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Spin of random stationary light
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We develop a theoretical foundation for the spin angular momentum (SAM) of random, statistically stationary
polychromatic light fields within the framework of classical optical coherence theory. The formulation is valid
for fields of arbitrary frequency bandwidth and dimensionality. Both temporal and spectral representations are
given, and we further elucidate the relationship between the SAM and the polarization characteristics of such
fields as compared to monochromatic light. The special cases of quasimonochromatic light and planar fields
are analyzed separately. Generally, our paper offers deeper insights into the SAM and polarization structures as
well as their interlinked connections in random stationary light, which could be beneficial in exploiting SAM in
stochastic optical near fields and tightly focused beams exhibiting complex polarization character.
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I. INTRODUCTION

Spin angular momentum (SAM) is a fundamental physi-
cal quantity of light [1–8], which is closely intertwined with
the concept of polarization [9,10]. As suggested very early
on by Poynting [11] and experimentally observed by Beth
[12], the intrinsic angular momentum of a fully polarized
light beam is determined by the amount of circular polariza-
tion associated with the polarization state. The spin and its
transverse character in optical evanescent waves [4,5,13] and
focal fields [4,5,14–16] have especially attracted a consider-
able amount of research recently. A vast majority of these
investigations involve deterministic monochromatic light and,
thus, two-dimensional (2D) polarization states for which the
local electric field is bounded to a plane. However, every
optical field in nature exhibits at least some degree of random
fluctuations, which cannot be observed directly but inferred
merely through statistical averages and correlations [17]. This
fact may not render only a monochromatic treatment inade-
quate but also a 2D polarization description insufficient, since
for random polychromatic light the local electric field can
fluctuate in all three orthogonal spatial directions in any refer-
ence frame. Such general three-dimensional (3D) polarization
states are known to entail some extraordinary spin character-
istics [18–24] with no correspondence in the context of 2D
polarization states, which motivates to develop a systematic
theory for the SAM of randomly fluctuating, polychromatic
optical fields of an arbitrary polarization state.

In this paper, by employing the classical theory of optical
coherence, we establish a rigorous framework to characterize
the SAM of random, statistically stationary light fields of any
dimension and spectral distribution. Our formulation encom-
passes two central quantities: (1) the electric SAM density
vector met in dual-symmetric electrodynamics [1,3,7,8,25]
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and (2) the electric spin vector encountered in polarization
optics [18,19,22,26–28]. Although for monochromatic light
these quantities are always directly proportional to each other,
and hence practically interchangeable, we show that for ran-
dom 3D polychromatic light this is not true. In particular, we
elucidate the connection between the SAM density vector and
the spin vector on a completely general level both in the time
domain and in the frequency domain, providing important
fundamental insights into the relationship between the SAM
and polarization structures of arbitrary random stationary
light. Reductions to 2D and quasimonochromatic fields are
also considered, and it is shown that, in these cases, the SAM
density vector is connected to the spin vector in a manner that
shares similarity with the one for monochromatic light.

The succeeding sections of the present paper contain the
following material. In Sec. II, we recall the spin of monochro-
matic light, which serves as a basis for later sections. In
Sec. III, after providing background material about polariza-
tion of random stationary light, the spectral and temporal
representations for the spin of general 3D polychromatic
light are established. Section IV addresses the spin of quasi-
monochromatic fields whereas Sec. V deals with the spin of
2D polarization states. Finally, in Sec. VI we summarize the
main results of this paper.

II. SPIN OF MONOCHROMATIC LIGHT

Monochromaticity is an idealized concept related to optical
fields with zero spectral bandwidth, so their spectral profiles
are determined by a single (angular) frequency ω and, conse-
quently, their coherence time is infinite. Even though any real
electromagnetic field has nonzero bandwidth, the assumption
of monochromaticity allows for a simple and sufficient de-
scription in various instances. Here, for the sake of clarity
and comprehensiveness and as a step preceding the descrip-
tion of more realistic physical situations, we consider the
spin and polarization of monochromatic light. Since optical
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interactions take place predominantly via the electric field, we
henceforward focus solely on the electric component of the
total electromagnetic field.

