𝑇
𝑖𝑘
(

𝑑𝑃𝑘 − 1
)

∕𝑑𝐴𝑖 , corresponds
to the average competitive degree per mutualistic interaction, in align-
ment with the lower and upper bounds of the competitive degree
derived in Eq. (5). When assuming a mean field competition for both
plant and pollinators species (i.e., when the inter-specific competition
term of both plant and pollinators is given by 𝛽0

∑𝑁𝑃 ,𝐴

𝑗=1 𝑠𝑃 ,𝐴𝑗 ), each
element of the competitive matrix 𝐴𝑃 ,𝐴

𝑖𝑗 equals 1 for any 𝑖 ≠ 𝑗, 𝑖 ∈ 
or 𝑖 ∈ .

We then move to the mutualism and aim at deriving the matrices
𝑀𝑃 ,𝐴. To approximate the nonlinear mutualism, we perform a Taylor
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Fig. 2. Inter-specific competition drives the pattern of feasible area. Panels (a), (c) show the feasible area of the full mean field competition scenario for real world
plant–pollinator networks (MPL016, MPL048) from the Web of Life platform [48]. Panels (b), (d) show the feasible area of the hybrid competition scenario. A point (𝛽0 , 𝛾0) is
colored in light green if all species survive with a positive abundance in the stationary regime of the simulations of Eq. (1) for that parameter choice. Solid lines show the analytical
predictions of Eq. (8), where 𝐴𝑃 = 𝐴𝐴 = 𝑢𝑢𝑇 − 𝐼 for the full mean field competition scenario, and 𝐴𝑃 = 𝑢𝑢𝑇 − 𝐼 and 𝐴𝐴 given by Eq. (6) for the hybrid competition scenario. Other
parameters in simulating the population dynamics are 𝛼𝑖 = 1 ∀𝑖, 𝛽 = 5, and ℎ = 0. The grid size in the parameter space of 𝛽0 and 𝛾0 is 100 × 100.
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expansion for the mutualistic term in Eq. (1), that is:
(

𝑀0
)

𝑖

1 + ℎ𝛾0
(

𝑀0
)

𝑖

+
(

𝑀𝑖
1 + ℎ𝛾0𝑀𝑖

)′
|

|

|

|

|𝑀𝑖=(𝑀0)𝑖
(𝑀𝑖 −

(

𝑀0
)

𝑖). (7)

Recall that 𝑀𝑃
𝑖 =

∑

𝑘 𝐾𝑖𝑘𝑠𝐴𝑘 , encoding the total abundance of pollinators
or plant 𝑖. Expanding the mutualistic term around a point (𝑀0)𝑖 close

to a fixed point is a difficult task without a prior knowledge of the
fixed points of the system, thus the linearization of the dynamics
appears to be challenging or even unfeasible. We tackle this problem
by analyzing the interplay between the mutualistic interactions and
the inter-specific competition, which separately lead to abundance gain
and abundance loss at equilibrium. When the mutualistic strength is
equal to the competition strength, the species abundance on average
follows ⟨𝑠𝑖⟩ = 𝛼𝑖

𝛽𝑖
. Assuming the average abundance ⟨𝑠𝐴𝑘 ⟩ = ⟨𝑠𝑖⟩ for

all the animal species pollinating plant 𝑖, we linearize the nonlinear
population dynamics at

(

𝑀𝑃
0
)

𝑖 = 𝑑𝑃𝑖 ⟨𝑠𝑖⟩ for each plant 𝑖, where 𝑑𝑃𝑖 =
∑

𝑘 𝐾𝑖𝑘 denoting the number of animals pollinating plant 𝑖. The fixed
point for animal species 𝑀𝐴

0 is approximated similarly. The mutualism
approximation in Eq. (7) is further bounded by both intra-guild and
inter-guild competition, which suppresses the unbounded growth, also
known as ‘‘an orgy of mutual benefaction’’ [35] and contributes to
stabilize the system.