Let E(t ) = Re(ee−iωt ) be a monochromatic electric field at
time t , where Re stands for the real part and e = (ex, ey, ez )T

is the complex 3D Jones vector [29–31], with T denoting
transpose, which represents the local polarization state in
Cartesian coordinates. The SAM density vector associated
with the electric field is in vacuum given by [4,5]

S = ε0

4ω
Im(e∗×e ), (1)

where the superscript * indicates complex conjugate, × repre-
sents the vector product, ε0 is the vacuum permittivity, and Im
refers to the imaginary part. The result in Eq. (1) is obtained
by time averaging the dual-symmetric form of the total elec-
tromagnetic SAM density vector [1,3,7,8] when the magnetic
contribution is neglected, i.e.,

S(t ) = ε0

2
E(t )×A(t ). (2)

Here A(t ) is the (real) vector potential that obeys E(t ) =
−dA(t )/dt .

The SAM density vector S in Eq. (1) represents angular
momentum per unit volume. However, we will henceforth
drop the term “density” and for brevity simply refer to S
as the SAM vector (its local character should be understood
in this context). Moreover, in polarization optics, the focus is
on the relative magnitude of the polarization descriptors rather
than their dimensions. For example, measurable quantities,
such as the Stokes parameters (see below), are defined with
dimensions of intensity I = e†e where the dagger indicates
conjugate transpose. The spin vector n associated with the
polarization state is then introduced by neglecting the factor
ε0/4ω in Eq. (1) as [18,19,22]

n = Im(e∗×e) = Im

⎛
⎜⎝

e∗
yez − e∗

z ey

−e∗
xez + e∗

z ex

e∗
xey − e∗

yex

⎞
⎟⎠. (3)

Combining Eqs. (1) and (3) allows us to write the SAM vector
of a general monochromatic field as

S = ε0

4ω
n. (4)

Importantly, for monochromatic light, the SAM and spin vec-
tors point exactly in the same direction.

Before proceeding to the next section concerning spin of
random polychromatic stationary light, we make some fur-
ther remarks about the present idealization of monochromatic
light. In this case, the electric field traces a stable polariza-
tion ellipse whose shape and size do not fluctuate. Hence, a
monochromatic light field is fully polarized. For simplicity
and without loss of generality, we take the polarization ellipse
to lie in the xy plane, viz., ez = 0. By then considering the
Stokes parameters

s0 = e∗
xex + e∗

yey, s1 = e∗
xex − e∗

yey, s2 = e∗
xey + e∗

yex,

s3 = i(e∗
yex − e∗

xey), (5)

the spin vector n in Eq. (3) can be written as

n = s3k. (6)

Here, k is the unit vector along the positive z axis and
s3 is called the helicity of the polarization state [2]. In
particular, the degree of circular polarization of the field
Pc is precisely Pc = |n̂| = |ŝ3| [26–28], where n̂ = n/I is
the intensity-normalized spin vector and ŝ3 = s3/I is the
intensity-normalized helicity.

III. SPECTRAL AND TEMPORAL SPIN OF
POLYCHROMATIC LIGHT

Having discussed the spin of monochromatic light, we
now turn to establish the frequency-domain and time-domain
representations for the spin of random stationary light of ar-
bitrary dimension and bandwidth. To this end, we first recall
some basic notions regarding random polarization and optical
coherence theory.

A. Polarization of random stationary light

In general, the following polarimetric situations may occur
for random polychromatic fields:

2D polarization state. The local electric field evolves in
a fixed plane, which allows one to take a reference frame in
which the field is represented through two components only.

3D polarization state. The local electric field fluctuates
such that the strengths of its three orthogonal components are
nonzero in any reference frame [18,27,32,33].

Pure state. A fully polarized field that behaves polarimet-
rically like monochromatic light. Even though the intensity
fluctuates (i.e., the size of the polarization ellipse fluctuates),
the shape of the polarization ellipse is fixed [34,35]. Obvi-
ously, a pure state is necessarily a 2D state.

Mixed state. A partially polarized field that can be either
2D or 3D.

In addition, when considering the spectral profile of poly-
chromatic light, the following cases can be distinguished:

Quasimonochromatic. The shape of the spectral profile is
sufficiently narrow and there is a well-defined and represen-
tative mean (central) frequency ω̄. The electric field traces
out a well-defined ellipse (instantaneous polarization ellipse)
for times involving a sufficiently large number of optical
cycles (with equivalent periods 2π/ω̄). If the instantaneous
polarization plane and the shape of the polarization ellipse
vary (do not vary) for times shorter than the measurement
time, the field is partially (totally) polarized. As we will see,
quasimonochromaticity ensures the applicability of the con-
cept of an instantaneous Jones vector. Polarization states of
quasimonochromatic fields can be either 2D or 3D.

Broadband. In this case the concepts of an instantaneous
polarization ellipse and an instantaneous Jones vector are not
generally applicable. Nevertheless, for any given measure-
ment time, the polarization state of a broadband field is well
defined via the Stokes parameters (either in their 2D or 3D
versions depending on the case [36–45]) or the associated
polarization matrix (see below).

Regardless of the dimensionality and the spectral profile,
all the information about the polarization state in the time
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domain is included in the 3×3 temporal polarization matrix

J = 〈e∗(t )eT(t )〉

=

⎛
⎜⎝

〈e∗
x (t )ex(t )〉 〈e∗

x (t )ey(t )〉 〈e∗
x (t )ez(t )〉

〈e∗
y (t )ex(t )〉 〈e∗

y (t )ey(t )〉 〈e∗
y (t )ez(t )〉

〈e∗
z (t )ex(t )〉 〈e∗

z (t )ey(t )〉 〈e∗
z (t )ez(t )〉

⎞
⎟⎠. (7)

Here the brackets 〈 〉 stand for time averaging and, as cus-
tomary in optical coherence theory, the field is expressed as
a complex-analytic signal e(t ) = [ex(t ), ey(t ), ez(t )]T defined
by [17]

e(t ) =
∫ ∞

0
E(ω)e−iωt dω, (8)

which does not contain negative frequencies and where E(ω)
is the Fourier component of the field. In analogy to monochro-
matic fields, the physical (real) field E(t ) is obtained as E(t ) =
Re[e(t )]. The polarization matrix is Hermitian and positive
semidefinite with the elements Ji j (i, j = x, y, z) being the
second-order moments of the three Cartesian components of
e(t ). In addition, for ergodic fields (considered here) the time
average in Eq. (7) coincides with the ensemble average over
sample realizations [17]. Note that, whereas the convention
taken in Eq. (7) for the definition of the polarization matrix
is common in optical coherence theory, the alternative con-
vention J = 〈e(t )e†(t )〉 is used frequently under the scope
of polarization theory [10,18,19,27,38,46] in which case the
signs of the imaginary parts of the off-diagonal elements of
the polarization matrix should be inverted.

On the other hand, the complete information on the polar-
ization state in the frequency domain is contained in the 3×3
spectral polarization matrix

�(ω) = 〈ε∗(ω)εT(ω)〉

=
⎛
⎝〈ε∗

x (ω)εx(ω)〉 〈ε∗
x (ω)εy(ω)〉 〈ε∗

x (ω)εz(ω)〉
〈ε∗

y (ω)εx(ω)〉 〈ε∗
y (ω)εy(ω)〉 〈ε∗

y (ω)εz(ω)〉
〈ε∗

z (ω)εx(ω)〉 〈ε∗
z (ω)εy(ω)〉 〈ε∗

z (ω)εz(ω)〉

⎞
⎠,

(9)

where 〈 〉 now stands for the ensemble average and ε(ω) be-
longs to a set of monochromatic realizations all at frequency
ω. We emphasize that ε(ω) is not the Fourier component
E(ω) present in Eq. (8), although they both have the same
units. Nevertheless, the ensemble {ε(ω)} provides a rigorous
representation of �(ω) of the field as a statistical average
[17,47]. Note also that, even though each realization repre-
sents a pure state with a well-defined polarization ellipse, the
ellipses and the polarization planes of the different realiza-
tions can be different, which thus in general necessitates a 3D
polarization treatment of the field. As with the time domain,
when the convention �(ω) = 〈ε(ω)ε†(ω)〉 is taken, the signs
of the imaginary parts of the off-diagonal elements of spectral
polarization matrix should be inverted with respect to those
derived from Eq. (9).