Combining the competition approximation in Eq. (6) with the mu-
tualism approximation in Eq. (7), the feasible solution for the hybrid
competition model is obtained by solving 𝑑𝑠∕𝑑𝑡 = 0. Written in a matrix
form, a fixed point equilibrium can thus be obtained by solving the
linear equation
[

𝛼𝑃eff
𝛼𝐴eff

]

−

[

𝛽𝐼 + 𝛽0𝐴𝑃 −𝛾0𝑀𝑃

𝛾0𝑀𝐴 𝛽𝐼 + 𝛽0𝐴𝐴

]

[

𝑠𝑃

𝑠𝐴

]

= 0, (8)

where 𝑀𝑃 = −diag
⎛

⎜

⎜

⎝

1
(

1+ℎ𝛾0
(

𝑀𝑃
0

)

𝑖

)2

⎞

⎟

⎟

⎠

𝐾, 𝑀𝐴 = −diag
⎛

⎜

⎜

⎝

1
(

1+ℎ𝛾0
(

𝑀𝐴
0

)

𝑖

)2

⎞

⎟

⎟

⎠

𝐾𝑇

nd the vector 𝛼𝑃 ,𝐴 = 𝛼𝑃 ,𝐴 + ℎ
(

𝛾0𝑀
𝑃 ,𝐴
0

𝑃 ,𝐴

)2
. Eq. (8) provides an
4

eff 1+ℎ𝛾0𝑀0
approximate solution for the abundances of real-world mutualistic
networks with non-mean field competition.

2.2. Stability analysis of feasible solutions

To ensure that any feasible state is stable, we study their stability
by analyzing perturbations around the feasible solution. Let us denote
the feasible solution for plant and pollinator species as (𝑠∗)𝑃 ,𝐴. Pertur-
bations around the fixed point (𝑠∗)𝑃 ,𝐴 are governed by the Jacobian
matrix, which can be derived as

𝐽 = diag
([

(𝑠∗)𝑃

(𝑠∗)𝐴

])

[

−𝛽𝐼 − 𝛽0𝐴𝑃 𝛾0𝑀𝑃

𝛾0𝑀𝐴 −𝛽𝐼 − 𝛽0𝐴𝐴

]

. (9)

or fixed point solutions that are positive, i.e., 𝑠∗𝑖 > 0 for all species
, any feasible solution of the system is stable if all the eigenvalues
f the second matrix on the right-hand side have negative real parts.
uch a configuration is also called a 𝐷-stable state. The stability con-
itions (negative real parts of the eigenvalues) are translated into the
nequality

0 ≤ max

(

𝛽 − 𝛽0
∑

𝑗 𝐴𝑖𝑗
∑

𝑘 𝑀𝑖𝑘

)

. (10)

Until now we have established the approximations for fixed point
solutions and conditions for solutions to be stable. In order to theoreti-
cally estimate the feasible area, one needs to solve Eq. (8) for different
parameters seeking solutions satisfying 𝑠𝑃 ,𝐴𝑖 > 0 as well as satisfying
negative eigenvalues of the Jacobian matrix. Eq. (8), together with the
stability conditions of (9), is applicable to any real and positive value of
ℎ, thus enabling the investigation of various mutualistic regimes. The
above Eq. (8) is also directly applicable to solve the weighted system
in [46].

To evaluate the performance of analytical results, we compare with
numerical simulations on real mutualistic networks. Fig. 2 shows the
performance of analytical predictions provided by Eq. (8) with direct
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Fig. 3. Thresholds of feasible area and their dependence on network structures. Panel (a) shows the dependence of the threshold 𝛽𝑐 (which is the critical competition strength
before losing any species when setting 𝛾0 = 0) on the competitive network structure for the hybrid competition scenario. Circle symbols show the threshold 𝛽𝑐 from the numerical
results performed on 50 real-world mutualistic networks. The curved line shows the threshold 𝛽𝑐 from the analytical prediction of (11). For a mean field competition, the threshold
𝛽𝑐 is a constant (shown by the squares), which equals to the intra-specific competition 𝛽. Panel (b) shows that the threshold 𝛾𝑐 is characterized by the largest singular value of
the bipartite network representing all the mutualistic interactions. In the hybrid scenario, the threshold 𝛽𝑐 shows a strong dependence on network structure, in contrast, the full
mean field scenario shows a threshold that is entirely detached from network structure.
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simulations of the dynamical system in Eq. (1) over the parameter space
spanned by competition and mutualism strengths, 𝛽0 and 𝛾0, respec-
tively. For the hybrid competition scenario, the analytical prediction is
well confirmed by numerical simulations on real mutualistic networks
(Fig. 2b,d). Under mean field competition for plant and pollinator
species (i.e., full mean field competition scenario), the feasible area is
also well predicted for two real mutualistic networks. In the Supple-
mentary Fig. S2–S5, we show that the approximate solution of Eq. (8)
is successful in predicting the feasible area for several real networks in
both the full mean-field and hybrid competition scenarios.