B. Spectral spin

The spin vector of a monochromatic realization appear-
ing in Eq. (9) is Im[ε∗(ω)×ε(ω)] [cf. Eq. (3)]. Ensemble

averaging over these spin-vector realizations then yields the
field’s spectral spin vector

ν(ω) = Im〈ε∗(ω)×ε(ω)〉
= 2Im[Φyz(ω),−Φxz(ω), Φxy(ω)]T, (10)

where Φi j (ω) (i, j = x, y, z) are the off-diagonal ele-
ments of the spectral polarization matrix �(ω). Like-
wise, averaging over the SAM vectors of the realizations,
(ε0/4ω)Im[ε∗(ω)×ε(ω)] [cf. Eq. (1)], leads to the spectral
SAM vector

�(ω) = ε0

4ω
ν(ω). (11)

In particular, Eq. (11) shows that the spectral spin and SAM
vectors point exactly in the same direction, akin to the case of
monochromatic light in Eq. (4).

Further insight into the spectral spin is obtained by invok-
ing the Wiener-Khintchine theorem [17,48],

�(ω) = 1

2π

∫ ∞

−∞
�(τ )eiωτ dτ, (12)

where �(τ ) = 〈e∗(t )eT(t + τ )〉 is the electric mutual coher-
ence matrix that for stationary fields depends only on the time
difference τ . Since Eq. (12) holds for each matrix element, we
find that

〈ε∗(ω)×ε(ω)〉 = 1

2π

∫ ∞

−∞
η(τ )eiωτ dτ, (13)

where we introduced the quantity η(τ ) = 〈e∗(t )×e(t + τ )〉.
According to Eqs. (10) and (13), the spectral spin vector then
takes the form

ν(ω) = 1

2π
Im

[∫ ∞

−∞
η(τ )eiωτ dτ

]
. (14)

The complex vector η(τ ) consists of the elements of �(τ ) and,
hence, provides information how temporal coherence affects
the spectral spin.

C. Temporal spin

The temporal spin vector of the random stationary field
follows directly from Eq. (7) [19]:

n = Im〈e∗(t )×e(t )〉 = 2Im(Jyz,−Jxz, Jxy)T. (15)

This spin vector describes the time-averaged direction around
which the electric field whirls [49]. We especially observe that
the temporal spin vector coincides with η(τ ) in Eq. (13) for
τ = 0, viz., n = Im[η(0)]. Moreover, the inverse of Eq. (13)
implies

η(τ ) =
∫ ∞

0
〈ε∗(ω)×ε(ω)〉e−iωτ dω, (16)

with the integration extending over positive frequencies only
owing to the complex analytic signal representation. We thus
find that

n = Im[η(0)] =
∫ ∞

0
ν(ω)dω, (17)

showing that, for stationary light, the temporal spin vector can
be viewed as an incoherent sum of the spectral spin vectors.
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We next derive the associated temporal SAM vector. We
start from Eq. (2) and express the electric field and vector
potential via complex analytic signals, i.e., E(t ) = Re[e(t )]
and A(t ) = Re[a(t )], where e(t) is given in Eq. (8) and

a(t ) =
∫ ∞

0
A(ω)e−iωt dω. (18)

The corresponding Fourier components are related as A(ω) =
(−i/ω)E(ω). Inserting the above expressions for E(t ) and
A(t ) into Eq. (2) leads to

S(t ) = −iε0

8

[∫ ∞

0

∫ ∞

0

1

ω
E(ω)×E(ω′)e−i(ω+ω′ )t dωdω′

+
∫ ∞

0

∫ ∞

0

1

ω
E∗(ω)×E(ω′)ei(ω−ω′ )t dωdω′ − c.c.

]
,

(19)

with c.c. denoting the complex conjugate. Taking the average
of Eq. (19) subsequently yields

S = 〈S(t )〉 = ε0

4

∫ ∞

0

1

ω
Im〈ε∗(ω)×ε(ω)〉dω, (20)

where we employed the conditions

〈E∗(ω)×E(ω′)〉 = 〈ε∗(ω)×ε(ω)〉δ(ω − ω′),

〈E(ω)×E(ω′)〉 = 0. (21)