Besides checking the validity of our calculations, Fig. 2 also allows
us to highlight the marked differences in the dynamics yielded by
different competition models. Notice, in particular, how strongly the
shape of the feasible area changes from the full mean field to the
hybrid weighted competition case: the mere inclusion of heterogeneity
in the competition term shifts the region of occurrence of feasible
states from strong competition (full mean field) to weak competition
(hybrid) with a clear cut-off that is shown later in Eq. (11) to depend on
competitive structure. Another noteworthy difference is that full mean
field allows decreased mutualism strength with increased competition,
while the hybrid allows a nonlinear behavior of mutualistic strength
with competition. These results clearly demonstrate how crucial the
structure of the inter-specific competition network is for the species
coexistence and the diversity of ecological communities.

3. Understanding the network drivers of the structural stability

We now try to understand the network properties that explain the
size of the feasible area. We first note that the shape of the feasible area
(Fig. 2) is such that, in the hybrid model, there is typically a threshold
value of 𝛽0 and 𝛾0 above which the system is not feasible. Those
thresholds are further connected via borderlines that eventually form
the feasible area. It turns out that we can derive the expressions of these
threshold values and the straight lines connecting them, which can then
be used to formulate an approximation of the size of the feasible area
— these derived expressions highlight the network properties that drive
the feasible area, as we explain next.

We start with a purely competitive system by turning off mutualism
(𝛾0 = 0). We then derive the threshold of competition 𝛽𝑐 that corre-
sponds to the maximum competition strength that allows a positive
equilibrium solution for all species. The threshold 𝛽𝑐 can be estimated
by the maximum singular value of the competition matrix 𝐴𝐴 as

𝛽𝑐 ≈
𝛽

𝑐𝜎1
(

𝐴𝐴
) , (11)

where 𝑐 = 𝜖𝑥𝑇1 𝛼 − 𝑥𝑇1 𝑦1, and 𝜖 = max𝑖
(

𝑦1
)

𝑖 ∕𝛼𝑖, which quantifies the
istance of angles between 𝑥1 and 𝛼 and between left and right singular
ectors 𝑥 , 𝑦 belonging to 𝜎 . A simplified estimation can be obtained
5

1 1 1
y the maximum competitive degree, 𝛽𝑐 ≥ 𝛽
max 𝑑𝐴 , where 𝑑𝐴 is the

degree vector which corresponds to the row sum vector of the compe-
tition matrix 𝐴𝐴. The detailed derivation for the threshold 𝛽𝑐 for both
lant and pollinator species is provided in Appendix B. In comparison
ith the full mean competition model, the hybrid competition model
xhibits that the threshold value 𝛽𝑐 depends on the largest singular
alue of the competitive matrix.

We next move to a mutualistic system in which the intra-guild com-
etition is turned off (𝛽0 = 0). We derive the threshold of mutualistic

strength 𝛾𝑐 , above which the pure mutualistic system is not feasible.
The threshold 𝛾𝑐 before losing species can be approximated as

𝛾𝑐 ≤
𝛽

𝜎1 (𝐾)
, (12)

where 𝜎1 (𝐾) is the largest singular value of the bipartite matrix 𝐾
encoding the mutualistic interactions between plants and pollinators.
Detailed derivation is shown in Appendix B. Eq. (12) means that this
threshold depends on the largest singular value of the plant–pollinator
matrix. The performance of the analytical expressions for the thresholds
𝛽𝑐 and 𝛾𝑐 is compared to the numerical thresholds that are obtained on
0 real-world mutualistic networks, see Fig. 3. Numerical and analyti-
al results on real networks confirm the dependence of the thresholds
n the network properties (Fig. 3).

These two threshold values can now be used to estimate the size
f the feasible area if we have an idea of the slope of the line that
orms the border of that region. As the feasible area is simultaneously
ubjected to feasible and stable conditions, we evaluate the structural
roperties that are relevant to the stability conditions exclusively for
easible equilibrium solutions. The stability condition is translated into
tability lines in the parameter space of 𝛽0 and 𝛾0, as described in
q. (10). We then calculate the area formed by the thresholds and sta-
ility lines. The details of the derivation are presented in Appendix B.
his approach leads us to formulate a network predictor for the hybrid
ompetition, denoted as 𝜂:

Hybrid =

{

𝛽𝑐
(

2𝛾𝑐 − 𝑟𝛽𝑐
)

if 𝛾𝑐 ≥ 𝑟𝛽𝑐 ,
𝛾𝑐

(

2𝛽𝑐 − 𝛾𝑐∕𝑟
)

if 𝛾𝑐 < 𝑟𝛽𝑐 ,
(13)

here 𝑟 = max𝑖

(
∑

𝑗 𝐴
𝐴
𝑖𝑗

∑

𝑘 𝑀𝑖𝑘

)

denotes the ratio between degrees in the

competition matrix 𝐴𝐴 and the mutualistic matrix 𝑀 (which is reduced
to the bipartite matrix 𝐾 for the case of ℎ = 0). The metric 𝜂Hybrid
correlates surprisingly well with the size of the feasible area, see Fig. 4.
Importantly, it depends only on thresholds 𝛽𝑐 , 𝛾𝑐 and on the ratio
of degrees in the competitive and mutualistic networks. This metric,
which naturally emerges from our calculations, suggests that these
three properties are the main predictors of the size of the feasible area,
namely the species degree in the competitive interactions, the largest
singular value of the plant–pollinator network, and the ratio of degrees.
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Fig. 4. Feasible area driven by mutualistic and competitive network properties. Panel (a) shows, for the hybrid competition scenario, the feasible area of 50 real networks
and its relation with the derived network predictor 𝜂 (Eq. (13)). Panel (b) shows the association between feasible area and the derived 𝜂 (Supplementary Eq. S7) for the full mean
field competition scenario. Each circle represents an observed mutualistic network. Solid lines represent regression fits with 𝑅2 = 0.96 for the hybrid competition scenario and

2 = 0.87 for the full mean field competition scenario.
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We now go one step further and verify if 𝜂 is a better predictor of the
ize of the feasible area than other classical metrics of network struc-
ure. We select ten of those (see Supplementary Tab. S1 for the metric
efinitions and calculations) in order to access the impact of both the
ompetitive and mutualistic structure of the corresponding networks.
or the competitive network structure, we consider the competition
egree and the competition connectance, while for the mutualistic
etwork structure, we consider the mutualistic degree, the mutualistic
onnectance, the singular values and the nestedness [49]. In addition,
e include the ratio between degrees of competition and mutualism,
nd the total degree of competitive and mutualistic interactions to
ccount for the interplay between competition and mutualism. Using
ultivariate linear regression for significant predictors, which are iden-

ified via dredge [50] from the above ten predictors, the statistical
nalysis (see Supplementary Figs. S7–S8) suggests that our network
redictor 𝜂 is by far the best predictor of the feasible area for the hybrid
ompetition model.

. Conclusions

We investigated the extent to which the incorporation of inter-
pecific intra-guild competition alters the maintenance of biodiversity
n mutualistic networks whose structure is based on real data. Com-
ared to a scenario where all species from a guild homogeneously
ompete with each other, as commonly assumed in the theoretical
iterature, heterogeneous competition leads to markedly different pat-
erns for the stable coexistence of plant–pollinator networks. Without
ufficient empirical data about inter-specific intra-guild competition in
lant–pollinator communities, deriving the structure of the competitive
inks from the observed mutualistic interactions enables us to theo-
etically explore how the structure of different competition networks
ffects the structural stability of mutualistic communities.

Our results show that previously identified implications based on
omogeneous competition cannot be readily generalized to heteroge-
eous and structured competition. In particular, we identify here a
etwork predictor of structural stability, which reflects the properties of
oth the mutualistic and the competitive network, and which performs
uch better than other properties of mutualistic networks such as
estedness [49]. Therefore, getting information on the structure of com-
etitive networks in mutualistic systems could provide key elements to
etter understand the forces that constrain the assembly of mutualistic
ommunities during the dynamical coevolutionary processes [51].