The first relation, including the Dirac delta function δ(ω−ω′),
highlights the fact that for stationary light different frequency
components are uncorrelated. It follows from an elementwise
utilization of the Wiener-Khintchine theorem in Eq. (12),
which can be expressed formally as 〈E∗(ω)ET(ω′)〉 =
�(ω)δ(ω−ω′) [17], with the spectral polarization matrix
�(ω) constructed as an ensemble average over the monochro-
matic realizations ε(ω) as before in Eq. (9). The second
relation in Eq. (21) is proportional to δ(ω + ω′) (see Secs. 2.2
and 2.4.1 in Ref. [17]) and thus reduces to zero due to the
complex analytic signal representation in Eq. (8). By making
use of the spectral quantities ν(ω) and �(ω) in Eqs. (10)
and (11), we eventually find that the temporal SAM vector
in Eq. (20) obeys

S =
∫ ∞

0
�(ω)dω = ε0

4

∫ ∞

0

1

ω
ν(ω)dω. (22)

Two main conclusions can be drawn from Eq. (22).
The first equality in Eq. (22) shows that the temporal SAM

vector of a random stationary light field corresponds to an
incoherent sum of the spectral SAM vectors. This connection
is similar to the link between the temporal and spectral spin
vectors in Eq. (17). The second equality in Eq. (22) dictates
that, in general, the temporal SAM vector is not parallel to the
temporal spin vector in Eq. (17) due to the spectral weighting
1/ω within the integral. This result is strikingly different from
the one in the spectral domain [Eq. (11)] and the one for
monochromatic light [Eq. (4)] for which the SAM and spin
vectors always point in the same direction.

We emphasize that the above analysis, which relies on
the complex analytic signal representation (applicable to any
electromagnetic field in nature), provides both a frequency-
domain formulation [Eq. (11)] and a time-domain formulation
[Eq. (22)] for the SAM vector of random stationary light of
arbitrary spectral profile and dimensionality. We also remark
that whereas the temporal spin vector appearing in Eqs. (15)
and (17) does not, in general, describe the direction of the
temporal SAM vector in Eq. (22) of the field, it is a central
quantity that reflects the time-domain polarization properties
of the field.

IV. SPIN OF QUASIMONOCHROMATIC LIGHT

There are many experimental situations where the field can
be considered quasimonochromatic, that is, the spectral width
�ω is very narrow compared to the central natural frequency
ω̄ of the spectrum. The quasimonochromaticity condition en-
sures that the coherence time involves a large number of
equivalent natural cycles so that the instantaneous polarization
ellipse is well defined for time intervals comparable to the
polarization time [50–52], which supports the consistency of
the concept of an instantaneous Jones vector. Note that such a
concept is not applicable, in general, to highly polychromatic
states where the instantaneous polarization ellipse may not be
well defined.

As given in Ref. [48, p. 175], the mutual electric coherence
matrix of a quasimonochromatic field can for τ values (much)
less than the coherence time be approximated as

�(τ ) = Je−iω̄τ . (23)

Since in this case η(τ ) = 〈e∗(t )×e(t )〉 exp(−iω̄τ ), it follows
from Eq. (14) that ν(ω) = nδ(ω−ω̄) [53]. Consequently, we
effectively have

n = ν(ω̄), S = �(ω̄) = ε0

4ω̄
n, (24)

which express that the temporal spin and SAM vectors are de-
termined by the corresponding spectral quantities at the center
frequency ω̄. In addition, we see that for quasimonochromatic
light n and S are parallel, and thus their connection is similar
to that for monochromatic light in Eq. (4). Obviously, the
narrower the spectral width (larger coherence time) is, the
more accurate the above approximate expressions are. A more
rigorous analysis would involve a finite sharp spectral function
instead of the Dirac delta function.

Equation (24) constitutes the spin version of the result
obtained in Ref. [54] and in Ref. [55] (Theorem 1): If a statis-
tically stationary light field of arbitrary bandwidth is filtered
to become narrowband, of mean frequency ω̄, the temporal
spin vector (SAM vector) of the filtered beam is equal to the
spectral spin vector (SAM vector) at the mean frequency ω̄ of
the original field.