More generally, our results contribute to the growing literature
nvestigating how integrating the diversity of interaction types into
cological theory can contribute to improving our understanding of
he dynamics and stability of ecological communities [52]. Our re-
ults could also have implications for the analysis of similar natural
nd artificial systems, with economic networks as one of the closest
6

xamples.
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ppendix A. Analytical prediction for the hybrid competition sce-
ario

To accurately predict the population dynamics of the hybrid compe-
ition scenario, we approximate the weighted competition and derive
he intra-guild competition matrix for plant and pollinator species. In
he hybrid competition model of Eq. (1), any pair of plants competes
qually, while the competition between two pollinators is assumed
o exist if they share plants, and the strength of that competition is
roportional to the relative abundance of shared plants. The weighted
ompetition for pollinator species is typically nonlinear due to the
ependence on plant species abundances.

To embed the competition relationship in a matrix, the nonlinear
eighted competition for pollinators has to be linearly approximated.
et 𝐴𝐴

𝑖𝑗 denote the weighted competition between pollinator species 𝑖
and 𝑗. If pollinator 𝑖 shares all its plant species with pollinator 𝑗, the

eighted term is reduced to a uniformly weighted matrix

𝐴
𝑖𝑗 =

{

1 if ∑

𝑘 𝐾
𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘 =

∑

𝑘 𝐾
𝑇
𝑖𝑘 (A.1)
0 otherwise
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In other words, 𝐴𝐴
𝑖𝑗 = 1 if pollinator species 𝑖 shares all of its mutualistic

interactions with species 𝑗, and 0 otherwise. Alternatively, when all
lants interacting with pollinator 𝑖 have uniform abundance values, the
eighted competition can be simplified as

𝐴
𝑖𝑗 =

𝑑𝐴𝑖𝑗
𝑑𝐴𝑖

, (A.2)

which is the proportion of the shared degree 𝑑𝐴𝑖𝑗 =
∑

𝑘 𝐾
𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘 to the

mutualistic degree 𝑑𝐴𝑖 of a pollinator 𝑖. However, for the observed real-
world mutualistic interactions, different plant species typically interact
with a distinct set of pollinator species, most likely to cause variations
in plant abundance and affect the accuracy of Eq. (A.2).

To obtain the abundance distribution of plant species, we involve
a matrix transformation framework to disentangle the dependence of
plants on pollinators. Let us rewrite the population dynamics for fixed
point solutions as follows
[

𝛼𝑃eff
𝛼𝐴eff

]

−

[

𝛽𝐼 + 𝛽0𝐴𝑃 −𝛾0𝑀𝑃

−𝛾0𝑀𝐴 𝛽𝐼 + 𝛽0𝐴𝐴

]

[

𝑠𝑃

𝑠𝐴

]

= 0. (A.3)

To isolate the dependence of plant species on pollinator species, we
perform a Gaussian elimination by multiplying an upper triangular
block matrix on the left, which yields

[

𝛼𝑃eff + 𝛾0𝑀𝑃 (

𝛽𝐼 + 𝛽0𝐴𝐴)−1 𝛼𝐴eff
𝛼𝐴eff

]

(A.4)

=

[

(

𝛽𝐼 + 𝛽0𝐴𝑃 ) − 𝛾20𝑀
𝑃 (

𝛽𝐼 + 𝛽0𝐴𝐴)−1 𝑀𝐴 0
−𝛾0𝑀𝐴 𝛽𝐼 + 𝛽0𝐴𝐴

]

[

𝑠𝑃

𝑠𝐴

]

.

The plant species 𝑠𝑃 can therefore be approximated by

𝑠̃𝑃 =
(

(

𝛽𝐼 + 𝛽0𝐴
𝑃 ) − 𝛾20𝑀

𝑃 (

𝛽𝐼 + 𝛽0𝐴
𝐴)−1 𝑀𝐴

)−1

×
(

𝛼𝑃eff + 𝛾0𝑀
𝑃 (

𝛽𝐼 + 𝛽0𝐴
𝐴)−1 𝛼𝐴eff

)

(A.5)

where the approximated mutualistic matrix 𝑀𝐴,𝑃 is obtained via
Eq. (7). For the hybrid model, the competition for plants is assumed to
have a mean field competition, that is 𝐴𝑃 = 𝑢𝑢𝑇 − 𝐼 where 𝑢 is the all
one column vector and 𝑢𝑢𝑇 encodes the all one matrix. The competition
between plant species 𝑘 and 𝑝 can be equivalently written as

𝐴𝑃
𝑘𝑝 = 1 − 𝛿𝑘𝑝 (A.6)

and the competition matrix 𝐴𝐴 for pollinators is approximated by
Eq. (A.2). Once the abundance of plant species is approximated, the
weighted competition for pollinator species 𝑖 and 𝑗 can be expressed as

𝐴𝐴
𝑖𝑗 =

∑

𝑘∈𝑃 𝐾𝑇
𝑖𝑘𝐾

𝑇
𝑗𝑘𝑠𝑘

𝑃

∑

𝑘∈𝑃 𝐾𝑇
𝑖𝑘𝑠𝑘

𝑃
. (A.7)

inally, with the approximated competitive matrices 𝐴𝑃 ,𝐴 and mu-
ualistic matrices 𝑀𝐴,𝑃 , the fixed point solution can be obtained by
q. (A.3).

To further ensure that any feasible solutions are stable to small
erturbations, we provide the detailed stability analysis for small per-
urbations around the equilibrium point. A small perturbation around a
ixed point 𝑠∗ can be denoted as 𝛿𝑠 = 𝑠−𝑠∗. The change of perturbation
ith time is 𝑑𝛿𝑠∕𝑑𝑡 = 𝐽𝛿𝑠. To determine the stability of the equilibrium
oint, we analyze the Jacobian matrix 𝐽 , which is written as

= −diag
(

𝑠∗
)

(𝛽𝐼 − 𝐵) . (A.8)

here 𝐵 is expressed in the form of a block matrix as

=

[

−𝛽0𝐴𝑃 𝛾0𝑀𝑃

𝛾0𝑀𝐴 −𝛽0𝐴𝐴

]

. (A.9)

he decay of the perturbation requires all eigenvalues of the Jacobian
∗

7

atrix to be negative. For positive solutions, 𝑠𝑖 > 0 for any 𝑖, the 𝛽
tability condition requires all eigenvalues of 𝛽𝐼 − 𝐵 to be positive. In
ther words, all eigenvalues of 𝐵 are smaller than 𝛽, which is translated
nto

𝑖 (𝐵) ≤ 𝛽0
∑

𝑗
𝐴𝑖𝑗 + 𝛾0

∑

𝑘
𝑀𝑖𝑘 ≤ 𝛽, (A.10)

where 𝐴 is the intra-guild interspecific competition matrix, and 𝑀
encodes the linearly approximated mutualism term. Hence, the stability
condition is

𝛾0 ≤ max

(

𝛽 − 𝛽0
∑

𝑗 𝐴𝑖𝑗
∑

𝑘 𝑀𝑖𝑘

)

. (A.11)

Eq. (A.11) implies that the mutualistic strength 𝛾0 decreases with the
competitive strength 𝛽0, and its slope depends on the ratio between the
competitive and mutualistic degrees. When a mutualistic structure is
fixed (where the threshold 𝛾𝑐 is fixed), the larger the absolute slope
of the stability line, i.e. the ratio of competitive degree to mutualistic
degree [Eq. (A.11)], the smaller the range of parameters that allows
species to coexist.

Supplementary Figures S2 and S3 show simulation results with
analytical predictions for more real plant–pollinator networks. As it
can be seen, for ℎ = 0 (Fig. S2), the matching between the numerical
results and our calculations is remarkable. Notice, in particular, how
the detailed contour of the feasible area in the hybrid competition
scenario is almost exactly captured by the analytical curves. For the
case of ℎ = 0.1 in Fig. S3 the analytical results accurately predict
the feasible area for a large range of mutualistic strength 𝛾0, with
exceptions at a high value of mutualism due to the saturation effect.
All in all, our analytical results work very well for a variety of real
mutualistic networks.