V. SPIN OF 2D LIGHT

As explained in Sec. III A, for a 2D polarization state the
electric field is restricted to a plane and, hence, it can be rep-
resented by merely two orthogonal components. In this case,
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the temporal and spectral polarization matrices in Eqs. (7) and
(9) are reducible to 2×2 forms as [17]

J =
(〈e∗

x (t )ex(t )〉 〈e∗
x (t )ey(t )〉

〈e∗
y (t )ex(t )〉 〈e∗

y (t )ey(t )〉
)

= 1

2

(
s0 + s1 s2 + is3

s2 − is3 s0 − s1

)
, (25)

�(ω) =
(〈ε∗

x (ω)εx(ω)〉 〈ε∗
x (ω)εy(ω)〉

〈ε∗
y (ω)εx(ω)〉 〈ε∗

y (ω)εy(ω)〉
)

= 1

2

(
s0(ω) + s1(ω) s2(ω) + is3(ω)
s2(ω) − is3(ω) s0(ω) − s1(ω)

)
, (26)

where s0, s1, s2, s3 and s0(ω), s1(ω), s2(ω), s3(ω) are the tem-
poral and spectral Stokes parameters [cf. Eq. (5)]. The related
temporal and spectral spin vectors are [cf. Eq. (6)]

n = s3k,
(27)

ν(ω) = s3(ω)k,

whose magnitudes |s3| and |s3(ω)| are determined univo-
cally by the imaginary parts of the polarization matrices J
and �(ω). Therefore, real-valued polarization matrices (either
2×2 or 3×3 [18,22,27]) correspond to states that lack spin.

Equations (17) and (27) indicate that the temporal helicity
s3 is connected to the spectral helicity s3(ω) according to

s3 =
∫ ∞

0
s3(ω)dω. (28)

Provided that s3 is nonzero, regardless of the bandwidth, we
can recast Eq. (22) for a 2D field into the form

S = ε0

4	
n, (29)

by introducing the spin frequency

	 ≡ s3∫ ∞
0 [s3(ω)

/
ω]dω

. (30)

We see that the temporal SAM vector and the spin frequency
of a 2D field are exclusively specified by the helicity prop-
erties. In particular, the introduction of the spin frequency
allows us to express the SAM vector of arbitrary polychro-
matic 2D light in a form analogous to that of monochromatic
light in Eq. (4). However, since 	 can be positive or negative,
the temporal spin and SAM vectors of polychromatic 2D light
can be parallel or antiparallel, whereas for monochromatic
light they are always parallel. In general, the magnitude of 	

can be interpreted as the angular frequency of the monochro-
matic field whose SAM vector can be rendered to coincide

with that of the polychromatic 2D field considered. In ad-
dition, 1/	 can be viewed as the spectral-helicity weighted
average of 1/ω. For a quasimonochromatic 2D field, the spin
frequency is simply the (positive) mean frequency, 	 = ω̄,
and for a strictly monochromatic field Eq. (29) reduces to
Eq. (10).

VI. CONCLUSIONS

To summarize, we have established a unified framework
to characterize the spin of random stationary light fields of
arbitrary bandwidth and dimensionality by employing the
foundations of classical optical coherence theory. Both time-
domain and frequency-domain formulations were provided.
We especially focused on two main physical quantities and
their mutual relations: (1) the electric SAM density vector
appearing in the dual-symmetric representation of electrody-
namics and (2) the electric spin vector that is fundamental
in polarization optics. For monochromatic light, these two
quantities differ only by a positive proportionality factor that
renders them essentially interchangeable. It was shown that
for random polychromatic 3D light a similar relationship
holds in the spectral domain but not generally in the tempo-
ral domain. In particular, the time-domain SAM density and
spin vectors generally can point in different directions. This
highlights the fact that for a polychromatic 3D field extra
care must be taken in assessing the effect of polarimetric
properties on SAM. The special cases of quasimonochromatic
and 2D fields were studied separately. By introducing the spin
frequency, we demonstrated that in both cases the temporal
SAM density vector can be expressed in a form analogous to
that of monochromatic light. On the other hand, in contrast
to monochromatic and quasimonochromatic light for which
the SAM density and spin vectors are strictly parallel, for 2D
broadband fields they can also be antiparallel. Furthermore,
it was found that the temporal spin characteristics of quasi-
monochromatic fields are determined by the spectral spin
qualities at the center frequency, whereas all spin properties
of 2D light can be written directly in terms of helicities. On a
general level, our paper forms a transparent bridge between
the SAM and polarization properties of random stationary
light, which is anticipated to be beneficial in nanophotonics,
nonparaxial optics, and optomechanics where stochastic opti-
cal fields exhibiting complex structures are harnessed.
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