Appendix B. Derivation of the network property 𝜼

In this section, we derive a network property, 𝜂, that is shown to
be a predictor of the feasible area. We start by deriving the threshold
values of competitive and mutualistic strength below which the fixed
point solutions are positive. Specifically, the threshold 𝛽𝑐 corresponds
to the maximum allowed 𝛽0 that results in feasible solutions in a purely
ompetitive system (𝛾0 = 0), while the threshold 𝛾𝑐 is analogously

defined for a mutualistic system with inter-specific competition being
turned off (𝛽0 = 0). These thresholds, as we shall derive, highlight
etwork properties that drive feasible area.

We first analyze the threshold 𝛽𝑐 on a purely competitive system by
urning off the mutualistic interactions (𝛾0 = 0). For the purely compet-
tive system, species abundance 𝑠∗ at equilibrium can be obtained by
𝐴,𝑃
eff −

(

𝛽𝐼 + 𝛽0𝐴
𝐴,𝑃 ) 𝑠∗ = 0. (B.1)

ecause plant species have a different competition pattern from the
ollinator species in the hybrid model, we derive fixed point solu-
ions for plants and pollinators separately. To solve the equilibrium
bundance for plant species, we decompose the competition matrix
s 𝐴𝑃 =

∑𝑁𝑃

𝑘=1 𝜆𝑘𝑢𝑘𝑢
𝑇
𝑘 . The competition matrix under the mean field

ssumption has the form 𝐴𝑃 = 𝑢𝑢𝑇 − 𝐼 , where 𝑢𝑢𝑇 represents the all
ne matrix and 𝐼 is the identity matrix. The feasibility of the solution
or plants is guaranteed, for any nonnegative value of 𝛽0, which reads

∗ =
∑

𝑘

1
𝛽 + 𝛽0𝜆𝑘

𝑢𝑘𝑢
𝑇
𝑘 𝛼

𝑃
eff =

𝛼𝑃eff
𝛽 + 𝛽0(𝑁 − 1)

≥ 0.

n addition, when the competition strength satisfies 𝛽0 ≤ 𝛽, the above
ixed point solution is stable against small perturbations, due to the fact
hat all eigenvalues of the corresponding Jacobian matrix are nonposi-
ive, which are 𝜆1 = −

(

𝛽 + 𝛽0(𝑁 − 1)
)

< 0 and 𝜆𝑘 = 𝛽0−𝛽 ≤ 0, for 𝑘 = 2,
, 𝑁𝑃 . Combining the constrains of both positive equilibrium and sta-

ility, the threshold 𝛽𝑐 for plant species of mean field competition reads
𝑐 = 𝛽 (mean field competition). (B.2)
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We now move to deriving the threshold 𝛽𝑐 for pollinator species, which
are assumed to have a weighted competition among those who share
plants. For a purely competitive system, the inter-specific competition
matrix for pollinator species has the following form

𝐴𝐴 = diag
(

1∕𝐾𝑇 𝑢
)

𝐾𝑇𝐾 − 𝐼, (B.3)

where 𝑢 is the all one vector with size being the number of pollinator
species. Substituting the above described competition matrix into the
governing Eq. (B.1) of population dynamics yields the fixed point
abundance for pollinator species, which follows 𝑠∗ =

(

𝛽𝐼 + 𝛽0𝐴𝐴)−1 𝛼𝐴.
By further imposing the feasible condition that 𝑠∗𝑖 > 0 for all pollinator
species 𝑖, the corresponding threshold 𝛽𝑐 can be obtained by evaluating
the solution until negative solution appears. The agreement with nu-
merically obtained thresholds for 50 real mutualistic networks is shown
in Supplementary Fig. S6. In case of non-invertible competition matrix,
the problem can be mapped into the phase I of simplex methods for
linear programming [53].

Here, in order to understand the structural determinants of the
threshold 𝛽𝑐 , we derive an analytical estimation associating the thresh-
old 𝛽𝑐 with network structural properties. We decompose the intra-guild
competition matrix 𝐴𝐴 as 𝐴𝐴 =

∑𝑁𝐴

𝑘=1 𝜎𝑘𝑦𝑘𝑥
𝑇
𝑘 , where 𝜎𝑘 is the singu-

lar value, and the column vectors 𝑦𝑘 and 𝑥𝑘 are the corresponding
left and right singular vectors. Because the competition matrix for
pollinator species is asymmetric for most observed mutualistic net-
works, we choose the singular value decomposition. By applying the
Sherman–Morrison formula, we obtain the following approximation for
the inverse of the competition matrix:

(

𝛽𝐼 + 𝛽0𝐴
𝐴)−1 ≈ 1

𝛽

(

𝐼 −
𝛽0𝜎1𝑦1𝑥𝑇1

𝛽 + 𝛽0𝜎1𝑥𝑇1 𝑦1

)

. (B.4)

By further imposing the condition that 𝑠∗𝑖 > 0 for any species 𝑖, we
erive the following approximation for the threshold 𝛽𝑐 :

𝑐 ≈
𝛽

𝑐𝜎1(𝐴𝐴)
, (B.5)

here 𝜎1(𝐴𝐴) is the largest singular value and 𝑐 = 𝑥𝑇1 𝛼max(𝑦1)𝑖∕𝛼𝑖 −
𝑥𝑇1 𝑦1, in which 𝑦1 and 𝑥1 are the corresponding left and right singular
vectors belonging to 𝜎1, respectively. In addition, one can further loose
the approximation by applying the inequality [54]

𝛼 ≥
𝑁𝐴
∑

𝑗≠𝑖,𝑗=1

(

𝛼𝛽0
𝛽

)

𝐴𝐴
𝑖𝑗 , (B.6)

which yields an estimation for the threshold 𝛽𝑐 as

𝛽𝑐 ≈
𝛽

max 𝑑𝐴
, (B.7)

where 𝑑𝐴 = 𝐴𝐴𝑢 is the degree of the intra-guild competitive matrix
erived in Eq. (B.3). Moreover, the value 𝑑𝐴𝑖 for pollinator 𝑖 follows

𝑑𝐴𝑖 =
∑

𝑘≠𝑖 𝐾
𝑇
𝑖𝑘(𝐾𝑢)𝑘∕(𝐾𝑢)𝑖, which is the average inter-specific competi-

ion introduced by a single mutualistic interaction. The approximations
f both Eq. (B.5) and (B.7) indicate that the threshold 𝛽𝑐 significantly
epends on the competitive structure.

We next derive the threshold for the mutualistic strength 𝛾0 when
turning off the inter-specific competition. For the mutualistic system
with 𝛽0 = 0, the species abundance at equilibrium satisfies the following
equation

𝛼 −
(

𝛽𝐼 − 𝛾0𝑀
)

𝑠𝑃 = 0. (B.8)

If the interaction matrix 𝛽𝐼−𝛾0𝑀 is a 𝑀-matrix, in other words, 𝑀 is a
elementary-wise positive matrix and 𝛽 > 𝛾0𝜆1(𝑀), then the solution to
the linear system Eq. (B.8) is positive for each species. For a mutualistic
system of plant and pollinator species, the matrix 𝑀 has the following
block structure

𝑀 =
[

𝐾
𝑇

]

, (B.9)
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𝐾

where the largest eigenvalue of 𝑀 is equivalent to the largest singular
value 𝜎1 (𝐾) of the bipartite matrix 𝐾 of plant and pollinator interac-
tions. Hence, the threshold 𝛾𝑐 for mutualistic interactions before losing
any species is given by

𝛾𝑐 ≈
𝛽

𝜎1 (𝐾)
. (B.10)

Supplementary Figure S6 shows the agreement between numerical
thresholds on 50 real mutualistic networks and the theoretical predic-
tions of Eq. (B.10).

As the feasible area is simultaneously subjected to feasible and
stable conditions, which might not necessarily coincide, we evaluate
the structural properties that are relevant to the stability conditions ex-
clusively for feasible equilibrium solutions. By analyzing the Jacobian
matrix obtained in Eq. (9), a feasible solution is stable if all eigenvalues
of the Jacobian matrix are negative. The stability condition is translated
into the stability line in the parameter space of 𝛽0 and 𝛾0 described
by Eq. (10). Finally, by combining the stability line and the thresholds
𝛽𝑐 and 𝛾𝑐 , we formulate the network property 𝜂Hybrid for the hybrid
competition scenario, from which we establish Eq. (13).

The formulated network property 𝜂 consists of thresholds and
boundary lines that are determined by competitive and mutualistic
structures. In other words, the network property 𝜂, as an integrated net-
work structure, quantifies the joint effect of competitive and mutualistic
structures on the shape of the feasible area.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.chaos.2023.113507.
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